Global and Local Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems With Inequality Constraints

For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consis...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 49; no. 5; pp. 1642 - 1656
Main Authors Wang, Yong, Yin, Da-Qing, Yang, Shengxiang, Sun, Guangyong
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2018.2809430

Cover

Abstract For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consists of two main phases: 1) global surrogate-assisted phase and 2) local surrogate-assisted phase. In the global surrogate-assisted phase, DE serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods.
AbstractList For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consists of two main phases: 1) global surrogate-assisted phase and 2) local surrogate-assisted phase. In the global surrogate-assisted phase, DE serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods.For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consists of two main phases: 1) global surrogate-assisted phase and 2) local surrogate-assisted phase. In the global surrogate-assisted phase, DE serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods.
For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consists of two main phases: 1) global surrogate-assisted phase and 2) local surrogate-assisted phase. In the global surrogate-assisted phase, DE serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods.
Author Yang, Shengxiang
Yin, Da-Qing
Sun, Guangyong
Wang, Yong
Author_xml – sequence: 1
  givenname: Yong
  orcidid: 0000-0001-7670-3958
  surname: Wang
  fullname: Wang, Yong
  email: ywang@csu.edu.cn
  organization: School of Information Science and Engineering, Central South University, Changsha, China
– sequence: 2
  givenname: Da-Qing
  surname: Yin
  fullname: Yin, Da-Qing
  email: yindaqing@csu.edu.cn
  organization: School of Information Science and Engineering, Central South University, Changsha, China
– sequence: 3
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, U.K
– sequence: 4
  givenname: Guangyong
  surname: Sun
  fullname: Sun, Guangyong
  email: guangyong.sun@sydney.edu.au
  organization: School of Aerospace, Mechanical and Mechatronic Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993704$$D View this record in MEDLINE/PubMed
BookMark eNptkt9qFDEUxoNUbF37ACLIgDfezJo_M5Pksq5rLSxUsCJeDZnMGU3JJNskU10fwOc2211XWMxFckh-X_jOlzxFJ847QOg5wXNCsHxzs_j6dk4xEXMqsKwYfoTOKGlESSmvTw51w0_ReYy3OA-Rt6R4gk6plJJxXJ2h35fWd8oWyvXFyutcfZpC8N9UgvIiRhMT9MU7MwwQwCWTz5f33k7JeFcMPhTLn2tw0dxDsfAupqCMy4LrdTKj-aUesI_BdxbGWHwx6Xtx5eBuUtakzT9Fis_Q40HZCOf7dYY-v1_eLD6Uq-vLq8XFqtRM0lQKomo-DBpLJntKCPSqYqSGWrFeKymbRgCvat3zhnR9pQXVDXBaD53UXNUNmyG6u3dya7X5oaxt18GMKmxagtttrm3Sm67d5truc82i1zvROvi7CWJqRxM1WKsc-ClmuBGsonWeZ-jVEXrrp-BySy0lQjSYUMkz9XJPTd0I_cHC32fJAN8BOvgYAwytNukhzW1e9uB1-weOvZIj5XF__9O82GkMABx4wSiXFWZ_AE8wvJ4
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1007_s40747_024_01478_0
crossref_primary_10_1016_j_cja_2024_03_026
crossref_primary_10_2118_201237_PA
crossref_primary_10_1007_s40747_024_01745_0
crossref_primary_10_1016_j_ins_2023_02_044
crossref_primary_10_1016_j_eswa_2025_126729
crossref_primary_10_1007_s40747_021_00421_x
crossref_primary_10_1016_j_asoc_2024_112464
crossref_primary_10_1016_j_ins_2023_02_049
crossref_primary_10_1109_TEVC_2019_2919762
crossref_primary_10_1109_TCYB_2022_3175533
crossref_primary_10_1109_TETCI_2019_2918509
crossref_primary_10_1021_acs_energyfuels_4c02110
crossref_primary_10_1016_j_ins_2021_05_015
crossref_primary_10_1016_j_swevo_2025_101879
crossref_primary_10_1016_j_ins_2024_120246
crossref_primary_10_1109_TEVC_2022_3175517
crossref_primary_10_34133_2022_9856362
crossref_primary_10_1109_TCYB_2022_3219452
crossref_primary_10_1109_TCYB_2021_3123625
crossref_primary_10_1109_TSMC_2023_3259947
crossref_primary_10_1016_j_asoc_2022_109957
crossref_primary_10_1007_s00158_024_03748_4
crossref_primary_10_1109_TEVC_2021_3117990
crossref_primary_10_2118_199357_PA
crossref_primary_10_1016_j_knosys_2020_106418
crossref_primary_10_1109_TETCI_2024_3359042
crossref_primary_10_1109_TSMC_2020_3030792
crossref_primary_10_1109_TEVC_2023_3346435
crossref_primary_10_1109_TCYB_2020_3000465
crossref_primary_10_1038_s41598_025_85233_6
crossref_primary_10_1109_TFUZZ_2020_2973121
crossref_primary_10_1109_TCYB_2024_3489885
crossref_primary_10_1080_08839514_2021_1901034
crossref_primary_10_1016_j_ins_2022_07_162
crossref_primary_10_1016_j_ymssp_2020_107337
crossref_primary_10_1016_j_asoc_2022_109909
crossref_primary_10_1109_TCYB_2021_3113575
crossref_primary_10_1016_j_engappai_2023_107684
crossref_primary_10_1016_j_eswa_2023_121898
crossref_primary_10_1016_j_cherd_2021_04_027
crossref_primary_10_1016_j_asoc_2023_109996
crossref_primary_10_1109_TETCI_2023_3240221
crossref_primary_10_1109_TCYB_2020_3014126
crossref_primary_10_1109_TCYB_2023_3267454
crossref_primary_10_1016_j_knosys_2020_106602
crossref_primary_10_1177_09544089231223859
crossref_primary_10_1162_evco_a_00311
crossref_primary_10_1007_s10115_024_02179_3
crossref_primary_10_1016_j_asoc_2025_113019
crossref_primary_10_1016_j_ins_2020_09_073
crossref_primary_10_1016_j_petrol_2020_107441
crossref_primary_10_1016_j_micpro_2020_103050
crossref_primary_10_1016_j_asoc_2021_108353
crossref_primary_10_1016_j_asoc_2025_112727
crossref_primary_10_1109_TEVC_2020_3017865
crossref_primary_10_1016_j_swevo_2019_100559
crossref_primary_10_1109_TCYB_2024_3524457
crossref_primary_10_32604_cmes_2023_027055
crossref_primary_10_1109_TSMC_2024_3504728
crossref_primary_10_1007_s40747_023_01262_6
crossref_primary_10_1016_j_ins_2024_121408
crossref_primary_10_1109_TSMC_2022_3205010
crossref_primary_10_1016_j_asoc_2022_108719
crossref_primary_10_1109_TSMC_2023_3281822
crossref_primary_10_1007_s12293_021_00326_9
crossref_primary_10_1016_j_asoc_2020_106812
crossref_primary_10_1109_TCYB_2021_3061420
crossref_primary_10_1109_TEVC_2021_3103936
crossref_primary_10_1109_TEVC_2022_3182810
crossref_primary_10_1109_TCYB_2018_2850350
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1016_j_swevo_2023_101315
crossref_primary_10_1109_TCYB_2021_3105696
crossref_primary_10_1007_s00500_021_05831_0
crossref_primary_10_1109_TEVC_2022_3214607
crossref_primary_10_1016_j_knosys_2023_111018
crossref_primary_10_1016_j_ins_2020_11_056
crossref_primary_10_1016_j_asoc_2023_111212
crossref_primary_10_1109_TCYB_2019_2916728
crossref_primary_10_1109_TEVC_2021_3078486
crossref_primary_10_1007_s00158_022_03337_3
crossref_primary_10_1007_s40747_021_00362_5
crossref_primary_10_1007_s42064_021_0109_x
crossref_primary_10_1016_j_knosys_2021_107747
crossref_primary_10_1109_TEVC_2021_3066606
crossref_primary_10_1016_j_eswa_2022_119495
crossref_primary_10_1109_TCYB_2021_3064676
crossref_primary_10_1016_j_dt_2025_02_013
crossref_primary_10_1109_TCYB_2021_3118783
crossref_primary_10_1109_TEVC_2019_2938531
crossref_primary_10_1016_j_engstruct_2023_115856
crossref_primary_10_1016_j_asoc_2024_112517
crossref_primary_10_2514_1_J060718
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_1016_j_asoc_2022_109430
crossref_primary_10_1016_j_petrol_2021_109059
crossref_primary_10_1016_j_swevo_2024_101773
crossref_primary_10_1109_TEVC_2022_3177936
crossref_primary_10_1016_j_automatica_2021_109890
crossref_primary_10_1007_s40747_022_00910_7
crossref_primary_10_1109_TEVC_2021_3120980
crossref_primary_10_1016_j_fuel_2023_127678
crossref_primary_10_1109_TSMC_2023_3257030
crossref_primary_10_3390_e22050527
crossref_primary_10_1016_j_ins_2023_119035
crossref_primary_10_1016_j_ins_2024_121522
crossref_primary_10_1109_TCYB_2020_3008280
crossref_primary_10_1016_j_swevo_2021_100972
crossref_primary_10_1109_TSMC_2020_3002566
Cites_doi 10.1109/TCYB.2015.2493239
10.1016/j.swevo.2011.10.001
10.1109/TEVC.2004.835247
10.1109/72.97934
10.1016/j.ins.2017.09.053
10.1109/TEVC.2015.2428292
10.1214/lnms/1215456182
10.1016/j.asoc.2015.06.010
10.1109/TEVC.2004.836819
10.1007/3-540-45712-7_35
10.1080/03052150008941301
10.1016/j.asoc.2017.08.012
10.1287/ijoc.1060.0182
10.1137/120902434
10.1109/TSMCB.2006.886164
10.1016/S0045-7825(99)00389-8
10.1109/TEVC.2007.902851
10.1007/978-3-642-10439-8_40
10.1162/EVCO_a_00024
10.1080/00401706.1987.10488205
10.1109/TSMCC.2004.841917
10.1109/TEVC.2002.800884
10.1109/TAP.2007.891561
10.1287/ijoc.8.2.173
10.1109/TEVC.2003.817236
10.1109/MCI.2010.936309
10.1016/j.ins.2012.01.017
10.1016/j.ins.2015.09.009
10.1098/rspa.2006.1679
10.1137/S1052623498344562
10.1016/S0377-0427(00)00433-7
10.1109/CEC.2011.5949693
10.1109/CEC.2014.6900351
10.1109/4235.873238
10.1109/TEVC.2005.859463
10.1109/TEVC.2013.2262111
10.1109/CEC.2002.1007042
10.1109/TEVC.2013.2248012
10.1109/TSMCC.2004.841906
10.1007/978-3-540-78987-1_1
10.1016/j.swevo.2011.05.001
10.2514/6.1998-4800
10.2514/2.1999
10.1214/aoms/1177704472
10.1109/TEVC.2006.872344
10.1109/CEC.2006.1688343
10.2514/1.J053813
10.1016/S0045-7825(97)00215-6
10.1007/s00500-006-0145-8
10.1007/s00158-017-1839-5
10.1007/978-81-322-2184-5_3
10.1080/0305215X.2013.765000
10.1023/A:1008202821328
10.1080/02630250008970288
10.1109/TEVC.2010.2087271
10.1109/CEC.2006.1688386
10.1109/TEVC.2009.2027359
10.1016/j.asoc.2015.09.007
10.1109/TEVC.2009.2039141
10.1007/978-3-540-30217-9_41
10.1162/neco.1992.4.4.590
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
DOI 10.1109/TCYB.2018.2809430
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 1656
ExternalDocumentID 10.1109/tcyb.2018.2809430
29993704
10_1109_TCYB_2018_2809430
8327940
Genre orig-research
Journal Article
GrantInformation_xml – fundername: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body
  grantid: 31715006
  funderid: 10.13039/501100011219
– fundername: Innovation-Driven Plan in Central South University
  grantid: 2018CX010
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/K001310/1
  funderid: 10.13039/501100000266
– fundername: EU Horizon 2020 Marie Sklodowska-Curie Individual Fellowships
  grantid: 661327
– fundername: National Natural Science Foundation of China
  grantid: 61673397; 61673331
  funderid: 10.13039/501100001809
– fundername: Hunan Provincial Natural Science Fund for Distinguished Young Scholars
  grantid: 2016JJ1018
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c392t-81a57ffc0939d211eda4315e5a3dca99668e745cd761bd4c82c6e725fb9c7a563
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Wed Oct 01 16:31:43 EDT 2025
Thu Oct 02 18:25:06 EDT 2025
Mon Jun 30 06:36:13 EDT 2025
Thu Jan 02 23:02:01 EST 2025
Wed Oct 01 01:36:34 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Wed Aug 27 02:51:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-81a57ffc0939d211eda4315e5a3dca99668e745cd761bd4c82c6e725fb9c7a563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7670-3958
0000-0001-7222-4917
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8327940
PMID 29993704
PQID 2188601297
PQPubID 85422
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2018_2809430
pubmed_primary_29993704
ieee_primary_8327940
unpaywall_primary_10_1109_tcyb_2018_2809430
proquest_miscellaneous_2068342568
proquest_journals_2188601297
crossref_primary_10_1109_TCYB_2018_2809430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
rasmussen (ref55) 2006
ref47
ref42
ref41
ref44
ref43
bagheri (ref45) 2015
ref49
ref8
ref7
liang (ref27) 2006
ref4
ref3
ref6
takahama (ref62) 2010
ref5
ref40
krempser (ref36) 2012
liang (ref9) 1999
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
wu (ref29) 2016
ref38
ref70
mallipeddi (ref28) 2010
ref68
ref24
ref67
ref23
ref26
ref69
ref25
ref64
ref20
ref66
ref22
ref65
ref21
takahama (ref63) 2012
ref60
ref61
References_xml – ident: ref11
  doi: 10.1109/TCYB.2015.2493239
– ident: ref26
  doi: 10.1016/j.swevo.2011.10.001
– year: 2006
  ident: ref27
  article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization
– start-page: 1
  year: 2012
  ident: ref36
  article-title: Differential evolution assisted by surrogate models for structural optimization problems
  publication-title: Proc 8th Int Conf Eng Comput Technol
– ident: ref6
  doi: 10.1109/TEVC.2004.835247
– ident: ref33
  doi: 10.1109/72.97934
– ident: ref32
  doi: 10.1016/j.ins.2017.09.053
– ident: ref61
  doi: 10.1109/TEVC.2015.2428292
– ident: ref42
  doi: 10.1214/lnms/1215456182
– ident: ref60
  doi: 10.1016/j.asoc.2015.06.010
– ident: ref18
  doi: 10.1109/TEVC.2004.836819
– ident: ref7
  doi: 10.1007/3-540-45712-7_35
– ident: ref21
  doi: 10.1080/03052150008941301
– start-page: 1
  year: 2012
  ident: ref63
  article-title: Efficient constrained optimization by the $\varepsilon $ constrained rank-based differential evolution
  publication-title: Proc CEC
– year: 2010
  ident: ref28
  article-title: Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization
– ident: ref13
  doi: 10.1016/j.asoc.2017.08.012
– ident: ref58
  doi: 10.1287/ijoc.1060.0182
– ident: ref35
  doi: 10.1137/120902434
– ident: ref24
  doi: 10.1109/TSMCB.2006.886164
– ident: ref17
  doi: 10.1016/S0045-7825(99)00389-8
– start-page: 1
  year: 2010
  ident: ref62
  article-title: Constrained optimization by the $\varepsilon $ constrained differential evolution with an archive and gradient-based mutation
  publication-title: Proc CEC
– ident: ref25
  doi: 10.1109/TEVC.2007.902851
– ident: ref49
  doi: 10.1007/978-3-642-10439-8_40
– ident: ref66
  doi: 10.1162/EVCO_a_00024
– ident: ref52
  doi: 10.1080/00401706.1987.10488205
– ident: ref39
  doi: 10.1109/TSMCC.2004.841917
– ident: ref5
  doi: 10.1109/TEVC.2002.800884
– year: 2006
  ident: ref55
  publication-title: Gaussian Processes for Machine Learning
– ident: ref3
  doi: 10.1109/TAP.2007.891561
– ident: ref15
  doi: 10.1287/ijoc.8.2.173
– ident: ref16
  doi: 10.1109/TEVC.2003.817236
– ident: ref70
  doi: 10.1109/MCI.2010.936309
– ident: ref67
  doi: 10.1016/j.ins.2012.01.017
– ident: ref31
  doi: 10.1016/j.ins.2015.09.009
– ident: ref1
  doi: 10.1098/rspa.2006.1679
– ident: ref47
  doi: 10.1137/S1052623498344562
– ident: ref57
  doi: 10.1016/S0377-0427(00)00433-7
– ident: ref48
  doi: 10.1109/CEC.2011.5949693
– ident: ref59
  doi: 10.1109/CEC.2014.6900351
– ident: ref19
  doi: 10.1109/4235.873238
– ident: ref41
  doi: 10.1109/TEVC.2005.859463
– ident: ref43
  doi: 10.1109/TEVC.2013.2262111
– ident: ref14
  doi: 10.1109/CEC.2002.1007042
– ident: ref4
  doi: 10.1109/TEVC.2013.2248012
– ident: ref20
  doi: 10.1109/TSMCC.2004.841906
– ident: ref37
  doi: 10.1007/978-3-540-78987-1_1
– ident: ref10
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref40
  doi: 10.2514/6.1998-4800
– ident: ref46
  doi: 10.2514/2.1999
– ident: ref34
  doi: 10.1214/aoms/1177704472
– ident: ref23
  doi: 10.1109/TEVC.2006.872344
– ident: ref64
  doi: 10.1109/CEC.2006.1688343
– ident: ref68
  doi: 10.2514/1.J053813
– ident: ref2
  doi: 10.1016/S0045-7825(97)00215-6
– ident: ref8
  doi: 10.1007/s00500-006-0145-8
– start-page: 1514
  year: 1999
  ident: ref9
  article-title: Combining landscape approximation and local search in global optimization
  publication-title: Proc Congr Evol Comput
– ident: ref69
  doi: 10.1007/s00158-017-1839-5
– ident: ref51
  doi: 10.1007/978-81-322-2184-5_3
– ident: ref44
  doi: 10.1080/0305215X.2013.765000
– ident: ref30
  doi: 10.1023/A:1008202821328
– ident: ref22
  doi: 10.1080/02630250008970288
– ident: ref56
  doi: 10.1109/TEVC.2010.2087271
– start-page: 87
  year: 2015
  ident: ref45
  article-title: SACOBRA: Self-adjusting constrained black-box optimization with RBF
  publication-title: Proc 25th Workshop Comput Intell
– ident: ref65
  doi: 10.1109/CEC.2006.1688386
– ident: ref53
  doi: 10.1109/TEVC.2009.2027359
– year: 2016
  ident: ref29
  article-title: Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization
– ident: ref12
  doi: 10.1016/j.asoc.2015.09.007
– ident: ref50
  doi: 10.1109/TEVC.2009.2039141
– ident: ref38
  doi: 10.1007/978-3-540-30217-9_41
– ident: ref54
  doi: 10.1162/neco.1992.4.4.590
SSID ssj0000816898
Score 2.5556614
Snippet For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1642
SubjectTerms Basis functions
Computational modeling
Constraints
Differential evolution (DE)
Evolutionary computation
expensive constrained optimization problems (ECOP)
Feasibility
Fitness
global search
Linear programming
local search
Neural networks
Optimization
Radial basis function
Search engines
Search problems
Sociology
Statistics
surrogate model
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcgFIKgYKMxIGHspuXHzmW0qogKJXoivYU2Y6tVl2yq90EWH4Av5tx4g0UEBLcEmUc2fLn8Wd7PB_AY6tzRa1NkbkhfUPvx0NZyjhMtHbsV2dlG0349oDtj7PXx_TYb7i1d2GMMW3wmRm6x_Ys_8xMvvARS3B1krKRYMjAXdpFxCKCKRrOSnsZ1hhFLj6AtfHB4faJU5SLGUIgaSVk_TOn_lgzjvJRrZfKRXaJYSJcdF10YWJqlVb-RDqvwZWmmsnlZzmZ_DQR7d2AYtWELv7kfNjUaqi__pLd8f_beBOue45KtjtQrcMlU92Cde8FFuSJT1X9dAO-dZIBRFYleeNmRfK-mc-nbmsuxI53ECrJS6_Bgr5kQnY_eawTZMvEJVpuA-iJEw5t5SqwwDt0Yx_9_VBy2CneLMiHs_qUvKpMdw10-aNEvbgN473do5390Cs7hBr5WB2KWFJurY7yNC9xCWpKiUSGGirTUku3BBOGZ1SXnMWqzLRINDM8oVblmkvK0k0YVNPK3AWSpzTlihrFlc0k8lHLcxtLq0SeiVSZAKJVtxbapz13lZsU7fInyoujnZMXhUNC4ZEQwLO-yKzL-fE34w3Xib2h77EAtlbYKbxXWBRIpwRzO388gEf9ZxzP7pBGVmbaoE3ERIqOlIkA7nSY6_-N1AHZZJQF8LwH4W81dMC-UMN7_2R9H67ia97FdG7BoJ435gHyrlo99IPrO9PMJVc
  priority: 102
  providerName: Unpaywall
Title Global and Local Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems With Inequality Constraints
URI https://ieeexplore.ieee.org/document/8327940
https://www.ncbi.nlm.nih.gov/pubmed/29993704
https://www.proquest.com/docview/2188601297
https://www.proquest.com/docview/2068342568
https://ieeexplore.ieee.org/ielx7/6221036/8660597/08327940.pdf
UnpaywallVersion publishedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAcgLY8AqUyEgcezTZv28dSWhVESyW6oj1FtuOIqku22k1Ayw_gdzN-JLwqxC1S7Gii-Tz-bI_nA3haKy7zuk6RuSF9w-hHQ1GJOEyUMuxXZZXNJjw8Kg7G2dvT_HQJtoa7MFprm3ymR-bRnuVXU9WZrbJtRB_CBxfo1ygr3F2tYT_FCkhY6dsEH0JkFdQfYsYR3z7ZPXtl8rjYKGEml84IwGEgxrnZK7T1M5KVWLmKbd6EG11zKRZfxWTyywy0fxsOe9td4snFqGvlSH37o6zj__7cHbjlqSjZcdhZhSXdrMGqH-xz8sxXpH6-BiuGkrqKzuvw3ckEENFU5J2ZCcmHbjabmu24EJ1tYFOR1153BePHhOx98fgmyJCJKa5sk-aJEQu1EhXY4T2Grs_-Tig5dio3c_LxvP1E3jTaXf1c_OzRzu_CeH_vZPcg9GoOoUIO1oYsFjmtaxXxlFe47NSVQPKS61yklRJm2cU0zXJV0SKWVaZYogpNk7yWXFGRF-k9WG6mjX4AhKd5SmWuJZV1JpCD1pTXsagl4xlLpQ4g6j1aKl_q3Bg3Ke2SJ-KlwUNp8FB6PATwYuhy6ep8_KvxuvHf0NC7LoCNHjaljwTzEikUK8xuHw3gyfAax7A5mBGNnnbYJipYisGzYAHcd3Abvt2jNICXA_7-srBVC_mbhQ-vtvARrGAr7hI2N2C5nXX6MZKqVm7a0bQJ18dHxztnPwDoAh38
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5dByANryCBQwEgde2ebl2D5CabWF3YLEVi2nyHYcgViy1W4CWn4Av5tx7A2vCnGLFDuaaD6PP9vj-QAeVlooWlUpMjekbxj9WChLGYeJ1pb96qzssgnHx_nwJHt1Rs_W4Fl_F8YY0yWfmYF97M7yy5lu7VbZHqIP4YML9Es0yzLqbmv1OyqdhEQnfpvgQ4i8gvljzDgSe5P99y9sJhcfJNxm01kJOAzFODt7jbbVnNSJrFzENy_DRlufy-VXOZ3-MgcdXoXxynqXevJp0DZqoL_9Udjxf3_vGlzxZJQ8d-jZgjVTb8OWH-4L8sjXpH68DZuWlLqazjvw3QkFEFmXZGTnQvKunc9ndkMuRHdb4JTkpVdewQgyJQdfPMIJcmRiyyt3afPEyoV2IhXY4Q0Gr8_-Vih563RuFuT0Y_OBHNXGXf5c_uzRLK7DyeHBZH8Yej2HUCMLa0IeS8qqSkciFSUuPE0pkb5QQ2VaamkXXtywjOqS5bEqM80TnRuW0EoJzSTN0xuwXs9qcwuISGnKFDWKqSqTyEIrJqpYVoqLjKfKBBCtPFpoX-zcGjctukVPJAqLh8LiofB4COBJ3-XcVfr4V-Md67--oXddALsr2BQ-FiwKJFE8t_t9LIAH_WscxfZoRtZm1mKbKOcphs-cB3DTwa3_9gqlATzt8feXhY1eqt8svH2xhfdhYzgZj4rR0fHrO7CJPYRL39yF9WbemrtIsRp1rxtZPwD8Sx-Z
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcgFIKgYKMxIGHspuXHzmW0qogKJXoivYU2Y6tVl2yq90EWH4Av5tx4g0UEBLcEmUc2fLn8Wd7PB_AY6tzRa1NkbkhfUPvx0NZyjhMtHbsV2dlG0349oDtj7PXx_TYb7i1d2GMMW3wmRm6x_Ys_8xMvvARS3B1krKRYMjAXdpFxCKCKRrOSnsZ1hhFLj6AtfHB4faJU5SLGUIgaSVk_TOn_lgzjvJRrZfKRXaJYSJcdF10YWJqlVb-RDqvwZWmmsnlZzmZ_DQR7d2AYtWELv7kfNjUaqi__pLd8f_beBOue45KtjtQrcMlU92Cde8FFuSJT1X9dAO-dZIBRFYleeNmRfK-mc-nbmsuxI53ECrJS6_Bgr5kQnY_eawTZMvEJVpuA-iJEw5t5SqwwDt0Yx_9_VBy2CneLMiHs_qUvKpMdw10-aNEvbgN473do5390Cs7hBr5WB2KWFJurY7yNC9xCWpKiUSGGirTUku3BBOGZ1SXnMWqzLRINDM8oVblmkvK0k0YVNPK3AWSpzTlihrFlc0k8lHLcxtLq0SeiVSZAKJVtxbapz13lZsU7fInyoujnZMXhUNC4ZEQwLO-yKzL-fE34w3Xib2h77EAtlbYKbxXWBRIpwRzO388gEf9ZxzP7pBGVmbaoE3ERIqOlIkA7nSY6_-N1AHZZJQF8LwH4W81dMC-UMN7_2R9H67ia97FdG7BoJ435gHyrlo99IPrO9PMJVc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+and+Local+Surrogate-Assisted+Differential+Evolution+for+Expensive+Constrained+Optimization+Problems+With+Inequality+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Yong&rft.au=Da-Qing%2C+Yin&rft.au=Yang%2C+Shengxiang&rft.au=Sun%2C+Guangyong&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=49&rft.issue=5&rft.spage=1642&rft_id=info:doi/10.1109%2FTCYB.2018.2809430&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon