A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals

Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. Th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 67; no. 10; pp. 2881 - 2892
Main Authors Zhou, Yajun, He, Shenghong, Huang, Qiyun, Li, Yuanqing
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2020.2972747

Cover

Abstract Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals. Methods: Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results. Results: Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%. Conclusion: The proposed BCI generates multiple commands with a high ITR and low FPR. Significance: The hybrid asynchronous BCI has great potential for practical applications in communication and control.
AbstractList A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals.OBJECTIVEA challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals.Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results.METHODSTwelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results.Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%.RESULTSTen healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%.The proposed BCI generates multiple commands with a high ITR and low FPR.CONCLUSIONThe proposed BCI generates multiple commands with a high ITR and low FPR.The hybrid asynchronous BCI has great potential for practical applications in communication and control.SIGNIFICANCEThe hybrid asynchronous BCI has great potential for practical applications in communication and control.
A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals. Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results. Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%. The proposed BCI generates multiple commands with a high ITR and low FPR. The hybrid asynchronous BCI has great potential for practical applications in communication and control.
Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals. Methods: Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results. Results: Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%. Conclusion: The proposed BCI generates multiple commands with a high ITR and low FPR. Significance: The hybrid asynchronous BCI has great potential for practical applications in communication and control.
Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state and the control state while maintaining a short response time and a high accuracy when commands are issued in the control state. This study proposes a novel hybrid asynchronous BCI system based on a combination of steady-state visual evoked potentials (SSVEPs) in the EEG signal and blink-related electrooculography (EOG) signals. Methods: Twelve buttons corresponding to 12 characters are included in the graphical user interface (GUI). These buttons flicker at different fixed frequencies and phases to evoke SSVEPs and are simultaneously highlighted by changing their sizes. The user can select a character by focusing on its frequency-phase stimulus and simultaneously blinking his/her eyes in accordance with its highlighting as his/her EEG and EOG signals are recorded. A multifrequency band-based canonical correlation analysis (CCA) method is applied to the EEG data to detect the evoked SSVEPs, whereas the EOG data are analyzed to identify the user's blinks. Finally, the target character is identified based on the SSVEP and blink detection results. Results: Ten healthy subjects participated in our experiments and achieved an average information transfer rate (ITR) of 105.52 bits/min, an average accuracy of 95.42%, an average response time of 1.34 s and an average false-positive rate (FPR) of 0.8%. Conclusion: The proposed BCI generates multiple commands with a high ITR and low FPR. Significance: The hybrid asynchronous BCI has great potential for practical applications in communication and control.
Author Zhou, Yajun
Li, Yuanqing
Huang, Qiyun
He, Shenghong
Author_xml – sequence: 1
  givenname: Yajun
  orcidid: 0000-0003-3044-4959
  surname: Zhou
  fullname: Zhou, Yajun
  organization: School of Automation Science and EngineeringSouth China University of Technology, and the Guangzhou Key Laboratory of Brain Computer Interface and Applications (no. 15180006)
– sequence: 2
  givenname: Shenghong
  orcidid: 0000-0002-5269-1902
  surname: He
  fullname: He, Shenghong
  organization: MRC Brain Network Dynamics Unit and Nuffield Department of Clinical NeurosciencesUniversity of Oxford
– sequence: 3
  givenname: Qiyun
  surname: Huang
  fullname: Huang, Qiyun
  organization: School of Automation Science and EngineeringSouth China University of Technology, and the Guangzhou Key Laboratory of Brain Computer Interface and Applications (no. 15180006)
– sequence: 4
  givenname: Yuanqing
  orcidid: 0000-0003-4288-5591
  surname: Li
  fullname: Li, Yuanqing
  email: auyqli@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology, and the Guangzhou Key Laboratory of Brain Computer Interface and Applications (no. 15180006), Guangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32070938$$D View this record in MEDLINE/PubMed
BookMark eNptkU9rGzEQxUVJaZy0H6AUiqCXXNbV35V0dIybBNKm4LRXIcmzqcJa62h3Kf72lbHjg-lFg4bf07x5ukBnqUuA0EdKppQS8_Xx-vtiyggjU2YUU0K9QRMqpa6Y5PQMTQihujLMiHN00ffP5Sq0qN-hc86IIobrCfoxw7dbn-MKz_ptCn9yl7qxx9fZxVTNu_VmHCDju1TOxgXApeVjiukJL5e_Fz-xSyu8eLjBy_iUXNu_R2-bUuDDoV6iX98Wj_Pb6v7h5m4-u68CN2yoTMMleG4kcYbK4J2mvoYAtQqs9AIDbjyTtW6ECjpQ6kWQ3HMIDqhyhF8itn93TBu3_eva1m5yXLu8tZTYXTh28Guwu3DsIZwiutqLNrl7GaEf7Dr2AdrWJShLW8alrgmRNS_olxP0uRvzbkPLhBA1VYKxQn0-UGMZtjpaeI23AGoPhNz1fYbGhji4IXZpKAG3R6-7jzz1Sk-Up_v9T_Npr4kAcOS1MVxpzf8B9EWkvg
CODEN IEBEAX
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124145
crossref_primary_10_7717_peerj_12027
crossref_primary_10_1109_JBHI_2022_3219812
crossref_primary_10_1109_JSEN_2024_3432076
crossref_primary_10_1016_j_neuri_2021_100030
crossref_primary_10_1109_ACCESS_2021_3112257
crossref_primary_10_3389_fncom_2023_1101726
crossref_primary_10_3389_fnhum_2023_1103935
crossref_primary_10_3389_fnins_2023_1193950
crossref_primary_10_1109_TIM_2023_3320759
crossref_primary_10_3389_fnhum_2022_1007136
crossref_primary_10_1109_TBME_2024_3468351
crossref_primary_10_1109_JIOT_2022_3218739
crossref_primary_10_3389_fnbot_2020_583641
crossref_primary_10_53070_bbd_990485
crossref_primary_10_3390_s23136001
crossref_primary_10_11834_jig_230031
crossref_primary_10_1016_j_bspc_2020_102172
crossref_primary_10_1109_TNSRE_2023_3307814
crossref_primary_10_1080_2326263X_2021_1968633
crossref_primary_10_3389_fnrgo_2020_606719
crossref_primary_10_1155_2022_6894392
crossref_primary_10_3390_s21062220
crossref_primary_10_1109_ACCESS_2021_3124028
crossref_primary_10_3390_electronics11193171
crossref_primary_10_1016_j_vrih_2022_01_002
crossref_primary_10_1088_1741_2552_ad1054
crossref_primary_10_1016_j_aei_2022_101595
crossref_primary_10_25130_tjes_30_3_14
crossref_primary_10_1109_ACCESS_2024_3384378
crossref_primary_10_3390_electronics13142767
crossref_primary_10_3389_fnins_2023_1148855
crossref_primary_10_3390_s23041868
crossref_primary_10_1007_s11571_022_09878_z
crossref_primary_10_3389_fninf_2022_758537
crossref_primary_10_1007_s13534_024_00357_4
crossref_primary_10_1088_1741_2552_ac3044
crossref_primary_10_1109_TNSRE_2023_3299350
crossref_primary_10_34133_2022_9847652
crossref_primary_10_34133_cbsystems_0024
Cites_doi 10.1109/TBME.2006.886577
10.1109/TBME.2002.803536
10.1073/pnas.1508080112
10.7763/IJCCE.2012.V1.85
10.1109/TNSRE.2013.2253801
10.1111/j.1460-9568.2005.04092.x
10.1371/journal.pone.0140703
10.1038/18581
10.1016/j.neuroimage.2005.12.003
10.1007/s12559-013-9202-7
10.1088/1741-2560/2/4/008
10.1016/S1388-2457(02)00057-3
10.1186/1743-0003-8-39
10.1109/IEMBS.2009.5333742
10.1088/1741-2560/12/4/046008
10.1109/TPAMI.2010.86
10.1109/TBME.2015.2402283
10.1109/TNSRE.2013.2243471
10.3390/s18061827
10.1109/TBME.2013.2270283
10.1080/2326263X.2014.944469
10.1109/TBME.2008.919128
10.1142/S0129065714500130
10.1142/S0129065717500460
10.3389/fnpro.2010.00003
10.1016/0013-4694(88)90149-6
10.1016/j.clinph.2008.06.001
10.1109/TNSRE.2017.2716109
10.1109/TNSRE.2004.827220
10.1007/s11571-010-9114-0
10.1088/1741-2560/13/2/026024
10.1142/S0129065712500220
10.1088/1741-2560/9/2/026016
10.1109/TBME.2014.2369483
10.1109/TNSRE.2016.2623381
10.1371/journal.pone.0196359
10.1016/j.bspc.2015.05.012
10.1016/j.neucom.2013.05.005
10.4028/www.scientific.net/AMR.341-342.634
10.1109/TBME.2011.2116018
10.1142/S0129065715500306
10.1016/j.tins.2006.07.004
10.1109/TNSRE.2002.806829
10.1088/1741-2560/10/2/026014
10.1109/TNSRE.2010.2040837
10.1016/j.jneumeth.2014.03.012
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
DOI 10.1109/TBME.2020.2972747
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (LUT & LAB)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2892
ExternalDocumentID 10.1109/tbme.2020.2972747
32070938
10_1109_TBME_2020_2972747
8993788
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Guangdong Province
  grantid: 2014A030312005
  funderid: 10.13039/501100003453
– fundername: Key R&D Program of Guangdong Province, China
  grantid: 2018B030339001
– fundername: National Natural Science Foundation of China
  grantid: 61633010
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2017YFB1002505
  funderid: 10.13039/501100012166
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c392t-9f35eb3950a915cba81b6ece67c250ac2e39b2568f47c8c11b4c53b3ecae17a03
IEDL.DBID UNPAY
ISSN 0018-9294
1558-2531
IngestDate Tue Aug 19 19:18:40 EDT 2025
Sat Sep 27 18:36:56 EDT 2025
Mon Jun 30 08:38:22 EDT 2025
Thu Apr 03 06:56:32 EDT 2025
Thu Apr 24 23:03:24 EDT 2025
Wed Oct 01 04:08:49 EDT 2025
Wed Aug 27 02:32:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-9f35eb3950a915cba81b6ece67c250ac2e39b2568f47c8c11b4c53b3ecae17a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5269-1902
0000-0003-4288-5591
0000-0003-3044-4959
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/10/9199588/08993788.pdf
PMID 32070938
PQID 2444617422
PQPubID 85474
PageCount 12
ParticipantIDs proquest_miscellaneous_2358600563
crossref_citationtrail_10_1109_TBME_2020_2972747
crossref_primary_10_1109_TBME_2020_2972747
pubmed_primary_32070938
ieee_primary_8993788
unpaywall_primary_10_1109_tbme_2020_2972747
proquest_journals_2444617422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References anderson (ref39) 1962
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
jasper (ref37) 1958; 10
ref40
ref35
ref34
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
regan (ref43) 1989
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref15
  doi: 10.1109/TBME.2006.886577
– ident: ref14
  doi: 10.1109/TBME.2002.803536
– ident: ref16
  doi: 10.1073/pnas.1508080112
– ident: ref17
  doi: 10.7763/IJCCE.2012.V1.85
– ident: ref19
  doi: 10.1109/TNSRE.2013.2253801
– ident: ref3
  doi: 10.1111/j.1460-9568.2005.04092.x
– ident: ref41
  doi: 10.1371/journal.pone.0140703
– ident: ref2
  doi: 10.1038/18581
– ident: ref20
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: ref44
  doi: 10.1007/s12559-013-9202-7
– ident: ref13
  doi: 10.1088/1741-2560/2/4/008
– ident: ref45
  doi: 10.1016/S1388-2457(02)00057-3
– ident: ref46
  doi: 10.1186/1743-0003-8-39
– ident: ref36
  doi: 10.1109/IEMBS.2009.5333742
– ident: ref42
  doi: 10.1088/1741-2560/12/4/046008
– ident: ref26
  doi: 10.1109/TPAMI.2010.86
– ident: ref30
  doi: 10.1109/TBME.2015.2402283
– ident: ref4
  doi: 10.1109/TNSRE.2013.2243471
– ident: ref33
  doi: 10.3390/s18061827
– ident: ref35
  doi: 10.1109/TBME.2013.2270283
– start-page: 59
  year: 1989
  ident: ref43
  article-title: Evoked potentials and evoked magnetic fields in science and medicine
  publication-title: Human Brain Electrophysiology
– ident: ref38
  doi: 10.1080/2326263X.2014.944469
– ident: ref25
  doi: 10.1109/TBME.2008.919128
– year: 1962
  ident: ref39
  publication-title: An Introduction to Multivariate Statistical Analysis
– ident: ref9
  doi: 10.1142/S0129065714500130
– ident: ref22
  doi: 10.1142/S0129065717500460
– ident: ref29
  doi: 10.3389/fnpro.2010.00003
– ident: ref6
  doi: 10.1016/0013-4694(88)90149-6
– ident: ref12
  doi: 10.1016/j.clinph.2008.06.001
– ident: ref27
  doi: 10.1109/TNSRE.2017.2716109
– ident: ref23
  doi: 10.1109/TNSRE.2004.827220
– ident: ref5
  doi: 10.1007/s11571-010-9114-0
– ident: ref7
  doi: 10.1088/1741-2560/13/2/026024
– ident: ref8
  doi: 10.1142/S0129065712500220
– ident: ref49
  doi: 10.1088/1741-2560/9/2/026016
– ident: ref28
  doi: 10.1109/TBME.2014.2369483
– ident: ref24
  doi: 10.1109/TNSRE.2016.2623381
– ident: ref32
  doi: 10.1371/journal.pone.0196359
– ident: ref31
  doi: 10.1016/j.bspc.2015.05.012
– ident: ref21
  doi: 10.1016/j.neucom.2013.05.005
– volume: 10
  start-page: 370
  year: 1958
  ident: ref37
  article-title: The ten-twenty electrode system of the international federation
  publication-title: Electroencephalogr Clin Neurophysiol
– ident: ref11
  doi: 10.4028/www.scientific.net/AMR.341-342.634
– ident: ref48
  doi: 10.1109/TBME.2011.2116018
– ident: ref18
  doi: 10.1142/S0129065715500306
– ident: ref1
  doi: 10.1016/j.tins.2006.07.004
– ident: ref47
  doi: 10.1109/TNSRE.2002.806829
– ident: ref10
  doi: 10.1088/1741-2560/10/2/026014
– ident: ref34
  doi: 10.1109/TNSRE.2010.2040837
– ident: ref40
  doi: 10.1016/j.jneumeth.2014.03.012
SSID ssj0014846
Score 2.5131614
Snippet Objective: A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the...
A challenging task for an electroencephalography (EEG)-based asynchronous brain-computer interface (BCI) is to effectively distinguish between the idle state...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2881
SubjectTerms Asynchronous brain-computer interface (BCI)
Blinking
Brain
Brain-computer interfaces
Computer applications
Correlation analysis
EEG
Electroencephalography
electroencephalography (EEG)
Electrooculography
electrooculography (EOG)
Eye (anatomy)
eye blink
Flicker
Frequency modulation
Graphical user interface
Graphical user interfaces
Human-computer interface
Hybrid systems
Implants
Information transfer
Response time
steady-state visual evoked potential (SSVEP)
Target recognition
Time factors
Visual evoked potentials
Visual signals
Visualization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED5tewD2MGBjENiQkXgC0iW249iPHeqokDqQuqG9Rc7VQYgqnWiiqfv1OydptME08RYltuX4zvZ3Pt93AO91JJxMhAqFLDCU3OnQJjMMU41coRCmaIjnJ6dqfC6_XiQXG_Cpj4VxzjWXz9zAPza-_NkCa39UdqT9Zqr1JmymWrWxWr3HQOo2KCeKaQJzIzsPZhyZo7PjyYgsQR4NuEm9FXZnD2qSqtyHL7fhcV1e2tWVnc9v7TknT2Gy7m171eT3oK7yAV7_ReT4v7_zDHY68MmGrbY8hw1X7sL2LUrCXXg06Zzte3A6ZOOVD-hiw-WqRM-iu6iX7NgnlQjX2SBYc6RYWHSMXuVNugk2nf4YfWe2nLHRty9s-uunJ2l-Aecno7PP47BLvxAigaYqNIVIyNQ2SWRNnGBuCeEqh06lSLjJInfC5ISYdCFT1BjHucRE5MKhdXFqI7EPW-WidK-AEezkSqDOvfmpXWpV4QStJmR-JkgYMIBoLZAMO25ynyJjnjU2SmQyL8PMyzDrZBjAh77KZUvM8VDhPT_8fcFu5AM4WEs966buMiO8IwnWSc4DeNd_pknnPSm2dDTSmY8vVp5FVQTwstWWvm3BaRU1ghr_2KvPPz2sqMqdHr6-v4dv4Ikv1d4ePICt6k_tDgkFVfnbRv1vAA02_kA
  priority: 102
  providerName: IEEE
Title A Hybrid Asynchronous Brain-Computer Interface Combining SSVEP and EOG Signals
URI https://ieeexplore.ieee.org/document/8993788
https://www.ncbi.nlm.nih.gov/pubmed/32070938
https://www.proquest.com/docview/2444617422
https://www.proquest.com/docview/2358600563
https://ieeexplore.ieee.org/ielx7/10/9199588/08993788.pdf
UnpaywallVersion publishedVersion
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9BJwF74GODERiTkXgCJUvsfPmxQx0VUsukrmjwEjlXB02rsoqmgvLXc5ekUQcICd7y4USOfbZ_l_P9fgCvUl_ZMFKxq8IC3VDa1DXRDN0kRRmjUrqoiedH43g4Dd9fRBdbUl-scFJvPrMeH9ax_Es7_84J4sea84nJY-NQFfOge4tZcRt24ohgeA92puOz_qdm5qVBLGsRRFouyRLI0NqIZuDr44oWGvIMpe9JnbBXdmNNqkVW_oQ3d-HuqlyY9Tczn2-tQacP4POm9s3WkytvVeUe_viF2PG_Pu8h3G-Rqeg3pvQIbtlyD3a3-Ar34M6ojcTvw7gvhmvO9hL95bpEpti9Xi3FCStOuBupCFH_bywMWkGX8lqLQkwmHwdnwpQzMfjwTkwuvzCD82OYng7O3w7dVpvBRUJUlasLFZEfriPf6CDC3BD8jS3aOEECVQalVTonOJUWYYIpBkEeYqRyZdHYIDG-egK98rq0T0EQJpWxwjRn3zS1iYkLq2iqId80QgKIDvib3smwJS5n_Yx5Vjswvs7OT0aDjDs0azvUgdfdI4uGteNvhfe5L7qCbes7cLgxgawd18uMwFBImC-U0oGX3W0akRxmMaWlls44-ThmilXlwEFjOt27laQpVit6-ZvOln6rIdvnjRo--6fSz-EenzY7Dg-hV31d2ReEnKr8qE5vPGpHyk-Segzp
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NITH2wMfGR2CAkXgC0iX-SJzHDnUUWApSu2lvkXN1EKJKJ5oIlb-ec5JGG0yItyixLcfns3_n8_0O4JUOhJVKRL6QBfqSW-0bNUc_1sgjFCIpGuL5dBKNT-XHc3W-BW_7WBhrbXP5zA7cY-PLny-xdkdlh9ptplrfgJtKSqnaaK3eZyB1G5YThKTCPJGdDzMMksPZUToiW5AHA57Ezg67sgs1aVWuQ5i7sFOXF2b90ywWl3ad47uQbvrbXjb5PqirfIC__qBy_N8fugd3OvjJhu18uQ9bttyD3UukhHtwK-3c7fswGbLx2oV0seFqXaLj0V3WK3bk0kr4m3wQrDlULAxaRq_yJuEEm07PRl-YKeds9Pk9m3776miaH8Dp8Wj2bux3CRh8JNhU-UkhFBnbiQpMEirMDWHcyKKNYiTkZJBbkeSEmXQhY9QYhrlEJXJh0dgwNoF4CNvlsrSPgRHw5JFAnTsDVNvYRIUVtJ6QAaqQUKAHwUYgGXbs5C5JxiJrrJQgyZwMMyfDrJOhB6_7KhctNce_Cu-74e8LdiPvwcFG6lmnvKuMEI8kYCc59-Bl_5nUzvlSTGlppDMXYRw5HlXhwaN2tvRtC07raCKo8Tf99PmrhxVVudLDJ9f38AXsjGfpSXbyYfLpKdx2Ndq7hAewXf2o7TPCRFX-vFGF34MXAZw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9BJwF74GMbIzCQkXgCJUvsfPmxQx0VUsukrmjwEjlXB01UWbWmgvLXc5ekUQcICd7y4USOfbZ_l_P9fgCvUl_ZMFKxq8IC3VDa1DXRDN0kRRmjUrqoiedH43g4Dd9fRBdbUl-scFJvPrMeH9ax_Es7_84J4sea84nJY-NQFfOge4tZcRt24ohgeA92puOz_qdm5qVBLGsRRFouyRLI0NqIZuDr44oWGvIMpe9JnbBXdmNNqkVW_oQ3d-HuqlyY9Tczn2-tQacP4POm9s3Wk6_eqso9_PELseN_fd5DuN8iU9FvTOkR3LLlHuxu8RXuwZ1RG4nfh3FfDNec7SX6y3WJTLF7tVqKE1accDdSEaL-31gYtIIu5bUWhZhMPg7OhClnYvDhnZhcfmEG5wOYng7O3w7dVpvBRUJUlasLFZEfriPf6CDC3BD8jS3aOEECVQalVTonOJUWYYIpBkEeYqRyZdHYIDG-egy98qq0T0AQJpWxwjRn3zS1iYkLq2iqId80QgKIDvib3smwJS5n_Yx5Vjswvs7OT0aDjDs0azvUgdfdI4uGteNvhfe5L7qCbes7cLQxgawd18uMwFBImC-U0oGX3W0akRxmMaWlls44-ThmilXlwGFjOt27laQpVit6-ZvOln6rIdvnjRo-_afSz-AenzY7Do-gV12v7HNCTlX-oh0jPwFKlQvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Asynchronous+Brain-Computer+Interface+Combining+SSVEP+and+EOG+Signals&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Zhou%2C+Yajun&rft.au=He%2C+Shenghong&rft.au=Huang%2C+Qiyun&rft.au=Li%2C+Yuanqing&rft.date=2020-10-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=67&rft.issue=10&rft.spage=2881&rft.epage=2892&rft_id=info:doi/10.1109%2FTBME.2020.2972747&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2020_2972747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon