A Space-Time Finite Element Method for the Eddy Current Approximation of Rotating Electric Machines

In this paper we formulate and analyze a space-time finite element method for the numerical simulation of rotating electric machines where the finite element mesh is fixed in a space-time domain. Based on the Babuška–Nečas theory we prove unique solvability both for the continuous variational formul...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational methods in applied mathematics Vol. 25; no. 2; pp. 441 - 457
Main Authors Gangl, Peter, Gobrial, Mario, Steinbach, Olaf
Format Journal Article
LanguageEnglish
Published Minsk De Gruyter 01.04.2025
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN1609-4840
1609-9389
DOI10.1515/cmam-2024-0033

Cover

Abstract In this paper we formulate and analyze a space-time finite element method for the numerical simulation of rotating electric machines where the finite element mesh is fixed in a space-time domain. Based on the Babuška–Nečas theory we prove unique solvability both for the continuous variational formulation and for a standard Galerkin finite element discretization in the space-time domain. This approach allows for an adaptive resolution of the solution both in space and time, but it requires the solution of the overall system of algebraic equations. While the use of parallel solution algorithms seems to be mandatory, this also allows for a parallelization simultaneously in space and time. This approach is used for the eddy current approximation of the Maxwell equations which results in an elliptic-parabolic interface problem. Numerical results for linear and nonlinear constitutive material relations confirm the applicability and accuracy of the proposed approach.
AbstractList In this paper we formulate and analyze a space-time finite element method for the numerical simulation of rotating electric machines where the finite element mesh is fixed in a space-time domain. Based on the Babuška–Nečas theory we prove unique solvability both for the continuous variational formulation and for a standard Galerkin finite element discretization in the space-time domain. This approach allows for an adaptive resolution of the solution both in space and time, but it requires the solution of the overall system of algebraic equations. While the use of parallel solution algorithms seems to be mandatory, this also allows for a parallelization simultaneously in space and time. This approach is used for the eddy current approximation of the Maxwell equations which results in an elliptic-parabolic interface problem. Numerical results for linear and nonlinear constitutive material relations confirm the applicability and accuracy of the proposed approach.
In this paper we formulate and analyze a space-time finite element method for the numerical simulation of rotating electric machines where the finite element mesh is fixed in a space-time domain. Based on the Babuška–Nečas theory we prove unique solvability both for the continuous variational formulation and for a standard Galerkin finite element discretization in the space-time domain. This approach allows for an adaptive resolution of the solution both in space and time, but it requires the solution of the overall system of algebraic equations. While the use of parallel solution algorithms seems to be mandatory, this also allows for a parallelization simultaneously in space and time. This approach is used for the eddy current approximation of the Maxwell equations which results in an elliptic-parabolic interface problem. Numerical results for linear and nonlinear constitutive material relations confirm the applicability and accuracy of the proposed approach.
Author Gobrial, Mario
Gangl, Peter
Steinbach, Olaf
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0001-8906-821X
  surname: Gangl
  fullname: Gangl, Peter
  email: peter.gangl@ricam.oeaw.ac.at
  organization: 231591 Johann Radon Institute for Computational and Applied Mathematics , Altenberger Straße 69, 4040 Linz, Austria
– sequence: 2
  givenname: Mario
  surname: Gobrial
  fullname: Gobrial, Mario
  email: gobrial@math.tugraz.at
  organization: Institut für Angewandte Mathematik, TU Graz, Steyrergasse 30, 8010 Graz, Austria
– sequence: 3
  givenname: Olaf
  orcidid: 0000-0002-2552-3022
  surname: Steinbach
  fullname: Steinbach, Olaf
  email: o.steinbach@tugraz.at
  organization: Institut für Angewandte Mathematik, TU Graz, Steyrergasse 30, 8010 Graz, Austria
BookMark eNp1kEtLAzEUhYMoWGu3rgOup-Y1j4CbUloVWgTtfsjk0UZmJmMmRfvvzdiCILrKIfd893GuwHnrWg3ADUZTnOL0TjaiSQgiLEGI0jMwwhniCacFPz9pVjB0CSZ9byuECoIJy_EIyBl87YTUycY2Gi5ta4OGi1o3ug1wrcPOKWich2EXv5U6wPne-6E26zrvPm0jgnUtdAa-uBB1ux1oGbyVcC3kzra6vwYXRtS9npzeMdgsF5v5Y7J6fniaz1aJpJyEhFRKc6KoQXklFFHSZFiSCmuKkRKiEpTzHJsq5zI1uYhWU7E8lYhUaZYaOga3x7Zxsfe97kP55va-jRNLiguS5ZhRFl3To0t61_dem7Lz8Qp_KDEqhyjLIcpyiLIcoowA-wVIG76vDl7Y-n_s_oh9iDpor_TW7w9R_Cz1N0hSwhimX8ybjuM
CitedBy_id crossref_primary_10_1016_j_apnum_2025_01_002
crossref_primary_10_1142_S0218202524500568
Cites_doi 10.1007/s00791-020-00333-2
10.1553/etna_vol52s154
10.1007/978-3-030-95025-5_59
10.1515/9783110548488-007
10.1007/978-3-031-50769-4_30
10.1109/20.123957
10.1007/978-1-4612-0661-3
10.1007/978-3-030-95025-5_51
10.1515/cmam-2020-0042
10.2140/pjm.1966.16.1
10.1007/s00211-005-0597-2
10.1515/cmam-2015-0026
10.1002/nme.2579
10.1093/imanum/drs014
10.1007/978-0-387-68805-3
10.1090/S0025-5718-08-02205-9
10.1016/j.cma.2016.03.042
10.1090/S0025-5718-2013-02782-2
10.1016/j.advwatres.2011.04.013
10.1016/j.cam.2005.08.021
10.1515/cmam-2023-0119
10.1137/20M1314756
10.1109/TMAG.2003.810381
10.1137/20M1330452
10.1007/978-88-470-1506-7
10.1137/15M1046605
10.1515/9783110543612
10.1201/9780203911174
10.1007/3-540-31619-1_8
10.1007/978-3-319-23321-5_3
10.1007/978-1-4757-4355-5
10.1007/978-3-319-73441-5_6
10.1137/18M1175653
10.1109/TIA.2022.3180030
10.1080/0305215X.2019.1577403
10.1007/978-0-387-75934-0
10.1007/978-3-030-27550-1_47
10.1093/imanum/drz069
10.1515/9783110548488-006
ContentType Journal Article
Copyright 2024 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2024 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
JQ2
DOI 10.1515/cmam-2024-0033
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1609-9389
EndPage 457
ExternalDocumentID 10_1515_cmam_2024_0033
10_1515_cmam_2024_0033252441
GrantInformation_xml – fundername: Austrian Science Fund
  grantid: TRR361/F90; P 32911
GroupedDBID 0R~
2WC
4.4
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AAKDD
AALGR
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACHNZ
ACIPV
ACIWK
ACONX
ACPMA
ACUND
ACZBO
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AEXIE
AFBAA
AFBDD
AFBQV
AFCXV
AFKRA
AFQUK
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIERV
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
ARAPS
ASYPN
BAKPI
BBCWN
BCIFA
BENPR
CFGNV
DASCH
DSRVY
EBS
HCIFZ
HZ~
IY9
J9A
K.~
KDIRW
O9-
P2P
QD8
SA.
SLJYH
TR2
UK5
WTRAM
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c392t-2bde92d3f07bad2dcf61c2b1e310daaba39971fb79c5f7a92dfb475c02b565f3
ISSN 1609-4840
IngestDate Wed Aug 13 04:59:01 EDT 2025
Wed Oct 01 06:38:58 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Sat Sep 06 16:56:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c392t-2bde92d3f07bad2dcf61c2b1e310daaba39971fb79c5f7a92dfb475c02b565f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2552-3022
0000-0001-8906-821X
PQID 3182671434
PQPubID 2038872
PageCount 17
ParticipantIDs proquest_journals_3182671434
crossref_primary_10_1515_cmam_2024_0033
crossref_citationtrail_10_1515_cmam_2024_0033
walterdegruyter_journals_10_1515_cmam_2024_0033252441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Minsk
PublicationPlace_xml – name: Minsk
PublicationTitle Journal of computational methods in applied mathematics
PublicationYear 2025
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2025032910202794305_j_cmam-2024-0033_ref_041
2025032910202794305_j_cmam-2024-0033_ref_020
2025032910202794305_j_cmam-2024-0033_ref_042
2025032910202794305_j_cmam-2024-0033_ref_021
2025032910202794305_j_cmam-2024-0033_ref_043
2025032910202794305_j_cmam-2024-0033_ref_022
2025032910202794305_j_cmam-2024-0033_ref_044
2025032910202794305_j_cmam-2024-0033_ref_040
2025032910202794305_j_cmam-2024-0033_ref_016
2025032910202794305_j_cmam-2024-0033_ref_038
2025032910202794305_j_cmam-2024-0033_ref_017
2025032910202794305_j_cmam-2024-0033_ref_039
2025032910202794305_j_cmam-2024-0033_ref_018
2025032910202794305_j_cmam-2024-0033_ref_019
2025032910202794305_j_cmam-2024-0033_ref_012
2025032910202794305_j_cmam-2024-0033_ref_034
2025032910202794305_j_cmam-2024-0033_ref_013
2025032910202794305_j_cmam-2024-0033_ref_035
2025032910202794305_j_cmam-2024-0033_ref_014
2025032910202794305_j_cmam-2024-0033_ref_036
2025032910202794305_j_cmam-2024-0033_ref_015
2025032910202794305_j_cmam-2024-0033_ref_037
2025032910202794305_j_cmam-2024-0033_ref_030
2025032910202794305_j_cmam-2024-0033_ref_031
2025032910202794305_j_cmam-2024-0033_ref_010
2025032910202794305_j_cmam-2024-0033_ref_032
2025032910202794305_j_cmam-2024-0033_ref_011
2025032910202794305_j_cmam-2024-0033_ref_033
2025032910202794305_j_cmam-2024-0033_ref_009
2025032910202794305_j_cmam-2024-0033_ref_005
2025032910202794305_j_cmam-2024-0033_ref_027
2025032910202794305_j_cmam-2024-0033_ref_006
2025032910202794305_j_cmam-2024-0033_ref_028
2025032910202794305_j_cmam-2024-0033_ref_007
2025032910202794305_j_cmam-2024-0033_ref_029
2025032910202794305_j_cmam-2024-0033_ref_008
2025032910202794305_j_cmam-2024-0033_ref_001
2025032910202794305_j_cmam-2024-0033_ref_023
2025032910202794305_j_cmam-2024-0033_ref_045
2025032910202794305_j_cmam-2024-0033_ref_002
2025032910202794305_j_cmam-2024-0033_ref_024
2025032910202794305_j_cmam-2024-0033_ref_046
2025032910202794305_j_cmam-2024-0033_ref_003
2025032910202794305_j_cmam-2024-0033_ref_025
2025032910202794305_j_cmam-2024-0033_ref_004
2025032910202794305_j_cmam-2024-0033_ref_026
References_xml – ident: 2025032910202794305_j_cmam-2024-0033_ref_008
  doi: 10.1007/s00791-020-00333-2
– ident: 2025032910202794305_j_cmam-2024-0033_ref_042
  doi: 10.1553/etna_vol52s154
– ident: 2025032910202794305_j_cmam-2024-0033_ref_039
  doi: 10.1007/978-3-030-95025-5_59
– ident: 2025032910202794305_j_cmam-2024-0033_ref_041
  doi: 10.1515/9783110548488-007
– ident: 2025032910202794305_j_cmam-2024-0033_ref_019
  doi: 10.1007/978-3-031-50769-4_30
– ident: 2025032910202794305_j_cmam-2024-0033_ref_034
  doi: 10.1109/20.123957
– ident: 2025032910202794305_j_cmam-2024-0033_ref_022
  doi: 10.1007/978-1-4612-0661-3
– ident: 2025032910202794305_j_cmam-2024-0033_ref_005
– ident: 2025032910202794305_j_cmam-2024-0033_ref_031
  doi: 10.1007/978-3-030-95025-5_51
– ident: 2025032910202794305_j_cmam-2024-0033_ref_026
  doi: 10.1515/cmam-2020-0042
– ident: 2025032910202794305_j_cmam-2024-0033_ref_004
  doi: 10.2140/pjm.1966.16.1
– ident: 2025032910202794305_j_cmam-2024-0033_ref_006
  doi: 10.1007/s00211-005-0597-2
– ident: 2025032910202794305_j_cmam-2024-0033_ref_038
  doi: 10.1515/cmam-2015-0026
– ident: 2025032910202794305_j_cmam-2024-0033_ref_020
  doi: 10.1002/nme.2579
– ident: 2025032910202794305_j_cmam-2024-0033_ref_002
  doi: 10.1093/imanum/drs014
– ident: 2025032910202794305_j_cmam-2024-0033_ref_037
  doi: 10.1007/978-0-387-68805-3
– ident: 2025032910202794305_j_cmam-2024-0033_ref_036
  doi: 10.1090/S0025-5718-08-02205-9
– ident: 2025032910202794305_j_cmam-2024-0033_ref_024
  doi: 10.1016/j.cma.2016.03.042
– ident: 2025032910202794305_j_cmam-2024-0033_ref_044
– ident: 2025032910202794305_j_cmam-2024-0033_ref_045
  doi: 10.1090/S0025-5718-2013-02782-2
– ident: 2025032910202794305_j_cmam-2024-0033_ref_011
  doi: 10.1016/j.advwatres.2011.04.013
– ident: 2025032910202794305_j_cmam-2024-0033_ref_029
– ident: 2025032910202794305_j_cmam-2024-0033_ref_032
  doi: 10.1016/j.cam.2005.08.021
– ident: 2025032910202794305_j_cmam-2024-0033_ref_046
  doi: 10.1515/cmam-2023-0119
– ident: 2025032910202794305_j_cmam-2024-0033_ref_023
  doi: 10.1137/20M1314756
– ident: 2025032910202794305_j_cmam-2024-0033_ref_021
  doi: 10.1109/TMAG.2003.810381
– ident: 2025032910202794305_j_cmam-2024-0033_ref_010
– ident: 2025032910202794305_j_cmam-2024-0033_ref_027
  doi: 10.1137/20M1330452
– ident: 2025032910202794305_j_cmam-2024-0033_ref_001
  doi: 10.1007/978-88-470-1506-7
– ident: 2025032910202794305_j_cmam-2024-0033_ref_018
  doi: 10.1137/15M1046605
– ident: 2025032910202794305_j_cmam-2024-0033_ref_014
– ident: 2025032910202794305_j_cmam-2024-0033_ref_025
  doi: 10.1515/9783110543612
– ident: 2025032910202794305_j_cmam-2024-0033_ref_035
– ident: 2025032910202794305_j_cmam-2024-0033_ref_007
  doi: 10.1201/9780203911174
– ident: 2025032910202794305_j_cmam-2024-0033_ref_013
  doi: 10.1007/3-540-31619-1_8
– ident: 2025032910202794305_j_cmam-2024-0033_ref_016
  doi: 10.1007/978-3-319-23321-5_3
– ident: 2025032910202794305_j_cmam-2024-0033_ref_012
  doi: 10.1007/978-1-4757-4355-5
– ident: 2025032910202794305_j_cmam-2024-0033_ref_040
  doi: 10.1007/978-3-319-73441-5_6
– ident: 2025032910202794305_j_cmam-2024-0033_ref_017
  doi: 10.1137/18M1175653
– ident: 2025032910202794305_j_cmam-2024-0033_ref_028
  doi: 10.1109/TIA.2022.3180030
– ident: 2025032910202794305_j_cmam-2024-0033_ref_033
  doi: 10.1080/0305215X.2019.1577403
– ident: 2025032910202794305_j_cmam-2024-0033_ref_003
– ident: 2025032910202794305_j_cmam-2024-0033_ref_009
  doi: 10.1007/978-0-387-75934-0
– ident: 2025032910202794305_j_cmam-2024-0033_ref_015
  doi: 10.1007/978-3-030-27550-1_47
– ident: 2025032910202794305_j_cmam-2024-0033_ref_043
  doi: 10.1093/imanum/drz069
– ident: 2025032910202794305_j_cmam-2024-0033_ref_030
  doi: 10.1515/9783110548488-006
SSID ssib008212471
ssj0033936
ssib006285865
Score 2.342083
Snippet In this paper we formulate and analyze a space-time finite element method for the numerical simulation of rotating electric machines where the finite element...
In this paper we formulate and analyze a space-time finite element method for the numerical simulation of rotating electric machines where the finite element...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 441
SubjectTerms 35K05
35Q60
65M60
65Z05
Algorithms
Approximation
Eddy Current Approximation
Eddy currents
Finite element method
Mathematical analysis
Mathematics
Maxwell Equations
Maxwell's equations
Parallel processing
Relativity
Rotating machinery
Rotation
Space-Time Finite Element Method
Time domain analysis
Title A Space-Time Finite Element Method for the Eddy Current Approximation of Rotating Electric Machines
URI https://www.degruyter.com/doi/10.1515/cmam-2024-0033
https://www.proquest.com/docview/3182671434
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 20250402
  omitProxy: true
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: 8FG
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAZK
  databaseName: De Gruyter Complete Journal Package 2023
  customDbUrl:
  eissn: 1609-9389
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033936
  issn: 1609-4840
  databaseCode: AGBEV
  dateStart: 20010120
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoHDiqcoLMgHJA5VlsSJ8zhWqO0KqSBBkfYW-RGXSm2KllTs8kP4vczEzqO7XWnhElWWbbmZz-OZeOYbQt76PFUh16GntRBexIT0BO4rmfmZhuPXcI7ZyPNP8dm36OM5Px8M_vSilnaVPFW_D-aV_I9UoQ3kilmy_yDZdlJogN8gX3iChOF5JxmPR1_B5S08zOMYTVdoPo4mNh58NK9LQ7dRhBOtYfM7MqYxEolfrjatufhlizfy5RJHK-Tsx4JE3zEi_hbjVdXFIJoPibYMdR1ZK5xVu2npYFujfSbK5fpGTPBsK_FNubwhGxXmAo1XpRS2UtXntTD97xOM98JarEqNsY5dakmZTouuLQtt8aBGD9sEaIc31lOqkaXGcudzZAmtb6h-XrNkqI3YAEYYrMG3DBv7HNvXzr42IhF9IZghx_E5jkfS1PAeuc-SOMbKGOl01ukplvK0dzucwvkfJW1oURhmdWnK9p87slCY__3--vaNoc7DOf5Vx0roYnmxu6qau_na5Fk8IsdO3HRsgfeYDIryCXk47yT7lKgx7SBILQSpgyC1EKQAQQpDKEKQOgjSPQjSraENBGkDQdpA8BlZTCeLD2eeq9vhKbC2K49JXWRMh8ZPpNBMKxMHismgAFcCNIIUYBQngZFJprhJBHQ1Mkq48pkE98KEz8lRuS2LF4RG0BIYrF6SsahgUqSJSDPomXIRMhMPide8v1w5TnssrbLOD8tzSN61_X9YNpdbe5404sjdjv-Zh-iMJ-BhREPCr4mo63V4QsbBkA5e3nkBr8iDbjedkKPqYle8Bvu3km9qMP4FArKu_Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6B9AA9tLw6DRTQgRlOamLZ8uOYdhIC1D1AYHrz6Fk6NAnTOAPl13fXdpxQ4AJXz0q2pZX3W2v1fQCv-jI1obQht1YpHgmluaJ1pbN-ZjH8einpNHJ-Go8_Re_O5NnGWRgqq7Tu_Gp5XdYMqT07N0v6UdZyDWAE7pmpmuIEi4iTGFnvSzm9vAtbmKzEUQe2Bm-Ohp_XXiVSmW7s5aX4tY6SthAkDLNKSDCISW8Nu2ioHX-_za-ha41Hd75XO9vtY28EqNEumNWr1XUpXw-XpT40P2-xPv7fuz-AnQa_skHtcA_hjps9gu28JX9dPAYzYB8xE3ecjpew0QWhWjasy9RZXilWM4TKDJuwobXXrOGIYgPiN_9xUR-mZHPPPsypUGB2Tq0NSQmwvKr9dIsnMBkNJ8dj3mg5cIMIrORCW5cJG_p-opUV1vg4MEIHDuEleolWCJSSwOskM9InCk29jhJp-kIj5PThHnRm85nbBxbhlcCTogWmjk5olSYqzdAylSoUPu4CX81SYRqec5LbuCwo38EBLGgACxpAIkYNu_C6tf9WM3z81fJgNelFs9IXRUgJGonIR12QtxxhbfXnDoVEcBU8_cd2L-HeeJKfFCdvT98_g_uChImrkqID6JRXS_cc0VKpXzTL4QYk8Q3v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4VkCo40AdFhEK7h0o9LYl3vbF9TEsCfQRVLUW9WftECEgQcQT013fGdhyg7QWu1qzt3Z31fOOd_T6Adx2VWqmc5M5pzWOhDde0rkzWyRyG36AUnUYeHnT3f8aff6lZNeGkLqt0_vhyelNUDKltN7ZT-lHWcA1gBG7bc32OEyxiTmJk7QsXFmAJY32K-ddSb-9D_2juVCJV6a2tvBQ_1nHS1IFImZU6glGX5NYw3amZHf9-yt3INYejq1flxnbz1rfi0-AZmFnPqrKU051pYXbs73ukj4_q-nNYrdEr61Xu9gKe-NFLWBk21K-TNbA99gPzcM_pcAkbnBCmZf2qSJ0NS71qhkCZYRPWd-6G1QxRrEfs5tcn1VFKNg7s-5jKBEbH1NqSkAAblpWffvIKDgf9w4_7vFZy4BbxV8GFcT4TToZOYrQTzoZuZIWJPIJL9BGjESYlUTBJZlVINJoGEyfKdoRBwBnkOiyOxiO_ASzGK1EgPQtMHL0wOk10mqFlqrQUodsCPpuk3NYs5yS2cZZTtoPjl9P45TR-RIsqW_C-sb-o-D3-a7k1m_O8XueTXFJ6RhLycQvUPT-YW_37hkIhtIo2H9juLTz9tjvIv346-PIalgWpEpf1RFuwWFxO_TZCpcK8qRfDHySADKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Space-Time+Finite+Element+Method+for+the+Eddy+Current+Approximation+of+Rotating+Electric+Machines&rft.jtitle=Journal+of+computational+methods+in+applied+mathematics&rft.au=Gangl%2C+Peter&rft.au=Gobrial%2C+Mario&rft.au=Steinbach%2C+Olaf&rft.date=2025-04-01&rft.issn=1609-4840&rft.eissn=1609-9389&rft.volume=25&rft.issue=2&rft.spage=441&rft.epage=457&rft_id=info:doi/10.1515%2Fcmam-2024-0033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_cmam_2024_0033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1609-4840&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1609-4840&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1609-4840&client=summon