Global and Local Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems With Inequality Constraints
For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consis...
Saved in:
| Published in | IEEE transactions on cybernetics Vol. 49; no. 5; pp. 1642 - 1656 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-2267 2168-2275 2168-2275 |
| DOI | 10.1109/TCYB.2018.2809430 |
Cover
| Abstract | For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consists of two main phases: 1) global surrogate-assisted phase and 2) local surrogate-assisted phase. In the global surrogate-assisted phase, DE serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods. |
|---|---|
| AbstractList | For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consists of two main phases: 1) global surrogate-assisted phase and 2) local surrogate-assisted phase. In the global surrogate-assisted phase, DE serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods.For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consists of two main phases: 1) global surrogate-assisted phase and 2) local surrogate-assisted phase. In the global surrogate-assisted phase, DE serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods. For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a novel global and local surrogate-assisted differential evolution (DE) for solving ECOPs with inequality constraints. The proposed method consists of two main phases: 1) global surrogate-assisted phase and 2) local surrogate-assisted phase. In the global surrogate-assisted phase, DE serves as the search engine to produce multiple trial vectors. Afterward, the generalized regression neural network is used to evaluate these trial vectors. In order to select the best candidate from these trial vectors, two rules are combined. The first is the feasibility rule, which at first guides the population toward the feasible region, and then toward the optimal solution. In addition, the second rule puts more emphasis on the solution with the highest predicted uncertainty, and thus alleviates the inaccuracy of the surrogates. In the local surrogate-assisted phase, the interior point method coupled with radial basis function is utilized to refine each individual in the population. During the evolution, the global surrogate-assisted phase has the capability to promptly locate the promising region and the local surrogate-assisted phase is able to speed up the convergence. Therefore, by combining these two important elements, the number of fitness evaluations can be reduced remarkably. The proposed method has been tested on numerous benchmark test functions from three test suites and two real-world cases. The experimental results demonstrate that the performance of the proposed method is better than that of other state-of-the-art methods. |
| Author | Yang, Shengxiang Yin, Da-Qing Sun, Guangyong Wang, Yong |
| Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0001-7670-3958 surname: Wang fullname: Wang, Yong email: ywang@csu.edu.cn organization: School of Information Science and Engineering, Central South University, Changsha, China – sequence: 2 givenname: Da-Qing surname: Yin fullname: Yin, Da-Qing email: yindaqing@csu.edu.cn organization: School of Information Science and Engineering, Central South University, Changsha, China – sequence: 3 givenname: Shengxiang orcidid: 0000-0001-7222-4917 surname: Yang fullname: Yang, Shengxiang email: syang@dmu.ac.uk organization: Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, U.K – sequence: 4 givenname: Guangyong surname: Sun fullname: Sun, Guangyong email: guangyong.sun@sydney.edu.au organization: School of Aerospace, Mechanical and Mechatronic Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29993704$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkt9qFDEUxoNUbF37ACLIgDfezJo_M5Pksq5rLSxUsCJeDZnMGU3JJNskU10fwOc2211XWMxFckh-X_jOlzxFJ847QOg5wXNCsHxzs_j6dk4xEXMqsKwYfoTOKGlESSmvTw51w0_ReYy3OA-Rt6R4gk6plJJxXJ2h35fWd8oWyvXFyutcfZpC8N9UgvIiRhMT9MU7MwwQwCWTz5f33k7JeFcMPhTLn2tw0dxDsfAupqCMy4LrdTKj-aUesI_BdxbGWHwx6Xtx5eBuUtakzT9Fis_Q40HZCOf7dYY-v1_eLD6Uq-vLq8XFqtRM0lQKomo-DBpLJntKCPSqYqSGWrFeKymbRgCvat3zhnR9pQXVDXBaD53UXNUNmyG6u3dya7X5oaxt18GMKmxagtttrm3Sm67d5truc82i1zvROvi7CWJqRxM1WKsc-ClmuBGsonWeZ-jVEXrrp-BySy0lQjSYUMkz9XJPTd0I_cHC32fJAN8BOvgYAwytNukhzW1e9uB1-weOvZIj5XF__9O82GkMABx4wSiXFWZ_AE8wvJ4 |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1007_s40747_024_01478_0 crossref_primary_10_1016_j_cja_2024_03_026 crossref_primary_10_2118_201237_PA crossref_primary_10_1007_s40747_024_01745_0 crossref_primary_10_1016_j_ins_2023_02_044 crossref_primary_10_1016_j_eswa_2025_126729 crossref_primary_10_1007_s40747_021_00421_x crossref_primary_10_1016_j_asoc_2024_112464 crossref_primary_10_1016_j_ins_2023_02_049 crossref_primary_10_1109_TEVC_2019_2919762 crossref_primary_10_1109_TCYB_2022_3175533 crossref_primary_10_1109_TETCI_2019_2918509 crossref_primary_10_1021_acs_energyfuels_4c02110 crossref_primary_10_1016_j_ins_2021_05_015 crossref_primary_10_1016_j_swevo_2025_101879 crossref_primary_10_1016_j_ins_2024_120246 crossref_primary_10_1109_TEVC_2022_3175517 crossref_primary_10_34133_2022_9856362 crossref_primary_10_1109_TCYB_2022_3219452 crossref_primary_10_1109_TCYB_2021_3123625 crossref_primary_10_1109_TSMC_2023_3259947 crossref_primary_10_1016_j_asoc_2022_109957 crossref_primary_10_1007_s00158_024_03748_4 crossref_primary_10_1109_TEVC_2021_3117990 crossref_primary_10_2118_199357_PA crossref_primary_10_1016_j_knosys_2020_106418 crossref_primary_10_1109_TETCI_2024_3359042 crossref_primary_10_1109_TSMC_2020_3030792 crossref_primary_10_1109_TEVC_2023_3346435 crossref_primary_10_1109_TCYB_2020_3000465 crossref_primary_10_1038_s41598_025_85233_6 crossref_primary_10_1109_TFUZZ_2020_2973121 crossref_primary_10_1109_TCYB_2024_3489885 crossref_primary_10_1080_08839514_2021_1901034 crossref_primary_10_1016_j_ins_2022_07_162 crossref_primary_10_1016_j_ymssp_2020_107337 crossref_primary_10_1016_j_asoc_2022_109909 crossref_primary_10_1109_TCYB_2021_3113575 crossref_primary_10_1016_j_engappai_2023_107684 crossref_primary_10_1016_j_eswa_2023_121898 crossref_primary_10_1016_j_cherd_2021_04_027 crossref_primary_10_1016_j_asoc_2023_109996 crossref_primary_10_1109_TETCI_2023_3240221 crossref_primary_10_1109_TCYB_2020_3014126 crossref_primary_10_1109_TCYB_2023_3267454 crossref_primary_10_1016_j_knosys_2020_106602 crossref_primary_10_1177_09544089231223859 crossref_primary_10_1162_evco_a_00311 crossref_primary_10_1007_s10115_024_02179_3 crossref_primary_10_1016_j_asoc_2025_113019 crossref_primary_10_1016_j_ins_2020_09_073 crossref_primary_10_1016_j_petrol_2020_107441 crossref_primary_10_1016_j_micpro_2020_103050 crossref_primary_10_1016_j_asoc_2021_108353 crossref_primary_10_1016_j_asoc_2025_112727 crossref_primary_10_1109_TEVC_2020_3017865 crossref_primary_10_1016_j_swevo_2019_100559 crossref_primary_10_1109_TCYB_2024_3524457 crossref_primary_10_32604_cmes_2023_027055 crossref_primary_10_1109_TSMC_2024_3504728 crossref_primary_10_1007_s40747_023_01262_6 crossref_primary_10_1016_j_ins_2024_121408 crossref_primary_10_1109_TSMC_2022_3205010 crossref_primary_10_1016_j_asoc_2022_108719 crossref_primary_10_1109_TSMC_2023_3281822 crossref_primary_10_1007_s12293_021_00326_9 crossref_primary_10_1016_j_asoc_2020_106812 crossref_primary_10_1109_TCYB_2021_3061420 crossref_primary_10_1109_TEVC_2021_3103936 crossref_primary_10_1109_TEVC_2022_3182810 crossref_primary_10_1109_TCYB_2018_2850350 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1016_j_swevo_2023_101315 crossref_primary_10_1109_TCYB_2021_3105696 crossref_primary_10_1007_s00500_021_05831_0 crossref_primary_10_1109_TEVC_2022_3214607 crossref_primary_10_1016_j_knosys_2023_111018 crossref_primary_10_1016_j_ins_2020_11_056 crossref_primary_10_1016_j_asoc_2023_111212 crossref_primary_10_1109_TCYB_2019_2916728 crossref_primary_10_1109_TEVC_2021_3078486 crossref_primary_10_1007_s00158_022_03337_3 crossref_primary_10_1007_s40747_021_00362_5 crossref_primary_10_1007_s42064_021_0109_x crossref_primary_10_1016_j_knosys_2021_107747 crossref_primary_10_1109_TEVC_2021_3066606 crossref_primary_10_1016_j_eswa_2022_119495 crossref_primary_10_1109_TCYB_2021_3064676 crossref_primary_10_1016_j_dt_2025_02_013 crossref_primary_10_1109_TCYB_2021_3118783 crossref_primary_10_1109_TEVC_2019_2938531 crossref_primary_10_1016_j_engstruct_2023_115856 crossref_primary_10_1016_j_asoc_2024_112517 crossref_primary_10_2514_1_J060718 crossref_primary_10_1007_s12065_023_00882_8 crossref_primary_10_1016_j_asoc_2022_109430 crossref_primary_10_1016_j_petrol_2021_109059 crossref_primary_10_1016_j_swevo_2024_101773 crossref_primary_10_1109_TEVC_2022_3177936 crossref_primary_10_1016_j_automatica_2021_109890 crossref_primary_10_1007_s40747_022_00910_7 crossref_primary_10_1109_TEVC_2021_3120980 crossref_primary_10_1016_j_fuel_2023_127678 crossref_primary_10_1109_TSMC_2023_3257030 crossref_primary_10_3390_e22050527 crossref_primary_10_1016_j_ins_2023_119035 crossref_primary_10_1016_j_ins_2024_121522 crossref_primary_10_1109_TCYB_2020_3008280 crossref_primary_10_1016_j_swevo_2021_100972 crossref_primary_10_1109_TSMC_2020_3002566 |
| Cites_doi | 10.1109/TCYB.2015.2493239 10.1016/j.swevo.2011.10.001 10.1109/TEVC.2004.835247 10.1109/72.97934 10.1016/j.ins.2017.09.053 10.1109/TEVC.2015.2428292 10.1214/lnms/1215456182 10.1016/j.asoc.2015.06.010 10.1109/TEVC.2004.836819 10.1007/3-540-45712-7_35 10.1080/03052150008941301 10.1016/j.asoc.2017.08.012 10.1287/ijoc.1060.0182 10.1137/120902434 10.1109/TSMCB.2006.886164 10.1016/S0045-7825(99)00389-8 10.1109/TEVC.2007.902851 10.1007/978-3-642-10439-8_40 10.1162/EVCO_a_00024 10.1080/00401706.1987.10488205 10.1109/TSMCC.2004.841917 10.1109/TEVC.2002.800884 10.1109/TAP.2007.891561 10.1287/ijoc.8.2.173 10.1109/TEVC.2003.817236 10.1109/MCI.2010.936309 10.1016/j.ins.2012.01.017 10.1016/j.ins.2015.09.009 10.1098/rspa.2006.1679 10.1137/S1052623498344562 10.1016/S0377-0427(00)00433-7 10.1109/CEC.2011.5949693 10.1109/CEC.2014.6900351 10.1109/4235.873238 10.1109/TEVC.2005.859463 10.1109/TEVC.2013.2262111 10.1109/CEC.2002.1007042 10.1109/TEVC.2013.2248012 10.1109/TSMCC.2004.841906 10.1007/978-3-540-78987-1_1 10.1016/j.swevo.2011.05.001 10.2514/6.1998-4800 10.2514/2.1999 10.1214/aoms/1177704472 10.1109/TEVC.2006.872344 10.1109/CEC.2006.1688343 10.2514/1.J053813 10.1016/S0045-7825(97)00215-6 10.1007/s00500-006-0145-8 10.1007/s00158-017-1839-5 10.1007/978-81-322-2184-5_3 10.1080/0305215X.2013.765000 10.1023/A:1008202821328 10.1080/02630250008970288 10.1109/TEVC.2010.2087271 10.1109/CEC.2006.1688386 10.1109/TEVC.2009.2027359 10.1016/j.asoc.2015.09.007 10.1109/TEVC.2009.2039141 10.1007/978-3-540-30217-9_41 10.1162/neco.1992.4.4.590 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 ADTOC UNPAY |
| DOI | 10.1109/TCYB.2018.2809430 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 1656 |
| ExternalDocumentID | 10.1109/tcyb.2018.2809430 29993704 10_1109_TCYB_2018_2809430 8327940 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body grantid: 31715006 funderid: 10.13039/501100011219 – fundername: Innovation-Driven Plan in Central South University grantid: 2018CX010 – fundername: Engineering and Physical Sciences Research Council grantid: EP/K001310/1 funderid: 10.13039/501100000266 – fundername: EU Horizon 2020 Marie Sklodowska-Curie Individual Fellowships grantid: 661327 – fundername: National Natural Science Foundation of China grantid: 61673397; 61673331 funderid: 10.13039/501100001809 – fundername: Hunan Provincial Natural Science Fund for Distinguished Young Scholars grantid: 2016JJ1018 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c392t-81a57ffc0939d211eda4315e5a3dca99668e745cd761bd4c82c6e725fb9c7a563 |
| IEDL.DBID | RIE |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Wed Oct 01 16:31:43 EDT 2025 Thu Oct 02 18:25:06 EDT 2025 Mon Jun 30 06:36:13 EDT 2025 Thu Jan 02 23:02:01 EST 2025 Wed Oct 01 01:36:34 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Wed Aug 27 02:51:47 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c392t-81a57ffc0939d211eda4315e5a3dca99668e745cd761bd4c82c6e725fb9c7a563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-7670-3958 0000-0001-7222-4917 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8327940 |
| PMID | 29993704 |
| PQID | 2188601297 |
| PQPubID | 85422 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2018_2809430 pubmed_primary_29993704 ieee_primary_8327940 unpaywall_primary_10_1109_tcyb_2018_2809430 proquest_miscellaneous_2068342568 proquest_journals_2188601297 crossref_primary_10_1109_TCYB_2018_2809430 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 rasmussen (ref55) 2006 ref47 ref42 ref41 ref44 ref43 bagheri (ref45) 2015 ref49 ref8 ref7 liang (ref27) 2006 ref4 ref3 ref6 takahama (ref62) 2010 ref5 ref40 krempser (ref36) 2012 liang (ref9) 1999 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 wu (ref29) 2016 ref38 ref70 mallipeddi (ref28) 2010 ref68 ref24 ref67 ref23 ref26 ref69 ref25 ref64 ref20 ref66 ref22 ref65 ref21 takahama (ref63) 2012 ref60 ref61 |
| References_xml | – ident: ref11 doi: 10.1109/TCYB.2015.2493239 – ident: ref26 doi: 10.1016/j.swevo.2011.10.001 – year: 2006 ident: ref27 article-title: Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter optimization – start-page: 1 year: 2012 ident: ref36 article-title: Differential evolution assisted by surrogate models for structural optimization problems publication-title: Proc 8th Int Conf Eng Comput Technol – ident: ref6 doi: 10.1109/TEVC.2004.835247 – ident: ref33 doi: 10.1109/72.97934 – ident: ref32 doi: 10.1016/j.ins.2017.09.053 – ident: ref61 doi: 10.1109/TEVC.2015.2428292 – ident: ref42 doi: 10.1214/lnms/1215456182 – ident: ref60 doi: 10.1016/j.asoc.2015.06.010 – ident: ref18 doi: 10.1109/TEVC.2004.836819 – ident: ref7 doi: 10.1007/3-540-45712-7_35 – ident: ref21 doi: 10.1080/03052150008941301 – start-page: 1 year: 2012 ident: ref63 article-title: Efficient constrained optimization by the $\varepsilon $ constrained rank-based differential evolution publication-title: Proc CEC – year: 2010 ident: ref28 article-title: Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization – ident: ref13 doi: 10.1016/j.asoc.2017.08.012 – ident: ref58 doi: 10.1287/ijoc.1060.0182 – ident: ref35 doi: 10.1137/120902434 – ident: ref24 doi: 10.1109/TSMCB.2006.886164 – ident: ref17 doi: 10.1016/S0045-7825(99)00389-8 – start-page: 1 year: 2010 ident: ref62 article-title: Constrained optimization by the $\varepsilon $ constrained differential evolution with an archive and gradient-based mutation publication-title: Proc CEC – ident: ref25 doi: 10.1109/TEVC.2007.902851 – ident: ref49 doi: 10.1007/978-3-642-10439-8_40 – ident: ref66 doi: 10.1162/EVCO_a_00024 – ident: ref52 doi: 10.1080/00401706.1987.10488205 – ident: ref39 doi: 10.1109/TSMCC.2004.841917 – ident: ref5 doi: 10.1109/TEVC.2002.800884 – year: 2006 ident: ref55 publication-title: Gaussian Processes for Machine Learning – ident: ref3 doi: 10.1109/TAP.2007.891561 – ident: ref15 doi: 10.1287/ijoc.8.2.173 – ident: ref16 doi: 10.1109/TEVC.2003.817236 – ident: ref70 doi: 10.1109/MCI.2010.936309 – ident: ref67 doi: 10.1016/j.ins.2012.01.017 – ident: ref31 doi: 10.1016/j.ins.2015.09.009 – ident: ref1 doi: 10.1098/rspa.2006.1679 – ident: ref47 doi: 10.1137/S1052623498344562 – ident: ref57 doi: 10.1016/S0377-0427(00)00433-7 – ident: ref48 doi: 10.1109/CEC.2011.5949693 – ident: ref59 doi: 10.1109/CEC.2014.6900351 – ident: ref19 doi: 10.1109/4235.873238 – ident: ref41 doi: 10.1109/TEVC.2005.859463 – ident: ref43 doi: 10.1109/TEVC.2013.2262111 – ident: ref14 doi: 10.1109/CEC.2002.1007042 – ident: ref4 doi: 10.1109/TEVC.2013.2248012 – ident: ref20 doi: 10.1109/TSMCC.2004.841906 – ident: ref37 doi: 10.1007/978-3-540-78987-1_1 – ident: ref10 doi: 10.1016/j.swevo.2011.05.001 – ident: ref40 doi: 10.2514/6.1998-4800 – ident: ref46 doi: 10.2514/2.1999 – ident: ref34 doi: 10.1214/aoms/1177704472 – ident: ref23 doi: 10.1109/TEVC.2006.872344 – ident: ref64 doi: 10.1109/CEC.2006.1688343 – ident: ref68 doi: 10.2514/1.J053813 – ident: ref2 doi: 10.1016/S0045-7825(97)00215-6 – ident: ref8 doi: 10.1007/s00500-006-0145-8 – start-page: 1514 year: 1999 ident: ref9 article-title: Combining landscape approximation and local search in global optimization publication-title: Proc Congr Evol Comput – ident: ref69 doi: 10.1007/s00158-017-1839-5 – ident: ref51 doi: 10.1007/978-81-322-2184-5_3 – ident: ref44 doi: 10.1080/0305215X.2013.765000 – ident: ref30 doi: 10.1023/A:1008202821328 – ident: ref22 doi: 10.1080/02630250008970288 – ident: ref56 doi: 10.1109/TEVC.2010.2087271 – start-page: 87 year: 2015 ident: ref45 article-title: SACOBRA: Self-adjusting constrained black-box optimization with RBF publication-title: Proc 25th Workshop Comput Intell – ident: ref65 doi: 10.1109/CEC.2006.1688386 – ident: ref53 doi: 10.1109/TEVC.2009.2027359 – year: 2016 ident: ref29 article-title: Problem definitions and evaluation criteria for the CEC 2017 competition and special session on constrained single objective real-parameter optimization – ident: ref12 doi: 10.1016/j.asoc.2015.09.007 – ident: ref50 doi: 10.1109/TEVC.2009.2039141 – ident: ref38 doi: 10.1007/978-3-540-30217-9_41 – ident: ref54 doi: 10.1162/neco.1992.4.4.590 |
| SSID | ssj0000816898 |
| Score | 2.5556614 |
| Snippet | For expensive constrained optimization problems (ECOPs), the computation of objective function and constraints is very time-consuming. This paper proposes a... |
| SourceID | unpaywall proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1642 |
| SubjectTerms | Basis functions Computational modeling Constraints Differential evolution (DE) Evolutionary computation expensive constrained optimization problems (ECOP) Feasibility Fitness global search Linear programming local search Neural networks Optimization Radial basis function Search engines Search problems Sociology Statistics surrogate model |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcgFIKgYKMxIGHspuXHzmW0qogKJXoivYU2Y6tVl2yq90EWH4Av5tx4g0UEBLcEmUc2fLn8Wd7PB_AY6tzRa1NkbkhfUPvx0NZyjhMtHbsV2dlG0349oDtj7PXx_TYb7i1d2GMMW3wmRm6x_Ys_8xMvvARS3B1krKRYMjAXdpFxCKCKRrOSnsZ1hhFLj6AtfHB4faJU5SLGUIgaSVk_TOn_lgzjvJRrZfKRXaJYSJcdF10YWJqlVb-RDqvwZWmmsnlZzmZ_DQR7d2AYtWELv7kfNjUaqi__pLd8f_beBOue45KtjtQrcMlU92Cde8FFuSJT1X9dAO-dZIBRFYleeNmRfK-mc-nbmsuxI53ECrJS6_Bgr5kQnY_eawTZMvEJVpuA-iJEw5t5SqwwDt0Yx_9_VBy2CneLMiHs_qUvKpMdw10-aNEvbgN473do5390Cs7hBr5WB2KWFJurY7yNC9xCWpKiUSGGirTUku3BBOGZ1SXnMWqzLRINDM8oVblmkvK0k0YVNPK3AWSpzTlihrFlc0k8lHLcxtLq0SeiVSZAKJVtxbapz13lZsU7fInyoujnZMXhUNC4ZEQwLO-yKzL-fE34w3Xib2h77EAtlbYKbxXWBRIpwRzO388gEf9ZxzP7pBGVmbaoE3ERIqOlIkA7nSY6_-N1AHZZJQF8LwH4W81dMC-UMN7_2R9H67ia97FdG7BoJ435gHyrlo99IPrO9PMJVc priority: 102 providerName: Unpaywall |
| Title | Global and Local Surrogate-Assisted Differential Evolution for Expensive Constrained Optimization Problems With Inequality Constraints |
| URI | https://ieeexplore.ieee.org/document/8327940 https://www.ncbi.nlm.nih.gov/pubmed/29993704 https://www.proquest.com/docview/2188601297 https://www.proquest.com/docview/2068342568 https://ieeexplore.ieee.org/ielx7/6221036/8660597/08327940.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcqAcgLY8AqUyEgcezTZv28dSWhVESyW6oj1FtuOIqku22k1Ayw_gdzN-JLwqxC1S7Gii-Tz-bI_nA3haKy7zuk6RuSF9w-hHQ1GJOEyUMuxXZZXNJjw8Kg7G2dvT_HQJtoa7MFprm3ymR-bRnuVXU9WZrbJtRB_CBxfo1ygr3F2tYT_FCkhY6dsEH0JkFdQfYsYR3z7ZPXtl8rjYKGEml84IwGEgxrnZK7T1M5KVWLmKbd6EG11zKRZfxWTyywy0fxsOe9td4snFqGvlSH37o6zj__7cHbjlqSjZcdhZhSXdrMGqH-xz8sxXpH6-BiuGkrqKzuvw3ckEENFU5J2ZCcmHbjabmu24EJ1tYFOR1153BePHhOx98fgmyJCJKa5sk-aJEQu1EhXY4T2Grs_-Tig5dio3c_LxvP1E3jTaXf1c_OzRzu_CeH_vZPcg9GoOoUIO1oYsFjmtaxXxlFe47NSVQPKS61yklRJm2cU0zXJV0SKWVaZYogpNk7yWXFGRF-k9WG6mjX4AhKd5SmWuJZV1JpCD1pTXsagl4xlLpQ4g6j1aKl_q3Bg3Ke2SJ-KlwUNp8FB6PATwYuhy6ep8_KvxuvHf0NC7LoCNHjaljwTzEikUK8xuHw3gyfAax7A5mBGNnnbYJipYisGzYAHcd3Abvt2jNICXA_7-srBVC_mbhQ-vtvARrGAr7hI2N2C5nXX6MZKqVm7a0bQJ18dHxztnPwDoAh38 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5V5dByANryCBQwEgde2ebl2D5CabWF3YLEVi2nyHYcgViy1W4CWn4Av5tx7A2vCnGLFDuaaD6PP9vj-QAeVlooWlUpMjekbxj9WChLGYeJ1pb96qzssgnHx_nwJHt1Rs_W4Fl_F8YY0yWfmYF97M7yy5lu7VbZHqIP4YML9Es0yzLqbmv1OyqdhEQnfpvgQ4i8gvljzDgSe5P99y9sJhcfJNxm01kJOAzFODt7jbbVnNSJrFzENy_DRlufy-VXOZ3-MgcdXoXxynqXevJp0DZqoL_9Udjxf3_vGlzxZJQ8d-jZgjVTb8OWH-4L8sjXpH68DZuWlLqazjvw3QkFEFmXZGTnQvKunc9ndkMuRHdb4JTkpVdewQgyJQdfPMIJcmRiyyt3afPEyoV2IhXY4Q0Gr8_-Vih563RuFuT0Y_OBHNXGXf5c_uzRLK7DyeHBZH8Yej2HUCMLa0IeS8qqSkciFSUuPE0pkb5QQ2VaamkXXtywjOqS5bEqM80TnRuW0EoJzSTN0xuwXs9qcwuISGnKFDWKqSqTyEIrJqpYVoqLjKfKBBCtPFpoX-zcGjctukVPJAqLh8LiofB4COBJ3-XcVfr4V-Md67--oXddALsr2BQ-FiwKJFE8t_t9LIAH_WscxfZoRtZm1mKbKOcphs-cB3DTwa3_9gqlATzt8feXhY1eqt8svH2xhfdhYzgZj4rR0fHrO7CJPYRL39yF9WbemrtIsRp1rxtZPwD8Sx-Z |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9gAcgFIKgYKMxIGHspuXHzmW0qogKJXoivYU2Y6tVl2yq90EWH4Av5tx4g0UEBLcEmUc2fLn8Wd7PB_AY6tzRa1NkbkhfUPvx0NZyjhMtHbsV2dlG0349oDtj7PXx_TYb7i1d2GMMW3wmRm6x_Ys_8xMvvARS3B1krKRYMjAXdpFxCKCKRrOSnsZ1hhFLj6AtfHB4faJU5SLGUIgaSVk_TOn_lgzjvJRrZfKRXaJYSJcdF10YWJqlVb-RDqvwZWmmsnlZzmZ_DQR7d2AYtWELv7kfNjUaqi__pLd8f_beBOue45KtjtQrcMlU92Cde8FFuSJT1X9dAO-dZIBRFYleeNmRfK-mc-nbmsuxI53ECrJS6_Bgr5kQnY_eawTZMvEJVpuA-iJEw5t5SqwwDt0Yx_9_VBy2CneLMiHs_qUvKpMdw10-aNEvbgN473do5390Cs7hBr5WB2KWFJurY7yNC9xCWpKiUSGGirTUku3BBOGZ1SXnMWqzLRINDM8oVblmkvK0k0YVNPK3AWSpzTlihrFlc0k8lHLcxtLq0SeiVSZAKJVtxbapz13lZsU7fInyoujnZMXhUNC4ZEQwLO-yKzL-fE34w3Xib2h77EAtlbYKbxXWBRIpwRzO388gEf9ZxzP7pBGVmbaoE3ERIqOlIkA7nSY6_-N1AHZZJQF8LwH4W81dMC-UMN7_2R9H67ia97FdG7BoJ435gHyrlo99IPrO9PMJVc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+and+Local+Surrogate-Assisted+Differential+Evolution+for+Expensive+Constrained+Optimization+Problems+With+Inequality+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Yong&rft.au=Da-Qing%2C+Yin&rft.au=Yang%2C+Shengxiang&rft.au=Sun%2C+Guangyong&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=49&rft.issue=5&rft.spage=1642&rft_id=info:doi/10.1109%2FTCYB.2018.2809430&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |