Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach pro...
Saved in:
| Published in | IEEE transactions on neural networks Vol. 11; no. 5; pp. 1093 - 1105 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.09.2000
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1045-9227 |
| DOI | 10.1109/72.870042 |
Cover
| Abstract | This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms. |
|---|---|
| AbstractList | This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms. This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms. |
| Author | Karayiannis, N.B. |
| Author_xml | – sequence: 1 givenname: N.B. surname: Karayiannis fullname: Karayiannis, N.B. organization: Dept. of Electr. & Comput. Eng., Houston Univ., TX, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18249837$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90TlPxDAQBWAXi7gLWgqUiqPYxVdip0SIS0KiAGrLcSbBkI0X2wHBr8eQhQIhKo_k703xZgNNetcDQjsEzwjB5bGgMykw5nSC1gnm-bSkVKyhjRAeMSY8x8UqWiOS8lIysY6ebl0Tsw60723fZi9govPZ86D7aN91tK7PdF9nphtCBP9JdNc6b-PDPGSVDlBniThfg0_jK9j2IaZBt62Hdsy7BXidtoYttNLoLsD28t1E9-dnd6eX0-ubi6vTk-upYSWNU0OYMA1Q4JWpJdFSVLkA3hREgMRFWUktjKhKKA0jjBrJcAUGVwJYXjCu2SY6GPcuvHseIEQ1t8FA1-ke3BCUYIznHOcsyf1_JZW5YCUpEjz8F5JCEJbqlzLRvSUdqjnUauHtXPs39d15AscjMN6F4KFRxsavqqLXtlMEq89LKkHVeMmUOPqV-Fn6h90drQWAH7f8_ACIn6jb |
| CODEN | ITNNEP |
| CitedBy_id | crossref_primary_10_1108_K_06_2013_0107 crossref_primary_10_1049_iet_gtd_2012_0689 crossref_primary_10_1109_TFUZZ_2003_819844 crossref_primary_10_1007_s10726_011_9262_6 crossref_primary_10_1016_j_apm_2013_11_036 crossref_primary_10_1111_itor_12015 crossref_primary_10_1002_int_21585 crossref_primary_10_1016_j_apm_2013_01_022 crossref_primary_10_1109_RBME_2010_2083647 crossref_primary_10_1142_S0219622011004300 crossref_primary_10_1016_j_jcss_2014_03_004 crossref_primary_10_1109_LSP_2004_824054 crossref_primary_10_1080_01969722_2016_1182362 crossref_primary_10_1007_s10726_012_9289_3 crossref_primary_10_3846_20294913_2013_821686 crossref_primary_10_1080_18756891_2011_9727769 crossref_primary_10_1080_01969722_2010_486223 crossref_primary_10_1142_S0218488513500268 crossref_primary_10_3724_SP_J_1001_2009_03410 crossref_primary_10_1109_TIP_2003_817251 crossref_primary_10_1007_s00500_020_05507_1 crossref_primary_10_1016_j_fss_2005_04_003 crossref_primary_10_1016_j_knosys_2012_11_014 crossref_primary_10_3390_e18060171 crossref_primary_10_1109_TNN_2002_806951 crossref_primary_10_1155_2013_563650 crossref_primary_10_1016_j_cie_2010_09_017 crossref_primary_10_1016_j_eswa_2011_02_023 crossref_primary_10_1080_01969722_2015_1012891 crossref_primary_10_3390_su11102820 crossref_primary_10_1016_S0165_0114_03_00184_2 crossref_primary_10_1016_j_eswa_2011_02_104 crossref_primary_10_1108_K_03_2013_0059 crossref_primary_10_1007_s10726_010_9225_3 crossref_primary_10_1016_j_eswa_2010_12_103 crossref_primary_10_1007_s10640_008_9219_7 crossref_primary_10_1016_j_ins_2013_02_039 crossref_primary_10_1007_s10846_006_9093_x crossref_primary_10_1016_j_cmpb_2014_04_012 crossref_primary_10_1109_MCI_2018_2881641 crossref_primary_10_1109_TNN_2004_841778 crossref_primary_10_1142_S0219622013500296 crossref_primary_10_3233_JIFS_141219 crossref_primary_10_3846_20294913_2015_1056275 crossref_primary_10_1007_s00779_013_0735_2 crossref_primary_10_1155_2017_9634725 crossref_primary_10_1002_int_20444 crossref_primary_10_4018_ijoris_2014070102 crossref_primary_10_1016_j_asoc_2016_11_024 crossref_primary_10_1080_01969722_2015_1012889 crossref_primary_10_1155_2013_705159 crossref_primary_10_1007_s00500_019_03977_6 |
| Cites_doi | 10.1109/42.56342 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.3.CO;2-L 10.1002/mrm.1910110103 10.1016/0165-0114(93)90194-M 10.1109/72.788654 10.1109/91.388178 10.1109/83.503919 10.1007/978-1-4757-0450-1 10.1109/21.87068 10.1109/83.480771 10.1109/72.536304 10.1109/83.413164 10.1109/72.536314 10.1109/42.57771 10.1109/3477.485833 10.1109/91.649915 10.1016/0165-0114(84)90097-6 10.1109/FUZZY.1998.686331 10.1109/72.159057 10.1016/0031-3203(94)90052-3 10.1117/12.269766 10.1016/0020-0255(85)90027-1 10.1109/91.669028 10.1109/72.572091 10.1016/0893-6080(95)00024-T 10.3233/IFS-1997-5202 10.1109/FUZZY.1998.686322 10.1109/78.124940 10.1016/S0362-546X(97)00378-7 |
| ContentType | Journal Article |
| DBID | RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/72.870042 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Computer and Information Systems Abstracts MEDLINE - Academic Technology Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Anatomy & Physiology Computer Science |
| EndPage | 1105 |
| ExternalDocumentID | 18249837 10_1109_72_870042 870042 |
| Genre | Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS S10 TAE TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7SC 7SP 8FD F28 FR3 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c392t-c137cfe2e4bcd81a87b57e4f617e8069b8a7c7b9e9c3132c830bec0b7e35634a3 |
| IEDL.DBID | RIE |
| ISSN | 1045-9227 |
| IngestDate | Thu Sep 04 19:02:40 EDT 2025 Thu Sep 04 17:49:27 EDT 2025 Thu Sep 04 18:32:42 EDT 2025 Thu Apr 03 06:58:26 EDT 2025 Thu Apr 24 22:55:08 EDT 2025 Wed Oct 01 03:24:37 EDT 2025 Tue Aug 26 21:00:27 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-c137cfe2e4bcd81a87b57e4f617e8069b8a7c7b9e9c3132c830bec0b7e35634a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PMID | 18249837 |
| PQID | 1671310988 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_28573916 crossref_citationtrail_10_1109_72_870042 proquest_miscellaneous_1671310988 pubmed_primary_18249837 ieee_primary_870042 proquest_miscellaneous_733454053 crossref_primary_10_1109_72_870042 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2000-09-01 |
| PublicationDateYYYYMMDD | 2000-09-01 |
| PublicationDate_xml | – month: 09 year: 2000 text: 2000-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on neural networks |
| PublicationTitleAbbrev | TNN |
| PublicationTitleAlternate | IEEE Trans Neural Netw |
| PublicationYear | 2000 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref14 ref31 ref30 ref11 ref32 karayiannis (ref10) 1997; 1 karayiannis (ref9) 1997; 5 ref2 ref1 ref17 ref16 karayiannis (ref15) 2000; 8 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref27 ref29 ref8 ref7 you (ref33) 1995 ref4 ref3 ref6 ref5 karayiannis (ref12) 1997; 3030 klir (ref21) 1995 |
| References_xml | – ident: ref3 doi: 10.1109/42.56342 – start-page: 2763 year: 1995 ident: ref33 article-title: lvq with a weighted objective function publication-title: Proc IEEE Int Conf Neural Networks – ident: ref29 doi: 10.1002/(SICI)1098-111X(199601)11:1<49::AID-INT3>3.3.CO;2-L – ident: ref8 doi: 10.1002/mrm.1910110103 – ident: ref28 doi: 10.1016/0165-0114(93)90194-M – ident: ref16 doi: 10.1109/72.788654 – ident: ref7 doi: 10.1109/91.388178 – volume: 1 start-page: 33 year: 1997 ident: ref10 article-title: learning vector quantization: a review publication-title: Int J Smart Eng Syst Design – ident: ref23 doi: 10.1109/83.503919 – ident: ref1 doi: 10.1007/978-1-4757-0450-1 – ident: ref27 doi: 10.1109/21.87068 – ident: ref22 doi: 10.1109/83.480771 – ident: ref17 doi: 10.1109/72.536304 – year: 1995 ident: ref21 publication-title: Fuzzy Sets and Fuzzy Logic Theory and Applications – ident: ref19 doi: 10.1109/83.413164 – ident: ref20 doi: 10.1109/72.536314 – ident: ref25 doi: 10.1109/42.57771 – ident: ref30 doi: 10.1109/3477.485833 – ident: ref18 doi: 10.1109/91.649915 – ident: ref5 doi: 10.1016/0165-0114(84)90097-6 – ident: ref14 doi: 10.1109/FUZZY.1998.686331 – ident: ref6 doi: 10.1109/72.159057 – ident: ref26 doi: 10.1016/0031-3203(94)90052-3 – volume: 3030 start-page: 2 year: 1997 ident: ref12 article-title: entropy constrained learning vector quantization algorithms and their application in image compression publication-title: Proc SPIE doi: 10.1117/12.269766 – ident: ref4 doi: 10.1016/0020-0255(85)90027-1 – ident: ref31 doi: 10.1109/91.669028 – ident: ref11 doi: 10.1109/72.572091 – ident: ref2 doi: 10.1016/0893-6080(95)00024-T – volume: 5 start-page: 103 year: 1997 ident: ref9 article-title: fuzzy partition entropies and entropy constrained fuzzy clustering algorithms publication-title: J Intell Fuzzy Syst doi: 10.3233/IFS-1997-5202 – volume: 8 start-page: 63 year: 2000 ident: ref15 article-title: generalized fuzzy $c$-means algorithms publication-title: J Intell Fuzzy Syst – ident: ref13 doi: 10.1109/FUZZY.1998.686322 – ident: ref32 doi: 10.1109/78.124940 – ident: ref24 doi: 10.1016/S0362-546X(97)00378-7 |
| SSID | ssj0014506 |
| Score | 1.9912087 |
| Snippet | This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1093 |
| SubjectTerms | Agglomeration Algorithm design and analysis Algorithms Clustering Clustering algorithms Fuzzy sets Image segmentation Learning Magnetic resonance Magnetic resonance imaging Minimization methods Neural networks Operators Partitioning algorithms Prototypes Vector quantization |
| Title | Soft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators |
| URI | https://ieeexplore.ieee.org/document/870042 https://www.ncbi.nlm.nih.gov/pubmed/18249837 https://www.proquest.com/docview/1671310988 https://www.proquest.com/docview/28573916 https://www.proquest.com/docview/733454053 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 1045-9227 databaseCode: RIE dateStart: 19900101 customDbUrl: isFulltext: true dateEnd: 20111231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014506 providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BT3CgsAWa8jIIIS7ZJnYcO8cKUVUcuECl3iLbmSyo26R0Eyr49Yzt7PJQV-JmRePEisf2fJ6ZbwBeG2FyaY1MKydUWrSNSo2oTMqLVgs0eWtMYPv8WJ6cFh_O5NnEsx1yYRAxBJ_h3DeDL7_p3eivyg6152Kn_fa20mVM1do4DAoZymgSuKDPcq4mEqE8qw4Vn8eOfx09oZbKdrMyHC_HuzFvexVYCX1Uyfl8HOzc_fyHs_E_R34f7k1mJjuKevEAbmE3g72jjiD2xQ_2hoXAz3CjPoPddWUHNi30Gdz9g6ZwD84_0V7NpvoSC_Y9XPSzbyNNypTFyUzXMLccPeuCFzHLRX_1dfhysWL-mGwYiQSST2peh8tYapgFYf1F7N9fYvD3rx7C6fH7z-9O0qlIQ-rItBpSlwvlWuRYWNfo3GhlpcKiJcsIdVZWVhvllK2QlIGQr9MiI7XJrEIhS1EY8Qh2ur7DfWA2RyQA1ebYtgU6T4UvK56h5E7lUqsE3q7nr3YTg7kvpLGsA5LJqlrxOv7pBF5tRC8jbcdNQjM_UxuB9dOXa52oaal5_4npsB9XdV4Soqc3aJ3Aiy0yXEvlc5kTYFsklBCe9VCKBB5Hjfs9Qk1gWAt1cOPAnsCdyAPgA9yews5wNeIzsogG-zyshV8ymguz |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hcgAOtGx5BFpqEEJcsk38WDvHqqJaoPRCK_UWOc5kQd0mpZuA4NczdrLLQ12JmxWNEyse2_N5Zr4BeGWFTVVhVZw5oWNZlTq2IrMxl5URaNPK2sD2eTKZnsn35-p84NkOuTCIGILPcOybwZdfNq7zV2X7xnOx0357W0kpVZ-stXIZSBUKaRK8oA9zrgcaoTTJ9jUf913_OnxCNZX1hmU4YI42-8ztReAl9HElF-OuLcbu5z-sjf859i24Pxia7KDXjAdwC-sRbB_UBLIvf7DXLIR-hjv1EWwuazuwYamP4N4fRIXbcPGJdms2VJiYsW_hqp997WhahjxOZuuSuXnneRe8iJ3Pmusv7efLBfMHZclIJNB8UvN7uI6lhp0R2p_1_ZsrDB7_xUM4O3p7ejiNhzINsSPjqo1dKrSrkKMsXGlSa3ShNMqKbCM0ySQrjNVOFxmSOhD2dUYkpDhJoVGoiZBWPIKNuqnxCbAiRSQIVaVYVRKdJ8NXGU9QcadTZXQEb5bzl7uBw9yX0pjnAcskWa553v_pCF6uRK964o6bhEZ-plYCy6cvljqR02LzHhRbY9Mt8nRCmJ7eYEwEe2tkuFHaZzNHwNZIaCE876ESETzuNe73CA3BYSP00xsHtgd3pqcfj_PjdycfnsHdnhXAh7vtwEZ73eEu2Udt8Tysi19PEQ8A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+learning+vector+quantization+and+clustering+algorithms+based+on+ordered+weighted+aggregation+operators&rft.jtitle=IEEE+transactions+on+neural+networks&rft.au=Karayiannis%2C+N.B.&rft.date=2000-09-01&rft.issn=1045-9227&rft.volume=11&rft.issue=5&rft.spage=1093&rft.epage=1105&rft_id=info:doi/10.1109%2F72.870042&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_72_870042 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9227&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9227&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9227&client=summon |