hvEEGNet: a novel deep learning model for high-fidelity EEG reconstruction

Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applicatio...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 18; p. 1459970
Main Authors Cisotto, Giulia, Zancanaro, Alberto, Zoppis, Italo F., Manzoni, Sara L.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 20.12.2024
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2024.1459970

Cover

Abstract Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces. We analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects). We show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before. Thus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling.
AbstractList Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces. We analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects). We show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before. Thus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling.
Introduction: Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.
IntroductionModeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.MethodsWe analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects).ResultsWe show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before.DiscussionThus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling.
Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.IntroductionModeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.We analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects).MethodsWe analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects).We show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before.ResultsWe show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before.Thus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling.DiscussionThus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling.
Author Zoppis, Italo F.
Manzoni, Sara L.
Zancanaro, Alberto
Cisotto, Giulia
Author_xml – sequence: 1
  givenname: Giulia
  surname: Cisotto
  fullname: Cisotto, Giulia
– sequence: 2
  givenname: Alberto
  surname: Zancanaro
  fullname: Zancanaro, Alberto
– sequence: 3
  givenname: Italo F.
  surname: Zoppis
  fullname: Zoppis, Italo F.
– sequence: 4
  givenname: Sara L.
  surname: Manzoni
  fullname: Manzoni, Sara L.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39759760$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtvGyEURlGVqnm0f6CLaqRuuhmHxwyP7qrITRNFzSZdIwYuNtYYXJiJlH9fHLtRlBVwORzdy3eOTmKKgNBngheMSXXpY4h-QTHtFqTrlRL4HTojnNO2J4qfvNqfovNSNhhzynvxAZ0yJXolOD5Dt-vH5fL6N0zfG9PE9Ahj4wB2zQgmV_2q2SZXaz7lZh1W69aHegzTU1NfNRlsimXKs51Cih_Re2_GAp-O6wX683P5cPWrvbu_vrn6cddapujUckUEwyA96VwnhcVKCsf6QTJKwBJV7zrvB4cHRQfJpaDEUQBFu4EIUJ5doJuD1yWz0bsctiY_6WSCfi6kvNImT8GOoK0gIOrY1hvWGSMHwXuGq1EwR4wz1fXt4Nrl9HeGMultKBbG0URIc9GM9ERKzDiv6Nc36CbNOdZJ9xTHQjGOK_XlSM3DFtxLe_9_vAL0ANicSsngXxCC9T5W_Ryr3seqj7GyfzI3kv8
Cites_doi 10.1109/T-AFFC.2011.15
10.1093/cercor/bhac525
10.3390/fi13050103
10.1016/j.eswa.2012.05.012
10.1111/coin.12146
10.1109/CIBCB49929.2021.9562821
10.1038/s41598-019-43594-9
10.1142/S012906572050029X
10.1109/SMC53654.2022.9945517
10.1016/j.compbiomed.2022.106088
10.1109/ICASSP39728.2021.9414749
10.2139/ssrn.4199295
10.1088/1741-2552/ac42b5
10.1016/j.neuroimage.2007.01.051
10.3390/sym11111350
10.1002/mrm.29014
10.3390/app11125320
10.48550/arXiv.1312.6114
10.1109/TNNLS.2018.2789927
10.1080/24751839.2019.1565653
10.1109/TBME.2003.809476
10.1109/THMS.2021.3137035
10.1016/0020-7101(85)90084-4
10.1016/j.bspc.2023.105916
10.1145/3439950
10.1109/ACCESS.2019.2941867
10.1088/1741-2552/aab2f2
10.3390/s23084112
10.1109/GLOBECOM54140.2023.10437773
10.1016/j.patrec.2023.05.012
10.1002/hbm.23730
10.1561/9781680836233
10.1016/j.neuroimage.2019.05.026
10.1109/TAU.1967.1161901
10.1088/1741-2552/aace8c
10.1016/j.jneumeth.2020.109037
10.1371/journal.pone.0162657
10.1016/j.procs.2023.08.183
10.1007/978-3-031-62753-8_7
10.1097/WNP.0b013e3181f534f4
10.1016/j.ijmedinf.2021.104510
10.5555/1953048.2078195
10.1016/j.knosys.2020.106405
10.1007/s00034-022-02071-x
10.1080/01621459.2017.1285773
10.1088/1741-2552/aadea0
10.1109/ICDCSW.2011.20
10.1109/TIT.1967.1053964
10.3389/fnsys.2020.00043
10.1016/B978-0-08-051584-7.50016-4
10.1007/s00521-019-04288-5
10.1109/TAMD.2015.2431497
10.1126/science.1099745
10.1109/JSEN.2019.2906572
10.1016/j.compbiomed.2019.05.025
ContentType Journal Article
Copyright Copyright © 2024 Cisotto, Zancanaro, Zoppis and Manzoni.
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2024 Cisotto, Zancanaro, Zoppis and Manzoni.
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOA
DOI 10.3389/fninf.2024.1459970
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
Biological Sciences
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_c71e7006cfa34aa8b7653072173d1ada
39759760
10_3389_fninf_2024_1459970
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c392t-691730e8f14d487c0987d35b8321ec1930e4ffbd0b92b868721d2ee924b17e9f3
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 01:26:56 EDT 2025
Thu Sep 04 22:59:04 EDT 2025
Fri Jul 25 11:41:14 EDT 2025
Tue Jan 07 01:32:10 EST 2025
Tue Jul 01 01:13:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords motor imagery
VAE
variational autoencoder
EEG
latent representation
Language English
License Copyright © 2024 Cisotto, Zancanaro, Zoppis and Manzoni.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-691730e8f14d487c0987d35b8321ec1930e4ffbd0b92b868721d2ee924b17e9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2024.1459970
PMID 39759760
PQID 3156079360
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_c71e7006cfa34aa8b7653072173d1ada
proquest_miscellaneous_3151880366
proquest_journals_3156079360
pubmed_primary_39759760
crossref_primary_10_3389_fninf_2024_1459970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-20
PublicationDateYYYYMMDD 2024-12-20
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-20
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2024
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Kingma (B28) 2019
Satopaa (B53) 2011
Ofner (B42) 2019; 9
Dong (B18) 2018; 34
Khan (B26) 2023; 23
Liu (B36) 2020; 14
Cabitza (B11) 2021; 153
Cover (B15) 1967; 13
Lotte (B37) 2018; 15
Pion-Tonachini (B46) 2019; 198
Buzsaki (B10) 2004; 304
Sakhavi (B51) 2018; 29
Pang (B44) 2021; 54
Li (B34) 2019; 7
Cuturi (B16) 2017
Zancanaro (B64)
Bankó (B4) 2012; 39
Bressan (B9) 2021; 13
Jayaram (B25) 2018; 15
Schirrmeister (B54) 2017; 38
Gyori (B23) 2022; 87
Durka (B19) 2003; 50
Huang (B24) 1985; 17
Zheng (B65) 2015; 7
Prost (B47) 2022
Bethge (B6) 2022
Pedregosa (B45) 2011; 12
Koelstra (B30) 2012; 3
Dasan (B17) 2022; 41
Wambura (B58) 2020; 206
Lerogeron (B32); 222
Li (B35) 2022
Riyad (B50) 2021; 353
Zhou (B67) 2017
Xing (B61) 2020
Blankertz (B7) 2007; 37
Lerogeron (B33); 171
Munari (B41) 2023
Qiu (B48) 2019; 11
Ortiz (B43) 2020; 30
Lawhern (B31) 2016; 15
Anders (B3) 2022; 150
Muharemi (B40) 2019; 3
Kodama (B29) 2023; 33
Zancanaro (B62)
Maghoumi (B39) 2021
Zhou (B66) 2016; 11
Emami (B20) 2019; 110
Gabardi (B21) 2023
Razavi (B49) 2019
Beraldo (B5) 2022; 52
Cisotto (B13) 2021
Cisotto (B14) 2015
Straetmans (B55) 2022; 18
Kingma (B27) 2013
Al-amri (B1) 2021; 11
Vahdat (B57) 2021
Blei (B8) 2017; 112
Sakoe (B52) 1978; 26
Al-Marridi (B2) 2018
Welch (B60) 1967; 15
Zancanaro (B63) 2021
Gao (B22) 2010; 27
Maghoumi (B38) 2020
Chen (B12) 2019; 19
Teplan (B56) 2002
Watorek (B59) 2024; 91
References_xml – volume: 3
  start-page: 18
  year: 2012
  ident: B30
  article-title: Deap: A database for emotion analysis; using physiological signals
  publication-title: IEEE Transact. Affect. Comp
  doi: 10.1109/T-AFFC.2011.15
– volume: 33
  start-page: 6573
  year: 2023
  ident: B29
  article-title: Thirty-minute motor imagery exercise aided by EEG sensorimotor rhythm neurofeedback enhances morphing of sensorimotor cortices: a double-blind sham-controlled study
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhac525
– year: 2021
  ident: B57
  article-title: “NVAE: a deep hierarchical variational autoencoder,”
  publication-title: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020
– volume: 13
  start-page: 103
  year: 2021
  ident: B9
  article-title: Deep learning-based classification of fine hand movements from low frequency EEG
  publication-title: Fut. Int
  doi: 10.3390/fi13050103
– volume: 39
  start-page: 12814
  year: 2012
  ident: B4
  article-title: Correlation based dynamic time warping of multivariate time series
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2012.05.012
– start-page: 370
  volume-title: 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC)
  year: 2018
  ident: B2
  article-title: “Convolutional autoencoder approach for EEG compression and reconstruction in m-health systems,”
– volume: 34
  start-page: 261
  year: 2018
  ident: B18
  article-title: Threaded ensembles of autoencoders for stream learning
  publication-title: Comp. Intell
  doi: 10.1111/coin.12146
– start-page: 1
  volume-title: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)
  year: 2021
  ident: B63
  article-title: “CNN-based approaches for cross-subject classification in motor imagery: from the state-ofthe-art to DynamicNet,”
  doi: 10.1109/CIBCB49929.2021.9562821
– volume: 9
  start-page: 7134
  year: 2019
  ident: B42
  article-title: Attempted arm and hand movements can be decoded from low-frequency eeg from persons with spinal cord injury
  publication-title: Sci. Rep
  doi: 10.1038/s41598-019-43594-9
– volume: 30
  start-page: 2050029
  year: 2020
  ident: B43
  article-title: Dyslexia diagnosis by eeg temporal and spectral descriptors: an anomaly detection approach
  publication-title: Int. J. Neural Syst
  doi: 10.1142/S012906572050029X
– start-page: 1
  year: 2002
  ident: B56
  article-title: “Fundamentals of EEG measurement,”
  publication-title: IEEE Measurement Science Review, Vol. 2
– start-page: 3150
  volume-title: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
  year: 2022
  ident: B6
  article-title: “EEG2Vec: learning affective EEG representations via variational autoencoders,”
  doi: 10.1109/SMC53654.2022.9945517
– volume: 150
  start-page: 106088
  year: 2022
  ident: B3
  article-title: Wearable electroencephalography and multi-modal mental state classification: a systematic literature review
  publication-title: Comp. Biol. Med
  doi: 10.1016/j.compbiomed.2022.106088
– start-page: 1075
  volume-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
  year: 2021
  ident: B13
  article-title: “REPAC: reliable estimation of phase-amplitude coupling in brain networks,”
  doi: 10.1109/ICASSP39728.2021.9414749
– year: 2022
  ident: B35
  publication-title: Constructing Large-Scale Real-World Benchmark Datasets for AIOPS
– year: 2022
  ident: B47
  article-title: Diverse super-resolution with pretrained deep hiererarchical vaes
  publication-title: arXiv
  doi: 10.2139/ssrn.4199295
– volume: 18
  start-page: 066054
  year: 2022
  ident: B55
  article-title: Neural tracking to go: auditory attention decoding and saliency detection with mobile EEG
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/ac42b5
– volume: 37
  start-page: 539
  year: 2007
  ident: B7
  article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.01.051
– volume: 11
  start-page: 1350
  year: 2019
  ident: B48
  article-title: KPI-TSAD: a time-series anomaly detector for KPI monitoring in cloud applications
  publication-title: Symmetry
  doi: 10.3390/sym11111350
– volume: 87
  start-page: 932
  year: 2022
  ident: B23
  article-title: Training data distribution significantly impacts the estimation of tissue microstructure with machine learning
  publication-title: Magn. Reson. Med
  doi: 10.1002/mrm.29014
– start-page: 1
  volume-title: Proceedings of 5th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems (Wireless VITAE)
  year: 2015
  ident: B14
  article-title: “Real-time detection of EEG electrode displacement for brain-computer interface applications,”
– volume: 11
  start-page: 5320
  year: 2021
  ident: B1
  article-title: A review of machine learning and deep learning techniques for anomaly detection in IoT data
  publication-title: Appl. Sci
  doi: 10.3390/app11125320
– year: 2013
  ident: B27
  article-title: Auto-encoding variational bayes
  publication-title: arXiv
  doi: 10.48550/arXiv.1312.6114
– volume-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019
  year: 2019
  ident: B49
  article-title: “Generating diverse highfidelity images with VQ-VAE-2,”
– volume: 29
  start-page: 5619
  year: 2018
  ident: B51
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Transact. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2018.2789927
– volume: 3
  start-page: 294
  year: 2019
  ident: B40
  article-title: Machine learning approaches for anomaly detection of water quality on a real-world data set
  publication-title: J. Inf. Telecommun
  doi: 10.1080/24751839.2019.1565653
– volume: 50
  start-page: 526
  year: 2003
  ident: B19
  article-title: A simple system for detection of EEG artifacts in polysomnographic recordings
  publication-title: IEEE Transact. Biomed. Eng
  doi: 10.1109/TBME.2003.809476
– start-page: 28
  volume-title: CEUR Workshop Proceedings, Vol. 3576 (CEUR-WS)
  year: 2023
  ident: B21
  article-title: “A multi-artifact EEG denoising by frequency-based deep learning,”
– volume: 52
  start-page: 400
  year: 2022
  ident: B5
  article-title: Shared intelligence for robot teleoperation via BMI
  publication-title: IEEE Transact. Hum. Mach. Syst
  doi: 10.1109/THMS.2021.3137035
– volume: 17
  start-page: 135
  year: 1985
  ident: B24
  article-title: EEG waveform analysis by means of dynamic time-warping
  publication-title: Int. J. Biomed. Comput
  doi: 10.1016/0020-7101(85)90084-4
– start-page: 213
  year: 2021
  ident: B39
  article-title: “DeepNAG: deep non-adversarial gesture generation,”
  publication-title: 26th International Conference on Intelligent User Interfaces
– volume: 91
  start-page: 105916
  year: 2024
  ident: B59
  article-title: Multifractal organization of eeg signals in multiple sclerosis
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.105916
– volume: 54
  start-page: 3439950
  year: 2021
  ident: B44
  article-title: Deep learning for anomaly detection: a review
  publication-title: ACM Comput. Surv
  doi: 10.1145/3439950
– volume: 7
  start-page: 132720
  year: 2019
  ident: B34
  article-title: Densely feature fusion based on convolutional neural networks for motor imagery EEG classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2941867
– volume: 15
  start-page: 031005
  year: 2018
  ident: B37
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aab2f2
– volume: 23
  start-page: 4112
  year: 2023
  ident: B26
  article-title: A shallow autoencoder framework for epileptic seizure detection in eeg signals
  publication-title: Sensors
  doi: 10.3390/s23084112
– volume-title: IEEE Global Communications Conference, GLOBECOM
  year: 2023
  ident: B41
  article-title: “Local or edge/cloud processing for data freshness,”
  doi: 10.1109/GLOBECOM54140.2023.10437773
– volume: 171
  start-page: 162
  ident: B33
  article-title: Approximating dynamic time warping with a convolutional neural network on eeg data
  publication-title: Pattern Recognit. Lett
  doi: 10.1016/j.patrec.2023.05.012
– volume: 38
  start-page: 5391
  year: 2017
  ident: B54
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– year: 2019
  ident: B28
  article-title: An introduction to variational autoencoders
  publication-title: arXiv
  doi: 10.1561/9781680836233
– volume: 198
  start-page: 181
  year: 2019
  ident: B46
  article-title: ICLabel: an automated electroencephalographic independent component classifier, dataset, and website
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.026
– volume: 15
  start-page: 70
  year: 1967
  ident: B60
  article-title: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms
  publication-title: IEEE Transact. Audio Electroacoust
  doi: 10.1109/TAU.1967.1161901
– volume: 15
  start-page: aace8c
  year: 2016
  ident: B31
  article-title: EEGNet: a compact convolutional network for EEG-based Brain-Computer Interfaces
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 353
  start-page: 109037
  year: 2021
  ident: B50
  article-title: MI-EEGNET: a novel convolutional neural network for motor imagery classification
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.109037
– start-page: 245
  volume-title: Proceedings of the 9th International Conference on Information and Communication Technologies for Ageing Well and e-Health - Volume 1: ICT4AWE, INSTICC
  ident: B64
  article-title: “vEEGNet: a new deep learning model to classify and generate EEG,”
– volume: 11
  start-page: 0162657
  year: 2016
  ident: B66
  article-title: A fully automated trial selection method for optimization of motor imagery based brain-computer interface
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0162657
– volume-title: Proceedings of the 34th International Conference on Machine Learning (ICML)
  year: 2017
  ident: B16
  article-title: “Soft-DTW: a differentiable loss function for time-series,”
– volume: 222
  start-page: 448
  ident: B32
  article-title: Learning an autoencoder to compress EEG signals via a neural network based approximation of DTW
  publication-title: Proc. Comp. Sci
  doi: 10.1016/j.procs.2023.08.183
– volume-title: Springer Communications in Computer and Information Science Series
  ident: B62
  article-title: “vEEGNet: learning latent representations to reconstruct EEG raw data via variational autoencoders,”
  doi: 10.1007/978-3-031-62753-8_7
– volume: 27
  start-page: 312
  year: 2010
  ident: B22
  article-title: Automatic removal of various artifacts from EEG signals using combined methods
  publication-title: J. Clin. Neurophysiol
  doi: 10.1097/WNP.0b013e3181f534f4
– volume: 153
  start-page: 104510
  year: 2021
  ident: B11
  article-title: The need to separate the wheat from the chaff in medical informatics: introducing a comprehensive checklist for the (self)-assessment of medical AI studies
  publication-title: Int. J. Med. Inform
  doi: 10.1016/j.ijmedinf.2021.104510
– volume: 12
  start-page: 2825
  year: 2011
  ident: B45
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res
  doi: 10.5555/1953048.2078195
– volume: 206
  start-page: 106405
  year: 2020
  ident: B58
  article-title: Long-range forecasting in feature-evolving data streams
  publication-title: Knowl. Based Syst
  doi: 10.1016/j.knosys.2020.106405
– volume: 41
  start-page: 6152
  year: 2022
  ident: B17
  article-title: Joint ECG-EMG-EEG signal compression and reconstruction with incremental multimodal autoencoder approach
  publication-title: Circ. Syst. Signal Process
  doi: 10.1007/s00034-022-02071-x
– volume: 112
  start-page: 859
  year: 2017
  ident: B8
  article-title: Variational inference: a review for statisticians
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.2017.1285773
– volume: 15
  start-page: 066011
  year: 2018
  ident: B25
  article-title: Moabb: trustworthy algorithm benchmarking for bcis
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aadea0
– start-page: 166
  volume-title: 2011 31st International Conference on Distributed Computing Systems Workshops
  year: 2011
  ident: B53
  article-title: “Finding a “kneedle? in a haystack: detecting knee points in system behavior,”
  doi: 10.1109/ICDCSW.2011.20
– volume: 13
  start-page: 21
  year: 1967
  ident: B15
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Transact. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 14
  start-page: 43
  year: 2020
  ident: B36
  article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder
  publication-title: Front. Syst. Neurosci
  doi: 10.3389/fnsys.2020.00043
– volume: 26
  start-page: 159
  year: 1978
  ident: B52
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Trans. Acoust
  doi: 10.1016/B978-0-08-051584-7.50016-4
– year: 2020
  ident: B61
  article-title: Identifying data streams anomalies by evolving spiking restricted boltzmann machines
  publication-title: Neural Comp. Appl
  doi: 10.1007/s00521-019-04288-5
– volume: 7
  start-page: 162
  year: 2015
  ident: B65
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Ment. Dev
  doi: 10.1109/TAMD.2015.2431497
– start-page: 665
  year: 2017
  ident: B67
  article-title: “Anomaly detection with robust deep autoencoders,”
– volume: 304
  start-page: 1926
  year: 2004
  ident: B10
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 19
  start-page: 5353
  year: 2019
  ident: B12
  article-title: Removal of muscle artifacts from the EEG: a review and recommendations
  publication-title: IEEE Sens. J
  doi: 10.1109/JSEN.2019.2906572
– volume: 110
  start-page: 227
  year: 2019
  ident: B20
  article-title: Autoencoding of long-term scalp electroencephalogram to detect epileptic seizure for diagnosis support system
  publication-title: Comput. Biol. Med
  doi: 10.1016/j.compbiomed.2019.05.025
– volume-title: Deep Recurrent Networks for Gesture Recognition and Synthesis
  year: 2020
  ident: B38
SSID ssj0062657
Score 2.367327
Snippet Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in...
Introduction: Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches....
IntroductionModeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches....
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1459970
SubjectTerms Accuracy
Classification
Convulsions & seizures
Datasets
Deep learning
EEG
Electrocardiography
Electroencephalography
Epilepsy
latent representation
motor imagery
Neural networks
VAE
variational autoencoder
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA3iyo34dnwRQdxIMZ20SeNOZVQEXSm4C3nc6EI7A46Cf--9aWdwI27ctilNz83jnDQ5l7Ej6UpfJpDI3JwsqhhD4YLWRWo8xOCU147WIe_u1c1jdftUP_1I9UV7wjp74A6406BL0Ng0QnKycq7xWtWSTL20jKWLmRoJI2ZiqhuDkaXXujsigxLMnKYWw4VicFjhyFAbQ6mJf0xD2a3_d4qZp5qrFbbcc0R-3tVtlS1Au8bWz1vUx29f_JjnXZt5OXyd3b58jkbX9zA9446340945RFgwvtsEM88p7rhSE05ORMXiWytkHlzfIpnNTx3kN1gj1ejh8ubos-PUARkNdNCodSSAppUVhF1RxCm0VHWnpIPQUBmJqBKyUfhzdA3qkHQ4hAAFZcvNZgkN9liO25hm_EgUgOJyJwmUzBjkg-pkcpFmbyO9YCdzOCyk84Gw6J8IHBtBtcSuLYHd8AuCNF5SbKwzhcwsLYPrP0rsAO2N4uH7fvVu5V08BuHFIXvOJzfxh5BvzlcC-OPXIZM5qRSA7bVxXFeE2RfqKCU2PmPGu6yJfpq2twyFHtsEcMF-0hRpv4gt8Zvpy3i1w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7YULAsojUJCREBcU1VkndoJUVS3aUlVihRCVerP8GJcDJAsslfrvO-NNFi5wzUvJjD35Pj--D-C1cpWvEipCbk6VdYyhdMGYMrUeY3DaG8fjkB-X-uyiPr9sLndgOe2F4WWVU03MhToOgcfIDxRv-aXGpOXR6kfJrlE8uzpZaLjRWiEeZomxO7BLJbmRM9g9WSw_fZ5qM6H3xmy2zhA16w5ST2kkkjivqWI0XceWxX_9nrKK_7-hZ_4Fnd6HeyN2FMebZD-AHewfwt5xT7z5-414I_JqzjxMvgfnX68Xiw9LXL8TTvTDNX4TEXElRpeIK5EtcARBVsGKxWViuStC5ILuEpklb5VlH8HF6eLL-7Ny9E0oA6GddamJgimJbarqSHwkyK41UTWeTYkwEGKTWKfko_Td3Le6JRIY54jExHxlsEvqMcz6ocenIIJMLSYGeYbFwrou-ZBapV1UyZvYFPB2CpddbeQxLNEKDq7NwbUcXDsGt4ATjuj2Spa2zgeGn1d27Ck2mAoNpSokp2rnWm90o1jFzahYuegK2J_yYcf-9sv-aR0FvNqepp7C0x-ux-F3vobF55TWBTzZ5HH7JoTKiFlp-ez_D38Od_l7eDnLXO7DjBKBLwiUrP3LsaXdAjGb4PA
  priority: 102
  providerName: ProQuest
Title hvEEGNet: a novel deep learning model for high-fidelity EEG reconstruction
URI https://www.ncbi.nlm.nih.gov/pubmed/39759760
https://www.proquest.com/docview/3156079360
https://www.proquest.com/docview/3151880366
https://doaj.org/article/c71e7006cfa34aa8b7653072173d1ada
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0huHCp2kLbpbBypYpLlTZZJ3aCVFVQLSAkVgh1pb1Z_hjDAbJAt6j8-854s5EqlVsvOcS2ksx44vf88Qbgo7SFKyJKQm5WZmUIPrNe6yzWDoO3ymnL85DnE3U6Lc9m1WwNVumOOgP-_Ce143xS04ebz7_vn75RwH9lxknj7ZfYUjFRvVFJcV81jSYKv5HWi3grX9mvKhB2r_Ty4Mwz7f4anJKG__PAMw1Axy_hRYccxeHS1a9gDdvXsHXYEmu-fRL7Iu3lTJPkW3B2_Tgen0xwcSCsaOePeCMC4p3ockRciZQARxBgFaxXnEUWuyI8LqiVSBy515Xdhunx-Mf306zLmpB5wjqLTBEBkznWsSgDsRGfN7UOsnKckgg94bUcyxhdyF0zcrWqiQKGESLxMFdobKJ8A-vtvMV3IHwea4wM8TRLhTVNdD7WUtkgo9OhGsCnlbnM3VIcwxCpYOOaZFzDxjWdcQdwxBbta7Kwdboxf7gyXZwYrwvU5CofrSytrZ1WlWQNNy1DYYMdwO7KH2bVWYzk4-D0o1H0jA99McUJL37YFue_Uh2WnpNKDeDt0o_9mxAmI16l8p3_8YbvYZO_mre8jPJdWCd34R4Bl4UbwsbReHJxOUzEn64ns2KYeugffZzu7w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0q0wVsEFAegQJGAjYoahIndoJUoRamTF8jhFqpO-NnWbTJQIei_hzfxr2eZGADu27zUnLvtX2OY58D8JLr3OTBc0RumqelczbVVso01MY7q4WRmuYhD6diclzunVQnK_Br2AtDyyqHPjF21K6zNEe-wWnLLxaTyN7NvqXkGkV_VwcLDd1bK7jNKDHWb-zY91c_kcJdbO5-wHy_Koqd8dH7Sdq7DKQWscE8FUhYeObrkJcO0bvNkIU7Xhmy8PEW8U3myxCMy0xTmFrUSJlc4T3yFpNL3wSOz70BqyVNoIxgdXs8_fR5GAuQLVRysVUHqWCzEVosGySlRYk9VNU0ZJH813AYXQP-DXXjkLdzB273WJVtLYrrLqz49h6sbbXI08-v2GsWV4_Gafk12Pt6OR5_nPr5W6ZZ2136M-a8n7HeleKURcsdhhCZkUJyGkheCxkAw7tYZOVLJdv7cHwtEXwAo7Zr_SNgNgu1DwQqJYmTNU0wNtRcaMeDka5K4M0QLjVbyHEopDEUXBWDqyi4qg9uAtsU0eWVJKUdD3TfT1XfMpWVuZeYKhs0L7WujRQVJ9U4yV2unU5gfciH6tv3hfpTjQm8WJ7Glkm_W3Trux_xGhK740Ik8HCRx-WbIApEJieyx_9_-HO4OTk6PFAHu9P9J3CLvo2W0hTZOowwKf4pAqK5edZXHYMv113ovwEFlxzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJcEFAeKQWMBFxQtEmcxAlShVq6Sx-wqhCVenP9LAeaLHQp6l_kVzHjdRZxgFuviW0lM2P7-_z4BuAFV7nOveOI3BRPS2tNqowQqW-0s0bVWihah_w4rfeOy4OT6mQFfg13YehY5TAmhoHa9obWyEecrvxiMNXZyMdjEUe7k7ezbyllkKKd1iGdhoppFuxWkBuLlzwO3dVPpHMXW_u76PuXRTEZf363l8aMA6lBnDBPayQvPHONz0uLSN5kyMgtrzSl83EGsU7mSu-1zXRb6KZukD7ZwjnkMDoXrvUc270BawJnfSSCazvj6dGnYV5A5lCJxbUdpIXtyHcYQkhQixJHqworZH9NjSGDwL9hb5j-JnfgdsStbHsRaHdhxXX3YH27Q85-fsVesXCSNCzRr8PBl8vx-P3Uzd8wxbr-0n1l1rkZixkqzlhIv8MQLjNSS049SW0hG2BYiwWGvlS1vQ_H12LBB7Da9Z17BMxkvnGeAKYgobK29dr4htfKcq-FrRJ4PZhLzhbSHBIpDRlXBuNKMq6Mxk1ghyy6LEmy2uFB__1Mxl4qjcidQFcZr3ipVKNFXXFSkBPc5sqqBDYHf8jY1y_kn8hM4PnyNfZS2npRnet_hDIkfMfrOoGHCz8uvwQRIbK6Otv4f-PP4CYGvPywPz18DLfo1-hUTZFtwir6xD1BbDTXT2PQMTi97jj_DWNgIQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=hvEEGNet%3A+a+novel+deep+learning+model+for+high-fidelity+EEG+reconstruction&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Giulia+Cisotto&rft.au=Giulia+Cisotto&rft.au=Alberto+Zancanaro&rft.au=Italo+F.+Zoppis&rft.date=2024-12-20&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=18&rft_id=info:doi/10.3389%2Ffninf.2024.1459970&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c71e7006cfa34aa8b7653072173d1ada
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon