Deep Image Deblurring: A Survey

Image deblurring is a classic problem in low-level computer vision with the aim to recover a sharp image from a blurred input image. Advances in deep learning have led to significant progress in solving this problem, and a large number of deblurring networks have been proposed. This paper presents a...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 130; no. 9; pp. 2103 - 2130
Main Authors Zhang, Kaihao, Ren, Wenqi, Luo, Wenhan, Lai, Wei-Sheng, Stenger, Björn, Yang, Ming-Hsuan, Li, Hongdong
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-5691
1573-1405
DOI10.1007/s11263-022-01633-5

Cover

Abstract Image deblurring is a classic problem in low-level computer vision with the aim to recover a sharp image from a blurred input image. Advances in deep learning have led to significant progress in solving this problem, and a large number of deblurring networks have been proposed. This paper presents a comprehensive and timely survey of recently published deep-learning based image deblurring approaches, aiming to serve the community as a useful literature review. We start by discussing common causes of image blur, introduce benchmark datasets and performance metrics, and summarize different problem formulations. Next, we present a taxonomy of methods using convolutional neural networks (CNN) based on architecture, loss function, and application, offering a detailed review and comparison. In addition, we discuss some domain-specific deblurring applications including face images, text, and stereo image pairs. We conclude by discussing key challenges and future research directions.
AbstractList Image deblurring is a classic problem in low-level computer vision with the aim to recover a sharp image from a blurred input image. Advances in deep learning have led to significant progress in solving this problem, and a large number of deblurring networks have been proposed. This paper presents a comprehensive and timely survey of recently published deep-learning based image deblurring approaches, aiming to serve the community as a useful literature review. We start by discussing common causes of image blur, introduce benchmark datasets and performance metrics, and summarize different problem formulations. Next, we present a taxonomy of methods using convolutional neural networks (CNN) based on architecture, loss function, and application, offering a detailed review and comparison. In addition, we discuss some domain-specific deblurring applications including face images, text, and stereo image pairs. We conclude by discussing key challenges and future research directions.
Audience Academic
Author Lai, Wei-Sheng
Ren, Wenqi
Zhang, Kaihao
Luo, Wenhan
Yang, Ming-Hsuan
Li, Hongdong
Stenger, Björn
Author_xml – sequence: 1
  givenname: Kaihao
  surname: Zhang
  fullname: Zhang, Kaihao
  organization: Australian National University
– sequence: 2
  givenname: Wenqi
  surname: Ren
  fullname: Ren, Wenqi
  organization: Sun Yat-sen University
– sequence: 3
  givenname: Wenhan
  surname: Luo
  fullname: Luo, Wenhan
  organization: Sun Yat-sen University
– sequence: 4
  givenname: Wei-Sheng
  surname: Lai
  fullname: Lai, Wei-Sheng
  organization: School of Engineering, University of California at Merced
– sequence: 5
  givenname: Björn
  surname: Stenger
  fullname: Stenger, Björn
  organization: Rakuten Institute of Technology, Rakuten Group Inc
– sequence: 6
  givenname: Ming-Hsuan
  orcidid: 0000-0003-4848-2304
  surname: Yang
  fullname: Yang, Ming-Hsuan
  email: mhyang@ucmerced.edu
  organization: School of Engineering, University of California at Merced
– sequence: 7
  givenname: Hongdong
  surname: Li
  fullname: Li, Hongdong
  organization: Australian National University
BookMark eNp9kM9LwzAUgINMcE7_AS8OPHnofC9pktbb2PwxGAhOzyFtX0fH1s6kFfff21lB5mHkEAjf9x75zlmvrEpi7AphhAD6ziNyJQLgPABUQgTyhPVRahFgCLLH-hBzCKSK8Yyde78CAB5x0WfXU6LtcLaxSxpOKVk3zhXl8n44Hi4a90m7C3aa27Wny997wN4fH94mz8H85Wk2Gc-DVMS8DpS2CWiL3KoIpcozTMI8idFmmMYZWJVlHFNJiSSSirTVkeUh5DLKwjCCSAzYTTd366qPhnxtVlXjynal4RpQ8DCWe2rUUUu7JlOUeVU7m7Yno02Rtknyon0faxQ6lqhkK9weCC1T01e9tI33ZrZ4PWSjjk1d5b2j3KRFbeuiVZwt1gbB7FubrrVpW5uf1mav8n_q1hUb63bHJdFJfrtvTu7vy0esbx0tjxs
CitedBy_id crossref_primary_10_3390_electronics13122265
crossref_primary_10_1007_s11263_024_01987_y
crossref_primary_10_1364_OE_543481
crossref_primary_10_1016_j_cviu_2024_104027
crossref_primary_10_1587_transinf_2024EDL8043
crossref_primary_10_3390_rs15205071
crossref_primary_10_1109_TCI_2023_3281189
crossref_primary_10_1016_j_cam_2024_116423
crossref_primary_10_3390_rs16050874
crossref_primary_10_3390_app13137738
crossref_primary_10_1007_s11760_024_03278_y
crossref_primary_10_1109_TIP_2023_3321515
crossref_primary_10_25130_tjes_31_1_2
crossref_primary_10_1002_mrm_29710
crossref_primary_10_1016_j_asoc_2022_109973
crossref_primary_10_1016_j_neunet_2023_12_003
crossref_primary_10_1142_S0218001425540011
crossref_primary_10_3390_s22186879
crossref_primary_10_1145_3687977
crossref_primary_10_11834_jig_230555
crossref_primary_10_3390_s23052385
crossref_primary_10_3934_era_2025049
crossref_primary_10_1007_s00371_024_03632_8
crossref_primary_10_1016_j_inffus_2025_103036
crossref_primary_10_1109_TIP_2023_3334556
crossref_primary_10_1016_j_compag_2023_107802
crossref_primary_10_3390_s24248020
crossref_primary_10_1016_j_eng_2024_08_013
crossref_primary_10_3390_s24186033
crossref_primary_10_1007_s11036_024_02405_w
crossref_primary_10_1016_j_autcon_2023_105257
crossref_primary_10_1111_cgf_14748
crossref_primary_10_3390_rs17050834
crossref_primary_10_1007_s11760_023_02888_2
crossref_primary_10_1117_1_JEI_33_3_033011
crossref_primary_10_1007_s44196_024_00450_7
crossref_primary_10_1364_PRJ_489989
crossref_primary_10_1080_17499518_2025_2471796
crossref_primary_10_1109_TCSVT_2024_3486756
crossref_primary_10_3390_s23031706
crossref_primary_10_3847_1538_3881_ad6b98
crossref_primary_10_1016_j_displa_2023_102633
crossref_primary_10_1109_TPAMI_2024_3465455
crossref_primary_10_3390_math11102239
crossref_primary_10_3788_CJL240673
crossref_primary_10_1109_TNNLS_2024_3359810
crossref_primary_10_1016_j_engappai_2024_109145
crossref_primary_10_1080_00401706_2023_2271017
crossref_primary_10_1364_OE_527304
crossref_primary_10_1016_j_ymssp_2024_112240
crossref_primary_10_1364_AO_510860
crossref_primary_10_3390_electronics13020404
crossref_primary_10_3390_s24206545
crossref_primary_10_1007_s11263_023_01853_3
crossref_primary_10_1007_s13369_023_07986_4
crossref_primary_10_1117_1_JEI_32_6_063022
crossref_primary_10_1364_OE_469582
crossref_primary_10_3390_s23239462
crossref_primary_10_1016_j_dt_2023_04_007
crossref_primary_10_1007_s11263_024_02198_1
crossref_primary_10_1109_JSEN_2024_3477927
crossref_primary_10_1088_1361_6501_ad91d2
crossref_primary_10_1109_TIP_2024_3501855
crossref_primary_10_1109_TPAMI_2023_3330416
crossref_primary_10_3952_physics_2023_63_3_8
crossref_primary_10_1016_j_commatsci_2025_113725
crossref_primary_10_1002_cpe_8355
crossref_primary_10_1109_JIOT_2022_3175730
crossref_primary_10_1109_TCI_2023_3288335
crossref_primary_10_1007_s11263_024_02148_x
crossref_primary_10_1109_TPAMI_2024_3419007
crossref_primary_10_1088_1361_6560_ad40f8
crossref_primary_10_1016_j_knosys_2023_111156
crossref_primary_10_3390_math11010115
crossref_primary_10_1109_ACCESS_2024_3399230
crossref_primary_10_17311_tas_2024_157_179
crossref_primary_10_3390_jimaging9070133
crossref_primary_10_1007_s11263_023_01978_5
crossref_primary_10_1109_ACCESS_2024_3417814
crossref_primary_10_1109_ACCESS_2025_3536302
crossref_primary_10_1109_TIP_2023_3244417
crossref_primary_10_1109_TCI_2024_3443732
crossref_primary_10_1007_s00530_024_01466_x
crossref_primary_10_1109_TNNLS_2023_3339614
crossref_primary_10_1134_S1054661822030270
crossref_primary_10_1016_j_compag_2023_108413
crossref_primary_10_1016_j_pmcj_2023_101801
crossref_primary_10_1016_j_media_2024_103256
crossref_primary_10_1109_TCSVT_2024_3432612
crossref_primary_10_1109_TGRS_2024_3513640
crossref_primary_10_1016_j_ndteint_2023_102923
crossref_primary_10_1109_JSTARS_2024_3365612
crossref_primary_10_1016_j_cub_2024_11_064
crossref_primary_10_1109_TCSVT_2023_3319330
crossref_primary_10_1007_s11263_023_01883_x
crossref_primary_10_1007_s00371_024_03315_4
crossref_primary_10_1109_TITS_2023_3258634
crossref_primary_10_1016_j_engappai_2024_108524
crossref_primary_10_1016_j_compeleceng_2024_109659
crossref_primary_10_1016_j_engappai_2023_107513
crossref_primary_10_1016_j_infrared_2023_104640
crossref_primary_10_1051_epjpv_2022033
crossref_primary_10_1109_TIM_2023_3343743
crossref_primary_10_3390_drones7020096
crossref_primary_10_1109_TRPMS_2023_3341903
crossref_primary_10_3390_s24154801
crossref_primary_10_7717_peerj_cs_2540
crossref_primary_10_1016_j_eswa_2025_127009
crossref_primary_10_3390_rs16193660
crossref_primary_10_1111_mice_13231
crossref_primary_10_1016_j_jvcir_2024_104065
crossref_primary_10_1089_tmj_2023_0703
crossref_primary_10_1080_13682199_2022_2161996
crossref_primary_10_1007_s00371_023_02771_8
crossref_primary_10_21595_jme_2023_23765
crossref_primary_10_1007_s41095_023_0336_6
crossref_primary_10_1007_s11263_022_01620_w
crossref_primary_10_3233_XST_221335
crossref_primary_10_3389_fphy_2024_1334298
crossref_primary_10_1142_S1793962324500454
crossref_primary_10_1016_j_sigpro_2023_109108
crossref_primary_10_3390_e25101467
crossref_primary_10_1016_j_cviu_2024_104094
crossref_primary_10_1109_JSEN_2024_3404964
crossref_primary_10_1109_TMM_2024_3355630
crossref_primary_10_1016_j_bspc_2024_106918
crossref_primary_10_3390_math11132869
crossref_primary_10_1016_j_eij_2024_100568
crossref_primary_10_1109_TSP_2025_3544463
crossref_primary_10_1109_TIP_2024_3411819
crossref_primary_10_3390_math12010078
crossref_primary_10_3390_s22186923
crossref_primary_10_46842_ipn_cien_v27n1a04
crossref_primary_10_1016_j_eswa_2023_123005
crossref_primary_10_1109_TCI_2024_3354427
crossref_primary_10_3390_a16120574
Cites_doi 10.1109/TIP.2018.2867733
10.1109/TIP.2014.2362059
10.1109/CVPR.2017.300
10.1109/ICCV.2017.34
10.1109/CVPRW.2019.00251
10.1109/CVPR.2019.01125
10.1145/1661412.1618491
10.1007/978-3-030-01249-6_22
10.1007/978-3-642-33712-3_49
10.1109/ICCV.2017.123
10.1109/TIP.2015.2465162
10.1109/CVPRW.2019.00247
10.1109/LSP.2012.2227726
10.1109/CVPR.2019.01048
10.1016/S0734-189X(87)80153-6
10.1007/978-3-319-10584-0_4
10.1109/CVPR.2019.00911
10.1109/CVPR.2016.188
10.1109/ICCV.2017.36
10.1109/ICCPHOT.2018.8368468
10.1109/CVPR.2019.00281
10.1109/CVPR42600.2020.00311
10.1109/TIP.2020.2990354
10.1109/TIP.2012.2191563
10.1109/TIP.2003.818022
10.1109/CVPR.2017.33
10.1007/978-3-319-10602-1_3
10.1109/ISCAS.1999.778770
10.1007/978-3-030-58607-2_7
10.1109/LSP.2019.2947379
10.1109/CVPR42600.2020.00281
10.1109/ICCV.2013.248
10.1109/CVPRW50498.2020.00216
10.1109/ICCV.2019.00567
10.1109/CVPR42600.2020.00328
10.1109/TIP.2005.859389
10.1109/CVPR.2016.90
10.1145/1179352.1141956
10.1109/CVPR.2019.00177
10.1109/CVPR.2017.699
10.1109/ICPR.2010.579
10.1109/CVPR.2017.19
10.1109/CVPR.2017.35
10.1109/AFGR.2002.1004130
10.1109/TNNLS.2020.2968289
10.1109/TIP.2005.859378
10.1109/ICCV.2017.509
10.1007/978-3-319-46454-1_39
10.1109/CVPR42600.2020.00516
10.1109/ICCV.2013.296
10.1111/j.1467-8659.2012.03067.x
10.1109/83.841940
10.1007/978-3-030-58595-2_12
10.1109/CVPR42600.2020.00338
10.1007/s11263-019-01288-9
10.1111/j.1467-8659.2007.01080.x
10.1007/978-3-030-58598-3_41
10.1109/TIP.2012.2192126
10.1109/CVPRW.2018.00118
10.1109/ICCV.2011.6126280
10.5244/C.29.6
10.1109/CVPR.2019.00613
10.1109/TIP.2012.2214050
10.1109/CVPR42600.2020.00340
10.1109/CVPR.2017.632
10.1109/ICCV.2015.425
10.1109/TIP.2020.3036745
10.1007/978-3-319-46475-6_35
10.1109/ICCV.2001.937655
10.1109/ICCV.2011.6126278
10.1109/TIP.2011.2147325
10.1109/CVPR.2019.00829
10.1109/CVPR.2011.5995568
10.1109/CVPR.2018.00931
10.1109/TIP.2003.819861
10.1109/CVPR.2009.5206815
10.1007/s11263-018-1138-7
10.1109/TIP.2020.2980173
10.1109/TIP.2017.2753658
10.1007/978-3-319-46475-6_43
10.1109/ICASSP.2019.8682542
10.1109/ICCV.2017.322
10.1109/CVPR.2014.379
10.1007/978-3-642-15549-9_12
10.1109/ICCV.2019.00897
10.1109/CVPR.2017.408
10.1109/CVPR.2018.00267
10.1109/ICASSP.1993.319807
10.1109/CVPR42600.2020.00366
10.1007/978-3-030-58539-6_12
10.5244/C.31.113
10.1109/ICCV.2017.491
10.1007/978-3-319-10578-9_51
10.1016/0031-3203(94)00146-D
10.1109/ACSSC.2003.1292216
10.1109/ICCV.2017.244
10.1109/CVPR.2014.371
10.1109/CVPR.2018.00862
10.1109/CVPR.2018.00854
10.1007/978-3-030-58539-6_20
10.1109/CVPR.2018.00652
10.1007/s11263-014-0727-3
10.1109/ICCV.2011.6126276
10.1109/CVPR.2010.5539954
10.1109/CVPR42600.2020.00585
10.1109/CVPR.2017.405
10.1007/978-3-319-46487-9_14
10.1109/CVPR.2007.383214
10.1007/978-3-642-33786-4_3
10.1109/ICCVW.2009.5457520
10.1007/s41233-016-0002-1
10.1109/WACV.2019.00208
10.1109/CVPR.2019.01047
10.1109/CVPR.2018.00344
10.1109/CVPR.2019.00699
10.1109/CVPRW.2019.00267
10.1109/CVPR.2013.132
10.1109/97.995823
10.1007/s11263-011-0502-7
10.1109/ICCV.2017.352
10.1109/CVPR.2013.142
10.1007/978-3-030-01237-3_45
10.1109/CVPR.2013.85
10.1109/ICCV.2017.435
10.1109/CVPR42600.2020.00368
10.1109/ICCV.2017.356
10.1109/CVPR.2019.00397
10.1109/ICCV.2017.37
10.1109/CVPR.2013.84
10.1109/ICCV.2013.392
10.1109/CVPR.2016.204
10.1109/CVPR.2018.00853
10.1109/CVPR.2015.7298677
10.1007/978-3-030-01219-9_7
10.1109/TPAMI.2015.2481418
10.1109/CVPR.2017.737
10.1109/LSP.2010.2043888
10.1109/CVPR.2018.00068
10.1109/ICCV.2019.00257
10.1109/TSP.2009.2018358
10.1109/ICCV.2019.00948
10.1109/CVPR.2019.00700
10.1007/978-3-642-33715-4_38
10.1109/CVPR.2013.147
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
COPYRIGHT 2022 Springer
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
ISR
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s11263-022-01633-5
DatabaseName CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business (UW System Shared)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 2130
ExternalDocumentID A713795165
10_1007_s11263_022_01633_5
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
AEIIB
PMFND
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c392t-67ab07a12a68156fd1b4fb91ad1c9d0a6dd21c5eb5ee56e7a78a240f58d448083
IEDL.DBID U2A
ISSN 0920-5691
IngestDate Wed Aug 13 04:48:58 EDT 2025
Tue Jun 10 21:04:16 EDT 2025
Fri Jun 27 05:26:42 EDT 2025
Tue Jul 01 04:30:58 EDT 2025
Thu Apr 24 22:51:48 EDT 2025
Fri Feb 21 02:45:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Deep learning
Low-level vision
Image restoration
Image deblurring
Image enhancement
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-67ab07a12a68156fd1b4fb91ad1c9d0a6dd21c5eb5ee56e7a78a240f58d448083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4848-2304
PQID 2701324958
PQPubID 1456341
PageCount 28
ParticipantIDs proquest_journals_2701324958
gale_infotracacademiconefile_A713795165
gale_incontextgauss_ISR_A713795165
crossref_citationtrail_10_1007_s11263_022_01633_5
crossref_primary_10_1007_s11263_022_01633_5
springer_journals_10_1007_s11263_022_01633_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220900
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 9
  year: 2022
  text: 20220900
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Zhang, J., Pan, J., Ren, J., Song, Y., Bao, L., Lau, R.W., & Yang, M.H. (2018). Dynamic scene deblurring using spatially variant recurrent neural networks. In IEEE Conference on Computer Vision and Pattern Recognition.
Jiang, P., Ling, H., Yu, J., & Peng, J. (2013). Salient region detection by ufo: Uniqueness, focusness and objectness. In IEEE International Conference on Computer Vision.
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., & Matas, J. (2018). Deblurgan: Blind motion deblurring using conditional adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition.
Zhong, L., Cho, S., Metaxas, D., Paris, S., & Wang, J. (2013). Handling noise in single image deblurring using directional filters. In IEEE Conference on Computer Vision and Pattern Recognition.
Chen, H., Gu, J., Gallo, O., Liu, M.Y., Veeraraghavan, A., & Kautz, J. (2018). Reblur2deblur: Deblurring videos via self-supervised learning. In IEEE International Conference on Computational Photography.
Ren, W., Pan, J., Cao, X., & Yang, M.H. (2017). Video deblurring via semantic segmentation and pixel-wise non-linear kernel. In IEEE International Conference on Computer Vision.
Schuler, C.J., Christopher Burger, H., Harmeling, S., & Scholkopf, B. (2013). A machine learning approach for non-blind image deconvolution. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 1067–1074.
LiLPanJLaiWSGaoCSangNYangMHDynamic scene deblurring by depth guided modelIEEE Transactions on Image Processing2020295273528810.1109/TIP.2020.2980173
Purohit, K., & Rajagopalan, A. (2019). Region-adaptive dense network for efficient motion deblurring. arXiv preprint arXiv:1903.11394
Li, P., Prieto, L., Mery, D., & Flynn, P. (2018). Face recognition in low quality images: a survey. arXiv preprint arXiv:1805.11519.
WhyteOSivicJZissermanAPonceJNon-uniform deblurring for shaken imagesInternational Journal of Computer Vision2012982168186291235910.1007/s11263-011-0502-7
Wang, X., Chan, K.C., Yu, K., Dong, C., & Change Loy, C. (2019). EDVR: Video restoration with enhanced deformable convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition Workshop.
Aljadaany, R., Pal, D.K., & Savvides, M. (2019). Douglas-rachford networks: Learning both the image prior and data fidelity terms for blind image deconvolution. In IEEE Conference on Computer Vision and Pattern Recognition.
Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In IEEE International Conference on Computer Vision.
Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., & Ren, J. (2019). Spatio-temporal filter adaptive network for video deblurring. In IEEE International Conference on Computer Vision.
Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., & Gao, Z. (2020). Blurry video frame interpolation. In IEEE Conference on Computer Vision and Pattern Recognition.
Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., & Harmeling, S. (2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. In European Conference on Computer Vision.
Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., & Freeman, W.T. (2006). Removing camera shake from a single photograph. In ACM SIGGRAPH.
Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In IEEE Conference on Computer Vision and Pattern Recognition.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., & Polosukhin, I. (2017) Attention is all you need. arXiv preprint arXiv:1706.03762
Hore, A., & Ziou, D. (2010). Image quality metrics: Psnr vs. ssim. In IEEE International Conference on Pattern Recognition.
Hyun Kim, T., Mu Lee, K., Scholkopf, B., & Hirsch, M. (2017). Online video deblurring via dynamic temporal blending network. In IEEE International Conference on Computer Vision.
Lumentut, J.S., Kim, T.H., Ramamoorthi, R., & Park, I.K. (2019). Fast and full-resolution light field deblurring using a deep neural network. arXiv preprint arXiv:1904.00352
Godard, C., Mac Aodha, O., & Brostow, G.J. (2017). Unsupervised monocular depth estimation with left-right consistency. In IEEE Conference on Computer Vision and Pattern Recognition.
HoßfeldTHeegaardPEVarelaMMöllerSQoe beyond the mos: an in-depth look at qoe via better metrics and their relation to mosQuality and User Experience201611210.1007/s41233-016-0002-1
Zhao, W., Zheng, B., Lin, Q., & Lu, H. (2019). Enhancing diversity of defocus blur detectors via cross-ensemble network. In IEEE Conference on Computer Vision and Pattern Recognition.
ChrysosGGFavaroPZafeiriouSMotion deblurring of facesInternational Journal of Computer Vision20191276–780182310.1007/s11263-018-1138-7
Yasarla, R., Perazzi, F., & Patel, V.M. (2019). Deblurring face images using uncertainty guided multi-stream semantic networks. arXiv preprint arXiv:1907.13106
Pan, J., Hu, Z., Su, Z., & Yang, M.H. (2014). Deblurring face images with exemplars. In European Conference on Computer Vision.
SheikhHRBovikACImage information and visual qualityIEEE Transactions on Image Processing200615243044410.1109/TIP.2005.859378
Sun, L., Cho, S., Wang, J., & Hays, J. (2013). Edge-based blur kernel estimation using patch priors. In IEEE International Conference on Computational Photography.
Shen, Z., Lai, W.S., Xu, T., Kautz, J., & Yang, M.H. (2020). Exploiting semantics for face image deblurring. International Journal of Computer Vision pp. 1–18.
Lu, Y. (2017). Out-of-focus blur: Image de-blurring. arXiv preprint arXiv:1710.00620
Tao, X., Gao, H., Shen, X., Wang, J., & Jia, J. (2018). Scale-recurrent network for deep image deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
Xu, L., Tao, X., & Jia, J. (2014). Inverse kernels for fast spatial deconvolution. In European Conference on Computer Vision.
Park, P.D., Kang, D.U., Kim, J., & Chun, S.Y. (2020). Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training. In European Conference on Computer Vision.
Zhang, H., Dai, Y., Li, H., & Koniusz, P. (2019). Deep stacked hierarchical multi-patch network for image deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
Blau, Y., & Michaeli, T. (2018). The perception-distortion tradeoff. In IEEE Conference on Computer Vision and Pattern Recognition.
Zhang, K., Zuo, W., & Zhang, L. (2018). Learning a single convolutional super-resolution network for multiple degradations. In IEEE Conference on Computer Vision and Pattern Recognition.
Kruse, J., Rother, C., & Schmidt, U. (2017). Learning to push the limits of efficient fft-based image deconvolution. In IEEE International Conference on Computer Vision.
Hradiš, M., Kotera, J., Zemcık, P., & Šroubek, F. (2015). Convolutional neural networks for direct text deblurring. In British Machine Vision Conference.
Jin, M., Hirsch, M., & Favaro, P. (2018). Learning face deblurring fast and wide. In IEEE Conference on Computer Vision and Pattern Recognition Workshop.
Eslami, S.A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Hinton, G.E., et al. (2016). Attend, infer, repeat: Fast scene understanding with generative models. In Advances in Neural Information Processing Systems.
Zoran, D., & Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In IEEE International Conference on Computer Vision.
Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., & Liu, Y. (2020). Learning event-based motion deblurring. arXiv preprint arXiv:2004.05794
Gao, H., Tao, X., Shen, X., & Jia, J. (2019). Dynamic scene deblurring with parameter selective sharing and nested skip connections. In IEEE Conference on Computer Vision and Pattern Recognition.
Cho, H., Wang, J., & Lee, S. (2012). Text image deblurring using text-specific properties. In European Conference on Computer Vision.
Krishnan, D., & Fergus, R. (2009). Fast image deconvolution using hyper-laplacian priors. In Advances in Neural Information Processing Systems.
Zhang, K., Van Gool, L., & Timofte, R. (2020). Deep unfolding network for image super-resolution. In IEEE Conference on Computer Vision and Pattern Recognition.
Zhang, K., Zuo, W., & Zhang, L. (2019). Deep plug-and-play super-resolution for arbitrary blur kernels. In IEEE Conference on Computer Vision and Pattern Recognition.
Cho, S., Wang, J., & Lee, S. (2011). Handling outliers in non-blind image deconvolution. In IEEE International Conference on Computer Vision.
Purohit, K., Shah, A., & Rajagopalan, A. (2019). Bringing alive blurred moments. In IEEE Conference on Computer Vision and Pattern Recognition.
ChenSJShenHLMultispectral image out-of-focus deblurring using interchannel correlationIEEE Transactions on Image Processing2015241144334445339032010.1109/TIP.2015.2465162
Lin, S., Zhang, J., Pan, J., Jiang, Z., Zou, D., Wang, Y., Chen, J., & Ren, J. (2020). Learning event-driven video deblurring and interpolation. In European Conference on Computer Vision.
MoorthyAKBovikACBlind image quality assessment: From natural scene statistics to perceptual qualityIEEE Transactions on Image Processing2011201233503364285048110.1109/TIP.2011.2147325
Niklaus, S., Mai, L., & Liu, F. (2017). Video frame interpolation via adaptive separable convolution. In IEEE International Conference on Computer Vision.
PanciGCampisiPColonneseSScaranoGMultichannel blind image deconvolution using the bussgang algorithm: Spatial and multiresolution approachesIEEE Transactions on Image Processing2003121113241337202677610.1109/TIP.2003.818022
Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
Hyun Kim, T., Ahn, B., & Mu
1633_CR6
1633_CR147
1633_CR7
1633_CR144
1633_CR8
1633_CR145
1633_CR1
1633_CR2
1633_CR3
1633_CR148
1633_CR4
1633_CR149
CH Son (1633_CR121) 2011; 57
1633_CR142
1633_CR143
1633_CR140
1633_CR141
1633_CR32
S Bae (1633_CR5) 2007; 26
1633_CR34
1633_CR35
1633_CR36
1633_CR37
1633_CR38
1633_CR30
1633_CR31
1633_CR133
1633_CR134
G Panci (1633_CR95) 2003; 12
1633_CR137
1633_CR131
C Gu (1633_CR33) 2021; 30
O Whyte (1633_CR139) 2012; 98
1633_CR130
1633_CR43
1633_CR44
1633_CR45
1633_CR46
1633_CR47
1633_CR48
1633_CR49
1633_CR40
1633_CR42
1633_CR168
1633_CR169
1633_CR166
1633_CR167
1633_CR18
1633_CR160
1633_CR19
1633_CR161
GG Chrysos (1633_CR20) 2019; 127
1633_CR164
1633_CR165
1633_CR162
1633_CR163
1633_CR10
1633_CR98
1633_CR11
1633_CR99
1633_CR12
1633_CR14
1633_CR16
1633_CR17
1633_CR90
1633_CR91
1633_CR92
1633_CR93
CJ Schuler (1633_CR109) 2015; 38
1633_CR94
1633_CR96
1633_CR97
1633_CR157
1633_CR158
1633_CR155
1633_CR156
AK Moorthy (1633_CR83) 2011; 20
1633_CR159
1633_CR29
1633_CR150
1633_CR154
1633_CR151
1633_CR152
1633_CR22
1633_CR23
1633_CR24
1633_CR25
M Vairy (1633_CR132) 1995; 28
1633_CR26
1633_CR27
1633_CR28
G Boracchi (1633_CR9) 2012; 21
1633_CR102
1633_CR103
1633_CR100
1633_CR101
X Xu (1633_CR146) 2017; 27
1633_CR107
1633_CR104
1633_CR105
HR Sheikh (1633_CR111) 2006; 15
SJ Chen (1633_CR15) 2015; 24
1633_CR76
1633_CR77
1633_CR78
A Kheradmand (1633_CR54) 2014; 23
1633_CR79
O Whyte (1633_CR138) 2014; 110
1633_CR108
1633_CR71
1633_CR72
1633_CR73
1633_CR74
1633_CR75
1633_CR87
1633_CR88
F Chen (1633_CR13) 2009; 57
1633_CR89
N Damera-Venkata (1633_CR21) 2000; 9
L Li (1633_CR65) 2020; 29
1633_CR81
1633_CR84
1633_CR85
1633_CR86
1633_CR124
Z Wang (1633_CR136) 2004; 13
1633_CR125
1633_CR122
1633_CR123
1633_CR128
1633_CR129
1633_CR126
1633_CR127
1633_CR120
RA Hummel (1633_CR41) 1987; 38
AK Moorthy (1633_CR82) 2010; 17
1633_CR55
1633_CR56
1633_CR57
1633_CR58
1633_CR59
1633_CR50
1633_CR51
MA Saad (1633_CR106) 2012; 21
1633_CR52
1633_CR53
HR Sheikh (1633_CR112) 2005; 14
1633_CR113
1633_CR114
1633_CR117
1633_CR118
Z Wang (1633_CR135) 2002; 9
A Mittal (1633_CR80) 2012; 21
1633_CR115
1633_CR116
1633_CR110
L Liu (1633_CR70) 2014; 29
T Hoßfeld (1633_CR39) 2016; 1
1633_CR66
1633_CR67
1633_CR68
1633_CR69
1633_CR119
1633_CR60
K Zhang (1633_CR153) 2018; 28
1633_CR61
1633_CR62
1633_CR63
1633_CR64
References_xml – reference: Zhang, K., Van Gool, L., & Timofte, R. (2020). Deep unfolding network for image super-resolution. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Hore, A., & Ziou, D. (2010). Image quality metrics: Psnr vs. ssim. In IEEE International Conference on Pattern Recognition.
– reference: Zhang, J., Pan, J., Lai, W.S., Lau, R.W., & Yang, M.H. (2017). Learning fully convolutional networks for iterative non-blind deconvolution. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Denton, E.L., Chintala, S., Fergus, R., et al. (2015). Deep generative image models using a laplacian pyramid of adversarial networks. In Advances in Neural Information Processing Systems.
– reference: Schuler, C.J., Christopher Burger, H., Harmeling, S., & Scholkopf, B. (2013). A machine learning approach for non-blind image deconvolution. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 1067–1074.
– reference: Bigdeli, S.A., Zwicker, M., Favaro, P., & Jin, M. (2017). Deep mean-shift priors for image restoration. In Advances in Neural Information Processing Systems, pp. 763–772.
– reference: Jin, M., Hirsch, M., & Favaro, P. (2018). Learning face deblurring fast and wide. In IEEE Conference on Computer Vision and Pattern Recognition Workshop.
– reference: Yasarla, R., Perazzi, F., & Patel, V.M. (2019). Deblurring face images using uncertainty guided multi-stream semantic networks. arXiv preprint arXiv:1907.13106
– reference: Wieschollek, P., Hirsch, M., Scholkopf, B., & Lensch, H. (2017). Learning blind motion deblurring. In IEEE International Conference on Computer Vision.
– reference: Fiori, S., Uncini, A., & Piazza, F. (1999). Blind deconvolution by modified bussgang algorithm. In The IEEE International Symposium on Circuits and Systems, vol. 3, pp. 1–4.
– reference: Szeliski, R. (2010). Computer vision: algorithms and applications. Springer Science & Business Media.
– reference: Lu, B., Chen, J.C., & Chellappa, R. (2019). Unsupervised domain-specific deblurring via disentangled representations. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Shen, Z., Lai, W.S., Xu, T., Kautz, J., & Yang, M.H. (2018). Deep semantic face deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Le, V., Brandt, J., Lin, Z., Bourdev, L., & Huang, T.S. (2012). Interactive facial feature localization. In European Conference on Computer Vision.
– reference: Niklaus, S., Mai, L., & Liu, F. (2017). Video frame interpolation via adaptive separable convolution. In IEEE International Conference on Computer Vision.
– reference: Zhong, Z., Gao, Y., Yinqiang, Z., & Bo, Z. (2020). Efficient spatio-temporal recurrent neural network for video deblurring. In European Conference on Computer Vision.
– reference: Gong, D., Yang, J., Liu, L., Zhang, Y., Reid, I., Shen, C., Van Den Hengel, A., & Shi, Q. (2017). From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., & Yang, M.H. (2016). A comparative study for single image blind deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Chakrabarti, A. (2016). A neural approach to blind motion deblurring. In European Conference on Computer Vision.
– reference: WhyteOSivicJZissermanAPonceJNon-uniform deblurring for shaken imagesInternational Journal of Computer Vision2012982168186291235910.1007/s11263-011-0502-7
– reference: Sim, T., Baker, S., & Bsat, M. (2002). The cmu pose, illumination, and expression (PIE) database. In IEEE International Conference on Automatic Face Gesture Recognition.
– reference: XuXPanJZhangYJYangMHMotion blur kernel estimation via deep learningIEEE Transactions on Image Processing2017271194205372984210.1109/TIP.2017.2753658
– reference: Pan, J., Hu, Z., Su, Z., & Yang, M.H. (2014). Deblurring text images via l0-regularized intensity and gradient prior. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Kettunen, M., Härkönen, E., & Lehtinen, J. (2019). E-lpips: robust perceptual image similarity via random transformation ensembles. arXiv preprint arXiv:1906.03973
– reference: Rim, J., Lee, H., Won, J., & Cho, S. (2020). Real-world blur dataset for learning and benchmarking deblurring algorithms. In European Conference on Computer Vision.
– reference: HummelRAKimiaBZuckerSWDeblurring gaussian blurComputer Vision, Graphics, and Image Processing1987381668010.1016/S0734-189X(87)80153-6
– reference: Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z., et al. (2017). Photo-realistic single image super-resolution using a generative adversarial network. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Li, P., Prieto, L., Mery, D., & Flynn, P. (2018). Face recognition in low quality images: a survey. arXiv preprint arXiv:1805.11519.
– reference: Lumentut, J.S., Kim, T.H., Ramamoorthi, R., & Park, I.K. (2019). Fast and full-resolution light field deblurring using a deep neural network. arXiv preprint arXiv:1904.00352
– reference: Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., & Matas, J. (2018). Deblurgan: Blind motion deblurring using conditional adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Transactions on Image Processing200413460061210.1109/TIP.2003.819861
– reference: Xu, L., Ren, J.S., Liu, C., & Jia, J. (2014). Deep convolutional neural network for image deconvolution. In Advances in Neural Information Processing Systems.
– reference: Shen, Z., Wang, W., Lu, X., Shen, J., Ling, H., Xu, T., & Shao, L. (2019). Human-aware motion deblurring. In IEEE International Conference on Computer Vision.
– reference: Kang, S.B. (2007). Automatic removal of chromatic aberration from a single image. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Dong, J., Roth, S., & Schiele, B. (2020). Deep wiener deconvolution: Wiener meets deep learning for image deblurring. Advances in Neural Information Processing Systems.
– reference: Sun, L., Cho, S., Wang, J., & Hays, J. (2013). Edge-based blur kernel estimation using patch priors. In IEEE International Conference on Computational Photography.
– reference: Ren, W., Pan, J., Cao, X., & Yang, M.H. (2017). Video deblurring via semantic segmentation and pixel-wise non-linear kernel. In IEEE International Conference on Computer Vision.
– reference: Suin, M., Purohit, K., & Rajagopalan, A. (2020). Spatially-attentive patch-hierarchical network for adaptive motion deblurring. arXiv preprint arXiv:2004.05343
– reference: Shen, Z., Lai, W.S., Xu, T., Kautz, J., & Yang, M.H. (2020). Exploiting semantics for face image deblurring. International Journal of Computer Vision pp. 1–18.
– reference: Kruse, J., Rother, C., & Schmidt, U. (2017). Learning to push the limits of efficient fft-based image deconvolution. In IEEE International Conference on Computer Vision.
– reference: Pan, J., Hu, Z., Su, Z., & Yang, M.H. (2014). Deblurring face images with exemplars. In European Conference on Computer Vision.
– reference: Lin, S., Zhang, J., Pan, J., Jiang, Z., Zou, D., Wang, Y., Chen, J., & Ren, J. (2020). Learning event-driven video deblurring and interpolation. In European Conference on Computer Vision.
– reference: Masia, B., Corrales, A., Presa, L., & Gutierrez, D. (2011). Coded apertures for defocus deblurring. In Symposium Iberoamericano de Computacion Grafica.
– reference: Gong, D., Zhang, Z., Shi, Q., van den Hengel, A., Shen, C., & Zhang, Y. (2020). Learning deep gradient descent optimization for image deconvolution. IEEE Transactions on Neural Networks and Learning Systems.
– reference: Lu, Y. (2017). Out-of-focus blur: Image de-blurring. arXiv preprint arXiv:1710.00620
– reference: Jin, M., Roth, S., & Favaro, P. (2017). Noise-blind image deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Johnson, J., Alahi, A., & Fei-Fei, L. (2016). Perceptual losses for real-time style transfer and super-resolution. In European Conference on Computer Vision.
– reference: Xu, L., Zheng, S., & Jia, J. (2013). Unnatural l0 sparse representation for natural image deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Gast, J., Sellent, A., & Roth, S. (2016). Parametric object motion from blur. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Purohit, K., & Rajagopalan, A. (2019). Region-adaptive dense network for efficient motion deblurring. arXiv preprint arXiv:1903.11394
– reference: Hirsch, M., Schuler, C.J., Harmeling, S., & Schölkopf, B. (2011). Fast removal of non-uniform camera shake. In IEEE International Conference on Computer Vision.
– reference: Madam Nimisha, T., Sunil, K., & Rajagopalan, A. (2018). Unsupervised class-specific deblurring. In European Conference on Computer Vision
– reference: Blau, Y., & Michaeli, T. (2018). The perception-distortion tradeoff. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Brooks, T., & Barron, J.T. (2019). Learning to synthesize motion blur. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Chen, X., He, X., Yang, J., & Wu, Q. (2011). An effective document image deblurring algorithm. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Cho, S., Wang, J., & Lee, S. (2011). Handling outliers in non-blind image deconvolution. In IEEE International Conference on Computer Vision.
– reference: Ren, W., Yang, J., Deng, S., Wipf, D., Cao, X., & Tong, X. (2019). Face video deblurring using 3d facial priors. In IEEE International Conference on Computer Vision.
– reference: Shi, J., Xu, L., & Jia, J. (2014). Discriminative blur detection features. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., & Freeman, W.T. (2006). Removing camera shake from a single photograph. In ACM SIGGRAPH.
– reference: Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., & Liu, Y. (2020). Learning event-based motion deblurring. arXiv preprint arXiv:2004.05794
– reference: MoorthyAKBovikACBlind image quality assessment: From natural scene statistics to perceptual qualityIEEE Transactions on Image Processing2011201233503364285048110.1109/TIP.2011.2147325
– reference: WhyteOSivicJZissermanADeblurring shaken and partially saturated imagesInternational Journal of Computer Vision2014110218520110.1007/s11263-014-0727-3
– reference: Abuolaim, A., & Brown, M.S. (2020). Defocus deblurring using dual-pixel data. In European Conference on Computer Vision.
– reference: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Purohit, K., Shah, A., & Rajagopalan, A. (2019). Bringing alive blurred moments. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Xia, F., Wang, P., Chen, L.C., & Yuille, A.L. (2016). Zoom better to see clearer: Human and object parsing with hierarchical auto-zoom net. In European Conference on Computer Vision.
– reference: Zhang, H., Dai, Y., Li, H., & Koniusz, P. (2019). Deep stacked hierarchical multi-patch network for image deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Zhang, X., Dong, H., Hu, Z., Lai, W.S., Wang, F., & Yang, M.H. (2018). Gated fusion network for joint image deblurring and super-resolution. arXiv preprint arXiv:1807.10806
– reference: BaeSDurandFDefocus magnificationComputer Graphics Forum200726357157910.1111/j.1467-8659.2007.01080.x
– reference: Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In IEEE International Conference on Computer Vision.
– reference: Zhang, K., Luo, W., Zhong, Y., Stenger, B., Ma, L., Liu, W., & Li, H. (2020). Deblurring by realistic blurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Ren, D., Zhang, K., Wang, Q., Hu, Q., & Zuo, W. (2019). Neural blind deconvolution using deep priors. arXiv preprint arXiv:1908.02197
– reference: Xu, X., Sun, D., Pan, J., Zhang, Y., Pfister, H., & Yang, M.H. (2017). Learning to super-resolve blurry face and text images. In IEEE International Conference on Computer Vision.
– reference: Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., & Harmeling, S. (2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. In European Conference on Computer Vision.
– reference: MittalAMoorthyAKBovikACNo-reference image quality assessment in the spatial domainIEEE Transactions on Image Processing2012211246954708300114510.1109/TIP.2012.2214050
– reference: Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., & Mu Lee, K. (2019). Ntire 2019 challenge on video deblurring and super-resolution: Dataset and study. In IEEE Conference on Computer Vision and Pattern Recognition Workshop.
– reference: Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
– reference: Aittala, M., & Durand, F. (2018). Burst image deblurring using permutation invariant convolutional neural networks. In European Conference on Computer Vision.
– reference: Jolicoeur-Martineau, A. (2018). The relativistic discriminator: a key element missing from standard gan. arXiv preprint arXiv:1807.00734
– reference: Zhong, L., Cho, S., Metaxas, D., Paris, S., & Wang, J. (2013). Handling noise in single image deblurring using directional filters. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Anwar, S., Hayder, Z., & Porikli, F. (2017). Depth estimation and blur removal from a single out-of-focus image. In British Machine Vision Conference.
– reference: Cho, S., & Lee, S. (2009). Fast motion deblurring. In ACM SIGGRAPH Asia.
– reference: Kim, T.H., Sajjadi, M.S., Hirsch, M., & Schölkopf, B. (2018). Spatio-temporal transformer network for video restoration. In European Conference on Computer Vision.
– reference: Zhu, J.Y., Park, T., Isola, P., & Efros, A.A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In IEEE International Conference on Computer Vision.
– reference: Cho, H., Wang, J., & Lee, S. (2012). Text image deblurring using text-specific properties. In European Conference on Computer Vision.
– reference: Kaufman, A., & Fattal, R. (2020). Deblurring using analysis-synthesis networks pair. arXiv preprint arXiv:2004.02956
– reference: Nan, Y., Quan, Y., & Ji, H. (2020). Variational-em-based deep learning for noise-blind image deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Sellent, A., Rother, C., & Roth, S. (2016). Stereo video deblurring. In European Conference on Computer Vision.
– reference: Chen, H., Gu, J., Gallo, O., Liu, M.Y., Veeraraghavan, A., & Kautz, J. (2018). Reblur2deblur: Deblurring videos via self-supervised learning. In IEEE International Conference on Computational Photography.
– reference: Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In IEEE International Conference on Computer Vision.
– reference: Pan, J., Bai, H., & Tang, J. (2020). Cascaded deep video deblurring using temporal sharpness prior. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Aljadaany, R., Pal, D.K., & Savvides, M. (2019). Douglas-rachford networks: Learning both the image prior and data fidelity terms for blind image deconvolution. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Pham, H., Guan, M., Zoph, B., Le, Q., & Dean, J. (2018). Efficient neural architecture search via parameters sharing. In International Conference on Machine Learning.
– reference: SaadMABovikACCharrierCBlind image quality assessment: A natural scene statistics approach in the dct domainIEEE Transactions on Image Processing201221833393352296043010.1109/TIP.2012.2191563
– reference: Mitsa, T., & Varkur, K.L. (1993). Evaluation of contrast sensitivity functions for the formulation of quality measures incorporated in halftoning algorithms. In IEEE International Conference on Acoustics, Speech, and Signal Processing.
– reference: Mittal, A., Soundararajan, R., & Bovik, A. C. (2012). Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters,20(3), 209–212.
– reference: ChrysosGGFavaroPZafeiriouSMotion deblurring of facesInternational Journal of Computer Vision20191276–780182310.1007/s11263-018-1138-7
– reference: PanciGCampisiPColonneseSScaranoGMultichannel blind image deconvolution using the bussgang algorithm: Spatial and multiresolution approachesIEEE Transactions on Image Processing2003121113241337202677610.1109/TIP.2003.818022
– reference: Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In IEEE International Conference on Computer Vision.
– reference: Xu, L., & Jia, J. (2010). Two-phase kernel estimation for robust motion deblurring. In European Conference on Computer Vision.
– reference: KheradmandAMilanfarPA general framework for regularized, similarity-based image restorationIEEE Transactions on Image Processing2014231251365151327505810.1109/TIP.2014.2362059
– reference: Michaeli, T., & Irani, M. (2014). Blind deblurring using internal patch recurrence. In European Conference on Computer Vision.
– reference: Tang, C., Zhu, X., Liu, X., Wang, L., & Zomaya, A. (2019). Defusionnet: Defocus blur detection via recurrently fusing and refining multi-scale deep features. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Li, Y., Tofighi, M., Geng, J., Monga, V., & Eldar, Y. (2019). Deep algorithm unrolling for blind image deblurring. arXiv preprint arXiv:1902.03493
– reference: Schmidt, U., Rother, C., Nowozin, S., Jancsary, J., & Roth, S. (2013). Discriminative non-blind deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., & Polosukhin, I. (2017) Attention is all you need. arXiv preprint arXiv:1706.03762
– reference: He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In IEEE International Conference on Computer Vision.
– reference: Sun, L., & Hays, J. (2012). Super-resolution from internet-scale scene matching. In IEEE International Conference on Computational Photography.
– reference: Tao, X., Gao, H., Shen, X., Wang, J., & Jia, J. (2018). Scale-recurrent network for deep image deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: GuCLuXHeYZhangCBlur removal via blurred-noisy image pairIEEE Transactions on Image Processing2021301134535910.1109/TIP.2020.3036745
– reference: Levin, A., Weiss, Y., Durand, F., & Freeman, W.T. (2009). Understanding and evaluating blind deconvolution algorithms. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Zhou, S., Zhang, J., Zuo, W., Xie, H., Pan, J., & Ren, J.S. (2019). Davanet: Stereo deblurring with view aggregation. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Nimisha, T.M., Kumar Singh, A., & Rajagopalan, A.N. (2017). Blur-invariant deep learning for blind-deblurring. In IEEE International Conference on Computer Vision.
– reference: VairyMVenkateshYVDeblurring gaussian blur using a wavelet array transformPattern Recognition199528796597610.1016/0031-3203(94)00146-D
– reference: Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., & Ren, J. (2019). Spatio-temporal filter adaptive network for video deblurring. In IEEE International Conference on Computer Vision.
– reference: Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., & Wang, O. (2017). Deep video deblurring for hand-held cameras. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Liu, H., Simonyan, K., & Yang, Y. (2018). Darts: Differentiable architecture search. In International Conference on Learning Representations.
– reference: Eigen, D., Puhrsch, C., & Fergus, R. (2014). Depth map prediction from a single image using a multi-scale deep network. In Advances in Neural Information Processing Systems.
– reference: Zhang, K., Zuo, W., & Zhang, L. (2019). Deep plug-and-play super-resolution for arbitrary blur kernels. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Zhang, K., Zuo, W., & Zhang, L. (2018). Learning a single convolutional super-resolution network for multiple degradations. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Ye, P., Kumar, J., Kang, L., & Doermann, D. (2012). Unsupervised feature learning framework for no-reference image quality assessment. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Nah, S., Hyun Kim, T., & Mu Lee, K. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Zhang, J., Pan, J., Ren, J., Song, Y., Bao, L., Lau, R.W., & Yang, M.H. (2018). Dynamic scene deblurring using spatially variant recurrent neural networks. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Hyun Kim, T., Ahn, B., & Mu Lee, K. (2013). Dynamic scene deblurring. In IEEE International Conference on Computer Vision.
– reference: Wang, X., Chan, K.C., Yu, K., Dong, C., & Change Loy, C. (2019). EDVR: Video restoration with enhanced deformable convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition Workshop.
– reference: Godard, C., Mac Aodha, O., & Brostow, G.J. (2017). Unsupervised monocular depth estimation with left-right consistency. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: SheikhHRBovikACImage information and visual qualityIEEE Transactions on Image Processing200615243044410.1109/TIP.2005.859378
– reference: Gao, H., Tao, X., Shen, X., & Jia, J. (2019). Dynamic scene deblurring with parameter selective sharing and nested skip connections. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Nah, S., Son, S., & Lee, K.M. (2019). Recurrent neural networks with intra-frame iterations for video deblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Krishnan, D., & Fergus, R. (2009). Fast image deconvolution using hyper-laplacian priors. In Advances in Neural Information Processing Systems.
– reference: SonCHParkHMA pair of noisy/blurry patches-based psf estimation and channel-dependent deblurringIEEE Transactions on Image Processing201157417911799
– reference: Zhao, W., Zheng, B., Lin, Q., & Lu, H. (2019). Enhancing diversity of defocus blur detectors via cross-ensemble network. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Chakrabarti, A., Zickler, T., & Freeman, W.T. (2010). Analyzing spatially-varying blur. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Sim, H., & Kim, M. (2019). A deep motion deblurring network based on per-pixel adaptive kernels with residual down-up and up-down modules. In IEEE Conference on Computer Vision and Pattern Recognition Workshop.
– reference: Sun, D., Yang, X., Liu, M.Y., & Kautz, J. (2018). PWC-Net: Cnns for optical flow using pyramid, warping, and cost volume. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Wang, Z., Simoncelli, E.P., & Bovik, A.C. (2003). Multiscale structural similarity for image quality assessment. In The Asilomar Conference on Signals, Systems, and Computers.
– reference: SchulerCJHirschMHarmelingSSchölkopfBLearning to deblurIEEE Transactions on Pattern Analysis and Machine Intelligence20153871439145110.1109/TPAMI.2015.2481418
– reference: Xu, L., Tao, X., & Jia, J. (2014). Inverse kernels for fast spatial deconvolution. In European Conference on Computer Vision.
– reference: Bahat, Y., Efrat, N., & Irani, M. (2017). Non-uniform blind deblurring by reblurring. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Nah, S., Son, S., Timofte, R., & Lee, K.M. (2020). Ntire 2020 challenge on image and video deblurring. arXiv preprint arXiv:2005.01244
– reference: MoorthyAKBovikACA two-step framework for constructing blind image quality indicesIEEE Signal Processing Letters201017551351610.1109/LSP.2010.2043888
– reference: Sun, J., Cao, W., Xu, Z., & Ponce, J. (2015). Learning a convolutional neural network for non-uniform motion blur removal. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: WangZBovikACA universal image quality indexIEEE Signal Processing Letters200293818410.1109/97.995823
– reference: Sun, T., Peng, Y., & Heidrich, W. (2017). Revisiting cross-channel information transfer for chromatic aberration correction. In IEEE International Conference on Computer Vision, pp. 3248–3256.
– reference: Damera-VenkataNKiteTDGeislerWSEvansBLBovikACImage quality assessment based on a degradation modelIEEE Transactions on Image Processing20009463665010.1109/83.841940
– reference: Jiang, P., Ling, H., Yu, J., & Peng, J. (2013). Salient region detection by ufo: Uniqueness, focusness and objectness. In IEEE International Conference on Computer Vision.
– reference: Hacohen, Y., Shechtman, E., & Lischinski, D. (2013). Deblurring by example using dense correspondence. In IEEE International Conference on Computer Vision.
– reference: HoßfeldTHeegaardPEVarelaMMöllerSQoe beyond the mos: an in-depth look at qoe via better metrics and their relation to mosQuality and User Experience201611210.1007/s41233-016-0002-1
– reference: Hradiš, M., Kotera, J., Zemcık, P., & Šroubek, F. (2015). Convolutional neural networks for direct text deblurring. In British Machine Vision Conference.
– reference: SheikhHRBovikACDe VecianaGAn information fidelity criterion for image quality assessment using natural scene statisticsIEEE Transactions on Image Processing200514122117212810.1109/TIP.2005.859389
– reference: Zhang, R., Isola, P., Efros, A.A., Shechtman, E., & Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: BoracchiGFoiAModeling the performance of image restoration from motion blurIEEE Transactions on Image Processing201221835023517296044310.1109/TIP.2012.2192126
– reference: Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in Neural Information Processing Systems.
– reference: Isola, P., Zhu, J.Y., Zhou, T., & Efros, A.A. (2017). Image-to-image translation with conditional adversarial networks. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: ZhangKLuoWZhongYMaLLiuWLiHAdversarial spatio-temporal learning for video deblurringIEEE Transactions on Image Processing2018281291301386318210.1109/TIP.2018.2867733
– reference: Zoph, B., & Le, Q.V. (2017). Neural architecture search with reinforcement learning. In International Conference on Learning Representations.
– reference: Ren, W., Zhang, J., Ma, L., Pan, J., Cao, X., Zuo, W., Liu, W., & Yang, M.H. (2018). Deep non-blind deconvolution via generalized low-rank approximation. In Advances in Neural Information Processing Systems.
– reference: Zoran, D., & Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In IEEE International Conference on Computer Vision.
– reference: LiuLLiuBHuangHBovikACNo-reference image quality assessment based on spatial and spectral entropiesSignal Processing: Image Communication2014298856863
– reference: ChenFMaJAn empirical identification method of gaussian blur parameter for image deblurringIEEE Transactions on Signal Processing200957724672478265016410.1109/TSP.2009.2018358
– reference: Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., & Gao, Z. (2020). Blurry video frame interpolation. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Zhang, K., Zuo, W., Gu, S., & Zhang, L. (2017). Learning deep cnn denoiser prior for image restoration. In IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Park, P.D., Kang, D.U., Kim, J., & Chun, S.Y. (2020). Multi-temporal recurrent neural networks for progressive non-uniform single image deblurring with incremental temporal training. In European Conference on Computer Vision.
– reference: Zhang, W., & Cham, W.K. (2009). Single image focus editing. In IEEE International Conference on Computer Vision Workshop.
– reference: ChenSJShenHLMultispectral image out-of-focus deblurring using interchannel correlationIEEE Transactions on Image Processing2015241144334445339032010.1109/TIP.2015.2465162
– reference: Eslami, S.A., Heess, N., Weber, T., Tassa, Y., Szepesvari, D., Hinton, G.E., et al. (2016). Attend, infer, repeat: Fast scene understanding with generative models. In Advances in Neural Information Processing Systems.
– reference: LiLPanJLaiWSGaoCSangNYangMHDynamic scene deblurring by depth guided modelIEEE Transactions on Image Processing2020295273528810.1109/TIP.2020.2980173
– reference: Mustaniemi, J., Kannala, J., Särkkä, S., Matas, J., & Heikkila, J. (2019). Gyroscope-aided motion deblurring with deep networks. In IEEE Winter Conference on Applications of Computer Vision.
– reference: Hyun Kim, T., Mu Lee, K., Scholkopf, B., & Hirsch, M. (2017). Online video deblurring via dynamic temporal blending network. In IEEE International Conference on Computer Vision.
– volume: 28
  start-page: 291
  issue: 1
  year: 2018
  ident: 1633_CR153
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2867733
– volume: 23
  start-page: 5136
  issue: 12
  year: 2014
  ident: 1633_CR54
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2014.2362059
– ident: 1633_CR156
  doi: 10.1109/CVPR.2017.300
– ident: 1633_CR140
  doi: 10.1109/ICCV.2017.34
– ident: 1633_CR85
  doi: 10.1109/CVPRW.2019.00251
– ident: 1633_CR166
  doi: 10.1109/CVPR.2019.01125
– ident: 1633_CR69
– ident: 1633_CR18
  doi: 10.1145/1661412.1618491
– ident: 1633_CR75
  doi: 10.1007/978-3-030-01249-6_22
– ident: 1633_CR62
  doi: 10.1007/978-3-642-33712-3_49
– ident: 1633_CR23
– ident: 1633_CR102
  doi: 10.1109/ICCV.2017.123
– volume: 24
  start-page: 4433
  issue: 11
  year: 2015
  ident: 1633_CR15
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2465162
– ident: 1633_CR134
  doi: 10.1109/CVPRW.2019.00247
– ident: 1633_CR81
  doi: 10.1109/LSP.2012.2227726
– ident: 1633_CR3
  doi: 10.1109/CVPR.2019.01048
– volume: 38
  start-page: 66
  issue: 1
  year: 1987
  ident: 1633_CR41
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/S0734-189X(87)80153-6
– ident: 1633_CR168
– ident: 1633_CR93
  doi: 10.1007/978-3-319-10584-0_4
– ident: 1633_CR162
  doi: 10.1109/CVPR.2019.00911
– ident: 1633_CR61
  doi: 10.1109/CVPR.2016.188
– ident: 1633_CR147
  doi: 10.1109/ICCV.2017.36
– ident: 1633_CR14
  doi: 10.1109/ICCPHOT.2018.8368468
– ident: 1633_CR130
  doi: 10.1109/CVPR.2019.00281
– ident: 1633_CR92
  doi: 10.1109/CVPR42600.2020.00311
– ident: 1633_CR143
– ident: 1633_CR148
  doi: 10.1109/TIP.2020.2990354
– volume: 21
  start-page: 3339
  issue: 8
  year: 2012
  ident: 1633_CR106
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2191563
– volume: 12
  start-page: 1324
  issue: 11
  year: 2003
  ident: 1633_CR95
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.818022
– ident: 1633_CR122
  doi: 10.1109/CVPR.2017.33
– ident: 1633_CR144
  doi: 10.1007/978-3-319-10602-1_3
– ident: 1633_CR27
  doi: 10.1109/ISCAS.1999.778770
– ident: 1633_CR1
  doi: 10.1007/978-3-030-58607-2_7
– ident: 1633_CR74
  doi: 10.1109/LSP.2019.2947379
– ident: 1633_CR50
– ident: 1633_CR154
  doi: 10.1109/CVPR42600.2020.00281
– ident: 1633_CR45
  doi: 10.1109/ICCV.2013.248
– ident: 1633_CR88
  doi: 10.1109/CVPRW50498.2020.00216
– ident: 1633_CR116
  doi: 10.1109/ICCV.2019.00567
– ident: 1633_CR57
– ident: 1633_CR155
  doi: 10.1109/CVPR42600.2020.00328
– volume: 14
  start-page: 2117
  issue: 12
  year: 2005
  ident: 1633_CR112
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.859389
– ident: 1633_CR36
  doi: 10.1109/CVPR.2016.90
– ident: 1633_CR127
– ident: 1633_CR26
  doi: 10.1145/1179352.1141956
– ident: 1633_CR158
  doi: 10.1109/CVPR.2019.00177
– ident: 1633_CR104
– ident: 1633_CR7
– ident: 1633_CR30
  doi: 10.1109/CVPR.2017.699
– ident: 1633_CR38
  doi: 10.1109/ICPR.2010.579
– ident: 1633_CR133
– ident: 1633_CR63
  doi: 10.1109/CVPR.2017.19
– ident: 1633_CR86
  doi: 10.1109/CVPR.2017.35
– volume: 57
  start-page: 1791
  issue: 4
  year: 2011
  ident: 1633_CR121
  publication-title: IEEE Transactions on Image Processing
– ident: 1633_CR119
  doi: 10.1109/AFGR.2002.1004130
– ident: 1633_CR32
  doi: 10.1109/TNNLS.2020.2968289
– volume: 15
  start-page: 430
  issue: 2
  year: 2006
  ident: 1633_CR111
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2005.859378
– ident: 1633_CR91
  doi: 10.1109/ICCV.2017.509
– ident: 1633_CR141
  doi: 10.1007/978-3-319-46454-1_39
– ident: 1633_CR113
  doi: 10.1109/CVPR42600.2020.00516
– ident: 1633_CR34
  doi: 10.1109/ICCV.2013.296
– ident: 1633_CR77
  doi: 10.1111/j.1467-8659.2012.03067.x
– volume: 9
  start-page: 636
  issue: 4
  year: 2000
  ident: 1633_CR21
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.841940
– ident: 1633_CR105
  doi: 10.1007/978-3-030-58595-2_12
– ident: 1633_CR46
  doi: 10.1109/CVPR42600.2020.00338
– volume: 29
  start-page: 856
  issue: 8
  year: 2014
  ident: 1633_CR70
  publication-title: Signal Processing: Image Communication
– ident: 1633_CR115
  doi: 10.1007/s11263-019-01288-9
– volume: 26
  start-page: 571
  issue: 3
  year: 2007
  ident: 1633_CR5
  publication-title: Computer Graphics Forum
  doi: 10.1111/j.1467-8659.2007.01080.x
– ident: 1633_CR68
  doi: 10.1007/978-3-030-58598-3_41
– volume: 21
  start-page: 3502
  issue: 8
  year: 2012
  ident: 1633_CR9
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2192126
– ident: 1633_CR47
  doi: 10.1109/CVPRW.2018.00118
– ident: 1633_CR19
  doi: 10.1109/ICCV.2011.6126280
– ident: 1633_CR40
  doi: 10.5244/C.29.6
– ident: 1633_CR150
  doi: 10.1109/CVPR.2019.00613
– ident: 1633_CR24
– volume: 21
  start-page: 4695
  issue: 12
  year: 2012
  ident: 1633_CR80
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2012.2214050
– ident: 1633_CR100
  doi: 10.1109/CVPR42600.2020.00340
– ident: 1633_CR44
  doi: 10.1109/CVPR.2017.632
– ident: 1633_CR161
– ident: 1633_CR71
  doi: 10.1109/ICCV.2015.425
– volume: 30
  start-page: 345
  issue: 11
  year: 2021
  ident: 1633_CR33
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.3036745
– ident: 1633_CR110
  doi: 10.1007/978-3-319-46475-6_35
– ident: 1633_CR66
– ident: 1633_CR76
  doi: 10.1109/ICCV.2001.937655
– ident: 1633_CR169
  doi: 10.1109/ICCV.2011.6126278
– volume: 20
  start-page: 3350
  issue: 12
  year: 2011
  ident: 1633_CR83
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2147325
– ident: 1633_CR87
  doi: 10.1109/CVPR.2019.00829
– ident: 1633_CR16
  doi: 10.1109/CVPR.2011.5995568
– ident: 1633_CR97
– ident: 1633_CR124
  doi: 10.1109/CVPR.2018.00931
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 1633_CR136
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– ident: 1633_CR64
  doi: 10.1109/CVPR.2009.5206815
– volume: 127
  start-page: 801
  issue: 6–7
  year: 2019
  ident: 1633_CR20
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-018-1138-7
– volume: 29
  start-page: 5273
  year: 2020
  ident: 1633_CR65
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2020.2980173
– volume: 27
  start-page: 194
  issue: 1
  year: 2017
  ident: 1633_CR146
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2017.2753658
– ident: 1633_CR49
  doi: 10.1007/978-3-319-46475-6_43
– ident: 1633_CR67
  doi: 10.1109/ICASSP.2019.8682542
– ident: 1633_CR35
  doi: 10.1109/ICCV.2017.322
– ident: 1633_CR117
  doi: 10.1109/CVPR.2014.379
– ident: 1633_CR142
  doi: 10.1007/978-3-642-15549-9_12
– ident: 1633_CR60
  doi: 10.1109/ICCV.2019.00897
– ident: 1633_CR48
  doi: 10.1109/CVPR.2017.408
– ident: 1633_CR152
  doi: 10.1109/CVPR.2018.00267
– ident: 1633_CR79
  doi: 10.1109/ICASSP.1993.319807
– ident: 1633_CR123
  doi: 10.1109/CVPR42600.2020.00366
– ident: 1633_CR164
  doi: 10.1007/978-3-030-58539-6_12
– ident: 1633_CR4
  doi: 10.5244/C.31.113
– ident: 1633_CR58
  doi: 10.1109/ICCV.2017.491
– ident: 1633_CR78
  doi: 10.1007/978-3-319-10578-9_51
– ident: 1633_CR101
– volume: 28
  start-page: 965
  issue: 7
  year: 1995
  ident: 1633_CR132
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(94)00146-D
– ident: 1633_CR137
  doi: 10.1109/ACSSC.2003.1292216
– ident: 1633_CR167
  doi: 10.1109/ICCV.2017.244
– ident: 1633_CR126
– ident: 1633_CR94
  doi: 10.1109/CVPR.2014.371
– ident: 1633_CR114
  doi: 10.1109/CVPR.2018.00862
– ident: 1633_CR59
  doi: 10.1109/CVPR.2018.00854
– ident: 1633_CR96
  doi: 10.1007/978-3-030-58539-6_20
– ident: 1633_CR8
  doi: 10.1109/CVPR.2018.00652
– volume: 110
  start-page: 185
  issue: 2
  year: 2014
  ident: 1633_CR138
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-014-0727-3
– ident: 1633_CR22
– ident: 1633_CR37
  doi: 10.1109/ICCV.2011.6126276
– ident: 1633_CR12
  doi: 10.1109/CVPR.2010.5539954
– ident: 1633_CR52
  doi: 10.1109/CVPR42600.2020.00585
– ident: 1633_CR31
  doi: 10.1109/CVPR.2017.405
– ident: 1633_CR11
  doi: 10.1007/978-3-319-46487-9_14
– ident: 1633_CR129
– ident: 1633_CR51
  doi: 10.1109/CVPR.2007.383214
– ident: 1633_CR56
  doi: 10.1007/978-3-642-33786-4_3
– ident: 1633_CR160
  doi: 10.1109/ICCVW.2009.5457520
– volume: 1
  start-page: 2
  issue: 1
  year: 2016
  ident: 1633_CR39
  publication-title: Quality and User Experience
  doi: 10.1007/s41233-016-0002-1
– ident: 1633_CR53
– ident: 1633_CR84
  doi: 10.1109/WACV.2019.00208
– ident: 1633_CR72
  doi: 10.1109/CVPR.2019.01047
– ident: 1633_CR157
  doi: 10.1109/CVPR.2018.00344
– ident: 1633_CR99
  doi: 10.1109/CVPR.2019.00699
– ident: 1633_CR118
  doi: 10.1109/CVPRW.2019.00267
– ident: 1633_CR149
  doi: 10.1109/CVPR.2013.132
– volume: 9
  start-page: 81
  issue: 3
  year: 2002
  ident: 1633_CR135
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/97.995823
– volume: 98
  start-page: 168
  issue: 2
  year: 2012
  ident: 1633_CR139
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-011-0502-7
– ident: 1633_CR128
  doi: 10.1109/ICCV.2017.352
– ident: 1633_CR108
  doi: 10.1109/CVPR.2013.142
– ident: 1633_CR2
  doi: 10.1007/978-3-030-01237-3_45
– ident: 1633_CR25
– ident: 1633_CR163
  doi: 10.1109/CVPR.2013.85
– ident: 1633_CR43
  doi: 10.1109/ICCV.2017.435
– ident: 1633_CR89
  doi: 10.1109/CVPR42600.2020.00368
– ident: 1633_CR6
  doi: 10.1109/ICCV.2017.356
– ident: 1633_CR28
  doi: 10.1109/CVPR.2019.00397
– ident: 1633_CR90
  doi: 10.1109/ICCV.2017.37
– ident: 1633_CR107
  doi: 10.1109/CVPR.2013.84
– ident: 1633_CR120
– ident: 1633_CR42
  doi: 10.1109/ICCV.2013.392
– ident: 1633_CR29
  doi: 10.1109/CVPR.2016.204
– ident: 1633_CR131
  doi: 10.1109/CVPR.2018.00853
– ident: 1633_CR98
– ident: 1633_CR125
  doi: 10.1109/CVPR.2015.7298677
– ident: 1633_CR55
  doi: 10.1007/978-3-030-01219-9_7
– volume: 38
  start-page: 1439
  issue: 7
  year: 2015
  ident: 1633_CR109
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2481418
– ident: 1633_CR151
  doi: 10.1109/CVPR.2017.737
– ident: 1633_CR73
– volume: 17
  start-page: 513
  issue: 5
  year: 2010
  ident: 1633_CR82
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2010.2043888
– ident: 1633_CR159
  doi: 10.1109/CVPR.2018.00068
– ident: 1633_CR165
  doi: 10.1109/ICCV.2019.00257
– volume: 57
  start-page: 2467
  issue: 7
  year: 2009
  ident: 1633_CR13
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2009.2018358
– ident: 1633_CR103
  doi: 10.1109/ICCV.2019.00948
– ident: 1633_CR10
  doi: 10.1109/CVPR.2019.00700
– ident: 1633_CR17
  doi: 10.1007/978-3-642-33715-4_38
– ident: 1633_CR145
  doi: 10.1109/CVPR.2013.147
SSID ssj0002823
Score 2.7168434
Snippet Image deblurring is a classic problem in low-level computer vision with the aim to recover a sharp image from a blurred input image. Advances in deep learning...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2103
SubjectTerms Artificial Intelligence
Artificial neural networks
Blurring
Business performance management
Cameras
Computer Imaging
Computer Science
Computer vision
Datasets
Deep learning
Image Processing and Computer Vision
Literature reviews
Machine vision
Neural networks
Pattern Recognition
Pattern Recognition and Graphics
Performance measurement
Surveys
Taxonomy
Vision
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vXjxLVarBhE8aDCbZpNGEKnaUgWLtBa8LftKLzWtfQj-e2fTTYuKveSQTF6zO9_O7LwAzoKKMTN47FJJtBskSrki4XjA5UD6HM3trLr-cytsdoOnN_q2Aq08F8aEVeaYmAG1GkizR37lR8YrgOp89Xb44ZquUca7mrfQ4La1grrJSoytQhEhmXoFKN7VWy_tOTajgTFrLo9GEw1jYtNoZsl0xM98miZUIaxUXPpjqfoN2H88p9mC1NiEdatJOrXZ0G_Bik63YcNqlY6V2TGeyhs35Od24ORB66Hz-I5Y4iDg9M02YNq7dmpOZzr61F-70G3UX--bru2U4ErUbyZuGHHhRZz4PDTVXxJFRJCImHBFZKw8HirlE0m1oFrTUEc8qnJcyhNaVWieoRa2B4V0kOp9cILI1yiTiRZxBYW7yhNEBKGJxz0pRBCVgORMYdKWETfdLPpsUQDZMJIhI1nGSEZLcDG_ZzgrorGU-tTwmpnqFKkJf-nx6XjMHjttVkOTOkKdMESic0uUDPD1kttsAvwJU9DqB2U5HzNm5XPMFrOpBJf5OC4u__9xB8ufdghrfjaDTBBaGQqT0VQfodYyEcd2Kn4DjNrjgg
  priority: 102
  providerName: ProQuest
Title Deep Image Deblurring: A Survey
URI https://link.springer.com/article/10.1007/s11263-022-01633-5
https://www.proquest.com/docview/2701324958
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcLB68eJbrNYaRPCggW6SzcNbqo2toohaqKdlN9n0UtPStIJ_72y6sdQXeMnCZvKa3XllXgAnjq3MDB6YNCbSdNIkMUXK8YDiILY4mttFdf27e7fddW56tKeTwvIy2r10SRacep7sRqzC56hCCVzbNmkFVqiqJ4W7uGuFn_wXjYhZA3k0jKgbEJ0q8_M9FsTRV6b8zTtaCJ1oA9a0tmiEs-XdhCWZbcG61hwNTZc5TpXNGcq5bTi6knJkdF6RXxjIVAbqV1_WvzBC42k6fpPvO9CNWs-XbVN3QzBj1GEmputx0fA4sbirKrykCRFOKgLCExIHSYO7SWKRmEpBpaSu9LjncxTXKfUTNMFQ09qF5WyYyT0wHM-SSHepFIGNBOzzFKleSNLgjVgIx6sCKZHCYl0qXHWsGLB5kWOFSIaIZAUiGa3C2ec1o1mhjD-hjxWumapAkakQlz6f5jnrPD2yEM1mD_U-F4FONVA6xMfHXGcM4EeoolULkLVyzZimwZxZnvIjoQHoV-G8XMf56d9fbv9_4AewahU7SgWe1WB5Mp7KQ9RUJqIOFT-6rsNK2LxqRmq8frlt4dhs3T881ott-wET099d
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcKCXUkqrplCwqqIeWovsxmvHSAiFlxIeUcVDym27L3OhTooTEH-O38aMsyYCVG5cfFiPX7Pjb2Z25wHwPWqSm6HSUBjmwiizNtSZwgOqA8MVuttldf3jXtw5jw76oj8Dd1UuDIVVVphYArUdGFojX-cJ7QqgOd_aGv4LqWsU7a5WLTSUb61gN8sSYz6x49Dd3qALV2x2d3G-1zjf3zvb6YS-y0Bo0DYYhXGidCNRjKuYKqdkluko0ylTlpnUNlRsLWdGOC2cE7FLVNJSqAYz0bLo2qAFg_d9A7MRLaDUYHZ7r_f75EEXoEMzaWaPTpqIU-bTdibJe4yXe6gUGhE3m6F4pBqfKohnO7WlAtx_D--85Rq0J6K2ADMu_wDz3ooNPEYUOFQ1iqjGFmF117lh0P2L2BUgwF3SsmN-sRG0g9Px1bW7_Qjnr8KzT1DLB7n7DEGUcIcYkDmdNhFMWipDBNKONVTDaB0ldWAVU6TxZcupe8alnBZcJkZKZKQsGSlFHX4-XDOcFO14kfob8VpSNYycwm0u1LgoZPf0RLbRhU_QBo2R6Icnygb4eKN89gJ-BBXQekS5XM2Z9HhQyKn01uFXNY_T0_9_uS8v320V5jpnx0fyqNs7XIK3vJQmCoBbhtroauy-osU00iteLAP489p_wj0ATSDy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8BlSZexr7QCmxE0yYeWETtxnEzqULdSkXHViE-JN48f_LC0kLaTf0X91dxTp1WgMYbL3lwLk5yPv_uzvbdAXxMmt7NkFnMNLFx4oyJlZN4QXWgqUR3u8yu_3OQHp4n3y_YxRL8q2Jh_LHKChNLoDZD7dfI9yj3uwJozrf2XDgWcdzt7Y-uY19Byu-0VuU0ZCizYNplurEQ5HFkp3_RnSva_S6O_SdKewdn3w7jUHEg1mgnjOOUS9XgklCZ-iwqzhCVOJURaYjOTEOmxlCimVXMWpZaLnlLokp0rGXQzUFrBvtdhhpHrY-OYO3rweD4ZK4X0LmZFbZHh42lGQkhPLNAPkLL_VR_TCJtNmN2R03eVxYPdm1LZdh7Ac-DFRt1ZmL3EpZs_grWgkUbBbwosKkqGlG1vYbtrrWjqP8bcSxCsLvyS5D55ZeoE51Obv7Y6Rs4fxKercNKPsztW4gSTi3igbMqayKwtKRDNFKWNGRDK5XwOpCKKUKHFOa-ksaVWCRf9owUyEhRMlKwOuzOnxnNEng8Sv3B81r4zBi5l7FLOSkK0T89ER105znaoykS7QQiN8TXaxkiGfAnfDKtO5Rb1ZiJgA2FWEhyHT5X47i4_f-P23i8t214hjNC_OgPjjZhlZbC5M_CbcHK-GZi36HxNFbvg1RG8OupJ8It528lNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Image+Deblurring%3A+A+Survey&rft.jtitle=International+journal+of+computer+vision&rft.au=Zhang%2C+Kaihao&rft.au=Ren%2C+Wenqi&rft.au=Luo%2C+Wenhan&rft.au=Lai%2C+Wei-Sheng&rft.date=2022-09-01&rft.pub=Springer+US&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=9&rft.spage=2103&rft.epage=2130&rft_id=info:doi/10.1007%2Fs11263-022-01633-5&rft.externalDocID=10_1007_s11263_022_01633_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon