Hyperdimensional Computing With Local Binary Patterns: One-Shot Learning of Seizure Onset and Identification of Ictogenic Brain Regions Using Short-Time iEEG Recordings
Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Methods: Our algorithm first...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 67; no. 2; pp. 601 - 613 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2019.2919137 |
Cover
| Abstract | Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Methods: Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them. Results: We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74 × lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value <; 0.01) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes. Conclusion and significance: Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieegswez.ethz.ch. |
|---|---|
| AbstractList | Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Methods: Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them. Results: We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74 × lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value <; 0.01) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes. Conclusion and significance: Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieegswez.ethz.ch. Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Methods: Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them. Results: We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36–100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using [Formula Omitted]-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74× lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a [Formula Omitted]-value [Formula Omitted]) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes. Conclusion and significance: Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch . We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG).OBJECTIVEWe develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG).Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them.METHODSOur algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them.We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74× lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value ) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes.RESULTSWe assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74× lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value ) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes.Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch.CONCLUSION AND SIGNIFICANCEOur algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch. We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and identification of ictogenic (seizure generating) brain regions from intracranial electroencephalography (iEEG). Our algorithm first transforms iEEG time series from each electrode into symbolic local binary pattern codes, from which a holographic distributed representation of the brain state of interest is constructed across all the electrodes and over time in a hyperdimensional space. The representation is used to quickly learn from few seizures, detect their onset, and identify the spatial brain regions that generated them. We assess our algorithm on our dataset that contains 99 short-time iEEG recordings from 16 drug-resistant epilepsy patients being implanted with 36-100 electrodes. For the majority of the patients (ten out of 16), our algorithm quickly learns from one or two seizures and perfectly (100%) generalizes on novel seizures using k-fold cross-validation. For the remaining six patients, the algorithm requires three to six seizures for learning. Our algorithm surpasses the state-of-the-art including deep learning algorithms by achieving higher specificity (94.84% versus 94.77%) and macroaveraging accuracy (95.42% versus 94.96%), and 74× lower memory footprint, but slightly higher average latency in detection (15.9 s versus 14.7 s). Moreover, the algorithm can reliably identify (with a p-value ) the relevant electrodes covering an ictogenic brain region at two levels of granularity: cerebral hemispheres and lobes. Our algorithm provides: 1) a unified method for both learning and classification tasks with end-to-end binary operations; 2) one-shot learning from seizure examples; 3) linear computational scalability for increasing number of electrodes; and 4) generation of transparent codes that enables post-translational support for clinical decision making. Our source code and anonymized iEEG dataset are freely available at http://ieeg-swez.ethz.ch. |
| Author | Schindler, Kaspar Burrello, Alessio Rahimi, Abbas Benini, Luca |
| Author_xml | – sequence: 1 givenname: Alessio orcidid: 0000-0002-6215-8220 surname: Burrello fullname: Burrello, Alessio email: ieeg@iis.ee.ethz.ch organization: Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland – sequence: 2 givenname: Kaspar orcidid: 0000-0002-2387-7767 surname: Schindler fullname: Schindler, Kaspar organization: Department of Neurology, InselspitalSleep-Wake-Epilepsy CenterBern University Hospital, University of Bern – sequence: 3 givenname: Luca orcidid: 0000-0001-8068-3806 surname: Benini fullname: Benini, Luca email: lbenini@iis.ee.ethz.ch organization: Department of Information Technology and Electrical EngineeringETH Zurich – sequence: 4 givenname: Abbas orcidid: 0000-0003-3141-4970 surname: Rahimi fullname: Rahimi, Abbas email: abbas@ee.ethz.ch organization: Department of Information Technology and Electrical EngineeringETH Zurich |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31144620$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9ks1uEzEUhS1URNPCAyAkZIkNmwnjn_kxOxKFNlJQEU3FcuTx3EldzdhT2yMUnojHxENCF0FiZdn3O9fH5_oCnRlrAKHXJJ0TkooP28WX1ZymRMypIIKw4hmakSwrE5oxcoZmaUrKRFDBz9GF9w9xy0uev0DnjBDOc5rO0K_r_QCu0T0Yr62RHV7afhiDNjv8XYd7vLEqHi60kW6Pv8oQwBn_Ed8YSG7vbcAbkM5MtG3xLeifo4NY9BCwNA1eN2CCbrWSIXafmLUKdgdGK7xwUhv8DXax4vGdn5rEli4k22gH69XqKlaVje7Mzr9Ez1vZeXh1XC_R3efVdnmdbG6u1stPm0QxQUMiucpozkTBCq4Eh7xlNWUCoBCZaklRx4LMG8GkLKAsAOqYW51Dk0lRlwrYJaKHvqMZ5P6H7LpqcLqPr69IWk2xV6HuoZpir46xR9H7g2hw9nEEH6peewVdJw3Y0VeUMsrLtCxFRN-doA92dDH4SDGeZYQSRiL19kiN8bLmycLfwUWAHADlrPcO2n9cTp_j1GVxolE6_BlMiKPo_qt8c1BqAHi6qSwoI3nOfgPdLMZ- |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1038_s41598_022_09429_w crossref_primary_10_1109_ACCESS_2022_3195878 crossref_primary_10_1109_TCAD_2023_3263120 crossref_primary_10_3390_bdcc5040078 crossref_primary_10_3390_e26100853 crossref_primary_10_1016_j_bspc_2023_105664 crossref_primary_10_1016_j_cmpb_2021_106335 crossref_primary_10_1142_S0129065723500120 crossref_primary_10_1145_3558000 crossref_primary_10_1016_j_bspc_2023_105165 crossref_primary_10_1007_s11831_023_09927_8 crossref_primary_10_1109_JBHI_2020_3022211 crossref_primary_10_1111_epi_17566 crossref_primary_10_1111_epi_17446 crossref_primary_10_1088_1741_2552_abdd43 crossref_primary_10_2139_ssrn_4142417 crossref_primary_10_1016_j_sna_2021_112928 crossref_primary_10_1016_j_eswa_2023_121359 crossref_primary_10_1016_j_jneumeth_2021_109367 crossref_primary_10_1109_ACCESS_2021_3132128 crossref_primary_10_1016_j_eswa_2024_126282 crossref_primary_10_3233_AIS_210042 crossref_primary_10_1109_TBCAS_2022_3188966 crossref_primary_10_1109_ACCESS_2021_3059762 crossref_primary_10_1103_PhysRevE_108_044111 crossref_primary_10_1109_TBME_2024_3377270 crossref_primary_10_3389_fneur_2021_701791 crossref_primary_10_1109_TMTT_2021_3134992 crossref_primary_10_3389_fnhum_2022_913777 crossref_primary_10_1371_journal_pcbi_1012426 crossref_primary_10_1016_j_clinph_2024_09_008 crossref_primary_10_1145_3487910 crossref_primary_10_1109_RBME_2024_3492381 crossref_primary_10_1109_TBCAS_2021_3122017 crossref_primary_10_1109_TNNLS_2023_3287181 crossref_primary_10_1109_OJCAS_2022_3163075 crossref_primary_10_1109_JIOT_2024_3395496 |
| Cites_doi | 10.3171/2018.1.JNS171808 10.1111/j.1528-1167.2007.01420.x 10.1109/ISCAS.2018.8351613 10.1586/17434440.2014.947274 10.1111/j.1528-1167.2011.03202.x 10.1016/j.amc.2014.05.128 10.1056/NEJM200108023450501 10.1111/epi.13117 10.1109/ICASSP.2018.8462029 10.1007/s11036-017-0942-6 10.1212/WNL.0000000000003685 10.1016/S1388-2457(02)00344-9 10.1109/BIOCAS.2018.8584751 10.1111/j.1528-1167.2012.03588.x 10.1109/ISSCC.2018.8310399 10.1093/brain/awl316 10.1109/ICRC.2016.7738683 10.1371/journal.pone.0141023 10.1093/brain/awx098 10.1016/0196-8858(86)90028-X 10.1016/j.seizure.2014.10.013 10.1016/j.clinph.2016.07.001 10.1109/TCSI.2017.2705051 10.1016/j.bspc.2017.01.005 10.1093/brain/124.9.1683 10.1063/1.1531823 10.1016/j.neunet.2018.04.018 10.1111/epi.14449 10.1145/2934583.2934624 10.3171/2008.8.JNS17643 10.1016/j.bspc.2014.08.014 10.1037/a0030301 10.1109/TBME.2013.2254486 10.1007/s12559-009-9009-8 10.1016/j.expneurol.2013.04.004 10.4108/eai.22-3-2017.152397 10.1097/WCO.0b013e3283507e73 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| DOI | 10.1109/TBME.2019.2919137 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 613 |
| ExternalDocumentID | oai:www.research-collection.ethz.ch:20.500.11850/350002 31144620 10_1109_TBME_2019_2919137 8723166 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: EU's Horizon 2020 Research and Innovation Program grantid: 780215 – fundername: Marie Curie Actions for People COFUND Program – fundername: ETHZ Postdoctoral Fellowship Program – fundername: Hasler Foundation grantid: 18082 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c392t-a4c526397374c94e6f3b239ee795cf17b737a6d93aa7e87eeb913b6ed5a9b8ce3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Oct 26 04:04:36 EDT 2025 Sat Sep 27 22:43:19 EDT 2025 Mon Sep 29 16:40:40 EDT 2025 Thu Apr 03 06:57:07 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Wed Oct 01 04:08:48 EDT 2025 Wed Aug 27 02:29:44 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-a4c526397374c94e6f3b239ee795cf17b737a6d93aa7e87eeb913b6ed5a9b8ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3141-4970 0000-0001-8068-3806 0000-0002-2387-7767 0000-0002-6215-8220 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/20.500.11850/350002 |
| PMID | 31144620 |
| PQID | 2345512131 |
| PQPubID | 85474 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2232480889 proquest_journals_2345512131 ieee_primary_8723166 crossref_primary_10_1109_TBME_2019_2919137 crossref_citationtrail_10_1109_TBME_2019_2919137 unpaywall_primary_10_1109_tbme_2019_2919137 pubmed_primary_31144620 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | kanerva (ref36) 1988 ref13 ref31 schindler (ref16) 2012; 53 ref30 ref11 ref32 ref10 ref2 ref1 plate (ref25) 2003 ref38 ref19 ref18 harden (ref15) 2017; 88 schmuck (ref34) 0; 15 gayler (ref24) 0 geier (ref12) 2015; 25 burrello (ref39) 0 ref23 ref26 kelly (ref37) 2013; 67 montagna (ref33) 0 ref20 ref42 hirsch (ref40) 2015; 56 ref22 ref44 ref21 ref43 naftulin (ref14) 2018; 59 afra (ref41) 2008; 49 ref28 ref27 nagahama (ref6) 2018; 25 ref29 ref8 ref7 ref9 ref4 ref3 ref5 kanerva (ref35) 0 schindler (ref17) 2011; 52 |
| References_xml | – year: 1988 ident: ref36 publication-title: Sparse Distributed Memory – volume: 25 start-page: 1 year: 2018 ident: ref6 article-title: Intracranial EEG for seizure focus localization: Evolving techniques, outcomes, complications, and utility of combining surface and depth electrodes publication-title: J Neurosurg doi: 10.3171/2018.1.JNS171808 – volume: 49 start-page: 677 year: 2008 ident: ref41 article-title: Duration of complex partial seizures: An intracranial EEG study publication-title: Epilepsia doi: 10.1111/j.1528-1167.2007.01420.x – ident: ref30 doi: 10.1109/ISCAS.2018.8351613 – start-page: 869 year: 0 ident: ref35 article-title: Binary spatter-coding of ordered $k$-tuples publication-title: Proc Int Conf Artif Neural Netw – ident: ref10 doi: 10.1586/17434440.2014.947274 – volume: 52 start-page: 1771 year: 2011 ident: ref17 article-title: Forbidden ordinal patterns of periictal intracranial EEG indicate deterministic dynamics in human epileptic seizures publication-title: Epilepsia doi: 10.1111/j.1528-1167.2011.03202.x – ident: ref18 doi: 10.1016/j.amc.2014.05.128 – ident: ref4 doi: 10.1056/NEJM200108023450501 – volume: 56 start-page: 1639 year: 2015 ident: ref40 article-title: Latencies from intracranial seizure onset to ictal tachycardia: A comparison to surface EEG patterns and other clinical signs publication-title: Epilepsia doi: 10.1111/epi.13117 – ident: ref8 doi: 10.1109/ICASSP.2018.8462029 – ident: ref32 doi: 10.1007/s11036-017-0942-6 – volume: 88 start-page: 1674 year: 2017 ident: ref15 article-title: Practice guideline summary: Sudden unexpected death in epilepsy incidence rates and risk factors: Report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology and the american epilepsy society publication-title: Neurology doi: 10.1212/WNL.0000000000003685 – ident: ref11 doi: 10.1016/S1388-2457(02)00344-9 – ident: ref20 doi: 10.1109/BIOCAS.2018.8584751 – year: 2003 ident: ref25 publication-title: Holographic Reduced Representation – volume: 53 start-page: 1658 year: 2012 ident: ref16 article-title: On seeing the trees and the forest: Single signal and multi signal analysis of periictal intracranial EEG publication-title: Epilepsia doi: 10.1111/j.1528-1167.2012.03588.x – ident: ref28 doi: 10.1109/ISSCC.2018.8310399 – ident: ref3 doi: 10.1093/brain/awl316 – ident: ref29 doi: 10.1109/ICRC.2016.7738683 – ident: ref5 doi: 10.1371/journal.pone.0141023 – year: 0 ident: ref33 article-title: PULP-HD: Accelerating brain-inspired high-dimensional computing on a parallel ultra-low power platform publication-title: Proc 55th Annu Des Autom Conf – ident: ref1 doi: 10.1093/brain/awx098 – volume: 15 year: 0 ident: ref34 article-title: Hardware optimizations of dense binary hyperdimensional computing: Rematerialization of hypervectors, binarized bundling, and combinational associative memory publication-title: ACM J Emerg Technol Comput – ident: ref43 doi: 10.1016/0196-8858(86)90028-X – volume: 25 start-page: 160 year: 2015 ident: ref12 article-title: How important is the seizure onset zone for seizure dynamics? publication-title: Seizure doi: 10.1016/j.seizure.2014.10.013 – start-page: 752 year: 0 ident: ref39 article-title: Laelaps: An energy-efficient seizure detection algorithm from long-term human iEEG recordings without false alarms publication-title: Proc Des Autom Test Eur Conf Exhib – ident: ref23 doi: 10.1016/j.clinph.2016.07.001 – ident: ref27 doi: 10.1109/TCSI.2017.2705051 – ident: ref7 doi: 10.1016/j.bspc.2017.01.005 – ident: ref44 doi: 10.1093/brain/124.9.1683 – ident: ref21 doi: 10.1063/1.1531823 – ident: ref38 doi: 10.1016/j.neunet.2018.04.018 – volume: 59 start-page: 1398 year: 2018 ident: ref14 article-title: Ictal and preictal power changes outside of the seizure focus correlate with seizure generalization publication-title: Epilepsia doi: 10.1111/epi.14449 – ident: ref26 doi: 10.1145/2934583.2934624 – ident: ref13 doi: 10.3171/2008.8.JNS17643 – ident: ref22 doi: 10.1016/j.bspc.2014.08.014 – volume: 67 start-page: 79 year: 2013 ident: ref37 article-title: Encoding structure in holographic reduced representations publication-title: Can J Exp Psychol doi: 10.1037/a0030301 – ident: ref9 doi: 10.1109/TBME.2013.2254486 – ident: ref19 doi: 10.1007/s12559-009-9009-8 – ident: ref42 doi: 10.1016/j.expneurol.2013.04.004 – ident: ref31 doi: 10.4108/eai.22-3-2017.152397 – ident: ref2 doi: 10.1097/WCO.0b013e3283507e73 – start-page: 133 year: 0 ident: ref24 article-title: Vector symbolic architectures answer Jackendoff's challenges for cognitive neuroscience publication-title: Proc ICCS/ASCS Int Conf Cogn Sci |
| SSID | ssj0014846 |
| Score | 2.5650945 |
| Snippet | Objective: We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and... We develop a fast learning algorithm combining symbolic dynamics and brain-inspired hyperdimensional computing for both seizure onset detection and... |
| SourceID | unpaywall proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 601 |
| SubjectTerms | Algorithms Binary codes Brain Brain - physiopathology Cerebral hemispheres Computation Computational neuroscience Convulsions & seizures Datasets Decision making Deep learning Drug resistance EEG Electrocorticography - methods Electrodes Electroencephalography Epilepsy Feature extraction Heuristic algorithms Histograms Humans hyperdimensional computing iEEG Latency Learning algorithms local binary patterns localization of seizure onset zone Machine Learning one-shot learning Post-translation Prototypes Representations seizure detection Seizures Seizures - diagnosis Seizures - physiopathology Signal Processing, Computer-Assisted Source code Surgery symbolic dynamics |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQVgJ64KMFGijISJxA2SZx7MTcumjLgmipaFeUU2Q7Dl11SapNIkR_ET-TmcRdFopAnD2xHPnZM2M_vyHkmQDg8lzEvtaQrsYK5kKFWvqmUJybmDGTdwTZAzGZxm9P-MlPsejf5AWiYMgDXNYpD3YYavfDbrsmOITdA7I2PTjc_dTvtLBoo67oIbhHmHkAlrvBDAO504BjQRKXHEYS0hMseb7ig7qiKn-KL9fJjbY8V9--qvl8xefs3e7ZWnUnVYhUk7Nh2-ihubgq5Pjv37lDbrnIk-72ULlLrtlyg6yv6BFukOv77qZ9k3yfQIIK4PmCBHeM1mlf_wHs6MdZc0rfoROko-45Lz3sVDrL-iV9X1r_6LRqqBNu_Uyrgh7Z2UW7sNBY24bCSGn_PrhwB4Zo88Y0FYB5ZugIq1bQDxaZ0jXtOA0Uulw0Pr5XobPx-DXts2Y85b9Hpnvj41cT31V18A3EYo2vYsMjvE5kSWxkbEXBdMSktYnkpggTDQ1K5JIpldg0sVbDlGlhc66kTo1l98mgrEq7RaiIeaINbFppWKAwmbQhpNwG8oVUiSjXHgku5zkzTvIcK2_Msy71CWR2PNofZwiNzEHDI8-Xn5z3eh9_M95E8CwN0wSiZSE8sn0JpsztCHUWsRiC0yhkoUeeLpthLeMFjSpt1YINhrcpEs888qAH4bJvFmLmHgUeebFE5ZURItJ_GeHD_7J-RG5GeJzQkdK3yaBZtPYxxFyNfuJW2w9LVCFj priority: 102 providerName: Unpaywall |
| Title | Hyperdimensional Computing With Local Binary Patterns: One-Shot Learning of Seizure Onset and Identification of Ictogenic Brain Regions Using Short-Time iEEG Recordings |
| URI | https://ieeexplore.ieee.org/document/8723166 https://www.ncbi.nlm.nih.gov/pubmed/31144620 https://www.proquest.com/docview/2345512131 https://www.proquest.com/docview/2232480889 http://hdl.handle.net/20.500.11850/350002 |
| UnpaywallVersion | submittedVersion |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tQ4LtgY-Nj8CYjMQTkK6JEyfmbUUdBdExsVWMp8h2nK2iJFObCLG_iD-TuySNCkyIt0g-R47u5_jO97s7gOcCgRumInC1Rnc1UKgL5WnpmkyFoQk4N2lNkD0So0nw_iw8W4NXXS6MtbYmn9kePdax_LQwFV2V7ccRWiNCrMN6FIsmV6uLGARxk5TT93AD-zJoI5heX-6fDsZDInHJni_RPeHUeI975AhRl--V46jur3KdqbkFt6r8Uv34rmazlePn8A6MlwtvWCdfe1Wpe-bqj5qO__tld-F2a4eygwY492DN5tuwtVKdcBtujtu4-w78HKG7ilD6RnR3st1Z0w0C5djnaXnBPtCRyAZ1ci87rmt25ovX7GNu3ZOLomRtGddzVmTsxE6vqrnFwYUtmcpT1mQLZ-31Icm8M2WB0J4aNqAeFuyTJd70gtUMB4avnJcuZa-w6XD4ljU-NN3534fJ4fD0zchtezy4Bi2z0lWBCX0KLvIoMDKwIuPa59LaSIYm8yKNA0qkkisV2TiyVqMCtbBpqKSOjeUPYCMvcvsImAjCSBv8hcVeRmXKpPXQATfoPcRK-Kl2oL9UdWLaAujUh2OW1I5QXyYElISAkrRAceBFN-Wyqf7xL-EdUmwn2OrUgd0lnpL2_7BIfB6gqep73HPgWTeMO5vCNSq3RYUyZOzGRENz4GGDw-7dS_g68LID5l8rLHHKbyt8fP0Kn8CmT7cINRd9FzbKeWWfoqlV6r16j-3BjcnR8cGXX7ReI8w |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NITH2wMfGR2CAkXgC0jWx82HeKOrooB2IdWJvke04rKIkU5sIsb-IP5O7JI0KTIi3SD5Hju7n-M73uzuAZyECN0hD4WqN7qpQqAvlaemaTAWBEZybtCbIHoWjE_HuNDjdgJddLoy1tiaf2R491rH8tDAVXZXtxxFaI2F4Ba4GQoigydbqYgYibtJy-h5uYV-KNobp9eX-dDAZEo1L9nyJDgqn1nvcI1eI-nyvHUh1h5XLjM1t2Kryc_Xju5rP1w6gg5swWS294Z187VWl7pmLP6o6_u-33YIbrSXKXjfQuQ0bNt-B7bX6hDtwbdJG3nfh5wgdVgTTNyK8k_XOmn4QKMc-z8ozNqZDkQ3q9F72sa7amS9fsQ-5dY_PipK1hVy_sCJjx3Z2US0sDi5tyVSesiZfOGsvEEnm0JQFgntm2IC6WLBPlpjTS1ZzHBi-clG6lL_CZsPhW9Z40XTrfwdODobTNyO37fLgGrTNSlcJE_gUXuSRMFLYMOPa59LaSAYm8yKNAypMJVcqsnFkrUYF6tCmgZI6Npbfhc28yO19YKEIIm3wJxZ7GRUqk9ZDF9yg_xCr0E-1A_2VqhPTlkCnThzzpHaF-jIhoCQElKQFigPPuynnTf2PfwnvkmI7wVanDuyt8JS0f4hl4nOBxqrvcc-Bp90w7m0K2KjcFhXKkLkbExHNgXsNDrt3r-DrwIsOmH-tsMQpv63wweUrfAJbo-lknIwPj94_hOs-3SnUzPQ92CwXlX2EhlepH9f77Rfo7yVp |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXQVgJ64KMFGijISJxA2SZx7MTcumjLgmipaFeUU2Q7Dl11SapNIkR_ET-TmcRdFopAnD2xHPnZM2M_vyHkmQDg8lzEvtaQrsYK5kKFWvqmUJybmDGTdwTZAzGZxm9P-MlPsejf5AWiYMgDXNYpD3YYavfDbrsmOITdA7I2PTjc_dTvtLBoo67oIbhHmHkAlrvBDAO504BjQRKXHEYS0hMseb7ig7qiKn-KL9fJjbY8V9--qvl8xefs3e7ZWnUnVYhUk7Nh2-ihubgq5Pjv37lDbrnIk-72ULlLrtlyg6yv6BFukOv77qZ9k3yfQIIK4PmCBHeM1mlf_wHs6MdZc0rfoROko-45Lz3sVDrL-iV9X1r_6LRqqBNu_Uyrgh7Z2UW7sNBY24bCSGn_PrhwB4Zo88Y0FYB5ZugIq1bQDxaZ0jXtOA0Uulw0Pr5XobPx-DXts2Y85b9Hpnvj41cT31V18A3EYo2vYsMjvE5kSWxkbEXBdMSktYnkpggTDQ1K5JIpldg0sVbDlGlhc66kTo1l98mgrEq7RaiIeaINbFppWKAwmbQhpNwG8oVUiSjXHgku5zkzTvIcK2_Msy71CWR2PNofZwiNzEHDI8-Xn5z3eh9_M95E8CwN0wSiZSE8sn0JpsztCHUWsRiC0yhkoUeeLpthLeMFjSpt1YINhrcpEs888qAH4bJvFmLmHgUeebFE5ZURItJ_GeHD_7J-RG5GeJzQkdK3yaBZtPYxxFyNfuJW2w9LVCFj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hyperdimensional+Computing+With+Local+Binary+Patterns%3A+One-Shot+Learning+of+Seizure+Onset+and+Identification+of+Ictogenic+Brain+Regions+Using+Short-Time+iEEG+Recordings&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Burrello%2C+Alessio&rft.au=Schindler%2C+Kaspar&rft.au=Benini%2C+Luca&rft.au=Rahimi%2C+Abbas&rft.date=2020-02-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=67&rft.issue=2&rft.spage=601&rft.epage=613&rft_id=info:doi/10.1109%2FTBME.2019.2919137&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2019_2919137 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |