Hyperdimensional Computing With Local Binary Patterns: One-Shot Learning of Seizure Onset and Identification of Ictogenic Brain Regions Using Short-Time iEEG Recordings

Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Methods: Our algorithm first...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 67; no. 2; pp. 601 - 613
Main Authors Burrello, Alessio, Schindler, Kaspar, Benini, Luca, Rahimi, Abbas
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2019.2919137

Cover

Abstract Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Methods: Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them. Results: We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74 × lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value <; 0.01) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes. Conclusion and significance: Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieegswez.ethz.ch.
AbstractList Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Methods: Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them. Results: We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74 × lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value <; 0.01) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes. Conclusion and significance: Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieegswez.ethz.ch.
Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Methods: Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them. Results: We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36–100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using [Formula Omitted]-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74× lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a [Formula Omitted]-value [Formula Omitted]) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes. Conclusion and significance: Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch .
We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG).OBJECTIVEWe develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG).Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them.METHODSOur algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them.We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74× lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value ) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes.RESULTSWe assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74× lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value ) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes.Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch.CONCLUSION AND SIGNIFICANCEOur algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch.
We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them. We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74× lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value ) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes. Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch.
Author Schindler, Kaspar
Burrello, Alessio
Rahimi, Abbas
Benini, Luca
Author_xml – sequence: 1
  givenname: Alessio
  orcidid: 0000-0002-6215-8220
  surname: Burrello
  fullname: Burrello, Alessio
  email: ieeg@iis.ee.ethz.ch
  organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Kaspar
  orcidid: 0000-0002-2387-7767
  surname: Schindler
  fullname: Schindler, Kaspar
  organization: Department of Neurology, InselspitalSleep-Wake-Epilepsy CenterBern University Hospital, University of Bern
– sequence: 3
  givenname: Luca
  orcidid: 0000-0001-8068-3806
  surname: Benini
  fullname: Benini, Luca
  email: lbenini@iis.ee.ethz.ch
  organization: Department of Information Technology and Electrical EngineeringETH Zurich
– sequence: 4
  givenname: Abbas
  orcidid: 0000-0003-3141-4970
  surname: Rahimi
  fullname: Rahimi, Abbas
  email: abbas@ee.ethz.ch
  organization: Department of Information Technology and Electrical EngineeringETH Zurich
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31144620$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEUhS1URNPCAyAkZIkNmwnjn_kxOxKFNlJQEU3FcuTx3EldzdhT2yMUnojHxENCF0FiZdn3O9fH5_oCnRlrAKHXJJ0TkooP28WX1ZymRMypIIKw4hmakSwrE5oxcoZmaUrKRFDBz9GF9w9xy0uev0DnjBDOc5rO0K_r_QCu0T0Yr62RHV7afhiDNjv8XYd7vLEqHi60kW6Pv8oQwBn_Ed8YSG7vbcAbkM5MtG3xLeifo4NY9BCwNA1eN2CCbrWSIXafmLUKdgdGK7xwUhv8DXax4vGdn5rEli4k22gH69XqKlaVje7Mzr9Ez1vZeXh1XC_R3efVdnmdbG6u1stPm0QxQUMiucpozkTBCq4Eh7xlNWUCoBCZaklRx4LMG8GkLKAsAOqYW51Dk0lRlwrYJaKHvqMZ5P6H7LpqcLqPr69IWk2xV6HuoZpir46xR9H7g2hw9nEEH6peewVdJw3Y0VeUMsrLtCxFRN-doA92dDH4SDGeZYQSRiL19kiN8bLmycLfwUWAHADlrPcO2n9cTp_j1GVxolE6_BlMiKPo_qt8c1BqAHi6qSwoI3nOfgPdLMZ-
CODEN IEBEAX
CitedBy_id crossref_primary_10_1038_s41598_022_09429_w
crossref_primary_10_1109_ACCESS_2022_3195878
crossref_primary_10_1109_TCAD_2023_3263120
crossref_primary_10_3390_bdcc5040078
crossref_primary_10_3390_e26100853
crossref_primary_10_1016_j_bspc_2023_105664
crossref_primary_10_1016_j_cmpb_2021_106335
crossref_primary_10_1142_S0129065723500120
crossref_primary_10_1145_3558000
crossref_primary_10_1016_j_bspc_2023_105165
crossref_primary_10_1007_s11831_023_09927_8
crossref_primary_10_1109_JBHI_2020_3022211
crossref_primary_10_1111_epi_17566
crossref_primary_10_1111_epi_17446
crossref_primary_10_1088_1741_2552_abdd43
crossref_primary_10_2139_ssrn_4142417
crossref_primary_10_1016_j_sna_2021_112928
crossref_primary_10_1016_j_eswa_2023_121359
crossref_primary_10_1016_j_jneumeth_2021_109367
crossref_primary_10_1109_ACCESS_2021_3132128
crossref_primary_10_1016_j_eswa_2024_126282
crossref_primary_10_3233_AIS_210042
crossref_primary_10_1109_TBCAS_2022_3188966
crossref_primary_10_1109_ACCESS_2021_3059762
crossref_primary_10_1103_PhysRevE_108_044111
crossref_primary_10_1109_TBME_2024_3377270
crossref_primary_10_3389_fneur_2021_701791
crossref_primary_10_1109_TMTT_2021_3134992
crossref_primary_10_3389_fnhum_2022_913777
crossref_primary_10_1371_journal_pcbi_1012426
crossref_primary_10_1016_j_clinph_2024_09_008
crossref_primary_10_1145_3487910
crossref_primary_10_1109_RBME_2024_3492381
crossref_primary_10_1109_TBCAS_2021_3122017
crossref_primary_10_1109_TNNLS_2023_3287181
crossref_primary_10_1109_OJCAS_2022_3163075
crossref_primary_10_1109_JIOT_2024_3395496
Cites_doi 10.3171/2018.1.JNS171808
10.1111/j.1528-1167.2007.01420.x
10.1109/ISCAS.2018.8351613
10.1586/17434440.2014.947274
10.1111/j.1528-1167.2011.03202.x
10.1016/j.amc.2014.05.128
10.1056/NEJM200108023450501
10.1111/epi.13117
10.1109/ICASSP.2018.8462029
10.1007/s11036-017-0942-6
10.1212/WNL.0000000000003685
10.1016/S1388-2457(02)00344-9
10.1109/BIOCAS.2018.8584751
10.1111/j.1528-1167.2012.03588.x
10.1109/ISSCC.2018.8310399
10.1093/brain/awl316
10.1109/ICRC.2016.7738683
10.1371/journal.pone.0141023
10.1093/brain/awx098
10.1016/0196-8858(86)90028-X
10.1016/j.seizure.2014.10.013
10.1016/j.clinph.2016.07.001
10.1109/TCSI.2017.2705051
10.1016/j.bspc.2017.01.005
10.1093/brain/124.9.1683
10.1063/1.1531823
10.1016/j.neunet.2018.04.018
10.1111/epi.14449
10.1145/2934583.2934624
10.3171/2008.8.JNS17643
10.1016/j.bspc.2014.08.014
10.1037/a0030301
10.1109/TBME.2013.2254486
10.1007/s12559-009-9009-8
10.1016/j.expneurol.2013.04.004
10.4108/eai.22-3-2017.152397
10.1097/WCO.0b013e3283507e73
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TBME.2019.2919137
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 613
ExternalDocumentID oai:www.research-collection.ethz.ch:20.500.11850/350002
31144620
10_1109_TBME_2019_2919137
8723166
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EU's Horizon 2020 Research and Innovation Program
  grantid: 780215
– fundername: Marie Curie Actions for People COFUND Program
– fundername: ETHZ Postdoctoral Fellowship Program
– fundername: Hasler Foundation
  grantid: 18082
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c392t-a4c526397374c94e6f3b239ee795cf17b737a6d93aa7e87eeb913b6ed5a9b8ce3
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Oct 26 04:04:36 EDT 2025
Sat Sep 27 22:43:19 EDT 2025
Mon Sep 29 16:40:40 EDT 2025
Thu Apr 03 06:57:07 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Wed Oct 01 04:08:48 EDT 2025
Wed Aug 27 02:29:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-a4c526397374c94e6f3b239ee795cf17b737a6d93aa7e87eeb913b6ed5a9b8ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3141-4970
0000-0001-8068-3806
0000-0002-2387-7767
0000-0002-6215-8220
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/20.500.11850/350002
PMID 31144620
PQID 2345512131
PQPubID 85474
PageCount 13
ParticipantIDs proquest_miscellaneous_2232480889
proquest_journals_2345512131
ieee_primary_8723166
crossref_primary_10_1109_TBME_2019_2919137
crossref_citationtrail_10_1109_TBME_2019_2919137
unpaywall_primary_10_1109_tbme_2019_2919137
pubmed_primary_31144620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References kanerva (ref36) 1988
ref13
ref31
schindler (ref16) 2012; 53
ref30
ref11
ref32
ref10
ref2
ref1
plate (ref25) 2003
ref38
ref19
ref18
harden (ref15) 2017; 88
schmuck (ref34) 0; 15
gayler (ref24) 0
geier (ref12) 2015; 25
burrello (ref39) 0
ref23
ref26
kelly (ref37) 2013; 67
montagna (ref33) 0
ref20
ref42
hirsch (ref40) 2015; 56
ref22
ref44
ref21
ref43
naftulin (ref14) 2018; 59
afra (ref41) 2008; 49
ref28
ref27
nagahama (ref6) 2018; 25
ref29
ref8
ref7
ref9
ref4
ref3
ref5
kanerva (ref35) 0
schindler (ref17) 2011; 52
References_xml – year: 1988
  ident: ref36
  publication-title: Sparse Distributed Memory
– volume: 25
  start-page: 1
  year: 2018
  ident: ref6
  article-title: Intracranial EEG for seizure focus localization: Evolving techniques, outcomes, complications, and utility of combining surface and depth electrodes
  publication-title: J Neurosurg
  doi: 10.3171/2018.1.JNS171808
– volume: 49
  start-page: 677
  year: 2008
  ident: ref41
  article-title: Duration of complex partial seizures: An intracranial EEG study
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2007.01420.x
– ident: ref30
  doi: 10.1109/ISCAS.2018.8351613
– start-page: 869
  year: 0
  ident: ref35
  article-title: Binary spatter-coding of ordered $k$-tuples
  publication-title: Proc Int Conf Artif Neural Netw
– ident: ref10
  doi: 10.1586/17434440.2014.947274
– volume: 52
  start-page: 1771
  year: 2011
  ident: ref17
  article-title: Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2011.03202.x
– ident: ref18
  doi: 10.1016/j.amc.2014.05.128
– ident: ref4
  doi: 10.1056/NEJM200108023450501
– volume: 56
  start-page: 1639
  year: 2015
  ident: ref40
  article-title: Latencies from intracranial seizure onset to ictal tachycardia: A comparison to surface EEG patterns and other clinical signs
  publication-title: Epilepsia
  doi: 10.1111/epi.13117
– ident: ref8
  doi: 10.1109/ICASSP.2018.8462029
– ident: ref32
  doi: 10.1007/s11036-017-0942-6
– volume: 88
  start-page: 1674
  year: 2017
  ident: ref15
  article-title: Practice guideline summary: Sudden unexpected death in epilepsy incidence rates and risk factors: Report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology and the american epilepsy society
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000003685
– ident: ref11
  doi: 10.1016/S1388-2457(02)00344-9
– ident: ref20
  doi: 10.1109/BIOCAS.2018.8584751
– year: 2003
  ident: ref25
  publication-title: Holographic Reduced Representation
– volume: 53
  start-page: 1658
  year: 2012
  ident: ref16
  article-title: On seeing the trees and the forest: Single signal and multi signal analysis of periictal intracranial EEG
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2012.03588.x
– ident: ref28
  doi: 10.1109/ISSCC.2018.8310399
– ident: ref3
  doi: 10.1093/brain/awl316
– ident: ref29
  doi: 10.1109/ICRC.2016.7738683
– ident: ref5
  doi: 10.1371/journal.pone.0141023
– year: 0
  ident: ref33
  article-title: PULP-HD: Accelerating brain-inspired high-dimensional computing on a parallel ultra-low power platform
  publication-title: Proc 55th Annu Des Autom Conf
– ident: ref1
  doi: 10.1093/brain/awx098
– volume: 15
  year: 0
  ident: ref34
  article-title: Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory
  publication-title: ACM J Emerg Technol Comput
– ident: ref43
  doi: 10.1016/0196-8858(86)90028-X
– volume: 25
  start-page: 160
  year: 2015
  ident: ref12
  article-title: How important is the seizure onset zone for seizure dynamics?
  publication-title: Seizure
  doi: 10.1016/j.seizure.2014.10.013
– start-page: 752
  year: 0
  ident: ref39
  article-title: Laelaps: An energy-efficient seizure detection algorithm from long-term human iEEG recordings without false alarms
  publication-title: Proc Des Autom Test Eur Conf Exhib
– ident: ref23
  doi: 10.1016/j.clinph.2016.07.001
– ident: ref27
  doi: 10.1109/TCSI.2017.2705051
– ident: ref7
  doi: 10.1016/j.bspc.2017.01.005
– ident: ref44
  doi: 10.1093/brain/124.9.1683
– ident: ref21
  doi: 10.1063/1.1531823
– ident: ref38
  doi: 10.1016/j.neunet.2018.04.018
– volume: 59
  start-page: 1398
  year: 2018
  ident: ref14
  article-title: Ictal and preictal power changes outside of the seizure focus correlate with seizure generalization
  publication-title: Epilepsia
  doi: 10.1111/epi.14449
– ident: ref26
  doi: 10.1145/2934583.2934624
– ident: ref13
  doi: 10.3171/2008.8.JNS17643
– ident: ref22
  doi: 10.1016/j.bspc.2014.08.014
– volume: 67
  start-page: 79
  year: 2013
  ident: ref37
  article-title: Encoding structure in holographic reduced representations
  publication-title: Can J Exp Psychol
  doi: 10.1037/a0030301
– ident: ref9
  doi: 10.1109/TBME.2013.2254486
– ident: ref19
  doi: 10.1007/s12559-009-9009-8
– ident: ref42
  doi: 10.1016/j.expneurol.2013.04.004
– ident: ref31
  doi: 10.4108/eai.22-3-2017.152397
– ident: ref2
  doi: 10.1097/WCO.0b013e3283507e73
– start-page: 133
  year: 0
  ident: ref24
  article-title: Vector symbolic architectures answer Jackendoff's challenges for cognitive neuroscience
  publication-title: Proc ICCS/ASCS Int Conf Cogn Sci
SSID ssj0014846
Score 2.5650945
Snippet Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and...
We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 601
SubjectTerms Algorithms
Binary codes
Brain
Brain - physiopathology
Cerebral hemispheres
Computation
Computational neuroscience
Convulsions & seizures
Datasets
Decision making
Deep learning
Drug resistance
EEG
Electrocorticography - methods
Electrodes
Electroencephalography
Epilepsy
Feature extraction
Heuristic algorithms
Histograms
Humans
hyperdimensional computing
iEEG
Latency
Learning algorithms
local binary patterns
localization of seizure onset zone
Machine Learning
one-shot learning
Post-translation
Prototypes
Representations
seizure detection
Seizures
Seizures - diagnosis
Seizures - physiopathology
Signal Processing, Computer-Assisted
Source code
Surgery
symbolic dynamics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQVgJ64KMFGijISJxA2SZx7MTcumjLgmipaFeUU2Q7Dl11SapNIkR_ET-TmcRdFopAnD2xHPnZM2M_vyHkmQDg8lzEvtaQrsYK5kKFWvqmUJybmDGTdwTZAzGZxm9P-MlPsejf5AWiYMgDXNYpD3YYavfDbrsmOITdA7I2PTjc_dTvtLBoo67oIbhHmHkAlrvBDAO504BjQRKXHEYS0hMseb7ig7qiKn-KL9fJjbY8V9--qvl8xefs3e7ZWnUnVYhUk7Nh2-ihubgq5Pjv37lDbrnIk-72ULlLrtlyg6yv6BFukOv77qZ9k3yfQIIK4PmCBHeM1mlf_wHs6MdZc0rfoROko-45Lz3sVDrL-iV9X1r_6LRqqBNu_Uyrgh7Z2UW7sNBY24bCSGn_PrhwB4Zo88Y0FYB5ZugIq1bQDxaZ0jXtOA0Uulw0Pr5XobPx-DXts2Y85b9Hpnvj41cT31V18A3EYo2vYsMjvE5kSWxkbEXBdMSktYnkpggTDQ1K5JIpldg0sVbDlGlhc66kTo1l98mgrEq7RaiIeaINbFppWKAwmbQhpNwG8oVUiSjXHgku5zkzTvIcK2_Msy71CWR2PNofZwiNzEHDI8-Xn5z3eh9_M95E8CwN0wSiZSE8sn0JpsztCHUWsRiC0yhkoUeeLpthLeMFjSpt1YINhrcpEs888qAH4bJvFmLmHgUeebFE5ZURItJ_GeHD_7J-RG5GeJzQkdK3yaBZtPYxxFyNfuJW2w9LVCFj
  priority: 102
  providerName: Unpaywall
Title Hyperdimensional Computing With Local Binary Patterns: One-Shot Learning of Seizure Onset and Identification of Ictogenic Brain Regions Using Short-Time iEEG Recordings
URI https://ieeexplore.ieee.org/document/8723166
https://www.ncbi.nlm.nih.gov/pubmed/31144620
https://www.proquest.com/docview/2345512131
https://www.proquest.com/docview/2232480889
http://hdl.handle.net/20.500.11850/350002
UnpaywallVersion submittedVersion
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ4LtgY-Nj8CYjMQTkK6JEyfmbUUdBdExsVWMp8h2nK2iJFObCLG_iD-TuySNCkyIt0g-R47u5_jO97s7gOcCgRumInC1Rnc1UKgL5WnpmkyFoQk4N2lNkD0So0nw_iw8W4NXXS6MtbYmn9kePdax_LQwFV2V7ccRWiNCrMN6FIsmV6uLGARxk5TT93AD-zJoI5heX-6fDsZDInHJni_RPeHUeI975AhRl--V46jur3KdqbkFt6r8Uv34rmazlePn8A6MlwtvWCdfe1Wpe-bqj5qO__tld-F2a4eygwY492DN5tuwtVKdcBtujtu4-w78HKG7ilD6RnR3st1Z0w0C5djnaXnBPtCRyAZ1ci87rmt25ovX7GNu3ZOLomRtGddzVmTsxE6vqrnFwYUtmcpT1mQLZ-31Icm8M2WB0J4aNqAeFuyTJd70gtUMB4avnJcuZa-w6XD4ljU-NN3534fJ4fD0zchtezy4Bi2z0lWBCX0KLvIoMDKwIuPa59LaSIYm8yKNA0qkkisV2TiyVqMCtbBpqKSOjeUPYCMvcvsImAjCSBv8hcVeRmXKpPXQATfoPcRK-Kl2oL9UdWLaAujUh2OW1I5QXyYElISAkrRAceBFN-Wyqf7xL-EdUmwn2OrUgd0lnpL2_7BIfB6gqep73HPgWTeMO5vCNSq3RYUyZOzGRENz4GGDw-7dS_g68LID5l8rLHHKbyt8fP0Kn8CmT7cINRd9FzbKeWWfoqlV6r16j-3BjcnR8cGXX7ReI8w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NITH2wMfGR2CAkXgC0jWx82HeKOrooB2IdWJvke04rKIkU5sIsb-IP5O7JI0KTIi3SD5Hju7n-M73uzuAZyECN0hD4WqN7qpQqAvlaemaTAWBEZybtCbIHoWjE_HuNDjdgJddLoy1tiaf2R491rH8tDAVXZXtxxFaI2F4Ba4GQoigydbqYgYibtJy-h5uYV-KNobp9eX-dDAZEo1L9nyJDgqn1nvcI1eI-nyvHUh1h5XLjM1t2Kryc_Xju5rP1w6gg5swWS294Z187VWl7pmLP6o6_u-33YIbrSXKXjfQuQ0bNt-B7bX6hDtwbdJG3nfh5wgdVgTTNyK8k_XOmn4QKMc-z8ozNqZDkQ3q9F72sa7amS9fsQ-5dY_PipK1hVy_sCJjx3Z2US0sDi5tyVSesiZfOGsvEEnm0JQFgntm2IC6WLBPlpjTS1ZzHBi-clG6lL_CZsPhW9Z40XTrfwdODobTNyO37fLgGrTNSlcJE_gUXuSRMFLYMOPa59LaSAYm8yKNAypMJVcqsnFkrUYF6tCmgZI6Npbfhc28yO19YKEIIm3wJxZ7GRUqk9ZDF9yg_xCr0E-1A_2VqhPTlkCnThzzpHaF-jIhoCQElKQFigPPuynnTf2PfwnvkmI7wVanDuyt8JS0f4hl4nOBxqrvcc-Bp90w7m0K2KjcFhXKkLkbExHNgXsNDrt3r-DrwIsOmH-tsMQpv63wweUrfAJbo-lknIwPj94_hOs-3SnUzPQ92CwXlX2EhlepH9f77Rfo7yVp
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQVgJ64KMFGijISJxA2SZx7MTcumjLgmipaFeUU2Q7Dl11SapNIkR_ET-TmcRdFopAnD2xHPnZM2M_vyHkmQDg8lzEvtaQrsYK5kKFWvqmUJybmDGTdwTZAzGZxm9P-MlPsejf5AWiYMgDXNYpD3YYavfDbrsmOITdA7I2PTjc_dTvtLBoo67oIbhHmHkAlrvBDAO504BjQRKXHEYS0hMseb7ig7qiKn-KL9fJjbY8V9--qvl8xefs3e7ZWnUnVYhUk7Nh2-ihubgq5Pjv37lDbrnIk-72ULlLrtlyg6yv6BFukOv77qZ9k3yfQIIK4PmCBHeM1mlf_wHs6MdZc0rfoROko-45Lz3sVDrL-iV9X1r_6LRqqBNu_Uyrgh7Z2UW7sNBY24bCSGn_PrhwB4Zo88Y0FYB5ZugIq1bQDxaZ0jXtOA0Uulw0Pr5XobPx-DXts2Y85b9Hpnvj41cT31V18A3EYo2vYsMjvE5kSWxkbEXBdMSktYnkpggTDQ1K5JIpldg0sVbDlGlhc66kTo1l98mgrEq7RaiIeaINbFppWKAwmbQhpNwG8oVUiSjXHgku5zkzTvIcK2_Msy71CWR2PNofZwiNzEHDI8-Xn5z3eh9_M95E8CwN0wSiZSE8sn0JpsztCHUWsRiC0yhkoUeeLpthLeMFjSpt1YINhrcpEs888qAH4bJvFmLmHgUeebFE5ZURItJ_GeHD_7J-RG5GeJzQkdK3yaBZtPYxxFyNfuJW2w9LVCFj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperdimensional+Computing+With+Local+Binary+Patterns%3A+One-Shot+Learning+of+Seizure+Onset+and+Identification+of+Ictogenic+Brain+Regions+Using+Short-Time+iEEG+Recordings&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Burrello%2C+Alessio&rft.au=Schindler%2C+Kaspar&rft.au=Benini%2C+Luca&rft.au=Rahimi%2C+Abbas&rft.date=2020-02-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=67&rft.issue=2&rft.spage=601&rft.epage=613&rft_id=info:doi/10.1109%2FTBME.2019.2919137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2019_2919137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon