Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data
RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples...
Saved in:
Published in | Genomics (San Diego, Calif.) Vol. 111; no. 4; pp. 893 - 898 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0888-7543 1089-8646 1089-8646 |
DOI | 10.1016/j.ygeno.2018.05.018 |
Cover
Abstract | RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package ‘SVAPLSseq’) to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques.
•RNA-Seq technology provides a deep resolution view of the transcriptomic expression pattern.•Unknown factors of Hidden Variation in RNA-Seq data confound the primary signals of differential expression between two sample types.•The R package SVAPLSseq provides two methods (supervised and unsupervised) to correct for these hidden factors of variation in RNA-Seq•The method is found to perform better than other competing approaches in several situations. |
---|---|
AbstractList | RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package ‘SVAPLSseq’) to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package ‘SVAPLSseq’) to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. •RNA-Seq technology provides a deep resolution view of the transcriptomic expression pattern.•Unknown factors of Hidden Variation in RNA-Seq data confound the primary signals of differential expression between two sample types.•The R package SVAPLSseq provides two methods (supervised and unsupervised) to correct for these hidden factors of variation in RNA-Seq•The method is found to perform better than other competing approaches in several situations. RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques.RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. |
Author | Chakraborty, Sutirtha |
Author_xml | – sequence: 1 givenname: Sutirtha surname: Chakraborty fullname: Chakraborty, Sutirtha email: sutirtha_sutir@yahoo.co.in organization: Novartis Healthcare Private Limited, Hyderabad, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29842947$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAYhS1URKeFJ0BCXrJJ8CUXe8GiqspFGgGidG059p_iUeLM2M5AHqLvXE-n3bAoq_PL-s6RfM4ZOvGTB4TeUlJSQpsPm3K5BT-VjFBRkrrM8gKtKBGyEE3VnKAVEUIUbV3xU3QW44YQIrlgr9Apk6JismpX6O4mAp56_EOH5PSA16Bjwte7WQeI2I3bMO3zkX4Dhr53RpvlgAcYp73zt3j2f7RPYPFeB6c7N7i0YOexdX0PAfxDKPzd5rToJo-118MSc2KnY3bll5_fLopr2GGrk36NXvZ6iPDmUc_RzaerX5dfivX3z18vL9aF4ZKloiMd4wZsY23T9pQTMI0kjSakNbwxtWVdbWzPhJSmFR2DztRUN0xK29OKMn6O3h9z8_d2M8SkRhcNDIP2MM1RMU5qxhte1_9HSdWyVkhKM_ruEZ27EazaBjfqsKintjMgj4AJU4wBemVc0in3koJ2g6JEHZZVG_WwrDosq0itsmQv_8f7FP-86-PRBbnNvYOgonHgc3cugEnKTu5Z_z1-8cAm |
CitedBy_id | crossref_primary_10_1186_s12859_019_2855_9 crossref_primary_10_1016_j_foodchem_2021_129531 crossref_primary_10_1093_bioadv_vbac033 crossref_primary_10_3390_ijms23084426 |
Cites_doi | 10.1093/nar/gku864 10.1371/journal.pgen.0030161 10.1038/nbt.2931 10.1016/j.neuron.2014.01.001 10.1371/journal.pone.0017820 10.1101/gr.079558.108 10.1186/1471-2164-12-293 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ygeno.2018.05.018 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology |
EISSN | 1089-8646 |
EndPage | 898 |
ExternalDocumentID | 29842947 10_1016_j_ygeno_2018_05_018 S0888754318303148 |
Genre | Journal Article |
GroupedDBID | --- --K --M -DZ -~X .55 .GJ .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYOK ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABUDA ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAWUL BKOJK BLXMC CAG COF CS3 DIK DM4 DOVZS DU5 E3Z EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLW HVGLF HZ~ IHE IXB J1W K-O KOM L7B LG5 LX2 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K TN5 TR2 VH1 WUQ X7M XPP XSW ZA5 ZGI ZMT ZU3 ZXP ~G- ~KM AAFWJ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPKN AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c392t-b0b23ced6dd67f130ec6906a007c36c5d2b5cdf2899c78b2ebc51a6299df14123 |
IEDL.DBID | IXB |
ISSN | 0888-7543 1089-8646 |
IngestDate | Fri Sep 05 11:40:46 EDT 2025 Sun Sep 28 08:55:28 EDT 2025 Thu Apr 03 07:07:07 EDT 2025 Tue Jul 01 01:48:20 EDT 2025 Thu Apr 24 22:50:41 EDT 2025 Fri Feb 23 02:27:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Hidden variability Differential expression RNA-Seq Batch effects |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-b0b23ced6dd67f130ec6906a007c36c5d2b5cdf2899c78b2ebc51a6299df14123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29842947 |
PQID | 2047278911 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2305236355 proquest_miscellaneous_2047278911 pubmed_primary_29842947 crossref_citationtrail_10_1016_j_ygeno_2018_05_018 crossref_primary_10_1016_j_ygeno_2018_05_018 elsevier_sciencedirect_doi_10_1016_j_ygeno_2018_05_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genomics (San Diego, Calif.) |
PublicationTitleAlternate | Genomics |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Leek, Storey (bb0005) 2007; 3 McIntyre, Lopiano, Morse, Amin, Oberg, Young, Nuhzdin (bb0020) 2011; 12 Bottomly, Walter, Hunter, Darakjian (bb0035) 2011; 6 Marioni, Mason, Mane, Stephens, Gilad (bb0015) 2008; 18 Leek (bb0010) 2014; 2 Risso, Ngai, Speed, Dudoit (bb0025) 2014; 2 Ferreira, Wilson, Choi, Risso (bb0040) 2014; 81 Leek (10.1016/j.ygeno.2018.05.018_bb0005) 2007; 3 McIntyre (10.1016/j.ygeno.2018.05.018_bb0020) 2011; 12 Bottomly (10.1016/j.ygeno.2018.05.018_bb0035) 2011; 6 Ferreira (10.1016/j.ygeno.2018.05.018_bb0040) 2014; 81 Marioni (10.1016/j.ygeno.2018.05.018_bb0015) 2008; 18 Risso (10.1016/j.ygeno.2018.05.018_bb0025) 2014; 2 Leek (10.1016/j.ygeno.2018.05.018_bb0010) 2014; 2 |
References_xml | – volume: 18 start-page: 1509 year: 2008 end-page: 1517 ident: bb0015 article-title: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays publication-title: Genome Res. – volume: 81 start-page: 847 year: 2014 end-page: 859 ident: bb0040 article-title: Silencing of odorant receptor genes by G Protein publication-title: Neuron – volume: 3 start-page: 1724 year: 2007 end-page: 1735 ident: bb0005 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genet. – volume: 6 year: 2011 ident: bb0035 article-title: Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays publication-title: PLoS One – volume: 12 start-page: 293 year: 2011 ident: bb0020 article-title: RNA-seq: technical variability and sampling publication-title: BMC Genomics – volume: 2 start-page: 896 year: 2014 end-page: 902 ident: bb0025 article-title: Normalization of RNA-Seq data using factor analysis of control genes or samples publication-title: Nat. Biotechnol. – volume: 2 year: 2014 ident: bb0010 article-title: Svaseq: removing batch effects and other unwanted noise from sequencing data publication-title: Nucleic Acids Res. – volume: 2 issue: 21 year: 2014 ident: 10.1016/j.ygeno.2018.05.018_bb0010 article-title: Svaseq: removing batch effects and other unwanted noise from sequencing data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku864 – volume: 3 start-page: 1724 issue: 9 year: 2007 ident: 10.1016/j.ygeno.2018.05.018_bb0005 article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0030161 – volume: 2 start-page: 896 issue: 9 year: 2014 ident: 10.1016/j.ygeno.2018.05.018_bb0025 article-title: Normalization of RNA-Seq data using factor analysis of control genes or samples publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2931 – volume: 81 start-page: 847 issue: 4 year: 2014 ident: 10.1016/j.ygeno.2018.05.018_bb0040 article-title: Silencing of odorant receptor genes by G Protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron publication-title: Neuron doi: 10.1016/j.neuron.2014.01.001 – volume: 6 issue: 3 year: 2011 ident: 10.1016/j.ygeno.2018.05.018_bb0035 article-title: Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays publication-title: PLoS One doi: 10.1371/journal.pone.0017820 – volume: 18 start-page: 1509 issue: 9 year: 2008 ident: 10.1016/j.ygeno.2018.05.018_bb0015 article-title: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays publication-title: Genome Res. doi: 10.1101/gr.079558.108 – volume: 12 start-page: 293 year: 2011 ident: 10.1016/j.ygeno.2018.05.018_bb0020 article-title: RNA-seq: technical variability and sampling publication-title: BMC Genomics doi: 10.1186/1471-2164-12-293 |
SSID | ssj0009382 |
Score | 2.3094797 |
Snippet | RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 893 |
SubjectTerms | Batch effects computer software Differential expression gene expression Gene Expression Profiling - methods Gene Expression Profiling - standards gene expression regulation genes Hidden variability Humans least squares Least-Squares Analysis messenger RNA Reproducibility of Results RNA-Seq sequence analysis Sequence Analysis, RNA - methods Sequence Analysis, RNA - standards Transcriptome |
Title | Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data |
URI | https://dx.doi.org/10.1016/j.ygeno.2018.05.018 https://www.ncbi.nlm.nih.gov/pubmed/29842947 https://www.proquest.com/docview/2047278911 https://www.proquest.com/docview/2305236355 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1089-8646 dateEnd: 20240401 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: IXB dateStart: 20051201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: ACRLP dateStart: 20051201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: AIKHN dateStart: 20051201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1089-8646 dateEnd: 20240401 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1089-8646 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009382 issn: 0888-7543 databaseCode: AKRWK dateStart: 19870901 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIgQ9IAgUwiMyEkdM9mk7xxCoUooiRIiUm7V-rJSqbPpI2ubCP-A_M-PdLXBoDpx215q1vDu257M98w3A28jQ8ZszXOXScUq2zY2RhnsZSSfTNBkUwUF2Isaz7PM8n-_AqI2FIbfKZu6v5_QwWzcl_eZv9k8Xi_4UxweC7Yw6JXGwU8BvmskQxDf_8Id4Nw0Jo0iYk3TLPBR8vDZEhEr-Xaqm71S3Wafb0GewQgeP4GEDH9mwbuFj2PFVB-7VCSU3Hbg_avO3dWDvL6rBJ_BrduHZsmRf6eOwhi-Us4dNz9YUf8QWYWsBbxAOMk-sEoXdkPi5_xG2HNi6uiIdOHaJi-ua23vDFhVrE6yESv1141ZbsSKQnWCNZCYdw5JvkyGf-jNGPqlPYXbw6ftozJtUDNwigFpxE5kkRZUI54Qs0e55SwzHBSIMmwqbu8Tk1pW0erNSmcQbm8eFQFvnyjhD67gPu9Wy8s-BJTISiRWZKR2uzkyuSmUiUTqjCpWWKutC0qpA24annNJlnOjWIe1YB71p0puOco2XLry7eem0punYLi5a3ep_eptGQ7L9xTdtT9CoTjpcKSq_XF-gUCYpqjiOt8iktAlPEK8Lz-pudNPaZKAQGmTyxf827SU8wKdB7Ur8CnZX52v_GgHTyvTgzvufcQ_uDg-PxhN8-nh41Auj5Dewtxh_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB61qaqWA4IAJTyKK3HEymYftnOMIqqUplHVNFJv1vqxUhBs-kiA_Aj-MzPe3QKH5tDTrnbHlndn7Plsj78B-BgZ2n5zhqtMOk7Jtrkx0nAvI-lkksT9PATITsRoln65yq62YNichaGwynrsr8b0MFrXT7r13-xez-fdKfYPBNspGSVxsKtt2EkzHJNbsDM4OR1N_nLvJiFnFMlzKtCQD4UwrzVxoVKIl6oYPNVDDuohABoc0fEzeFojSDaoGvkctnzZht0qp-S6DXvDJoVbG578wzb4An7P7jxbFOycvg9rGFPaHja9WdERJDYPqwt4g4iQeSKWyO2axG_997DqwFblT1KDYz9wfl3Re6_ZvGRNjpVQqf9VR9aWLA98J1gjeUrH8MnFZMCn_oZRWOpLmB1_vhyOeJ2NgVvEUEtuIhMnqBXhnJAFuj5vieQ4R5BhE2EzF5vMuoImcFYqE3tjs14u0N25opeig3wFrXJR-tfAYhmJ2IrUFA4naCZThTKRKJxRuUoKlXYgblSgbU1VThkzvukmJu2rDnrTpDcdZRovHfh0X-i6YurYLC4a3er_DE6jL9lc8KixBI3qpP2VvPSL1R0KpZIOFvd6G2QSWocnlNeBg8qM7lsb9xWig1S-eWzTPsDe6PJsrMcnk9O3sI9v-lVk8TtoLW9X_j3ip6U5rPvHH-8wGSk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+Partial+Least+Squares+improves+the+efficacy+of+removing+unwanted+variability+in+differential+expression+analyses+based+on+RNA-Seq+data&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Chakraborty%2C+Sutirtha&rft.date=2019-07-01&rft.issn=1089-8646&rft.eissn=1089-8646&rft.volume=111&rft.issue=4&rft.spage=893&rft_id=info:doi/10.1016%2Fj.ygeno.2018.05.018&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon |