Visual cohort comparison for spatial single-cell omics-data

Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regula...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 27; no. 2; pp. 733 - 743
Main Authors Somarakis, Antonios, Ijsselsteijn, Marieke E., Luk, Sietse J., Kenkhuis, Boyd, de Miranda, Noel F.C.C., Lelieveldt, Boudewijn P.F., Hollt, Thomas
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-2626
1941-0506
2160-9306
1941-0506
DOI10.1109/TVCG.2020.3030336

Cover

Abstract Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.
AbstractList Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.
Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.
Author de Miranda, Noel F.C.C.
Kenkhuis, Boyd
Lelieveldt, Boudewijn P.F.
Ijsselsteijn, Marieke E.
Luk, Sietse J.
Hollt, Thomas
Somarakis, Antonios
Author_xml – sequence: 1
  givenname: Antonios
  surname: Somarakis
  fullname: Somarakis, Antonios
  organization: Department of Radiology, Division of Image Processing, Leiden University Medical Center, The Netherlands
– sequence: 2
  givenname: Marieke E.
  surname: Ijsselsteijn
  fullname: Ijsselsteijn, Marieke E.
  organization: Department of Pathology, Immunogenomics group, Leiden University Medical Center, The Netherlands
– sequence: 3
  givenname: Sietse J.
  surname: Luk
  fullname: Luk, Sietse J.
  organization: Hematology Department, Leiden University Medical Center, The Netherlands
– sequence: 4
  givenname: Boyd
  surname: Kenkhuis
  fullname: Kenkhuis, Boyd
  organization: Human Genetics Departments, Leiden University Medical Center, The Netherlands
– sequence: 5
  givenname: Noel F.C.C.
  surname: de Miranda
  fullname: de Miranda, Noel F.C.C.
  organization: Department of Pathology, Immunogenomics group, Leiden University Medical Center, The Netherlands
– sequence: 6
  givenname: Boudewijn P.F.
  surname: Lelieveldt
  fullname: Lelieveldt, Boudewijn P.F.
  organization: Department of Radiology, Division of Image Processing, Leiden University Medical Center, The Netherlands
– sequence: 7
  givenname: Thomas
  surname: Hollt
  fullname: Hollt, Thomas
  email: T.Hollt-1@tudelft.nl
  organization: Computer Graphics and Visualization Group, TU Delft, Leiden Computational Biology Center, Leiden University Medical Center, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33112747$$D View this record in MEDLINE/PubMed
BookMark eNptkU1r4zAQhsXSZfv5A0qhBPbSi7MzkizJ9FRCvyCwl2yvQlXkVsW2XMnukn9fhaQ5hCLQDOh5h3deHZODLnSOkHOEKSJUfxZPs_spBQpTBvkw8YMcYcWxgBLEQe5ByoIKKg7JcUpvAMi5qn6RQ8YQqeTyiFw_-TSaZmLDa4hDLm1vok-hm9QhTlJvBp9fk-9eGldY1zST0HqbiqUZzCn5WZsmubNtPSH_7m4Xs4di_vf-cXYzLyyr6FAYZAqdAYFLwfPNq1LVJavQqUqJEixYRZWTwubumZfcoMTagqKcSsENOyF0M3fserP6b5pG99G3Jq40gl4noYcP-6LXSehtEll0tRH1MbyPLg269Wm9gOlcGJOmvCwVBxQqo7_30Lcwxi6vlCnFqJDAeaYut9T43LrlzsJXlhmQG8DGkFJ0tbZ-yPmFbojGNzuv61_b94p7yv39vtNcbDTeObfjK8pRMso-Aa2rnTM
CODEN ITVGEA
CitedBy_id crossref_primary_10_1016_j_copbio_2024_103111
crossref_primary_10_1109_TVCG_2022_3209378
crossref_primary_10_1109_TVCG_2021_3114786
crossref_primary_10_1145_3576935
crossref_primary_10_1186_s40478_021_01126_5
crossref_primary_10_1111_cgf_14575
crossref_primary_10_1109_TVCG_2022_3209408
crossref_primary_10_1109_TVCG_2024_3456193
crossref_primary_10_1016_j_trac_2022_116794
Cites_doi 10.1038/nmeth.4391
10.1136/jnnp-2011-300403
10.1109/52.329404
10.1007/s11548-013-0820-z
10.1038/s41467-017-01689-9
10.1038/nmeth.2563
10.1093/jnci/92.8.613
10.1016/j.celrep.2020.107523
10.1559/152304003100010929
10.1016/0377-0427(87)90125-7
10.1602/neurorx.1.2.182
10.2312/PE.VMV.VMV13.105-112
10.1186/s12859-014-0431-x
10.1038/s41586-019-1876-x
10.1109/TVCG.2019.2931299
10.1016/j.cell.2018.07.010
10.1109/TVCG.2013.213
10.1038/nrg3832
10.1038/s43018-020-0026-6
10.12688/wellcomeopenres.15191.1
10.2352/J.ImagingSci.Technol.2017.61.6.000000
10.1177/1473871611416549
10.1109/TVCG.2017.2785271
10.1126/scitranslmed.3004330
10.1016/j.immuni.2016.04.014
10.1109/ANNES.1995.499469
10.1109/TVCG.2016.2598587
10.1109/TVCG.2018.2864907
10.1109/INFVIS.2000.885086
10.1111/cgf.13413
10.2312/vcbm.20171237
10.1038/nprot.2014.191
10.1126/science.280.5363.585
10.1101/2020.03.27.001834
10.1111/cgf.14002
10.5281/zenodo.3885814
10.1145/2836034.2836040
10.1038/s43018-020-0031-9
10.1016/S0140-6736(14)60958-2
10.1109/TVCG.2019.2934547
10.18637/jss.v028.c01
10.1038/s41597-019-0258-4
10.1080/2162402X.2018.1507600
10.1109/TVCG.2013.161
10.1145/2133806.2133821
10.1109/TVCG.2013.124
10.1007/978-3-319-24523-2_10
10.1038/nmeth.2869
10.1126/sciadv.aax5851
10.1002/cjp2.113
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
DOI 10.1109/TVCG.2020.3030336
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
Technology Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 743
ExternalDocumentID 10.1109/tvcg.2020.3030336
33112747
10_1109_TVCG_2020_3030336
9241732
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: H2020-Marie Skodowska-Curie Action Research and Innovation Staff Exchange (RISE)
  grantid: 644373-PRISAR
– fundername: European Union's Horizon 2020 research and innovation program
  grantid: 852832
  funderid: 10.13039/100010661
– fundername: Leiden University Data Science Research Programme
– fundername: European Research Council (ERC)
  funderid: 10.13039/501100000781
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIC
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c392t-a1381ea061d640614958f5391e898650c0c828e76cc0cb454a171fc08242764a3
IEDL.DBID UNPAY
ISSN 1077-2626
1941-0506
2160-9306
IngestDate Sun Oct 26 04:16:54 EDT 2025
Mon Sep 29 05:11:57 EDT 2025
Sun Jun 29 14:29:13 EDT 2025
Wed Feb 19 02:28:30 EST 2025
Thu Apr 24 22:51:50 EDT 2025
Wed Oct 01 04:35:53 EDT 2025
Wed Aug 27 02:27:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-a1381ea061d640614958f5391e898650c0c828e76cc0cb454a171fc08242764a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/2945/9340023/09241732.pdf
PMID 33112747
PQID 2483267044
PQPubID 75741
PageCount 11
ParticipantIDs unpaywall_primary_10_1109_tvcg_2020_3030336
pubmed_primary_33112747
crossref_citationtrail_10_1109_TVCG_2020_3030336
crossref_primary_10_1109_TVCG_2020_3030336
proquest_miscellaneous_2455840168
proquest_journals_2483267044
ieee_primary_9241732
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References zhang (ref58) 0
ref57
ref13
ref56
ref12
ref15
ref14
ref53
ref55
ref54
ref17
ref16
ref19
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
tufte (ref52) 1990
ref8
ref7
ref9
pagendarm (ref38) 1995
ref3
ref6
ref5
ref40
ref35
(ref18) 0
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
bangor (ref4) 1996; 3
ref24
ref23
ref26
ref25
ref20
ref22
brooke (ref10) 1996
ref21
ref28
ref27
ref29
steenwijk (ref49) 0
cibulski (ref11) 2016
References_xml – ident: ref44
  doi: 10.1038/nmeth.4391
– year: 1995
  ident: ref38
  article-title: Comparative visualization: Approaches and examples
  publication-title: Visualization in Scientific Computing
– ident: ref36
  doi: 10.1136/jnnp-2011-300403
– ident: ref47
  doi: 10.1109/52.329404
– ident: ref16
  doi: 10.1007/s11548-013-0820-z
– ident: ref53
  doi: 10.1038/s41467-017-01689-9
– ident: ref26
  doi: 10.1038/nmeth.2563
– ident: ref37
  doi: 10.1093/jnci/92.8.613
– ident: ref51
  doi: 10.1016/j.celrep.2020.107523
– ident: ref9
  doi: 10.1559/152304003100010929
– ident: ref43
  doi: 10.1016/0377-0427(87)90125-7
– ident: ref35
  doi: 10.1602/neurorx.1.2.182
– year: 0
  ident: ref49
  article-title: Integrated visual analysis for heterogeneous datasets in cohort studies
  publication-title: Proc Workshop on Visual Analytics in Healthcare
– ident: ref31
  doi: 10.2312/PE.VMV.VMV13.105-112
– ident: ref46
  doi: 10.1186/s12859-014-0431-x
– year: 1990
  ident: ref52
  publication-title: Envisioning Information
– ident: ref24
  doi: 10.1038/s41586-019-1876-x
– ident: ref48
  doi: 10.1109/TVCG.2019.2931299
– ident: ref21
  doi: 10.1016/j.cell.2018.07.010
– year: 0
  ident: ref18
  publication-title: Google Forms
– ident: ref45
  doi: 10.1109/TVCG.2013.213
– ident: ref14
  doi: 10.1038/nrg3832
– ident: ref1
  doi: 10.1038/s43018-020-0026-6
– ident: ref2
  doi: 10.12688/wellcomeopenres.15191.1
– ident: ref33
  doi: 10.2352/J.ImagingSci.Technol.2017.61.6.000000
– ident: ref20
  doi: 10.1177/1473871611416549
– start-page: 189
  year: 1996
  ident: ref10
  article-title: SUS: a "quick and dirty" usability scale
  publication-title: Usability Evaluation in Industry
– ident: ref55
  doi: 10.1109/TVCG.2017.2785271
– ident: ref56
  doi: 10.1126/scitranslmed.3004330
– ident: ref54
  doi: 10.1016/j.immuni.2016.04.014
– ident: ref6
  doi: 10.1109/ANNES.1995.499469
– ident: ref15
  doi: 10.1109/TVCG.2016.2598587
– ident: ref13
  doi: 10.1109/TVCG.2018.2864907
– ident: ref50
  doi: 10.1109/INFVIS.2000.885086
– volume: 3
  start-page: 114
  year: 1996
  ident: ref4
  article-title: Determining what individual SUS scores mean: Adding an adjective rating scale
  publication-title: Journal of Usability Studies
– ident: ref40
  doi: 10.1111/cgf.13413
– ident: ref57
  doi: 10.2312/vcbm.20171237
– ident: ref30
  doi: 10.1038/nprot.2014.191
– ident: ref17
  doi: 10.1126/science.280.5363.585
– ident: ref41
  doi: 10.1101/2020.03.27.001834
– ident: ref7
  doi: 10.1111/cgf.14002
– ident: ref3
  doi: 10.5281/zenodo.3885814
– year: 0
  ident: ref58
  article-title: Interactive visual patient cohort analysis
  publication-title: Proc Workshop on Visual Analytics in Healthcare
– ident: ref5
  doi: 10.1145/2836034.2836040
– ident: ref27
  doi: 10.1038/s43018-020-0031-9
– ident: ref42
  doi: 10.1016/S0140-6736(14)60958-2
– ident: ref29
  doi: 10.1109/TVCG.2019.2934547
– ident: ref25
  doi: 10.18637/jss.v028.c01
– ident: ref12
  doi: 10.1038/s41597-019-0258-4
– ident: ref32
  doi: 10.1080/2162402X.2018.1507600
– ident: ref34
  doi: 10.1109/TVCG.2013.161
– ident: ref22
  doi: 10.1145/2133806.2133821
– ident: ref8
  doi: 10.1109/TVCG.2013.124
– ident: ref39
  doi: 10.1007/978-3-319-24523-2_10
– ident: ref19
  doi: 10.1038/nmeth.2869
– ident: ref28
  doi: 10.1126/sciadv.aax5851
– year: 2016
  ident: ref11
  publication-title: Visual analytics support for analysis of cohort study data Requirements and concepts
– ident: ref23
  doi: 10.1002/cjp2.113
SSID ssj0014489
Score 2.3862472
Snippet Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 733
SubjectTerms Biomarkers
Biomedical imaging
Cohort Studies
Computer Graphics
Data analysis
Domains
Humans
Image segmentation
Imaging Mass Cytometry
Outliers (statistics)
single-cell omics-data
Spatial data
Spatial databases
spatially-resolved data
Subject specialists
Task analysis
Vectra
Visual analytics
Visual comparison
Visualization
Workflow
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAF-BhG19bN4aKxBOQu36kSaM9TYgPIcETIN6qNOcitFMPcS1o--tnt73qYAjtrVLSyrWd-OfYsQH2clSKtUXkJgmEVJbWnCsSQR5zZBVKLJpizxeX6uxant8mtwtw2N-FQcQm-QwH_NjE8kcTV_NR2ZB8hVDHtOEu6lS1d7X6iAG5GabNL9QiIpTeRTDDwAyvbo5OyROMyEEllY5jblsUxwQ0NDdVmTNHTX-Vt6DmKizX5YP9_WzH4znzc_IRLmaEt1knvwZ1lQ_cn1c1Hf_3zz7Bhw6H-j9bxVmDBSzXYXWuOuEG_Li5n9Y0h3voPla-6zsW-gR0_SmnYtMonzWMUXAAwOcbzlPBSaebcH1yfHV0JrpeC8IRQqqEDcl0oyXrPlJs48lvSoskNiGmJiUU5wJHvhlq5egpl4m0oQ4LRwBCRlpJG2_BUjkp8Qv4IRbOmZyAw0jLwpjcFaM8YiiFtL2G0oNgxvLMdYXIuR_GOGscksBkLLCMBZZ1AvNgv3_loa3C8d7kDWZwP7HjrQfbM7lm3TqdZpGkHU3pQBJVu_0wrTDmmi1xUvOchFAaQePUg8-tPvTfnqmRBwe9gvxDYfXk7l5Q-PVtCr_BSsQZM01O-DYsVY81fifIU-U7ja7_BbcV9ig
  priority: 102
  providerName: IEEE
Title Visual cohort comparison for spatial single-cell omics-data
URI https://ieeexplore.ieee.org/document/9241732
https://www.ncbi.nlm.nih.gov/pubmed/33112747
https://www.proquest.com/docview/2483267044
https://www.proquest.com/docview/2455840168
https://ieeexplore.ieee.org/ielx7/2945/9340023/09241732.pdf
UnpaywallVersion publishedVersion
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1941-0506
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QF6oECBBkoVJE4g78aO7azVU1VRKiQqDt2qSEiR43VQRZRW3aS0_HpmnGxaPoQEN0ueRI5n7HkvHs8AvCq81mQtrDAqYVJbXHOuVAwZs7DaS1-GZM8fDvXBTL4_UScrsDPchfHeh-AzP6ZmOMs_9dVVNhFGqolJJXmZSYK0gWcpksJ5eQdWtUIgPoLV2eHH3U9dlGHGhA7F1pClI2FWocqm4DphBlFyf77JEzNpLt0X5IkC6SsafBpyNd94qFBy5U_ocw3utvW5vf5mq-qWR9pfh8_Lb-kCUb6O26YYu--_pHn8z499APd7pBrvdqb1EFZ8_QjWbuUv3ICd49NFizJUZfeiid1Q0zBGKBwvKFgbe-lvROUZHRHEdAd6wSgs9THM9t8e7R2wvhoDc4ihGmY5Ondv0f_PNaEAZFbTUqWG-6mZIs5ziUP25jPtsFVIJS3PeOkQYkiRaWnTJzCqz2q_CTH3pXOmQGgxz2RpTOHKeSEIbHncgLmMIFlqIHd9qnKqmFHlgbIkJj863nuXk9LyXmkRvB4eOe_ydPxNeIPmexDs5zeCraWa834lL3Ihcc_TWSJxVC-HblyDNGu29mctySjEcQiepxE87cxjeHeaIqJFzhbBm8Fefhsh2eBPI3z2T9LP4Z6gUJsQTL4Fo-ai9S8QKzXFdrjQuN2vjB8kjAW1
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLcQPAAPMMaAMsaKxNNGjn6k6UV7mhDsBhxPB-KtSnMuQpx6iGtB218_u-1Vx4cm3iolrVzbiX-OHRtgP0WlWFtEqiNPSGVozdksEuQxB0ahxKwq9ty_UL1LeXodXc_BQXsXBhGr5DPs8GMVyx-ObclHZYfkK_hxSBvuQiSljOrbWm3MgBwNXWcYxiIgnN7EMH1PHw6ujn6RLxiQi0pKHYbcuCgMCWrE3FZlxiBVHVbeApvLsFjm9-bPkxmNZgzQySr0p6TXeSd3nbJIO_bvi6qO7_23D7DSIFH3Z606azCH-UdYnqlPuA4_rm4nJc3hLroPhWvbnoUuQV13wsnYNMqnDSMUHAJw-Y7zRHDa6Se4PDkeHPVE021BWMJIhTA-GW80ZN-Hiq08eU7dLAq1j13dJRxnPUveGcbK0lMqI2n82M8sQQgZxEqacAPm83GOW-D6mFmrU4IOw1hmWqc2G6YBgymkDdaXDnhTlie2KUXOHTFGSeWSeDphgSUssKQRmAPf2lfu6zoc_5u8zgxuJza8dWBnKtekWamTJJC0p6nYk0TVXjtMa4y5ZnIclzwnIpxG4LjrwGatD-23p2rkwPdWQV5RWDzam2cUbr9N4VdY7A3658n574uzz7AUcP5MlSG-A_PFQ4lfCAAV6W6l9_8AxIP5dQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF6oEB5hBYUJE4g78aO7azVU1VRKiQqDt2qSEiR451UFVFadZOW9tczdrKhPIQEN0ueRI5n7Pm-eDwD8LpArb21sMKohEltac25UjFizMJqlFiGZM8fD_T-TH44VscrsD3chUHEEHyGY98MZ_mnWH3LJsJINTGp9F5mkhBt4FlKpHBe3oFVrQiIj2B1dvBp53MXZZgxoUOxNWLpRJhVqLIpuE6YIZTcn2_yxEyaS3dCPFEQfSWDT0Ou5h8eKpRc-RP6XIO7bX1ur69sVd3ySHvr8GX5LV0gytdx2xRjd_NLmsf__NgHcL9HqvFOZ1oPYQXrR7B2K3_hBmwfnS5akvFVdi-a2A01DWOCwvHCB2tTr_8bUSHzRwSxvwO9YD4s9THM9t4d7u6zvhoDc4ShGmY5OXe05P_n2qMAYlbTUqWG49RMCee5xBF7w0w7ahVSScszXjqCGFJkWtr0CYzqsxqfQcyxdM4UBC3mmSyNKVw5L4QHW0gbMJcRJEsN5K5PVe4rZlR5oCyJyQ-Pdt_nXml5r7QI3gyPnHd5Ov4mvOHnexDs5zeCraWa834lL3Ihac_TWSJpVK-GblqDftZsjWetl1GE4wg8TyN42pnH8O40JURLnC2Ct4O9_DZCb4M_jfD5P0lvwj3hQ21CMPkWjJqLFl8QVmqKl_2a-A4H3wS0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+cohort+comparison+for+spatial+single-cell+omics-data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Somarakis%2C+Antonios&rft.au=Ijsselsteijn%2C+Marieke+E&rft.au=Luk%2C+Sietse+J&rft.au=Kenkhuis%2C+Boyd&rft.date=2021-02-01&rft.eissn=1941-0506&rft.volume=27&rft.issue=2&rft.spage=733&rft_id=info:doi/10.1109%2FTVCG.2020.3030336&rft_id=info%3Apmid%2F33112747&rft.externalDocID=33112747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon