Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data

RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples...

Full description

Saved in:
Bibliographic Details
Published inGenomics (San Diego, Calif.) Vol. 111; no. 4; pp. 893 - 898
Main Author Chakraborty, Sutirtha
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2019
Subjects
Online AccessGet full text
ISSN0888-7543
1089-8646
1089-8646
DOI10.1016/j.ygeno.2018.05.018

Cover

Abstract RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package ‘SVAPLSseq’) to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. •RNA-Seq technology provides a deep resolution view of the transcriptomic expression pattern.•Unknown factors of Hidden Variation in RNA-Seq data confound the primary signals of differential expression between two sample types.•The R package SVAPLSseq provides two methods (supervised and unsupervised) to correct for these hidden factors of variation in RNA-Seq•The method is found to perform better than other competing approaches in several situations.
AbstractList RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package ‘SVAPLSseq’) to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques.
RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package ‘SVAPLSseq’) to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques. •RNA-Seq technology provides a deep resolution view of the transcriptomic expression pattern.•Unknown factors of Hidden Variation in RNA-Seq data confound the primary signals of differential expression between two sample types.•The R package SVAPLSseq provides two methods (supervised and unsupervised) to correct for these hidden factors of variation in RNA-Seq•The method is found to perform better than other competing approaches in several situations.
RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques.RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried gene on multiple experimental subjects. But on the downside, the underlying technical artefacts and hidden biological profiles of the samples generate a wide variety of latent effects that may potentially distort the actual transcript/gene expression signals. Standard normalization techniques fail to correct for these hidden variables and lead to flawed downstream analyses. In this work I demonstrate the use of Partial Least Squares (built as an R package 'SVAPLSseq') to correct for the traces of extraneous variability in RNA-Seq data. A novel and thorough comparative analysis of the PLS based method is presented along with some of the other popularly used approaches for latent variable correction in RNA-Seq. Overall, the method is found to achieve a substantially improved estimation of the hidden effect signatures in the RNA-Seq transcriptome expression landscape compared to other available techniques.
Author Chakraborty, Sutirtha
Author_xml – sequence: 1
  givenname: Sutirtha
  surname: Chakraborty
  fullname: Chakraborty, Sutirtha
  email: sutirtha_sutir@yahoo.co.in
  organization: Novartis Healthcare Private Limited, Hyderabad, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29842947$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAYhS1URKeFJ0BCXrJJ8CUXe8GiqspFGgGidG059p_iUeLM2M5AHqLvXE-n3bAoq_PL-s6RfM4ZOvGTB4TeUlJSQpsPm3K5BT-VjFBRkrrM8gKtKBGyEE3VnKAVEUIUbV3xU3QW44YQIrlgr9Apk6JismpX6O4mAp56_EOH5PSA16Bjwte7WQeI2I3bMO3zkX4Dhr53RpvlgAcYp73zt3j2f7RPYPFeB6c7N7i0YOexdX0PAfxDKPzd5rToJo-118MSc2KnY3bll5_fLopr2GGrk36NXvZ6iPDmUc_RzaerX5dfivX3z18vL9aF4ZKloiMd4wZsY23T9pQTMI0kjSakNbwxtWVdbWzPhJSmFR2DztRUN0xK29OKMn6O3h9z8_d2M8SkRhcNDIP2MM1RMU5qxhte1_9HSdWyVkhKM_ruEZ27EazaBjfqsKintjMgj4AJU4wBemVc0in3koJ2g6JEHZZVG_WwrDosq0itsmQv_8f7FP-86-PRBbnNvYOgonHgc3cugEnKTu5Z_z1-8cAm
CitedBy_id crossref_primary_10_1186_s12859_019_2855_9
crossref_primary_10_1016_j_foodchem_2021_129531
crossref_primary_10_1093_bioadv_vbac033
crossref_primary_10_3390_ijms23084426
Cites_doi 10.1093/nar/gku864
10.1371/journal.pgen.0030161
10.1038/nbt.2931
10.1016/j.neuron.2014.01.001
10.1371/journal.pone.0017820
10.1101/gr.079558.108
10.1186/1471-2164-12-293
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ygeno.2018.05.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1089-8646
EndPage 898
ExternalDocumentID 29842947
10_1016_j_ygeno_2018_05_018
S0888754318303148
Genre Journal Article
GroupedDBID ---
--K
--M
-DZ
-~X
.55
.GJ
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYOK
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAWUL
BKOJK
BLXMC
CAG
COF
CS3
DIK
DM4
DOVZS
DU5
E3Z
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLW
HVGLF
HZ~
IHE
IXB
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
TN5
TR2
VH1
WUQ
X7M
XPP
XSW
ZA5
ZGI
ZMT
ZU3
ZXP
~G-
~KM
AAFWJ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPKN
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c392t-b0b23ced6dd67f130ec6906a007c36c5d2b5cdf2899c78b2ebc51a6299df14123
IEDL.DBID IXB
ISSN 0888-7543
1089-8646
IngestDate Fri Sep 05 11:40:46 EDT 2025
Sun Sep 28 08:55:28 EDT 2025
Thu Apr 03 07:07:07 EDT 2025
Tue Jul 01 01:48:20 EDT 2025
Thu Apr 24 22:50:41 EDT 2025
Fri Feb 23 02:27:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Hidden variability
Differential expression
RNA-Seq
Batch effects
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-b0b23ced6dd67f130ec6906a007c36c5d2b5cdf2899c78b2ebc51a6299df14123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29842947
PQID 2047278911
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2305236355
proquest_miscellaneous_2047278911
pubmed_primary_29842947
crossref_citationtrail_10_1016_j_ygeno_2018_05_018
crossref_primary_10_1016_j_ygeno_2018_05_018
elsevier_sciencedirect_doi_10_1016_j_ygeno_2018_05_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genomics (San Diego, Calif.)
PublicationTitleAlternate Genomics
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Leek, Storey (bb0005) 2007; 3
McIntyre, Lopiano, Morse, Amin, Oberg, Young, Nuhzdin (bb0020) 2011; 12
Bottomly, Walter, Hunter, Darakjian (bb0035) 2011; 6
Marioni, Mason, Mane, Stephens, Gilad (bb0015) 2008; 18
Leek (bb0010) 2014; 2
Risso, Ngai, Speed, Dudoit (bb0025) 2014; 2
Ferreira, Wilson, Choi, Risso (bb0040) 2014; 81
Leek (10.1016/j.ygeno.2018.05.018_bb0005) 2007; 3
McIntyre (10.1016/j.ygeno.2018.05.018_bb0020) 2011; 12
Bottomly (10.1016/j.ygeno.2018.05.018_bb0035) 2011; 6
Ferreira (10.1016/j.ygeno.2018.05.018_bb0040) 2014; 81
Marioni (10.1016/j.ygeno.2018.05.018_bb0015) 2008; 18
Risso (10.1016/j.ygeno.2018.05.018_bb0025) 2014; 2
Leek (10.1016/j.ygeno.2018.05.018_bb0010) 2014; 2
References_xml – volume: 18
  start-page: 1509
  year: 2008
  end-page: 1517
  ident: bb0015
  article-title: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays
  publication-title: Genome Res.
– volume: 81
  start-page: 847
  year: 2014
  end-page: 859
  ident: bb0040
  article-title: Silencing of odorant receptor genes by G Protein
  publication-title: Neuron
– volume: 3
  start-page: 1724
  year: 2007
  end-page: 1735
  ident: bb0005
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genet.
– volume: 6
  year: 2011
  ident: bb0035
  article-title: Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays
  publication-title: PLoS One
– volume: 12
  start-page: 293
  year: 2011
  ident: bb0020
  article-title: RNA-seq: technical variability and sampling
  publication-title: BMC Genomics
– volume: 2
  start-page: 896
  year: 2014
  end-page: 902
  ident: bb0025
  article-title: Normalization of RNA-Seq data using factor analysis of control genes or samples
  publication-title: Nat. Biotechnol.
– volume: 2
  year: 2014
  ident: bb0010
  article-title: Svaseq: removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res.
– volume: 2
  issue: 21
  year: 2014
  ident: 10.1016/j.ygeno.2018.05.018_bb0010
  article-title: Svaseq: removing batch effects and other unwanted noise from sequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku864
– volume: 3
  start-page: 1724
  issue: 9
  year: 2007
  ident: 10.1016/j.ygeno.2018.05.018_bb0005
  article-title: Capturing heterogeneity in gene expression studies by surrogate variable analysis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.0030161
– volume: 2
  start-page: 896
  issue: 9
  year: 2014
  ident: 10.1016/j.ygeno.2018.05.018_bb0025
  article-title: Normalization of RNA-Seq data using factor analysis of control genes or samples
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2931
– volume: 81
  start-page: 847
  issue: 4
  year: 2014
  ident: 10.1016/j.ygeno.2018.05.018_bb0040
  article-title: Silencing of odorant receptor genes by G Protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.01.001
– volume: 6
  issue: 3
  year: 2011
  ident: 10.1016/j.ygeno.2018.05.018_bb0035
  article-title: Evaluating gene expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and microarrays
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0017820
– volume: 18
  start-page: 1509
  issue: 9
  year: 2008
  ident: 10.1016/j.ygeno.2018.05.018_bb0015
  article-title: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays
  publication-title: Genome Res.
  doi: 10.1101/gr.079558.108
– volume: 12
  start-page: 293
  year: 2011
  ident: 10.1016/j.ygeno.2018.05.018_bb0020
  article-title: RNA-seq: technical variability and sampling
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-293
SSID ssj0009382
Score 2.3094797
Snippet RNA-Seq technology has revolutionized the face of gene expression profiling by generating read count data measuring the transcript abundances for each queried...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 893
SubjectTerms Batch effects
computer software
Differential expression
gene expression
Gene Expression Profiling - methods
Gene Expression Profiling - standards
gene expression regulation
genes
Hidden variability
Humans
least squares
Least-Squares Analysis
messenger RNA
Reproducibility of Results
RNA-Seq
sequence analysis
Sequence Analysis, RNA - methods
Sequence Analysis, RNA - standards
Transcriptome
Title Use of Partial Least Squares improves the efficacy of removing unwanted variability in differential expression analyses based on RNA-Seq data
URI https://dx.doi.org/10.1016/j.ygeno.2018.05.018
https://www.ncbi.nlm.nih.gov/pubmed/29842947
https://www.proquest.com/docview/2047278911
https://www.proquest.com/docview/2305236355
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 20240401
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: IXB
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: ACRLP
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: AIKHN
  dateStart: 20051201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1089-8646
  dateEnd: 20240401
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1089-8646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009382
  issn: 0888-7543
  databaseCode: AKRWK
  dateStart: 19870901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIgQ9IAgUwiMyEkdM9mk7xxCoUooiRIiUm7V-rJSqbPpI2ubCP-A_M-PdLXBoDpx215q1vDu257M98w3A28jQ8ZszXOXScUq2zY2RhnsZSSfTNBkUwUF2Isaz7PM8n-_AqI2FIbfKZu6v5_QwWzcl_eZv9k8Xi_4UxweC7Yw6JXGwU8BvmskQxDf_8Id4Nw0Jo0iYk3TLPBR8vDZEhEr-Xaqm71S3Wafb0GewQgeP4GEDH9mwbuFj2PFVB-7VCSU3Hbg_avO3dWDvL6rBJ_BrduHZsmRf6eOwhi-Us4dNz9YUf8QWYWsBbxAOMk-sEoXdkPi5_xG2HNi6uiIdOHaJi-ua23vDFhVrE6yESv1141ZbsSKQnWCNZCYdw5JvkyGf-jNGPqlPYXbw6ftozJtUDNwigFpxE5kkRZUI54Qs0e55SwzHBSIMmwqbu8Tk1pW0erNSmcQbm8eFQFvnyjhD67gPu9Wy8s-BJTISiRWZKR2uzkyuSmUiUTqjCpWWKutC0qpA24annNJlnOjWIe1YB71p0puOco2XLry7eem0punYLi5a3ep_eptGQ7L9xTdtT9CoTjpcKSq_XF-gUCYpqjiOt8iktAlPEK8Lz-pudNPaZKAQGmTyxf827SU8wKdB7Ur8CnZX52v_GgHTyvTgzvufcQ_uDg-PxhN8-nh41Auj5Dewtxh_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB61qaqWA4IAJTyKK3HEymYftnOMIqqUplHVNFJv1vqxUhBs-kiA_Aj-MzPe3QKH5tDTrnbHlndn7Plsj78B-BgZ2n5zhqtMOk7Jtrkx0nAvI-lkksT9PATITsRoln65yq62YNichaGwynrsr8b0MFrXT7r13-xez-fdKfYPBNspGSVxsKtt2EkzHJNbsDM4OR1N_nLvJiFnFMlzKtCQD4UwrzVxoVKIl6oYPNVDDuohABoc0fEzeFojSDaoGvkctnzZht0qp-S6DXvDJoVbG578wzb4An7P7jxbFOycvg9rGFPaHja9WdERJDYPqwt4g4iQeSKWyO2axG_997DqwFblT1KDYz9wfl3Re6_ZvGRNjpVQqf9VR9aWLA98J1gjeUrH8MnFZMCn_oZRWOpLmB1_vhyOeJ2NgVvEUEtuIhMnqBXhnJAFuj5vieQ4R5BhE2EzF5vMuoImcFYqE3tjs14u0N25opeig3wFrXJR-tfAYhmJ2IrUFA4naCZThTKRKJxRuUoKlXYgblSgbU1VThkzvukmJu2rDnrTpDcdZRovHfh0X-i6YurYLC4a3er_DE6jL9lc8KixBI3qpP2VvPSL1R0KpZIOFvd6G2QSWocnlNeBg8qM7lsb9xWig1S-eWzTPsDe6PJsrMcnk9O3sI9v-lVk8TtoLW9X_j3ip6U5rPvHH-8wGSk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+Partial+Least+Squares+improves+the+efficacy+of+removing+unwanted+variability+in+differential+expression+analyses+based+on+RNA-Seq+data&rft.jtitle=Genomics+%28San+Diego%2C+Calif.%29&rft.au=Chakraborty%2C+Sutirtha&rft.date=2019-07-01&rft.issn=1089-8646&rft.eissn=1089-8646&rft.volume=111&rft.issue=4&rft.spage=893&rft_id=info:doi/10.1016%2Fj.ygeno.2018.05.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-7543&client=summon