A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals
Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. Th...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 67; no. 10; pp. 2881 - 2892 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2020.2972747 |
Cover
| Abstract | Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals. Methods: Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results. Results: Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%. Conclusion: The proposed BCI generates multiple commands with a high ITR and low FPR. Significance: The hybrid asynchronous BCI has great potential for practical applications in communication and control. |
|---|---|
| AbstractList | A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals.OBJECTIVEA challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals.Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results.METHODSTwelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results.Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%.RESULTSTen healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%.The proposed BCI generates multiple commands with a high ITR and low FPR.CONCLUSIONThe proposed BCI generates multiple commands with a high ITR and low FPR.The hybrid asynchronous BCI has great potential for practical applications in communication and control.SIGNIFICANCEThe hybrid asynchronous BCI has great potential for practical applications in communication and control. A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals. Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results. Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%. The proposed BCI generates multiple commands with a high ITR and low FPR. The hybrid asynchronous BCI has great potential for practical applications in communication and control. Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals. Methods: Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results. Results: Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%. Conclusion: The proposed BCI generates multiple commands with a high ITR and low FPR. Significance: The hybrid asynchronous BCI has great potential for practical applications in communication and control. Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals. Methods: Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results. Results: Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%. Conclusion: The proposed BCI generates multiple commands with a high ITR and low FPR. Significance: The hybrid asynchronous BCI has great potential for practical applications in communication and control. |
| Author | Zhou, Yajun Li, Yuanqing Huang, Qiyun He, Shenghong |
| Author_xml | – sequence: 1 givenname: Yajun orcidid: 0000-0003-3044-4959 surname: Zhou fullname: Zhou, Yajun organization: School of Automation Science and EngineeringSouth China University of Technology, and the Guangzhou Key Laboratory of Brain Computer Interface and Applications (no. 15180006) – sequence: 2 givenname: Shenghong orcidid: 0000-0002-5269-1902 surname: He fullname: He, Shenghong organization: MRC Brain Network Dynamics Unit and Nuffield Department of Clinical NeurosciencesUniversity of Oxford – sequence: 3 givenname: Qiyun surname: Huang fullname: Huang, Qiyun organization: School of Automation Science and EngineeringSouth China University of Technology, and the Guangzhou Key Laboratory of Brain Computer Interface and Applications (no. 15180006) – sequence: 4 givenname: Yuanqing orcidid: 0000-0003-4288-5591 surname: Li fullname: Li, Yuanqing email: auyqli@scut.edu.cn organization: School of Automation Science and Engineering, South China University of Technology, and the Guangzhou Key Laboratory of Brain Computer Interface and Applications (no. 15180006), Guangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32070938$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkU9rGzEQxUVJaZy0H6AUiqCXXNbV35V0dIybBNKm4LRXIcmzqcJa62h3Kf72lbHjg-lFg4bf07x5ukBnqUuA0EdKppQS8_Xx-vtiyggjU2YUU0K9QRMqpa6Y5PQMTQihujLMiHN00ffP5Sq0qN-hc86IIobrCfoxw7dbn-MKz_ptCn9yl7qxx9fZxVTNu_VmHCDju1TOxgXApeVjiukJL5e_Fz-xSyu8eLjBy_iUXNu_R2-bUuDDoV6iX98Wj_Pb6v7h5m4-u68CN2yoTMMleG4kcYbK4J2mvoYAtQqs9AIDbjyTtW6ECjpQ6kWQ3HMIDqhyhF8itn93TBu3_eva1m5yXLu8tZTYXTh28Guwu3DsIZwiutqLNrl7GaEf7Dr2AdrWJShLW8alrgmRNS_olxP0uRvzbkPLhBA1VYKxQn0-UGMZtjpaeI23AGoPhNz1fYbGhji4IXZpKAG3R6-7jzz1Sk-Up_v9T_Npr4kAcOS1MVxpzf8B9EWkvg |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124145 crossref_primary_10_7717_peerj_12027 crossref_primary_10_1109_JBHI_2022_3219812 crossref_primary_10_1109_JSEN_2024_3432076 crossref_primary_10_1016_j_neuri_2021_100030 crossref_primary_10_1109_ACCESS_2021_3112257 crossref_primary_10_3389_fncom_2023_1101726 crossref_primary_10_3389_fnhum_2023_1103935 crossref_primary_10_3389_fnins_2023_1193950 crossref_primary_10_1109_TIM_2023_3320759 crossref_primary_10_3389_fnhum_2022_1007136 crossref_primary_10_1109_TBME_2024_3468351 crossref_primary_10_1109_JIOT_2022_3218739 crossref_primary_10_3389_fnbot_2020_583641 crossref_primary_10_53070_bbd_990485 crossref_primary_10_3390_s23136001 crossref_primary_10_11834_jig_230031 crossref_primary_10_1016_j_bspc_2020_102172 crossref_primary_10_1109_TNSRE_2023_3307814 crossref_primary_10_1080_2326263X_2021_1968633 crossref_primary_10_3389_fnrgo_2020_606719 crossref_primary_10_1155_2022_6894392 crossref_primary_10_3390_s21062220 crossref_primary_10_1109_ACCESS_2021_3124028 crossref_primary_10_3390_electronics11193171 crossref_primary_10_1016_j_vrih_2022_01_002 crossref_primary_10_1088_1741_2552_ad1054 crossref_primary_10_1016_j_aei_2022_101595 crossref_primary_10_25130_tjes_30_3_14 crossref_primary_10_1109_ACCESS_2024_3384378 crossref_primary_10_3390_electronics13142767 crossref_primary_10_3389_fnins_2023_1148855 crossref_primary_10_3390_s23041868 crossref_primary_10_1007_s11571_022_09878_z crossref_primary_10_3389_fninf_2022_758537 crossref_primary_10_1007_s13534_024_00357_4 crossref_primary_10_1088_1741_2552_ac3044 crossref_primary_10_1109_TNSRE_2023_3299350 crossref_primary_10_34133_2022_9847652 crossref_primary_10_34133_cbsystems_0024 |
| Cites_doi | 10.1109/TBME.2006.886577 10.1109/TBME.2002.803536 10.1073/pnas.1508080112 10.7763/IJCCE.2012.V1.85 10.1109/TNSRE.2013.2253801 10.1111/j.1460-9568.2005.04092.x 10.1371/journal.pone.0140703 10.1038/18581 10.1016/j.neuroimage.2005.12.003 10.1007/s12559-013-9202-7 10.1088/1741-2560/2/4/008 10.1016/S1388-2457(02)00057-3 10.1186/1743-0003-8-39 10.1109/IEMBS.2009.5333742 10.1088/1741-2560/12/4/046008 10.1109/TPAMI.2010.86 10.1109/TBME.2015.2402283 10.1109/TNSRE.2013.2243471 10.3390/s18061827 10.1109/TBME.2013.2270283 10.1080/2326263X.2014.944469 10.1109/TBME.2008.919128 10.1142/S0129065714500130 10.1142/S0129065717500460 10.3389/fnpro.2010.00003 10.1016/0013-4694(88)90149-6 10.1016/j.clinph.2008.06.001 10.1109/TNSRE.2017.2716109 10.1109/TNSRE.2004.827220 10.1007/s11571-010-9114-0 10.1088/1741-2560/13/2/026024 10.1142/S0129065712500220 10.1088/1741-2560/9/2/026016 10.1109/TBME.2014.2369483 10.1109/TNSRE.2016.2623381 10.1371/journal.pone.0196359 10.1016/j.bspc.2015.05.012 10.1016/j.neucom.2013.05.005 10.4028/www.scientific.net/AMR.341-342.634 10.1109/TBME.2011.2116018 10.1142/S0129065715500306 10.1016/j.tins.2006.07.004 10.1109/TNSRE.2002.806829 10.1088/1741-2560/10/2/026014 10.1109/TNSRE.2010.2040837 10.1016/j.jneumeth.2014.03.012 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| DOI | 10.1109/TBME.2020.2972747 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (LUT & LAB) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 2892 |
| ExternalDocumentID | 10.1109/tbme.2020.2972747 32070938 10_1109_TBME_2020_2972747 8993788 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Guangdong Province grantid: 2014A030312005 funderid: 10.13039/501100003453 – fundername: Key R&D Program of Guangdong Province, China grantid: 2018B030339001 – fundername: National Natural Science Foundation of China grantid: 61633010 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2017YFB1002505 funderid: 10.13039/501100012166 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c392t-9f35eb3950a915cba81b6ece67c250ac2e39b2568f47c8c11b4c53b3ecae17a03 |
| IEDL.DBID | UNPAY |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Tue Aug 19 19:18:40 EDT 2025 Sat Sep 27 18:36:56 EDT 2025 Mon Jun 30 08:38:22 EDT 2025 Thu Apr 03 06:56:32 EDT 2025 Thu Apr 24 23:03:24 EDT 2025 Wed Oct 01 04:08:49 EDT 2025 Wed Aug 27 02:32:25 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-9f35eb3950a915cba81b6ece67c250ac2e39b2568f47c8c11b4c53b3ecae17a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5269-1902 0000-0003-4288-5591 0000-0003-3044-4959 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/10/9199588/08993788.pdf |
| PMID | 32070938 |
| PQID | 2444617422 |
| PQPubID | 85474 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2358600563 crossref_citationtrail_10_1109_TBME_2020_2972747 crossref_primary_10_1109_TBME_2020_2972747 pubmed_primary_32070938 ieee_primary_8993788 unpaywall_primary_10_1109_tbme_2020_2972747 proquest_journals_2444617422 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | anderson (ref39) 1962 ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 jasper (ref37) 1958; 10 ref40 ref35 ref34 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 regan (ref43) 1989 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref15 doi: 10.1109/TBME.2006.886577 – ident: ref14 doi: 10.1109/TBME.2002.803536 – ident: ref16 doi: 10.1073/pnas.1508080112 – ident: ref17 doi: 10.7763/IJCCE.2012.V1.85 – ident: ref19 doi: 10.1109/TNSRE.2013.2253801 – ident: ref3 doi: 10.1111/j.1460-9568.2005.04092.x – ident: ref41 doi: 10.1371/journal.pone.0140703 – ident: ref2 doi: 10.1038/18581 – ident: ref20 doi: 10.1016/j.neuroimage.2005.12.003 – ident: ref44 doi: 10.1007/s12559-013-9202-7 – ident: ref13 doi: 10.1088/1741-2560/2/4/008 – ident: ref45 doi: 10.1016/S1388-2457(02)00057-3 – ident: ref46 doi: 10.1186/1743-0003-8-39 – ident: ref36 doi: 10.1109/IEMBS.2009.5333742 – ident: ref42 doi: 10.1088/1741-2560/12/4/046008 – ident: ref26 doi: 10.1109/TPAMI.2010.86 – ident: ref30 doi: 10.1109/TBME.2015.2402283 – ident: ref4 doi: 10.1109/TNSRE.2013.2243471 – ident: ref33 doi: 10.3390/s18061827 – ident: ref35 doi: 10.1109/TBME.2013.2270283 – start-page: 59 year: 1989 ident: ref43 article-title: Evoked potentials and evoked magnetic fields in science and medicine publication-title: Human Brain Electrophysiology – ident: ref38 doi: 10.1080/2326263X.2014.944469 – ident: ref25 doi: 10.1109/TBME.2008.919128 – year: 1962 ident: ref39 publication-title: An Introduction to Multivariate Statistical Analysis – ident: ref9 doi: 10.1142/S0129065714500130 – ident: ref22 doi: 10.1142/S0129065717500460 – ident: ref29 doi: 10.3389/fnpro.2010.00003 – ident: ref6 doi: 10.1016/0013-4694(88)90149-6 – ident: ref12 doi: 10.1016/j.clinph.2008.06.001 – ident: ref27 doi: 10.1109/TNSRE.2017.2716109 – ident: ref23 doi: 10.1109/TNSRE.2004.827220 – ident: ref5 doi: 10.1007/s11571-010-9114-0 – ident: ref7 doi: 10.1088/1741-2560/13/2/026024 – ident: ref8 doi: 10.1142/S0129065712500220 – ident: ref49 doi: 10.1088/1741-2560/9/2/026016 – ident: ref28 doi: 10.1109/TBME.2014.2369483 – ident: ref24 doi: 10.1109/TNSRE.2016.2623381 – ident: ref32 doi: 10.1371/journal.pone.0196359 – ident: ref31 doi: 10.1016/j.bspc.2015.05.012 – ident: ref21 doi: 10.1016/j.neucom.2013.05.005 – volume: 10 start-page: 370 year: 1958 ident: ref37 article-title: The ten-twenty electrode system of the international federation publication-title: Electroencephalogr Clin Neurophysiol – ident: ref11 doi: 10.4028/www.scientific.net/AMR.341-342.634 – ident: ref48 doi: 10.1109/TBME.2011.2116018 – ident: ref18 doi: 10.1142/S0129065715500306 – ident: ref1 doi: 10.1016/j.tins.2006.07.004 – ident: ref47 doi: 10.1109/TNSRE.2002.806829 – ident: ref10 doi: 10.1088/1741-2560/10/2/026014 – ident: ref34 doi: 10.1109/TNSRE.2010.2040837 – ident: ref40 doi: 10.1016/j.jneumeth.2014.03.012 |
| SSID | ssj0014846 |
| Score | 2.5131614 |
| Snippet | Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the... A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state... |
| SourceID | unpaywall proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2881 |
| SubjectTerms | Asynchronous brain-computer interface (BCI) Blinking Brain Brain-computer interfaces Computer applications Correlation analysis EEG Electroencephalography electroencephalography (EEG) Electrooculography electrooculography (EOG) Eye (anatomy) eye blink Flicker Frequency modulation Graphical user interface Graphical user interfaces Human-computer interface Hybrid systems Implants Information transfer Response time steady-state visual evoked potential (SSVEP) Target recognition Time factors Visual evoked potentials Visual signals Visualization |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED5tewD2MGBjENiQkXgC0iW249iPHeqokDqQuqG9Rc7VQYgqnWiiqfv1OydptME08RYltuX4zvZ3Pt93AO91JJxMhAqFLDCU3OnQJjMMU41coRCmaIjnJ6dqfC6_XiQXG_Cpj4VxzjWXz9zAPza-_NkCa39UdqT9Zqr1JmymWrWxWr3HQOo2KCeKaQJzIzsPZhyZo7PjyYgsQR4NuEm9FXZnD2qSqtyHL7fhcV1e2tWVnc9v7TknT2Gy7m171eT3oK7yAV7_ReT4v7_zDHY68MmGrbY8hw1X7sL2LUrCXXg06Zzte3A6ZOOVD-hiw-WqRM-iu6iX7NgnlQjX2SBYc6RYWHSMXuVNugk2nf4YfWe2nLHRty9s-uunJ2l-Aecno7PP47BLvxAigaYqNIVIyNQ2SWRNnGBuCeEqh06lSLjJInfC5ISYdCFT1BjHucRE5MKhdXFqI7EPW-WidK-AEezkSqDOvfmpXWpV4QStJmR-JkgYMIBoLZAMO25ynyJjnjU2SmQyL8PMyzDrZBjAh77KZUvM8VDhPT_8fcFu5AM4WEs966buMiO8IwnWSc4DeNd_pknnPSm2dDTSmY8vVp5FVQTwstWWvm3BaRU1ghr_2KvPPz2sqMqdHr6-v4dv4Ikv1d4ePICt6k_tDgkFVfnbRv1vAA02_kA priority: 102 providerName: IEEE |
| Title | A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals |
| URI | https://ieeexplore.ieee.org/document/8993788 https://www.ncbi.nlm.nih.gov/pubmed/32070938 https://www.proquest.com/docview/2444617422 https://www.proquest.com/docview/2358600563 https://ieeexplore.ieee.org/ielx7/10/9199588/08993788.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9BJwF74GODERiTkXgCJUvsfPmxQx0VUsukrmjwEjlXB02rsoqmgvLXc5ekUQcICd7y4USOfbZ_l_P9fgCvUl_ZMFKxq8IC3VDa1DXRDN0kRRmjUrqoiedH43g4Dd9fRBdbUl-scFJvPrMeH9ax_Es7_84J4sea84nJY-NQFfOge4tZcRt24ohgeA92puOz_qdm5qVBLGsRRFouyRLI0NqIZuDr44oWGvIMpe9JnbBXdmNNqkVW_oQ3d-HuqlyY9Tczn2-tQacP4POm9s3WkytvVeUe_viF2PG_Pu8h3G-Rqeg3pvQIbtlyD3a3-Ar34M6ojcTvw7gvhmvO9hL95bpEpti9Xi3FCStOuBupCFH_bywMWkGX8lqLQkwmHwdnwpQzMfjwTkwuvzCD82OYng7O3w7dVpvBRUJUlasLFZEfriPf6CDC3BD8jS3aOEECVQalVTonOJUWYYIpBkEeYqRyZdHYIDG-egK98rq0T0EQJpWxwjRn3zS1iYkLq2iqId80QgKIDvib3smwJS5n_Yx5Vjswvs7OT0aDjDs0azvUgdfdI4uGteNvhfe5L7qCbes7cLgxgawd18uMwFBImC-U0oGX3W0akRxmMaWlls44-ThmilXlwEFjOt27laQpVit6-ZvOln6rIdvnjRo--6fSz-EenzY7Dg-hV31d2ReEnKr8qE5vPGpHyk-Segzp |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NITH2wMfGR2CAkXgC0iX-SJzHDnUUWApSu2lvkXN1EKJKJ5oIlb-ec5JGG0yItyixLcfns3_n8_0O4JUOhJVKRL6QBfqSW-0bNUc_1sgjFCIpGuL5dBKNT-XHc3W-BW_7WBhrbXP5zA7cY-PLny-xdkdlh9ptplrfgJtKSqnaaK3eZyB1G5YThKTCPJGdDzMMksPZUToiW5AHA57Ezg67sgs1aVWuQ5i7sFOXF2b90ywWl3ad47uQbvrbXjb5PqirfIC__qBy_N8fugd3OvjJhu18uQ9bttyD3UukhHtwK-3c7fswGbLx2oV0seFqXaLj0V3WK3bk0kr4m3wQrDlULAxaRq_yJuEEm07PRl-YKeds9Pk9m3776miaH8Dp8Wj2bux3CRh8JNhU-UkhFBnbiQpMEirMDWHcyKKNYiTkZJBbkeSEmXQhY9QYhrlEJXJh0dgwNoF4CNvlsrSPgRHw5JFAnTsDVNvYRIUVtJ6QAaqQUKAHwUYgGXbs5C5JxiJrrJQgyZwMMyfDrJOhB6_7KhctNce_Cu-74e8LdiPvwcFG6lmnvKuMEI8kYCc59-Bl_5nUzvlSTGlppDMXYRw5HlXhwaN2tvRtC07raCKo8Tf99PmrhxVVudLDJ9f38AXsjGfpSXbyYfLpKdx2Ndq7hAewXf2o7TPCRFX-vFGF34MXAZw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9BJwF74GMbIzCQkXgCJUvsfPmxQx0VUsukrmjwEjlXB01UWbWmgvLXc5ekUQcICd7y4USOfbZ_l_P9fgCvUl_ZMFKxq8IC3VDa1DXRDN0kRRmjUrqoiedH43g4Dd9fRBdbUl-scFJvPrMeH9ax_Es7_84J4sea84nJY-NQFfOge4tZcRt24ohgeA92puOz_qdm5qVBLGsRRFouyRLI0NqIZuDr44oWGvIMpe9JnbBXdmNNqkVW_oQ3d-HuqlyY9Tczn2-tQacP4POm9s3Wk6_eqso9_PELseN_fd5DuN8iU9FvTOkR3LLlHuxu8RXuwZ1RG4nfh3FfDNec7SX6y3WJTLF7tVqKE1accDdSEaL-31gYtIIu5bUWhZhMPg7OhClnYvDhnZhcfmEG5wOYng7O3w7dVpvBRUJUlasLFZEfriPf6CDC3BD8jS3aOEECVQalVTonOJUWYYIpBkEeYqRyZdHYIDG-egy98qq0T0AQJpWxwjRn3zS1iYkLq2iqId80QgKIDvib3smwJS5n_Yx5Vjswvs7OT0aDjDs0azvUgdfdI4uGteNvhfe5L7qCbes7cLQxgawd18uMwFBImC-U0oGX3W0akRxmMaWlls44-ThmilXlwGFjOt27laQpVit6-ZvOln6rIdvnjRo-_afSz-AenzY7Do-gV12v7HNCTlX-oh0jPwFKlQvo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Asynchronous+Brain-Computer+Interface+Combining+SSVEP+and+EOG+Signals&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Zhou%2C+Yajun&rft.au=He%2C+Shenghong&rft.au=Huang%2C+Qiyun&rft.au=Li%2C+Yuanqing&rft.date=2020-10-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=67&rft.issue=10&rft.spage=2881&rft.epage=2892&rft_id=info:doi/10.1109%2FTBME.2020.2972747&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2020_2972747 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |