hvEEGNet: a novel deep learning model for high-fidelity EEG reconstruction
Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applicatio...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 18; p. 1459970 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
20.12.2024
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5196 1662-5196 |
DOI | 10.3389/fninf.2024.1459970 |
Cover
Abstract | Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.
We analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects).
We show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before.
Thus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling. |
---|---|
AbstractList | Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.
We analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects).
We show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before.
Thus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling. Introduction: Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces. IntroductionModeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.MethodsWe analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects).ResultsWe show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before.DiscussionThus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling. Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.IntroductionModeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in this work, we targeted our efforts to the high-fidelity reconstruction of this type of data, as this is of key relevance for several applications such as classification, anomaly detection, automatic labeling, and brain-computer interfaces.We analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects).MethodsWe analyzed the most recent works finding that high-fidelity reconstruction is seriously challenged by the complex dynamics of the EEG signals and the large inter-subject variability. So far, previous works provided good results in either high-fidelity reconstruction of single-channel signals, or poor-quality reconstruction of multi-channel datasets. Therefore, in this paper, we present a novel deep learning model, called hvEEGNet, designed as a hierarchical variational autoencoder and trained with a new loss function. We tested it on the benchmark Dataset 2a (including 22-channel EEG data from 9 subjects).We show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before.ResultsWe show that it is able to reconstruct all EEG channels with high-fidelity, fastly (in a few tens of epochs), and with high consistency across different subjects. We also investigated the relationship between reconstruction fidelity and the training duration and, using hvEEGNet as an anomaly detector, we spotted some data in the benchmark dataset that are corrupted and never highlighted before.Thus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling.DiscussionThus, hvEEGNet could be very useful in several applications where automatic labeling of large EEG dataset is needed and time-consuming. At the same time, this work opens new fundamental research questions about (1) the effectiveness of deep learning models training (for EEG data) and (2) the need for a systematic characterization of the input EEG data to ensure robust modeling. |
Author | Zoppis, Italo F. Manzoni, Sara L. Zancanaro, Alberto Cisotto, Giulia |
Author_xml | – sequence: 1 givenname: Giulia surname: Cisotto fullname: Cisotto, Giulia – sequence: 2 givenname: Alberto surname: Zancanaro fullname: Zancanaro, Alberto – sequence: 3 givenname: Italo F. surname: Zoppis fullname: Zoppis, Italo F. – sequence: 4 givenname: Sara L. surname: Manzoni fullname: Manzoni, Sara L. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39759760$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtvGyEURlGVqnm0f6CLaqRuuhmHxwyP7qrITRNFzSZdIwYuNtYYXJiJlH9fHLtRlBVwORzdy3eOTmKKgNBngheMSXXpY4h-QTHtFqTrlRL4HTojnNO2J4qfvNqfovNSNhhzynvxAZ0yJXolOD5Dt-vH5fL6N0zfG9PE9Ahj4wB2zQgmV_2q2SZXaz7lZh1W69aHegzTU1NfNRlsimXKs51Cih_Re2_GAp-O6wX683P5cPWrvbu_vrn6cddapujUckUEwyA96VwnhcVKCsf6QTJKwBJV7zrvB4cHRQfJpaDEUQBFu4EIUJ5doJuD1yWz0bsctiY_6WSCfi6kvNImT8GOoK0gIOrY1hvWGSMHwXuGq1EwR4wz1fXt4Nrl9HeGMultKBbG0URIc9GM9ERKzDiv6Nc36CbNOdZJ9xTHQjGOK_XlSM3DFtxLe_9_vAL0ANicSsngXxCC9T5W_Ryr3seqj7GyfzI3kv8 |
Cites_doi | 10.1109/T-AFFC.2011.15 10.1093/cercor/bhac525 10.3390/fi13050103 10.1016/j.eswa.2012.05.012 10.1111/coin.12146 10.1109/CIBCB49929.2021.9562821 10.1038/s41598-019-43594-9 10.1142/S012906572050029X 10.1109/SMC53654.2022.9945517 10.1016/j.compbiomed.2022.106088 10.1109/ICASSP39728.2021.9414749 10.2139/ssrn.4199295 10.1088/1741-2552/ac42b5 10.1016/j.neuroimage.2007.01.051 10.3390/sym11111350 10.1002/mrm.29014 10.3390/app11125320 10.48550/arXiv.1312.6114 10.1109/TNNLS.2018.2789927 10.1080/24751839.2019.1565653 10.1109/TBME.2003.809476 10.1109/THMS.2021.3137035 10.1016/0020-7101(85)90084-4 10.1016/j.bspc.2023.105916 10.1145/3439950 10.1109/ACCESS.2019.2941867 10.1088/1741-2552/aab2f2 10.3390/s23084112 10.1109/GLOBECOM54140.2023.10437773 10.1016/j.patrec.2023.05.012 10.1002/hbm.23730 10.1561/9781680836233 10.1016/j.neuroimage.2019.05.026 10.1109/TAU.1967.1161901 10.1088/1741-2552/aace8c 10.1016/j.jneumeth.2020.109037 10.1371/journal.pone.0162657 10.1016/j.procs.2023.08.183 10.1007/978-3-031-62753-8_7 10.1097/WNP.0b013e3181f534f4 10.1016/j.ijmedinf.2021.104510 10.5555/1953048.2078195 10.1016/j.knosys.2020.106405 10.1007/s00034-022-02071-x 10.1080/01621459.2017.1285773 10.1088/1741-2552/aadea0 10.1109/ICDCSW.2011.20 10.1109/TIT.1967.1053964 10.3389/fnsys.2020.00043 10.1016/B978-0-08-051584-7.50016-4 10.1007/s00521-019-04288-5 10.1109/TAMD.2015.2431497 10.1126/science.1099745 10.1109/JSEN.2019.2906572 10.1016/j.compbiomed.2019.05.025 |
ContentType | Journal Article |
Copyright | Copyright © 2024 Cisotto, Zancanaro, Zoppis and Manzoni. 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Copyright © 2024 Cisotto, Zancanaro, Zoppis and Manzoni. – notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.3389/fninf.2024.1459970 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) Biological Sciences Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5196 |
ExternalDocumentID | oai_doaj_org_article_c71e7006cfa34aa8b7653072173d1ada 39759760 10_3389_fninf_2024_1459970 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c392t-691730e8f14d487c0987d35b8321ec1930e4ffbd0b92b868721d2ee924b17e9f3 |
IEDL.DBID | M48 |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 01:26:56 EDT 2025 Thu Sep 04 22:59:04 EDT 2025 Fri Jul 25 11:41:14 EDT 2025 Tue Jan 07 01:32:10 EST 2025 Tue Jul 01 01:13:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | motor imagery VAE variational autoencoder EEG latent representation |
Language | English |
License | Copyright © 2024 Cisotto, Zancanaro, Zoppis and Manzoni. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c392t-691730e8f14d487c0987d35b8321ec1930e4ffbd0b92b868721d2ee924b17e9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2024.1459970 |
PMID | 39759760 |
PQID | 3156079360 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c71e7006cfa34aa8b7653072173d1ada proquest_miscellaneous_3151880366 proquest_journals_3156079360 pubmed_primary_39759760 crossref_primary_10_3389_fninf_2024_1459970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-20 |
PublicationDateYYYYMMDD | 2024-12-20 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2024 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Kingma (B28) 2019 Satopaa (B53) 2011 Ofner (B42) 2019; 9 Dong (B18) 2018; 34 Khan (B26) 2023; 23 Liu (B36) 2020; 14 Cabitza (B11) 2021; 153 Cover (B15) 1967; 13 Lotte (B37) 2018; 15 Pion-Tonachini (B46) 2019; 198 Buzsaki (B10) 2004; 304 Sakhavi (B51) 2018; 29 Pang (B44) 2021; 54 Li (B34) 2019; 7 Cuturi (B16) 2017 Zancanaro (B64) Bankó (B4) 2012; 39 Bressan (B9) 2021; 13 Jayaram (B25) 2018; 15 Schirrmeister (B54) 2017; 38 Gyori (B23) 2022; 87 Durka (B19) 2003; 50 Huang (B24) 1985; 17 Zheng (B65) 2015; 7 Prost (B47) 2022 Bethge (B6) 2022 Pedregosa (B45) 2011; 12 Koelstra (B30) 2012; 3 Dasan (B17) 2022; 41 Wambura (B58) 2020; 206 Lerogeron (B32); 222 Li (B35) 2022 Riyad (B50) 2021; 353 Zhou (B67) 2017 Xing (B61) 2020 Blankertz (B7) 2007; 37 Lerogeron (B33); 171 Munari (B41) 2023 Qiu (B48) 2019; 11 Ortiz (B43) 2020; 30 Lawhern (B31) 2016; 15 Anders (B3) 2022; 150 Muharemi (B40) 2019; 3 Kodama (B29) 2023; 33 Zancanaro (B62) Maghoumi (B39) 2021 Zhou (B66) 2016; 11 Emami (B20) 2019; 110 Gabardi (B21) 2023 Razavi (B49) 2019 Beraldo (B5) 2022; 52 Cisotto (B13) 2021 Cisotto (B14) 2015 Straetmans (B55) 2022; 18 Kingma (B27) 2013 Al-amri (B1) 2021; 11 Vahdat (B57) 2021 Blei (B8) 2017; 112 Sakoe (B52) 1978; 26 Al-Marridi (B2) 2018 Welch (B60) 1967; 15 Zancanaro (B63) 2021 Gao (B22) 2010; 27 Maghoumi (B38) 2020 Chen (B12) 2019; 19 Teplan (B56) 2002 Watorek (B59) 2024; 91 |
References_xml | – volume: 3 start-page: 18 year: 2012 ident: B30 article-title: Deap: A database for emotion analysis; using physiological signals publication-title: IEEE Transact. Affect. Comp doi: 10.1109/T-AFFC.2011.15 – volume: 33 start-page: 6573 year: 2023 ident: B29 article-title: Thirty-minute motor imagery exercise aided by EEG sensorimotor rhythm neurofeedback enhances morphing of sensorimotor cortices: a double-blind sham-controlled study publication-title: Cereb. Cortex doi: 10.1093/cercor/bhac525 – year: 2021 ident: B57 article-title: “NVAE: a deep hierarchical variational autoencoder,” publication-title: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020 – volume: 13 start-page: 103 year: 2021 ident: B9 article-title: Deep learning-based classification of fine hand movements from low frequency EEG publication-title: Fut. Int doi: 10.3390/fi13050103 – volume: 39 start-page: 12814 year: 2012 ident: B4 article-title: Correlation based dynamic time warping of multivariate time series publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2012.05.012 – start-page: 370 volume-title: 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC) year: 2018 ident: B2 article-title: “Convolutional autoencoder approach for EEG compression and reconstruction in m-health systems,” – volume: 34 start-page: 261 year: 2018 ident: B18 article-title: Threaded ensembles of autoencoders for stream learning publication-title: Comp. Intell doi: 10.1111/coin.12146 – start-page: 1 volume-title: 2021 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) year: 2021 ident: B63 article-title: “CNN-based approaches for cross-subject classification in motor imagery: from the state-ofthe-art to DynamicNet,” doi: 10.1109/CIBCB49929.2021.9562821 – volume: 9 start-page: 7134 year: 2019 ident: B42 article-title: Attempted arm and hand movements can be decoded from low-frequency eeg from persons with spinal cord injury publication-title: Sci. Rep doi: 10.1038/s41598-019-43594-9 – volume: 30 start-page: 2050029 year: 2020 ident: B43 article-title: Dyslexia diagnosis by eeg temporal and spectral descriptors: an anomaly detection approach publication-title: Int. J. Neural Syst doi: 10.1142/S012906572050029X – start-page: 1 year: 2002 ident: B56 article-title: “Fundamentals of EEG measurement,” publication-title: IEEE Measurement Science Review, Vol. 2 – start-page: 3150 volume-title: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC) year: 2022 ident: B6 article-title: “EEG2Vec: learning affective EEG representations via variational autoencoders,” doi: 10.1109/SMC53654.2022.9945517 – volume: 150 start-page: 106088 year: 2022 ident: B3 article-title: Wearable electroencephalography and multi-modal mental state classification: a systematic literature review publication-title: Comp. Biol. Med doi: 10.1016/j.compbiomed.2022.106088 – start-page: 1075 volume-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) year: 2021 ident: B13 article-title: “REPAC: reliable estimation of phase-amplitude coupling in brain networks,” doi: 10.1109/ICASSP39728.2021.9414749 – year: 2022 ident: B35 publication-title: Constructing Large-Scale Real-World Benchmark Datasets for AIOPS – year: 2022 ident: B47 article-title: Diverse super-resolution with pretrained deep hiererarchical vaes publication-title: arXiv doi: 10.2139/ssrn.4199295 – volume: 18 start-page: 066054 year: 2022 ident: B55 article-title: Neural tracking to go: auditory attention decoding and saliency detection with mobile EEG publication-title: J. Neural Eng doi: 10.1088/1741-2552/ac42b5 – volume: 37 start-page: 539 year: 2007 ident: B7 article-title: The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.01.051 – volume: 11 start-page: 1350 year: 2019 ident: B48 article-title: KPI-TSAD: a time-series anomaly detector for KPI monitoring in cloud applications publication-title: Symmetry doi: 10.3390/sym11111350 – volume: 87 start-page: 932 year: 2022 ident: B23 article-title: Training data distribution significantly impacts the estimation of tissue microstructure with machine learning publication-title: Magn. Reson. Med doi: 10.1002/mrm.29014 – start-page: 1 volume-title: Proceedings of 5th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems (Wireless VITAE) year: 2015 ident: B14 article-title: “Real-time detection of EEG electrode displacement for brain-computer interface applications,” – volume: 11 start-page: 5320 year: 2021 ident: B1 article-title: A review of machine learning and deep learning techniques for anomaly detection in IoT data publication-title: Appl. Sci doi: 10.3390/app11125320 – year: 2013 ident: B27 article-title: Auto-encoding variational bayes publication-title: arXiv doi: 10.48550/arXiv.1312.6114 – volume-title: Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019 year: 2019 ident: B49 article-title: “Generating diverse highfidelity images with VQ-VAE-2,” – volume: 29 start-page: 5619 year: 2018 ident: B51 article-title: Learning temporal information for brain-computer interface using convolutional neural networks publication-title: IEEE Transact. Neural Netw. Learn. Syst doi: 10.1109/TNNLS.2018.2789927 – volume: 3 start-page: 294 year: 2019 ident: B40 article-title: Machine learning approaches for anomaly detection of water quality on a real-world data set publication-title: J. Inf. Telecommun doi: 10.1080/24751839.2019.1565653 – volume: 50 start-page: 526 year: 2003 ident: B19 article-title: A simple system for detection of EEG artifacts in polysomnographic recordings publication-title: IEEE Transact. Biomed. Eng doi: 10.1109/TBME.2003.809476 – start-page: 28 volume-title: CEUR Workshop Proceedings, Vol. 3576 (CEUR-WS) year: 2023 ident: B21 article-title: “A multi-artifact EEG denoising by frequency-based deep learning,” – volume: 52 start-page: 400 year: 2022 ident: B5 article-title: Shared intelligence for robot teleoperation via BMI publication-title: IEEE Transact. Hum. Mach. Syst doi: 10.1109/THMS.2021.3137035 – volume: 17 start-page: 135 year: 1985 ident: B24 article-title: EEG waveform analysis by means of dynamic time-warping publication-title: Int. J. Biomed. Comput doi: 10.1016/0020-7101(85)90084-4 – start-page: 213 year: 2021 ident: B39 article-title: “DeepNAG: deep non-adversarial gesture generation,” publication-title: 26th International Conference on Intelligent User Interfaces – volume: 91 start-page: 105916 year: 2024 ident: B59 article-title: Multifractal organization of eeg signals in multiple sclerosis publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.105916 – volume: 54 start-page: 3439950 year: 2021 ident: B44 article-title: Deep learning for anomaly detection: a review publication-title: ACM Comput. Surv doi: 10.1145/3439950 – volume: 7 start-page: 132720 year: 2019 ident: B34 article-title: Densely feature fusion based on convolutional neural networks for motor imagery EEG classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2941867 – volume: 15 start-page: 031005 year: 2018 ident: B37 article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update publication-title: J. Neural Eng doi: 10.1088/1741-2552/aab2f2 – volume: 23 start-page: 4112 year: 2023 ident: B26 article-title: A shallow autoencoder framework for epileptic seizure detection in eeg signals publication-title: Sensors doi: 10.3390/s23084112 – volume-title: IEEE Global Communications Conference, GLOBECOM year: 2023 ident: B41 article-title: “Local or edge/cloud processing for data freshness,” doi: 10.1109/GLOBECOM54140.2023.10437773 – volume: 171 start-page: 162 ident: B33 article-title: Approximating dynamic time warping with a convolutional neural network on eeg data publication-title: Pattern Recognit. Lett doi: 10.1016/j.patrec.2023.05.012 – volume: 38 start-page: 5391 year: 2017 ident: B54 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – year: 2019 ident: B28 article-title: An introduction to variational autoencoders publication-title: arXiv doi: 10.1561/9781680836233 – volume: 198 start-page: 181 year: 2019 ident: B46 article-title: ICLabel: an automated electroencephalographic independent component classifier, dataset, and website publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.026 – volume: 15 start-page: 70 year: 1967 ident: B60 article-title: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms publication-title: IEEE Transact. Audio Electroacoust doi: 10.1109/TAU.1967.1161901 – volume: 15 start-page: aace8c year: 2016 ident: B31 article-title: EEGNet: a compact convolutional network for EEG-based Brain-Computer Interfaces publication-title: J. Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 353 start-page: 109037 year: 2021 ident: B50 article-title: MI-EEGNET: a novel convolutional neural network for motor imagery classification publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.109037 – start-page: 245 volume-title: Proceedings of the 9th International Conference on Information and Communication Technologies for Ageing Well and e-Health - Volume 1: ICT4AWE, INSTICC ident: B64 article-title: “vEEGNet: a new deep learning model to classify and generate EEG,” – volume: 11 start-page: 0162657 year: 2016 ident: B66 article-title: A fully automated trial selection method for optimization of motor imagery based brain-computer interface publication-title: PLoS ONE doi: 10.1371/journal.pone.0162657 – volume-title: Proceedings of the 34th International Conference on Machine Learning (ICML) year: 2017 ident: B16 article-title: “Soft-DTW: a differentiable loss function for time-series,” – volume: 222 start-page: 448 ident: B32 article-title: Learning an autoencoder to compress EEG signals via a neural network based approximation of DTW publication-title: Proc. Comp. Sci doi: 10.1016/j.procs.2023.08.183 – volume-title: Springer Communications in Computer and Information Science Series ident: B62 article-title: “vEEGNet: learning latent representations to reconstruct EEG raw data via variational autoencoders,” doi: 10.1007/978-3-031-62753-8_7 – volume: 27 start-page: 312 year: 2010 ident: B22 article-title: Automatic removal of various artifacts from EEG signals using combined methods publication-title: J. Clin. Neurophysiol doi: 10.1097/WNP.0b013e3181f534f4 – volume: 153 start-page: 104510 year: 2021 ident: B11 article-title: The need to separate the wheat from the chaff in medical informatics: introducing a comprehensive checklist for the (self)-assessment of medical AI studies publication-title: Int. J. Med. Inform doi: 10.1016/j.ijmedinf.2021.104510 – volume: 12 start-page: 2825 year: 2011 ident: B45 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res doi: 10.5555/1953048.2078195 – volume: 206 start-page: 106405 year: 2020 ident: B58 article-title: Long-range forecasting in feature-evolving data streams publication-title: Knowl. Based Syst doi: 10.1016/j.knosys.2020.106405 – volume: 41 start-page: 6152 year: 2022 ident: B17 article-title: Joint ECG-EMG-EEG signal compression and reconstruction with incremental multimodal autoencoder approach publication-title: Circ. Syst. Signal Process doi: 10.1007/s00034-022-02071-x – volume: 112 start-page: 859 year: 2017 ident: B8 article-title: Variational inference: a review for statisticians publication-title: J. Am. Stat. Assoc doi: 10.1080/01621459.2017.1285773 – volume: 15 start-page: 066011 year: 2018 ident: B25 article-title: Moabb: trustworthy algorithm benchmarking for bcis publication-title: J. Neural Eng doi: 10.1088/1741-2552/aadea0 – start-page: 166 volume-title: 2011 31st International Conference on Distributed Computing Systems Workshops year: 2011 ident: B53 article-title: “Finding a “kneedle? in a haystack: detecting knee points in system behavior,” doi: 10.1109/ICDCSW.2011.20 – volume: 13 start-page: 21 year: 1967 ident: B15 article-title: Nearest neighbor pattern classification publication-title: IEEE Transact. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 14 start-page: 43 year: 2020 ident: B36 article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder publication-title: Front. Syst. Neurosci doi: 10.3389/fnsys.2020.00043 – volume: 26 start-page: 159 year: 1978 ident: B52 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Trans. Acoust doi: 10.1016/B978-0-08-051584-7.50016-4 – year: 2020 ident: B61 article-title: Identifying data streams anomalies by evolving spiking restricted boltzmann machines publication-title: Neural Comp. Appl doi: 10.1007/s00521-019-04288-5 – volume: 7 start-page: 162 year: 2015 ident: B65 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Ment. Dev doi: 10.1109/TAMD.2015.2431497 – start-page: 665 year: 2017 ident: B67 article-title: “Anomaly detection with robust deep autoencoders,” – volume: 304 start-page: 1926 year: 2004 ident: B10 article-title: Neuronal oscillations in cortical networks publication-title: Science doi: 10.1126/science.1099745 – volume: 19 start-page: 5353 year: 2019 ident: B12 article-title: Removal of muscle artifacts from the EEG: a review and recommendations publication-title: IEEE Sens. J doi: 10.1109/JSEN.2019.2906572 – volume: 110 start-page: 227 year: 2019 ident: B20 article-title: Autoencoding of long-term scalp electroencephalogram to detect epileptic seizure for diagnosis support system publication-title: Comput. Biol. Med doi: 10.1016/j.compbiomed.2019.05.025 – volume-title: Deep Recurrent Networks for Gesture Recognition and Synthesis year: 2020 ident: B38 |
SSID | ssj0062657 |
Score | 2.367327 |
Snippet | Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches. Particularly, in... Introduction: Modeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches.... IntroductionModeling multi-channel electroencephalographic (EEG) time-series is a challenging tasks, even for the most recent deep learning approaches.... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1459970 |
SubjectTerms | Accuracy Classification Convulsions & seizures Datasets Deep learning EEG Electrocardiography Electroencephalography Epilepsy latent representation motor imagery Neural networks VAE variational autoencoder |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsQwFA3iyo34dnwRQdxIMZ20SeNOZVQEXSm4C3nc6EI7A46Cf--9aWdwI27ctilNz83jnDQ5l7Ej6UpfJpDI3JwsqhhD4YLWRWo8xOCU147WIe_u1c1jdftUP_1I9UV7wjp74A6406BL0Ng0QnKycq7xWtWSTL20jKWLmRoJI2ZiqhuDkaXXujsigxLMnKYWw4VicFjhyFAbQ6mJf0xD2a3_d4qZp5qrFbbcc0R-3tVtlS1Au8bWz1vUx29f_JjnXZt5OXyd3b58jkbX9zA9446340945RFgwvtsEM88p7rhSE05ORMXiWytkHlzfIpnNTx3kN1gj1ejh8ubos-PUARkNdNCodSSAppUVhF1RxCm0VHWnpIPQUBmJqBKyUfhzdA3qkHQ4hAAFZcvNZgkN9liO25hm_EgUgOJyJwmUzBjkg-pkcpFmbyO9YCdzOCyk84Gw6J8IHBtBtcSuLYHd8AuCNF5SbKwzhcwsLYPrP0rsAO2N4uH7fvVu5V08BuHFIXvOJzfxh5BvzlcC-OPXIZM5qRSA7bVxXFeE2RfqKCU2PmPGu6yJfpq2twyFHtsEcMF-0hRpv4gt8Zvpy3i1w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7YULAsojUJCREBcU1VkndoJUVS3aUlVihRCVerP8GJcDJAsslfrvO-NNFi5wzUvJjD35Pj--D-C1cpWvEipCbk6VdYyhdMGYMrUeY3DaG8fjkB-X-uyiPr9sLndgOe2F4WWVU03MhToOgcfIDxRv-aXGpOXR6kfJrlE8uzpZaLjRWiEeZomxO7BLJbmRM9g9WSw_fZ5qM6H3xmy2zhA16w5ST2kkkjivqWI0XceWxX_9nrKK_7-hZ_4Fnd6HeyN2FMebZD-AHewfwt5xT7z5-414I_JqzjxMvgfnX68Xiw9LXL8TTvTDNX4TEXElRpeIK5EtcARBVsGKxWViuStC5ILuEpklb5VlH8HF6eLL-7Ny9E0oA6GddamJgimJbarqSHwkyK41UTWeTYkwEGKTWKfko_Td3Le6JRIY54jExHxlsEvqMcz6ocenIIJMLSYGeYbFwrou-ZBapV1UyZvYFPB2CpddbeQxLNEKDq7NwbUcXDsGt4ATjuj2Spa2zgeGn1d27Ck2mAoNpSokp2rnWm90o1jFzahYuegK2J_yYcf-9sv-aR0FvNqepp7C0x-ux-F3vobF55TWBTzZ5HH7JoTKiFlp-ez_D38Od_l7eDnLXO7DjBKBLwiUrP3LsaXdAjGb4PA priority: 102 providerName: ProQuest |
Title | hvEEGNet: a novel deep learning model for high-fidelity EEG reconstruction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39759760 https://www.proquest.com/docview/3156079360 https://www.proquest.com/docview/3151880366 https://doaj.org/article/c71e7006cfa34aa8b7653072173d1ada |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0huHCp2kLbpbBypYpLlTZZJ3aCVFVQLSAkVgh1pb1Z_hjDAbJAt6j8-854s5EqlVsvOcS2ksx44vf88Qbgo7SFKyJKQm5WZmUIPrNe6yzWDoO3ymnL85DnE3U6Lc9m1WwNVumOOgP-_Ce143xS04ebz7_vn75RwH9lxknj7ZfYUjFRvVFJcV81jSYKv5HWi3grX9mvKhB2r_Ty4Mwz7f4anJKG__PAMw1Axy_hRYccxeHS1a9gDdvXsHXYEmu-fRL7Iu3lTJPkW3B2_Tgen0xwcSCsaOePeCMC4p3ockRciZQARxBgFaxXnEUWuyI8LqiVSBy515Xdhunx-Mf306zLmpB5wjqLTBEBkznWsSgDsRGfN7UOsnKckgg94bUcyxhdyF0zcrWqiQKGESLxMFdobKJ8A-vtvMV3IHwea4wM8TRLhTVNdD7WUtkgo9OhGsCnlbnM3VIcwxCpYOOaZFzDxjWdcQdwxBbta7Kwdboxf7gyXZwYrwvU5CofrSytrZ1WlWQNNy1DYYMdwO7KH2bVWYzk4-D0o1H0jA99McUJL37YFue_Uh2WnpNKDeDt0o_9mxAmI16l8p3_8YbvYZO_mre8jPJdWCd34R4Bl4UbwsbReHJxOUzEn64ns2KYeugffZzu7w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL0q0wVsEFAegQJGAjYoahIndoJUoRamTF8jhFqpO-NnWbTJQIei_hzfxr2eZGADu27zUnLvtX2OY58D8JLr3OTBc0RumqelczbVVso01MY7q4WRmuYhD6diclzunVQnK_Br2AtDyyqHPjF21K6zNEe-wWnLLxaTyN7NvqXkGkV_VwcLDd1bK7jNKDHWb-zY91c_kcJdbO5-wHy_Koqd8dH7Sdq7DKQWscE8FUhYeObrkJcO0bvNkIU7Xhmy8PEW8U3myxCMy0xTmFrUSJlc4T3yFpNL3wSOz70BqyVNoIxgdXs8_fR5GAuQLVRysVUHqWCzEVosGySlRYk9VNU0ZJH813AYXQP-DXXjkLdzB273WJVtLYrrLqz49h6sbbXI08-v2GsWV4_Gafk12Pt6OR5_nPr5W6ZZ2136M-a8n7HeleKURcsdhhCZkUJyGkheCxkAw7tYZOVLJdv7cHwtEXwAo7Zr_SNgNgu1DwQqJYmTNU0wNtRcaMeDka5K4M0QLjVbyHEopDEUXBWDqyi4qg9uAtsU0eWVJKUdD3TfT1XfMpWVuZeYKhs0L7WujRQVJ9U4yV2unU5gfciH6tv3hfpTjQm8WJ7Glkm_W3Trux_xGhK740Ik8HCRx-WbIApEJieyx_9_-HO4OTk6PFAHu9P9J3CLvo2W0hTZOowwKf4pAqK5edZXHYMv113ovwEFlxzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVkJcEFAeKQWMBFxQtEmcxAlShVq6Sx-wqhCVenP9LAeaLHQp6l_kVzHjdRZxgFuviW0lM2P7-_z4BuAFV7nOveOI3BRPS2tNqowQqW-0s0bVWihah_w4rfeOy4OT6mQFfg13YehY5TAmhoHa9obWyEecrvxiMNXZyMdjEUe7k7ezbyllkKKd1iGdhoppFuxWkBuLlzwO3dVPpHMXW_u76PuXRTEZf363l8aMA6lBnDBPayQvPHONz0uLSN5kyMgtrzSl83EGsU7mSu-1zXRb6KZukD7ZwjnkMDoXrvUc270BawJnfSSCazvj6dGnYV5A5lCJxbUdpIXtyHcYQkhQixJHqworZH9NjSGDwL9hb5j-JnfgdsStbHsRaHdhxXX3YH27Q85-fsVesXCSNCzRr8PBl8vx-P3Uzd8wxbr-0n1l1rkZixkqzlhIv8MQLjNSS049SW0hG2BYiwWGvlS1vQ_H12LBB7Da9Z17BMxkvnGeAKYgobK29dr4htfKcq-FrRJ4PZhLzhbSHBIpDRlXBuNKMq6Mxk1ghyy6LEmy2uFB__1Mxl4qjcidQFcZr3ipVKNFXXFSkBPc5sqqBDYHf8jY1y_kn8hM4PnyNfZS2npRnet_hDIkfMfrOoGHCz8uvwQRIbK6Otv4f-PP4CYGvPywPz18DLfo1-hUTZFtwir6xD1BbDTXT2PQMTi97jj_DWNgIQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=hvEEGNet%3A+a+novel+deep+learning+model+for+high-fidelity+EEG+reconstruction&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Giulia+Cisotto&rft.au=Giulia+Cisotto&rft.au=Alberto+Zancanaro&rft.au=Italo+F.+Zoppis&rft.date=2024-12-20&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=18&rft_id=info:doi/10.3389%2Ffninf.2024.1459970&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c71e7006cfa34aa8b7653072173d1ada |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |