Visual cohort comparison for spatial single-cell omics-data
Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regula...
        Saved in:
      
    
          | Published in | IEEE transactions on visualization and computer graphics Vol. 27; no. 2; pp. 733 - 743 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          IEEE
    
        01.02.2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1077-2626 1941-0506 2160-9306 1941-0506  | 
| DOI | 10.1109/TVCG.2020.3030336 | 
Cover
| Abstract | Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities. | 
    
|---|---|
| AbstractList | Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities. Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep understanding of tissue functionality. To understand what causes or deteriorates a disease and identify related biomarkers, clinical researchers regularly perform large-scale cohort studies, requiring the comparison of such data at cellular level. In such studies, with little a-priori knowledge of what to expect in the data, explorative data analysis is a necessity. Here, we present an interactive visual analysis workflow for the comparison of cohorts of spatially-resolved omics-data. Our workflow allows the comparative analysis of two cohorts based on multiple levels-of-detail, from simple abundance of contained cell types over complex co-localization patterns to individual comparison of complete tissue images. As a result, the workflow enables the identification of cohort-differentiating features, as well as outlier samples at any stage of the workflow. During the development of the workflow, we continuously consulted with domain experts. To show the effectiveness of the workflow, we conducted multiple case studies with domain experts from different application areas and with different data modalities.  | 
    
| Author | de Miranda, Noel F.C.C. Kenkhuis, Boyd Lelieveldt, Boudewijn P.F. Ijsselsteijn, Marieke E. Luk, Sietse J. Hollt, Thomas Somarakis, Antonios  | 
    
| Author_xml | – sequence: 1 givenname: Antonios surname: Somarakis fullname: Somarakis, Antonios organization: Department of Radiology, Division of Image Processing, Leiden University Medical Center, The Netherlands – sequence: 2 givenname: Marieke E. surname: Ijsselsteijn fullname: Ijsselsteijn, Marieke E. organization: Department of Pathology, Immunogenomics group, Leiden University Medical Center, The Netherlands – sequence: 3 givenname: Sietse J. surname: Luk fullname: Luk, Sietse J. organization: Hematology Department, Leiden University Medical Center, The Netherlands – sequence: 4 givenname: Boyd surname: Kenkhuis fullname: Kenkhuis, Boyd organization: Human Genetics Departments, Leiden University Medical Center, The Netherlands – sequence: 5 givenname: Noel F.C.C. surname: de Miranda fullname: de Miranda, Noel F.C.C. organization: Department of Pathology, Immunogenomics group, Leiden University Medical Center, The Netherlands – sequence: 6 givenname: Boudewijn P.F. surname: Lelieveldt fullname: Lelieveldt, Boudewijn P.F. organization: Department of Radiology, Division of Image Processing, Leiden University Medical Center, The Netherlands – sequence: 7 givenname: Thomas surname: Hollt fullname: Hollt, Thomas email: T.Hollt-1@tudelft.nl organization: Computer Graphics and Visualization Group, TU Delft, Leiden Computational Biology Center, Leiden University Medical Center, The Netherlands  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33112747$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptkU1r4zAQhsXSZfv5A0qhBPbSi7MzkizJ9FRCvyCwl2yvQlXkVsW2XMnukn9fhaQ5hCLQDOh5h3deHZODLnSOkHOEKSJUfxZPs_spBQpTBvkw8YMcYcWxgBLEQe5ByoIKKg7JcUpvAMi5qn6RQ8YQqeTyiFw_-TSaZmLDa4hDLm1vok-hm9QhTlJvBp9fk-9eGldY1zST0HqbiqUZzCn5WZsmubNtPSH_7m4Xs4di_vf-cXYzLyyr6FAYZAqdAYFLwfPNq1LVJavQqUqJEixYRZWTwubumZfcoMTagqKcSsENOyF0M3fserP6b5pG99G3Jq40gl4noYcP-6LXSehtEll0tRH1MbyPLg269Wm9gOlcGJOmvCwVBxQqo7_30Lcwxi6vlCnFqJDAeaYut9T43LrlzsJXlhmQG8DGkFJ0tbZ-yPmFbojGNzuv61_b94p7yv39vtNcbDTeObfjK8pRMso-Aa2rnTM | 
    
| CODEN | ITVGEA | 
    
| CitedBy_id | crossref_primary_10_1016_j_copbio_2024_103111 crossref_primary_10_1109_TVCG_2022_3209378 crossref_primary_10_1109_TVCG_2021_3114786 crossref_primary_10_1145_3576935 crossref_primary_10_1186_s40478_021_01126_5 crossref_primary_10_1111_cgf_14575 crossref_primary_10_1109_TVCG_2022_3209408 crossref_primary_10_1109_TVCG_2024_3456193 crossref_primary_10_1016_j_trac_2022_116794  | 
    
| Cites_doi | 10.1038/nmeth.4391 10.1136/jnnp-2011-300403 10.1109/52.329404 10.1007/s11548-013-0820-z 10.1038/s41467-017-01689-9 10.1038/nmeth.2563 10.1093/jnci/92.8.613 10.1016/j.celrep.2020.107523 10.1559/152304003100010929 10.1016/0377-0427(87)90125-7 10.1602/neurorx.1.2.182 10.2312/PE.VMV.VMV13.105-112 10.1186/s12859-014-0431-x 10.1038/s41586-019-1876-x 10.1109/TVCG.2019.2931299 10.1016/j.cell.2018.07.010 10.1109/TVCG.2013.213 10.1038/nrg3832 10.1038/s43018-020-0026-6 10.12688/wellcomeopenres.15191.1 10.2352/J.ImagingSci.Technol.2017.61.6.000000 10.1177/1473871611416549 10.1109/TVCG.2017.2785271 10.1126/scitranslmed.3004330 10.1016/j.immuni.2016.04.014 10.1109/ANNES.1995.499469 10.1109/TVCG.2016.2598587 10.1109/TVCG.2018.2864907 10.1109/INFVIS.2000.885086 10.1111/cgf.13413 10.2312/vcbm.20171237 10.1038/nprot.2014.191 10.1126/science.280.5363.585 10.1101/2020.03.27.001834 10.1111/cgf.14002 10.5281/zenodo.3885814 10.1145/2836034.2836040 10.1038/s43018-020-0031-9 10.1016/S0140-6736(14)60958-2 10.1109/TVCG.2019.2934547 10.18637/jss.v028.c01 10.1038/s41597-019-0258-4 10.1080/2162402X.2018.1507600 10.1109/TVCG.2013.161 10.1145/2133806.2133821 10.1109/TVCG.2013.124 10.1007/978-3-319-24523-2_10 10.1038/nmeth.2869 10.1126/sciadv.aax5851 10.1002/cjp2.113  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1109/TVCG.2020.3030336 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1941-0506 | 
    
| EndPage | 743 | 
    
| ExternalDocumentID | 10.1109/tvcg.2020.3030336 33112747 10_1109_TVCG_2020_3030336 9241732  | 
    
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: H2020-Marie Skodowska-Curie Action Research and Innovation Staff Exchange (RISE) grantid: 644373-PRISAR – fundername: European Union's Horizon 2020 research and innovation program grantid: 852832 funderid: 10.13039/100010661 – fundername: Leiden University Data Science Research Programme – fundername: European Research Council (ERC) funderid: 10.13039/501100000781  | 
    
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIC RIG Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c392t-a1381ea061d640614958f5391e898650c0c828e76cc0cb454a171fc08242764a3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1077-2626 1941-0506 2160-9306  | 
    
| IngestDate | Sun Oct 26 04:16:54 EDT 2025 Mon Sep 29 05:11:57 EDT 2025 Sun Jun 29 14:29:13 EDT 2025 Wed Feb 19 02:28:30 EST 2025 Thu Apr 24 22:51:50 EDT 2025 Wed Oct 01 04:35:53 EDT 2025 Wed Aug 27 02:27:02 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c392t-a1381ea061d640614958f5391e898650c0c828e76cc0cb454a171fc08242764a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/2945/9340023/09241732.pdf | 
    
| PMID | 33112747 | 
    
| PQID | 2483267044 | 
    
| PQPubID | 75741 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1109_tvcg_2020_3030336 pubmed_primary_33112747 crossref_citationtrail_10_1109_TVCG_2020_3030336 crossref_primary_10_1109_TVCG_2020_3030336 proquest_miscellaneous_2455840168 proquest_journals_2483267044 ieee_primary_9241732  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-02-01 | 
    
| PublicationDateYYYYMMDD | 2021-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | IEEE transactions on visualization and computer graphics | 
    
| PublicationTitleAbbrev | TVCG | 
    
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | zhang (ref58) 0 ref57 ref13 ref56 ref12 ref15 ref14 ref53 ref55 ref54 ref17 ref16 ref19 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 tufte (ref52) 1990 ref8 ref7 ref9 pagendarm (ref38) 1995 ref3 ref6 ref5 ref40 ref35 (ref18) 0 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 bangor (ref4) 1996; 3 ref24 ref23 ref26 ref25 ref20 ref22 brooke (ref10) 1996 ref21 ref28 ref27 ref29 steenwijk (ref49) 0 cibulski (ref11) 2016  | 
    
| References_xml | – ident: ref44 doi: 10.1038/nmeth.4391 – year: 1995 ident: ref38 article-title: Comparative visualization: Approaches and examples publication-title: Visualization in Scientific Computing – ident: ref36 doi: 10.1136/jnnp-2011-300403 – ident: ref47 doi: 10.1109/52.329404 – ident: ref16 doi: 10.1007/s11548-013-0820-z – ident: ref53 doi: 10.1038/s41467-017-01689-9 – ident: ref26 doi: 10.1038/nmeth.2563 – ident: ref37 doi: 10.1093/jnci/92.8.613 – ident: ref51 doi: 10.1016/j.celrep.2020.107523 – ident: ref9 doi: 10.1559/152304003100010929 – ident: ref43 doi: 10.1016/0377-0427(87)90125-7 – ident: ref35 doi: 10.1602/neurorx.1.2.182 – year: 0 ident: ref49 article-title: Integrated visual analysis for heterogeneous datasets in cohort studies publication-title: Proc Workshop on Visual Analytics in Healthcare – ident: ref31 doi: 10.2312/PE.VMV.VMV13.105-112 – ident: ref46 doi: 10.1186/s12859-014-0431-x – year: 1990 ident: ref52 publication-title: Envisioning Information – ident: ref24 doi: 10.1038/s41586-019-1876-x – ident: ref48 doi: 10.1109/TVCG.2019.2931299 – ident: ref21 doi: 10.1016/j.cell.2018.07.010 – year: 0 ident: ref18 publication-title: Google Forms – ident: ref45 doi: 10.1109/TVCG.2013.213 – ident: ref14 doi: 10.1038/nrg3832 – ident: ref1 doi: 10.1038/s43018-020-0026-6 – ident: ref2 doi: 10.12688/wellcomeopenres.15191.1 – ident: ref33 doi: 10.2352/J.ImagingSci.Technol.2017.61.6.000000 – ident: ref20 doi: 10.1177/1473871611416549 – start-page: 189 year: 1996 ident: ref10 article-title: SUS: a "quick and dirty" usability scale publication-title: Usability Evaluation in Industry – ident: ref55 doi: 10.1109/TVCG.2017.2785271 – ident: ref56 doi: 10.1126/scitranslmed.3004330 – ident: ref54 doi: 10.1016/j.immuni.2016.04.014 – ident: ref6 doi: 10.1109/ANNES.1995.499469 – ident: ref15 doi: 10.1109/TVCG.2016.2598587 – ident: ref13 doi: 10.1109/TVCG.2018.2864907 – ident: ref50 doi: 10.1109/INFVIS.2000.885086 – volume: 3 start-page: 114 year: 1996 ident: ref4 article-title: Determining what individual SUS scores mean: Adding an adjective rating scale publication-title: Journal of Usability Studies – ident: ref40 doi: 10.1111/cgf.13413 – ident: ref57 doi: 10.2312/vcbm.20171237 – ident: ref30 doi: 10.1038/nprot.2014.191 – ident: ref17 doi: 10.1126/science.280.5363.585 – ident: ref41 doi: 10.1101/2020.03.27.001834 – ident: ref7 doi: 10.1111/cgf.14002 – ident: ref3 doi: 10.5281/zenodo.3885814 – year: 0 ident: ref58 article-title: Interactive visual patient cohort analysis publication-title: Proc Workshop on Visual Analytics in Healthcare – ident: ref5 doi: 10.1145/2836034.2836040 – ident: ref27 doi: 10.1038/s43018-020-0031-9 – ident: ref42 doi: 10.1016/S0140-6736(14)60958-2 – ident: ref29 doi: 10.1109/TVCG.2019.2934547 – ident: ref25 doi: 10.18637/jss.v028.c01 – ident: ref12 doi: 10.1038/s41597-019-0258-4 – ident: ref32 doi: 10.1080/2162402X.2018.1507600 – ident: ref34 doi: 10.1109/TVCG.2013.161 – ident: ref22 doi: 10.1145/2133806.2133821 – ident: ref8 doi: 10.1109/TVCG.2013.124 – ident: ref39 doi: 10.1007/978-3-319-24523-2_10 – ident: ref19 doi: 10.1038/nmeth.2869 – ident: ref28 doi: 10.1126/sciadv.aax5851 – year: 2016 ident: ref11 publication-title: Visual analytics support for analysis of cohort study data Requirements and concepts – ident: ref23 doi: 10.1002/cjp2.113  | 
    
| SSID | ssj0014489 | 
    
| Score | 2.3862472 | 
    
| Snippet | Spatially-resolved omics-data enable researchers to precisely distinguish cell types in tissue and explore their spatial interactions, enabling deep... | 
    
| SourceID | unpaywall proquest pubmed crossref ieee  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 733 | 
    
| SubjectTerms | Biomarkers Biomedical imaging Cohort Studies Computer Graphics Data analysis Domains Humans Image segmentation Imaging Mass Cytometry Outliers (statistics) single-cell omics-data Spatial data Spatial databases spatially-resolved data Subject specialists Task analysis Vectra Visual analytics Visual comparison Visualization Workflow  | 
    
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLeAF-BhG19bN4aKxBOQu36kSaM9TYgPIcETIN6qNOcitFMPcS1o--tnt73qYAjtrVLSyrWd-OfYsQH2clSKtUXkJgmEVJbWnCsSQR5zZBVKLJpizxeX6uxant8mtwtw2N-FQcQm-QwH_NjE8kcTV_NR2ZB8hVDHtOEu6lS1d7X6iAG5GabNL9QiIpTeRTDDwAyvbo5OyROMyEEllY5jblsUxwQ0NDdVmTNHTX-Vt6DmKizX5YP9_WzH4znzc_IRLmaEt1knvwZ1lQ_cn1c1Hf_3zz7Bhw6H-j9bxVmDBSzXYXWuOuEG_Li5n9Y0h3voPla-6zsW-gR0_SmnYtMonzWMUXAAwOcbzlPBSaebcH1yfHV0JrpeC8IRQqqEDcl0oyXrPlJs48lvSoskNiGmJiUU5wJHvhlq5egpl4m0oQ4LRwBCRlpJG2_BUjkp8Qv4IRbOmZyAw0jLwpjcFaM8YiiFtL2G0oNgxvLMdYXIuR_GOGscksBkLLCMBZZ1AvNgv3_loa3C8d7kDWZwP7HjrQfbM7lm3TqdZpGkHU3pQBJVu_0wrTDmmi1xUvOchFAaQePUg8-tPvTfnqmRBwe9gvxDYfXk7l5Q-PVtCr_BSsQZM01O-DYsVY81fifIU-U7ja7_BbcV9ig priority: 102 providerName: IEEE  | 
    
| Title | Visual cohort comparison for spatial single-cell omics-data | 
    
| URI | https://ieeexplore.ieee.org/document/9241732 https://www.ncbi.nlm.nih.gov/pubmed/33112747 https://www.proquest.com/docview/2483267044 https://www.proquest.com/docview/2455840168 https://ieeexplore.ieee.org/ielx7/2945/9340023/09241732.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1941-0506 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QF6oECBBkoVJE4g78aO7azVU1VRKiQqDt2qSEiR43VQRZRW3aS0_HpmnGxaPoQEN0ueRI5n7HkvHs8AvCq81mQtrDAqYVJbXHOuVAwZs7DaS1-GZM8fDvXBTL4_UScrsDPchfHeh-AzP6ZmOMs_9dVVNhFGqolJJXmZSYK0gWcpksJ5eQdWtUIgPoLV2eHH3U9dlGHGhA7F1pClI2FWocqm4DphBlFyf77JEzNpLt0X5IkC6SsafBpyNd94qFBy5U_ocw3utvW5vf5mq-qWR9pfh8_Lb-kCUb6O26YYu--_pHn8z499APd7pBrvdqb1EFZ8_QjWbuUv3ICd49NFizJUZfeiid1Q0zBGKBwvKFgbe-lvROUZHRHEdAd6wSgs9THM9t8e7R2wvhoDc4ihGmY5Ondv0f_PNaEAZFbTUqWG-6mZIs5ziUP25jPtsFVIJS3PeOkQYkiRaWnTJzCqz2q_CTH3pXOmQGgxz2RpTOHKeSEIbHncgLmMIFlqIHd9qnKqmFHlgbIkJj863nuXk9LyXmkRvB4eOe_ydPxNeIPmexDs5zeCraWa834lL3Ihcc_TWSJxVC-HblyDNGu29mctySjEcQiepxE87cxjeHeaIqJFzhbBm8Fefhsh2eBPI3z2T9LP4Z6gUJsQTL4Fo-ai9S8QKzXFdrjQuN2vjB8kjAW1 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9wwDLcQPAAPMMaAMsaKxNNGjn6k6UV7mhDsBhxPB-KtSnMuQpx6iGtB218_u-1Vx4cm3iolrVzbiX-OHRtgP0WlWFtEqiNPSGVozdksEuQxB0ahxKwq9ty_UL1LeXodXc_BQXsXBhGr5DPs8GMVyx-ObclHZYfkK_hxSBvuQiSljOrbWm3MgBwNXWcYxiIgnN7EMH1PHw6ujn6RLxiQi0pKHYbcuCgMCWrE3FZlxiBVHVbeApvLsFjm9-bPkxmNZgzQySr0p6TXeSd3nbJIO_bvi6qO7_23D7DSIFH3Z606azCH-UdYnqlPuA4_rm4nJc3hLroPhWvbnoUuQV13wsnYNMqnDSMUHAJw-Y7zRHDa6Se4PDkeHPVE021BWMJIhTA-GW80ZN-Hiq08eU7dLAq1j13dJRxnPUveGcbK0lMqI2n82M8sQQgZxEqacAPm83GOW-D6mFmrU4IOw1hmWqc2G6YBgymkDdaXDnhTlie2KUXOHTFGSeWSeDphgSUssKQRmAPf2lfu6zoc_5u8zgxuJza8dWBnKtekWamTJJC0p6nYk0TVXjtMa4y5ZnIclzwnIpxG4LjrwGatD-23p2rkwPdWQV5RWDzam2cUbr9N4VdY7A3658n574uzz7AUcP5MlSG-A_PFQ4lfCAAV6W6l9_8AxIP5dQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QF6oEB5hBYUJE4g78aO7azVU1VRKiQqDt2qSEiR451UFVFadZOW9tczdrKhPIQEN0ueRI5n7Pm-eDwD8LpArb21sMKohEltac25UjFizMJqlFiGZM8fD_T-TH44VscrsD3chUHEEHyGY98MZ_mnWH3LJsJINTGp9F5mkhBt4FlKpHBe3oFVrQiIj2B1dvBp53MXZZgxoUOxNWLpRJhVqLIpuE6YIZTcn2_yxEyaS3dCPFEQfSWDT0Ou5h8eKpRc-RP6XIO7bX1ur69sVd3ySHvr8GX5LV0gytdx2xRjd_NLmsf__NgHcL9HqvFOZ1oPYQXrR7B2K3_hBmwfnS5akvFVdi-a2A01DWOCwvHCB2tTr_8bUSHzRwSxvwO9YD4s9THM9t4d7u6zvhoDc4ShGmY5OXe05P_n2qMAYlbTUqWG49RMCee5xBF7w0w7ahVSScszXjqCGFJkWtr0CYzqsxqfQcyxdM4UBC3mmSyNKVw5L4QHW0gbMJcRJEsN5K5PVe4rZlR5oCyJyQ-Pdt_nXml5r7QI3gyPnHd5Ov4mvOHnexDs5zeCraWa834lL3Ihac_TWSJpVK-GblqDftZsjWetl1GE4wg8TyN42pnH8O40JURLnC2Ct4O9_DZCb4M_jfD5P0lvwj3hQ21CMPkWjJqLFl8QVmqKl_2a-A4H3wS0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+cohort+comparison+for+spatial+single-cell+omics-data&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Somarakis%2C+Antonios&rft.au=Ijsselsteijn%2C+Marieke+E&rft.au=Luk%2C+Sietse+J&rft.au=Kenkhuis%2C+Boyd&rft.date=2021-02-01&rft.eissn=1941-0506&rft.volume=27&rft.issue=2&rft.spage=733&rft_id=info:doi/10.1109%2FTVCG.2020.3030336&rft_id=info%3Apmid%2F33112747&rft.externalDocID=33112747 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |