Application scenario-oriented molecule generation platform developed for drug discovery
[Display omitted] •Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN etc.), in combination with various AI learning typ...
        Saved in:
      
    
          | Published in | Methods (San Diego, Calif.) Vol. 222; pp. 112 - 121 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.02.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1046-2023 1095-9130 1095-9130  | 
| DOI | 10.1016/j.ymeth.2023.12.009 | 
Cover
| Abstract | [Display omitted]
•Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, and active learning etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, and pharmacophore etc.), to enable customized solutions for a given molecular design scenario.•Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization.•We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations.•Remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.
Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics. | 
    
|---|---|
| AbstractList | Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics. [Display omitted] •Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, and active learning etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, and pharmacophore etc.), to enable customized solutions for a given molecular design scenario.•Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization.•We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations.•Remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics. Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics. Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.  | 
    
| Author | Zheng, Lianjun Lin, Zhixiong Lai, Lipeng Shi, Fangjun Fan, Fangda Zhang, Peiyu Xu, Min Wei, Lin Zhao, Chuanfang Peng, Chunwang Li, Yuanpeng Sun, Yina Zhang, Lin Wang, Zonghu Deng, Chenglong Yang, Mingjun Fang, Lei Du, Jiewen Duan, Xinli Ma, Songling  | 
    
| Author_xml | – sequence: 1 givenname: Lianjun surname: Zheng fullname: Zheng, Lianjun organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China – sequence: 2 givenname: Fangjun surname: Shi fullname: Shi, Fangjun organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 3 givenname: Chunwang surname: Peng fullname: Peng, Chunwang organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China – sequence: 4 givenname: Min surname: Xu fullname: Xu, Min organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China – sequence: 5 givenname: Fangda surname: Fan fullname: Fan, Fangda organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 6 givenname: Yuanpeng surname: Li fullname: Li, Yuanpeng organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 7 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 8 givenname: Jiewen surname: Du fullname: Du, Jiewen organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 9 givenname: Zonghu surname: Wang fullname: Wang, Zonghu organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 10 givenname: Zhixiong surname: Lin fullname: Lin, Zhixiong organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China – sequence: 11 givenname: Yina surname: Sun fullname: Sun, Yina organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 12 givenname: Chenglong surname: Deng fullname: Deng, Chenglong organization: Jingtai Zhiyao Technology (Shanghai) Co., Ltd. (XtalPi), No. 207 Huanqiao Road, Pudong New Area, Shanghai 201315, China – sequence: 13 givenname: Xinli surname: Duan fullname: Duan, Xinli organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 14 givenname: Lin surname: Wei fullname: Wei, Lin organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China – sequence: 15 givenname: Chuanfang surname: Zhao fullname: Zhao, Chuanfang organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 16 givenname: Lei surname: Fang fullname: Fang, Lei organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China – sequence: 17 givenname: Peiyu surname: Zhang fullname: Zhang, Peiyu organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China – sequence: 18 givenname: Songling surname: Ma fullname: Ma, Songling email: songling.ma@xtalpi.com organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 19 givenname: Lipeng surname: Lai fullname: Lai, Lipeng email: lipeng.lai@xtalpi.com organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China – sequence: 20 givenname: Mingjun surname: Yang fullname: Yang, Mingjun email: mingjun.yang@xtalpi.com organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38215898$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU1rFTEUhoNU7If-AkFm6WbGfE4nCxel2CoU3Fi6DJnkpOaSmYxJ5sL992Z6qwsXFgJJyPMcwvueo5M5zoDQe4I7gkn_adcdJig_O4op6wjtMJav0BnBUrSSMHyynXnfbs-n6DznHcaY0MvhDTplAyVikMMZerhaluCNLj7OTTYw6-RjG5OHuYBtphjArAGaR5ghHakl6OJimhoLewhxqVi9Njatj4312cQ9pMNb9NrpkOHd836B7m--_Lj-2t59v_12fXXXGiZpacloNbNWECa5NJyOg9HGEM2dHehIHB8N6520BhPLiXFSCDsKyqgbMXaCswv08Th3SfHXCrmoqX4BQtAzxDUrRkRdfX9JXkSppJTzQQzb1A_P6DpOYNWS_KTTQf3JrQLsCJgUc07g_iIEq60dtVNP7agtfkWoqu1US_5jGV-eQi1J-_CC-_noQk1z7yGpbGpJBqxPYIqy0f_X_w2soq2n | 
    
| CitedBy_id | crossref_primary_10_1016_j_ymeth_2025_01_009 crossref_primary_10_1016_j_ymeth_2024_09_005 crossref_primary_10_1016_j_jii_2025_100796 crossref_primary_10_1080_07391102_2024_2445169  | 
    
| Cites_doi | 10.1007/s10462-022-10246-w 10.2174/1568026619666190712205025 10.4155/fmc.11.34 10.1073/pnas.2220778120 10.1038/s41586-023-05905-z 10.18632/oncotarget.14073 10.1016/j.drudis.2021.05.019 10.1109/ACCESS.2018.2870052 10.1016/j.drudis.2018.01.039 10.1186/s13321-017-0235-x 10.1093/nar/gks1059 10.1093/nar/gkr777 10.1016/j.patter.2022.100628 10.1021/acs.jcim.0c01329 10.1038/s41467-017-00833-9 10.1016/j.ejmech.2022.114791 10.1002/jcc.26095 10.1021/acs.accounts.0c00699 10.1021/acs.jcim.8b00706 10.1186/s13321-021-00494-3 10.1016/j.celrep.2013.05.008 10.1021/acs.jcim.2c01191 10.1021/acs.jcim.3c00293 10.1021/acs.jcim.5b00691 10.1038/nature12305 10.3390/ijms20184331 10.1186/s13321-022-00599-3 10.1021/acs.jcim.9b00367 10.1021/ci049714+ 10.1038/nrd.2017.232 10.1021/acs.jmedchem.1c02042 10.1002/anie.201603074 10.2533/chimia.2014.472 10.1016/j.cherd.2016.10.014 10.1021/acs.jcim.3c00543 10.1021/acs.jcim.8b00173 10.1021/acs.jmedchem.6b01437 10.1021/acs.jcim.0c00679 10.2144/fsoa-2021-0062 10.1126/science.287.5460.1960 10.1021/acs.jctc.1c00214 10.3389/fmolb.2020.00180 10.1186/s13321-020-00446-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6  | 
    
| DOI | 10.1016/j.ymeth.2023.12.009 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Chemistry  | 
    
| EISSN | 1095-9130 | 
    
| EndPage | 121 | 
    
| ExternalDocumentID | 38215898 10_1016_j_ymeth_2023_12_009 S1046202323002190  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DOVZS DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HMG HVGLF HZ~ IHE J1W K-O KOM LG5 LX2 LZ5 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SIN SPCBC SSU SSZ T5K WUQ XPP Y6R ZGI ZMT ZU3 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD CGR CUY CVF ECM EIF NPM PKN 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c392t-1bda3dd513949c42b8cacc1a4fd82b1f4bc36f9dc01d41cf955db5232fb00f543 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1046-2023 1095-9130  | 
    
| IngestDate | Mon Sep 29 05:20:51 EDT 2025 Wed Oct 01 13:26:13 EDT 2025 Wed Feb 19 02:16:01 EST 2025 Wed Oct 01 06:44:59 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Sat Apr 27 15:45:09 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | Copyright © 2024 Elsevier Inc. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c392t-1bda3dd513949c42b8cacc1a4fd82b1f4bc36f9dc01d41cf955db5232fb00f543 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 38215898 | 
    
| PQID | 2922448584 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_3153156671 proquest_miscellaneous_2922448584 pubmed_primary_38215898 crossref_primary_10_1016_j_ymeth_2023_12_009 crossref_citationtrail_10_1016_j_ymeth_2023_12_009 elsevier_sciencedirect_doi_10_1016_j_ymeth_2023_12_009  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2024 2024-02-00 20240201  | 
    
| PublicationDateYYYYMMDD | 2024-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2024 text: February 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Methods (San Diego, Calif.) | 
    
| PublicationTitleAlternate | Methods | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Gaulton, Bellis, Bento, Chambers, Davies, Hersey, Light, McGlinchey, Michalovich, Al-Lazikani (b0195) 2012; 40 Kranzusch, Lee, Berger, Doudna (b0220) 2013; 3 Fan, Li, Lai, Wen, Ma (bib286) 2020 Pinzi, Rastelli (b0055) 2019; 20 Austin, Sahinidis, Trahan (b0075) 2016; 116 Blanchard, Stanley, Bhowmik (b0125) 2021; 13 Walters, Barzilay (b0085) 2021; 54 Sadybekov, Katritch (b0045) 2023; 616 Irwin, Shoichet (b0190) 2005; 45 Mosqueira-Rey, Hernández-Pereira, Alonso-Ríos, Bobes-Bascarán, Fernández-Leal (b0265) 2023; 56 Wei, Xu, Liu, Jiang, Lin, Hu, Wen, Zou, Peng, Lin, Wang, Yang, Fang, Yang, Zhang (b0210) 2023; 63 Zhang, Zhang, Huang (b0245) 2023; 63 Bran, A. M.; Cox, S.; White, A. D.; Schwaller, P., ChemCrow: Augmenting large-language models with chemistry tools. Dalke, Hert, Kramer (b0175) 2018; 58 Levenshtein (b0180) 1966 Sun, Y., Discovery of potent cGAS inhibitor with virtual screening and molecular generation toolkit. Rao, Zheng, Lu, Yang (b0250) 2022; 3 Takeuchi, Kunimoto, Bajorath (b0025) 2021; 7 Basu, V. Drug Molecule Generation with VAE. https://keras.io/examples/generative/molecule_generation/ (accessed 2022/03/10). Langer (b0060) 2011; 3 Konze, Bos, Dahlgren, Leswing, Tubert-Brohman, Bortolato, Robbason, Abel, Bhat (b0165) 2019; 59 Shivanyuk, Ryabukhin, Bogolyubsky, Mykytenko, Chuprina, Heilman, Kostyuk, Tolmachev (b0185) 2007; 25 Schneider (b0260) 2018; 17 Zou, Yin, Fang, Yang, Wang, Wu, Bellucci, Zhang (b0150) 2020; 60 Skalic, Jiménez, Sabbadin, De Fabritiis (b0200) 2019; 59 Li (b0020) 2020; 7 Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z., A survey of large language models. Hu, Stumpfe, Bajorath (b0030) 2017; 60 . Li, Zhao, Liu, Su, Wang (b0040) 2016; 56 Jin, Barzilay, Jaakkola (b0205) 2018 Chen (b0090) 2022; 65 Meyers, Fabian, Brown (b0080) 2021; 26 Civril, Deimling, de Oliveira Mann, Ablasser, Moldt, Witte, Hornung, Hopfner (b0215) 2013; 498 Yang, Burchett, Steeno, Liu, Yang, Mobley, Hou (b0145) 2020; 41 Mondal, Radeva, Fanlo-Virgós, Otto, Klebe, Hirsch (b0015) 2016; 55 Wirth, Zoete, Michielin, Sauer (b0170) 2013; 41 He, Nittinger, Tyrchan, Czechtizky, Patronov, Bjerrum, Engkvist (b0135) 2022; 14 Tian, Xu, Zhu, Feng, Dai, Zhou, You, Xu (b0230) 2022; 244 de Sena, Pinheiro, Rodrigues, do Couto Maia, Thota, Fraga (b0035) 2019; 19 Goel, Aggarwal, Sridharan, Pal, Priyakumar (b0070) 2023; 13 W. Ma, S. Ma (b0240) 2022 Singh, Sledzieski, Bryson, Cowen, Berger (b0285) 2023; 120 Müller (b0010) 2014; 68 Vincent, Adura, Gao, Luz, Lama, Asano, Okamoto, Imaeda, Aida, Rothamel (b0225) 2017; 8 Chen, Engkvist, Wang, Olivecrona, Blaschke (b0065) 2018; 23 Zou, Li, Liu, Peng, Fang, Wan, Lin, Lee, Raleigh, Yang (b0160) 2021; 17 Fan, Wang, Zheng, Lai, Wen, Ma (bib287) 2022 Drews (b0005) 2000; 287 Ivanenkov, Polykovskiy, Bezrukov, Zagribelnyy, Aladinskiy, Kamya, Aliper, Ren, Zhavoronkov (b0270) 2023; 63 Adadi, Berrada (b0255) 2018; 6 Zhang, Li, Guan, Kong, Shi, Zhou (b0130) 2022 Olivecrona, Blaschke, Engkvist, Chen (b0115) 2017; 9 Wang, W.; Wang, Y.; Zhao, H.; Sciabola, S., A Transformer-based Generative Model for De Novo Molecular Design. Kadurin, Aliper, Kazennov, Mamoshina, Vanhaelen, Khrabrov, Zhavoronkov (b0095) 2017; 8 Li, Xu, Yao, Lin (b0120) 2020; 12 Dearden (b0050) 2016; 1 Lin, Zou, Liu, Peng, Li, Wan, Fang, Yin, Gobbo, Chen (b0155) 2021; 61 Wang, Y.; Song, Q., Disentangle VAE for Molecular Generation. Bjerrum, E. J.; Threlfall, R., Molecular generation with recurrent neural networks (RNNs). 10.1016/j.ymeth.2023.12.009_b0105 Irwin (10.1016/j.ymeth.2023.12.009_b0190) 2005; 45 Chen (10.1016/j.ymeth.2023.12.009_b0090) 2022; 65 10.1016/j.ymeth.2023.12.009_b0100 10.1016/j.ymeth.2023.12.009_b0140 Schneider (10.1016/j.ymeth.2023.12.009_b0260) 2018; 17 Yang (10.1016/j.ymeth.2023.12.009_b0145) 2020; 41 Fan (10.1016/j.ymeth.2023.12.009_bib286) 2020 de Sena (10.1016/j.ymeth.2023.12.009_b0035) 2019; 19 Zou (10.1016/j.ymeth.2023.12.009_b0160) 2021; 17 Takeuchi (10.1016/j.ymeth.2023.12.009_b0025) 2021; 7 Austin (10.1016/j.ymeth.2023.12.009_b0075) 2016; 116 W. Ma (10.1016/j.ymeth.2023.12.009_b0240) 2022 Kranzusch (10.1016/j.ymeth.2023.12.009_b0220) 2013; 3 10.1016/j.ymeth.2023.12.009_b0235 Chen (10.1016/j.ymeth.2023.12.009_b0065) 2018; 23 10.1016/j.ymeth.2023.12.009_b0110 10.1016/j.ymeth.2023.12.009_b0275 Langer (10.1016/j.ymeth.2023.12.009_b0060) 2011; 3 Adadi (10.1016/j.ymeth.2023.12.009_b0255) 2018; 6 Wirth (10.1016/j.ymeth.2023.12.009_b0170) 2013; 41 Vincent (10.1016/j.ymeth.2023.12.009_b0225) 2017; 8 Olivecrona (10.1016/j.ymeth.2023.12.009_b0115) 2017; 9 Konze (10.1016/j.ymeth.2023.12.009_b0165) 2019; 59 Li (10.1016/j.ymeth.2023.12.009_b0020) 2020; 7 Dearden (10.1016/j.ymeth.2023.12.009_b0050) 2016; 1 Tian (10.1016/j.ymeth.2023.12.009_b0230) 2022; 244 Fan (10.1016/j.ymeth.2023.12.009_bib287) 2022 Meyers (10.1016/j.ymeth.2023.12.009_b0080) 2021; 26 Zhang (10.1016/j.ymeth.2023.12.009_b0245) 2023; 63 Mosqueira-Rey (10.1016/j.ymeth.2023.12.009_b0265) 2023; 56 He (10.1016/j.ymeth.2023.12.009_b0135) 2022; 14 Sadybekov (10.1016/j.ymeth.2023.12.009_b0045) 2023; 616 Pinzi (10.1016/j.ymeth.2023.12.009_b0055) 2019; 20 Hu (10.1016/j.ymeth.2023.12.009_b0030) 2017; 60 Zhang (10.1016/j.ymeth.2023.12.009_b0130) 2022 Drews (10.1016/j.ymeth.2023.12.009_b0005) 2000; 287 Blanchard (10.1016/j.ymeth.2023.12.009_b0125) 2021; 13 Gaulton (10.1016/j.ymeth.2023.12.009_b0195) 2012; 40 10.1016/j.ymeth.2023.12.009_b0280 Kadurin (10.1016/j.ymeth.2023.12.009_b0095) 2017; 8 Wei (10.1016/j.ymeth.2023.12.009_b0210) 2023; 63 Li (10.1016/j.ymeth.2023.12.009_b0040) 2016; 56 Lin (10.1016/j.ymeth.2023.12.009_b0155) 2021; 61 Skalic (10.1016/j.ymeth.2023.12.009_b0200) 2019; 59 Rao (10.1016/j.ymeth.2023.12.009_b0250) 2022; 3 Zou (10.1016/j.ymeth.2023.12.009_b0150) 2020; 60 Müller (10.1016/j.ymeth.2023.12.009_b0010) 2014; 68 Goel (10.1016/j.ymeth.2023.12.009_b0070) 2023; 13 Singh (10.1016/j.ymeth.2023.12.009_b0285) 2023; 120 Dalke (10.1016/j.ymeth.2023.12.009_b0175) 2018; 58 Jin (10.1016/j.ymeth.2023.12.009_b0205) 2018 Walters (10.1016/j.ymeth.2023.12.009_b0085) 2021; 54 Li (10.1016/j.ymeth.2023.12.009_b0120) 2020; 12 Ivanenkov (10.1016/j.ymeth.2023.12.009_b0270) 2023; 63 Shivanyuk (10.1016/j.ymeth.2023.12.009_b0185) 2007; 25 Mondal (10.1016/j.ymeth.2023.12.009_b0015) 2016; 55 Civril (10.1016/j.ymeth.2023.12.009_b0215) 2013; 498 Levenshtein (10.1016/j.ymeth.2023.12.009_b0180) 1966  | 
    
| References_xml | – volume: 17 start-page: 3710 year: 2021 end-page: 3726 ident: b0160 article-title: Scaffold hopping transformations using auxiliary restraints for calculating accurate relative binding free energies publication-title: J. Chem. Theory Comput. – reference: Bran, A. M.; Cox, S.; White, A. D.; Schwaller, P., ChemCrow: Augmenting large-language models with chemistry tools. – volume: 120 year: 2023 ident: b0285 article-title: Contrastive learning in protein language space predicts interactions between drugs and protein targets publication-title: Proc. Natl. Acad. Sci. – volume: 7 year: 2020 ident: b0020 article-title: Application of fragment-based drug discovery to versatile targets publication-title: Front. Mol. Biosci. – volume: 65 start-page: 100 year: 2022 end-page: 102 ident: b0090 article-title: Can generative-model-based drug design become a new normal in drug discovery? publication-title: J. Med. Chem. – volume: 244 year: 2022 ident: b0230 article-title: Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors publication-title: Eur. J. Med. Chem. – volume: 41 start-page: 247 year: 2020 end-page: 257 ident: b0145 article-title: Optimal designs for pairwise calculation: An application to free energy perturbation in minimizing prediction variability publication-title: J. Comput. Chem. – volume: 7 start-page: Fso742 year: 2021 ident: b0025 article-title: R-group replacement database for medicinal chemistry publication-title: Future Sci. OA – reference: Bjerrum, E. J.; Threlfall, R., Molecular generation with recurrent neural networks (RNNs). – reference: Wang, Y.; Song, Q., Disentangle VAE for Molecular Generation. – volume: 3 year: 2022 ident: b0250 article-title: Quantitative evaluation of explainable graph neural networks for molecular property prediction publication-title: Patterns – volume: 59 start-page: 1205 year: 2019 end-page: 1214 ident: b0200 article-title: Shape-based generative modeling for de novo drug design publication-title: J. Chem. Inf. Model. – year: 2020 ident: bib286 article-title: A molecular sequence generation method, apparatus, and computing device publication-title: China Patent – volume: 58 start-page: 902 year: 2018 end-page: 910 ident: b0175 article-title: mmpdb: An Open-Source Matched Molecular Pair Platform for Large Multiproperty Data Sets publication-title: J. Chem. Inf. Model. – volume: 23 start-page: 1241 year: 2018 end-page: 1250 ident: b0065 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov. Today – reference: Wang, W.; Wang, Y.; Zhao, H.; Sciabola, S., A Transformer-based Generative Model for De Novo Molecular Design. – volume: 54 start-page: 263 year: 2021 end-page: 270 ident: b0085 article-title: Applications of deep learning in molecule generation and molecular property prediction publication-title: Acc. Chem. Res. – reference: Sun, Y., Discovery of potent cGAS inhibitor with virtual screening and molecular generation toolkit. – volume: 116 start-page: 2 year: 2016 end-page: 26 ident: b0075 article-title: Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques publication-title: Chem. Eng. Res. Des. – volume: 13 start-page: 14 year: 2021 ident: b0125 article-title: Using GANs with adaptive training data to search for new molecules publication-title: J. Cheminf. – volume: 55 start-page: 9422 year: 2016 end-page: 9426 ident: b0015 article-title: Fragment linking and optimization of inhibitors of the aspartic protease endothiapepsin: fragment-based drug design facilitated by dynamic combinatorial chemistry publication-title: Angew. Chem. Internat. Ed. – start-page: 707 year: 1966 end-page: 710 ident: b0180 article-title: Binary codes capable of correcting deletions, insertions, and reversals – volume: 26 start-page: 2707 year: 2021 end-page: 2715 ident: b0080 article-title: De novo molecular design and generative models publication-title: Drug Discov. Today – volume: 40 start-page: D1100 year: 2012 end-page: D1107 ident: b0195 article-title: ChEMBL: a large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res. – volume: 287 start-page: 1960 year: 2000 end-page: 1964 ident: b0005 article-title: Drug discovery: a historical perspective publication-title: Science – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: b0255 article-title: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) publication-title: IEEE Access – volume: 17 start-page: 97 year: 2018 end-page: 113 ident: b0260 article-title: Automating drug discovery publication-title: Nat. Rev. Drug Discov. – volume: 41 start-page: D1137 year: 2013 end-page: D1143 ident: b0170 article-title: SwissBioisostere: a database of molecular replacements for ligand design publication-title: Nucleic Acids Res. – volume: 19 start-page: 1712 year: 2019 end-page: 1733 ident: b0035 article-title: The use of conformational restriction in medicinal chemistry publication-title: Curr. Top. Med. Chem. – volume: 60 start-page: 1238 year: 2017 end-page: 1246 ident: b0030 article-title: Recent Advances in Scaffold Hopping publication-title: J. Med. Chem. – volume: 45 start-page: 177 year: 2005 end-page: 182 ident: b0190 article-title: ZINC− a free database of commercially available compounds for virtual screening publication-title: J. Chem. Inf. Model. – volume: 68 start-page: 472 year: 2014 ident: b0010 article-title: Three decades of structure-and property-based molecular design publication-title: Chimia – year: 2022 ident: b0240 article-title: A molecular screening method, apparatus, device, and storage medium publication-title: China Patent – reference: Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z., A survey of large language models. – volume: 12 start-page: 42 year: 2020 ident: b0120 article-title: Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors publication-title: J. Cheminf. – volume: 3 start-page: 1362 year: 2013 end-page: 1368 ident: b0220 article-title: Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity publication-title: Cell Rep. – volume: 63 start-page: 3719 year: 2023 end-page: 3730 ident: b0245 article-title: A simple way to incorporate target structural information in molecular generative models publication-title: J. Chem. Inf. Model. – volume: 9 start-page: 1 year: 2017 end-page: 14 ident: b0115 article-title: Molecular de-novo design through deep reinforcement learning publication-title: J. Cheminf. – reference: Basu, V. Drug Molecule Generation with VAE. https://keras.io/examples/generative/molecule_generation/ (accessed 2022/03/10). – volume: 60 start-page: 5794 year: 2020 end-page: 5802 ident: b0150 article-title: Computational prediction of mutational effects on SARS-CoV-2 binding by relative free energy calculations publication-title: J. Chem. Inf. Model. – volume: 56 start-page: 435 year: 2016 end-page: 453 ident: b0040 article-title: AutoT&T vol 2: An efficient and versatile tool for lead structure generation and optimization publication-title: J. Chem. Inf. Model. – year: 2022 ident: bib287 article-title: A molecular generation method, apparatus, device, and storage medium publication-title: China Patent – volume: 3 start-page: 901 year: 2011 end-page: 904 ident: b0060 article-title: Pharmacophores for medicinal chemists: a personal view publication-title: Future Med. Chem. – volume: 13 start-page: e1637 year: 2023 ident: b0070 article-title: Efficient and enhanced sampling of drug-like chemical space for virtual screening and molecular design using modern machine learning methods publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 25 start-page: 58 year: 2007 end-page: 59 ident: b0185 article-title: Enamine real database: Making chemical diversity real publication-title: Chim. Oggi – start-page: 233 year: 2022 end-page: 273 ident: b0130 article-title: GANs for Molecule Generation in Drug Design and Discovery publication-title: Generative Adversarial Learning: Architectures and Applications – volume: 61 start-page: 2720 year: 2021 end-page: 2732 ident: b0155 article-title: A cloud computing platform for scalable relative and absolute binding free energy predictions: New opportunities and challenges for drug discovery publication-title: J. Chem. Inf. Model. – volume: 20 start-page: 4331 year: 2019 ident: b0055 article-title: Molecular Docking: Shifting Paradigms in Drug Discovery publication-title: Int. J. Mol. Sci. – reference: . – volume: 1 start-page: 1 year: 2016 end-page: 44 ident: b0050 article-title: The history and development of quantitative structure-activity relationships (QSARs) publication-title: IJQSPR – volume: 8 start-page: 750 year: 2017 ident: b0225 article-title: Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice publication-title: Nat. Commun. – volume: 8 start-page: 10883 year: 2017 ident: b0095 article-title: The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology publication-title: Oncotarget – volume: 59 start-page: 3782 year: 2019 end-page: 3793 ident: b0165 article-title: Reaction-based enumeration, active learning, and free energy calculations to rapidly explore synthetically tractable chemical space and optimize potency of cyclin-dependent kinase 2 inhibitors publication-title: J. Chem. Inf. Model. – volume: 498 start-page: 332 year: 2013 end-page: 337 ident: b0215 article-title: Structural mechanism of cytosolic DNA sensing by cGAS publication-title: Nature – volume: 63 start-page: 695 year: 2023 end-page: 701 ident: b0270 article-title: Chemistry42: an AI-Driven platform for molecular design and optimization publication-title: J. Chem. Inf. Model. – volume: 63 start-page: 5341 year: 2023 end-page: 5355 ident: b0210 article-title: Hit Identification Driven by Combining Artificial Intelligence and Computational Chemistry Methods: A PI5P4K-β Case Study publication-title: J. Chem. Inf. Model. – volume: 56 start-page: 3005 year: 2023 end-page: 3054 ident: b0265 article-title: Human-in-the-loop machine learning: a state of the art publication-title: Artif. Intell. Rev. – volume: 14 start-page: 18 year: 2022 ident: b0135 article-title: Transformer-based molecular optimization beyond matched molecular pairs publication-title: J. Cheminf. – start-page: 2323 year: 2018 end-page: 2332 ident: b0205 article-title: Junction tree variational autoencoder for molecular graph generation publication-title: International conference on machine learning – volume: 616 start-page: 673 year: 2023 end-page: 685 ident: b0045 article-title: Computational approaches streamlining drug discovery publication-title: Nature – volume: 56 start-page: 3005 issue: 4 year: 2023 ident: 10.1016/j.ymeth.2023.12.009_b0265 article-title: Human-in-the-loop machine learning: a state of the art publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10246-w – volume: 19 start-page: 1712 issue: 19 year: 2019 ident: 10.1016/j.ymeth.2023.12.009_b0035 article-title: The use of conformational restriction in medicinal chemistry publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026619666190712205025 – volume: 3 start-page: 901 issue: 8 year: 2011 ident: 10.1016/j.ymeth.2023.12.009_b0060 article-title: Pharmacophores for medicinal chemists: a personal view publication-title: Future Med. Chem. doi: 10.4155/fmc.11.34 – volume: 120 issue: 24 year: 2023 ident: 10.1016/j.ymeth.2023.12.009_b0285 article-title: Contrastive learning in protein language space predicts interactions between drugs and protein targets publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2220778120 – volume: 616 start-page: 673 issue: 7958 year: 2023 ident: 10.1016/j.ymeth.2023.12.009_b0045 article-title: Computational approaches streamlining drug discovery publication-title: Nature doi: 10.1038/s41586-023-05905-z – volume: 8 start-page: 10883 issue: 7 year: 2017 ident: 10.1016/j.ymeth.2023.12.009_b0095 article-title: The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology publication-title: Oncotarget doi: 10.18632/oncotarget.14073 – volume: 26 start-page: 2707 issue: 11 year: 2021 ident: 10.1016/j.ymeth.2023.12.009_b0080 article-title: De novo molecular design and generative models publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2021.05.019 – volume: 6 start-page: 52138 year: 2018 ident: 10.1016/j.ymeth.2023.12.009_b0255 article-title: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 23 start-page: 1241 issue: 6 year: 2018 ident: 10.1016/j.ymeth.2023.12.009_b0065 article-title: The rise of deep learning in drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2018.01.039 – volume: 9 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.ymeth.2023.12.009_b0115 article-title: Molecular de-novo design through deep reinforcement learning publication-title: J. Cheminf. doi: 10.1186/s13321-017-0235-x – volume: 41 start-page: D1137 issue: D1 year: 2013 ident: 10.1016/j.ymeth.2023.12.009_b0170 article-title: SwissBioisostere: a database of molecular replacements for ligand design publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1059 – volume: 40 start-page: D1100 issue: D1 year: 2012 ident: 10.1016/j.ymeth.2023.12.009_b0195 article-title: ChEMBL: a large-scale bioactivity database for drug discovery publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr777 – volume: 3 issue: 12 year: 2022 ident: 10.1016/j.ymeth.2023.12.009_b0250 article-title: Quantitative evaluation of explainable graph neural networks for molecular property prediction publication-title: Patterns doi: 10.1016/j.patter.2022.100628 – volume: 61 start-page: 2720 issue: 6 year: 2021 ident: 10.1016/j.ymeth.2023.12.009_b0155 article-title: A cloud computing platform for scalable relative and absolute binding free energy predictions: New opportunities and challenges for drug discovery publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c01329 – volume: 8 start-page: 750 issue: 1 year: 2017 ident: 10.1016/j.ymeth.2023.12.009_b0225 article-title: Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice publication-title: Nat. Commun. doi: 10.1038/s41467-017-00833-9 – volume: 244 year: 2022 ident: 10.1016/j.ymeth.2023.12.009_b0230 article-title: Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2022.114791 – volume: 41 start-page: 247 issue: 3 year: 2020 ident: 10.1016/j.ymeth.2023.12.009_b0145 article-title: Optimal designs for pairwise calculation: An application to free energy perturbation in minimizing prediction variability publication-title: J. Comput. Chem. doi: 10.1002/jcc.26095 – ident: 10.1016/j.ymeth.2023.12.009_b0280 – volume: 54 start-page: 263 issue: 2 year: 2021 ident: 10.1016/j.ymeth.2023.12.009_b0085 article-title: Applications of deep learning in molecule generation and molecular property prediction publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.0c00699 – volume: 59 start-page: 1205 issue: 3 year: 2019 ident: 10.1016/j.ymeth.2023.12.009_b0200 article-title: Shape-based generative modeling for de novo drug design publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00706 – volume: 13 start-page: 14 issue: 1 year: 2021 ident: 10.1016/j.ymeth.2023.12.009_b0125 article-title: Using GANs with adaptive training data to search for new molecules publication-title: J. Cheminf. doi: 10.1186/s13321-021-00494-3 – volume: 3 start-page: 1362 issue: 5 year: 2013 ident: 10.1016/j.ymeth.2023.12.009_b0220 article-title: Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.008 – volume: 63 start-page: 695 issue: 3 year: 2023 ident: 10.1016/j.ymeth.2023.12.009_b0270 article-title: Chemistry42: an AI-Driven platform for molecular design and optimization publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.2c01191 – volume: 63 start-page: 3719 issue: 12 year: 2023 ident: 10.1016/j.ymeth.2023.12.009_b0245 article-title: A simple way to incorporate target structural information in molecular generative models publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.3c00293 – volume: 56 start-page: 435 issue: 2 year: 2016 ident: 10.1016/j.ymeth.2023.12.009_b0040 article-title: AutoT&T vol 2: An efficient and versatile tool for lead structure generation and optimization publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00691 – volume: 498 start-page: 332 issue: 7454 year: 2013 ident: 10.1016/j.ymeth.2023.12.009_b0215 article-title: Structural mechanism of cytosolic DNA sensing by cGAS publication-title: Nature doi: 10.1038/nature12305 – volume: 20 start-page: 4331 issue: 18 year: 2019 ident: 10.1016/j.ymeth.2023.12.009_b0055 article-title: Molecular Docking: Shifting Paradigms in Drug Discovery publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20184331 – start-page: 707 year: 1966 ident: 10.1016/j.ymeth.2023.12.009_b0180 – ident: 10.1016/j.ymeth.2023.12.009_b0105 – volume: 14 start-page: 18 issue: 1 year: 2022 ident: 10.1016/j.ymeth.2023.12.009_b0135 article-title: Transformer-based molecular optimization beyond matched molecular pairs publication-title: J. Cheminf. doi: 10.1186/s13321-022-00599-3 – volume: 59 start-page: 3782 issue: 9 year: 2019 ident: 10.1016/j.ymeth.2023.12.009_b0165 article-title: Reaction-based enumeration, active learning, and free energy calculations to rapidly explore synthetically tractable chemical space and optimize potency of cyclin-dependent kinase 2 inhibitors publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.9b00367 – volume: 45 start-page: 177 issue: 1 year: 2005 ident: 10.1016/j.ymeth.2023.12.009_b0190 article-title: ZINC− a free database of commercially available compounds for virtual screening publication-title: J. Chem. Inf. Model. doi: 10.1021/ci049714+ – volume: 17 start-page: 97 issue: 2 year: 2018 ident: 10.1016/j.ymeth.2023.12.009_b0260 article-title: Automating drug discovery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.232 – start-page: 2323 year: 2018 ident: 10.1016/j.ymeth.2023.12.009_b0205 article-title: Junction tree variational autoencoder for molecular graph generation – volume: 65 start-page: 100 issue: 1 year: 2022 ident: 10.1016/j.ymeth.2023.12.009_b0090 article-title: Can generative-model-based drug design become a new normal in drug discovery? publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.1c02042 – volume: 55 start-page: 9422 issue: 32 year: 2016 ident: 10.1016/j.ymeth.2023.12.009_b0015 article-title: Fragment linking and optimization of inhibitors of the aspartic protease endothiapepsin: fragment-based drug design facilitated by dynamic combinatorial chemistry publication-title: Angew. Chem. Internat. Ed. doi: 10.1002/anie.201603074 – ident: 10.1016/j.ymeth.2023.12.009_b0235 – volume: 68 start-page: 472 issue: 7–8 year: 2014 ident: 10.1016/j.ymeth.2023.12.009_b0010 article-title: Three decades of structure-and property-based molecular design publication-title: Chimia doi: 10.2533/chimia.2014.472 – volume: 116 start-page: 2 year: 2016 ident: 10.1016/j.ymeth.2023.12.009_b0075 article-title: Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2016.10.014 – volume: 63 start-page: 5341 issue: 16 year: 2023 ident: 10.1016/j.ymeth.2023.12.009_b0210 article-title: Hit Identification Driven by Combining Artificial Intelligence and Computational Chemistry Methods: A PI5P4K-β Case Study publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.3c00543 – year: 2022 ident: 10.1016/j.ymeth.2023.12.009_bib287 article-title: A molecular generation method, apparatus, device, and storage medium publication-title: China Patent – volume: 58 start-page: 902 issue: 5 year: 2018 ident: 10.1016/j.ymeth.2023.12.009_b0175 article-title: mmpdb: An Open-Source Matched Molecular Pair Platform for Large Multiproperty Data Sets publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.8b00173 – ident: 10.1016/j.ymeth.2023.12.009_b0140 – volume: 60 start-page: 1238 issue: 4 year: 2017 ident: 10.1016/j.ymeth.2023.12.009_b0030 article-title: Recent Advances in Scaffold Hopping publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01437 – volume: 13 start-page: e1637 issue: 2 year: 2023 ident: 10.1016/j.ymeth.2023.12.009_b0070 article-title: Efficient and enhanced sampling of drug-like chemical space for virtual screening and molecular design using modern machine learning methods publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – ident: 10.1016/j.ymeth.2023.12.009_b0100 – start-page: 233 year: 2022 ident: 10.1016/j.ymeth.2023.12.009_b0130 article-title: GANs for Molecule Generation in Drug Design and Discovery – volume: 25 start-page: 58 year: 2007 ident: 10.1016/j.ymeth.2023.12.009_b0185 article-title: Enamine real database: Making chemical diversity real publication-title: Chim. Oggi – volume: 60 start-page: 5794 issue: 12 year: 2020 ident: 10.1016/j.ymeth.2023.12.009_b0150 article-title: Computational prediction of mutational effects on SARS-CoV-2 binding by relative free energy calculations publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00679 – volume: 7 start-page: Fso742 issue: 8 year: 2021 ident: 10.1016/j.ymeth.2023.12.009_b0025 article-title: R-group replacement database for medicinal chemistry publication-title: Future Sci. OA doi: 10.2144/fsoa-2021-0062 – year: 2022 ident: 10.1016/j.ymeth.2023.12.009_b0240 article-title: A molecular screening method, apparatus, device, and storage medium publication-title: China Patent – volume: 287 start-page: 1960 issue: 5460 year: 2000 ident: 10.1016/j.ymeth.2023.12.009_b0005 article-title: Drug discovery: a historical perspective publication-title: Science doi: 10.1126/science.287.5460.1960 – ident: 10.1016/j.ymeth.2023.12.009_b0110 – volume: 17 start-page: 3710 issue: 6 year: 2021 ident: 10.1016/j.ymeth.2023.12.009_b0160 article-title: Scaffold hopping transformations using auxiliary restraints for calculating accurate relative binding free energies publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.1c00214 – volume: 1 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ymeth.2023.12.009_b0050 article-title: The history and development of quantitative structure-activity relationships (QSARs) publication-title: IJQSPR – volume: 7 year: 2020 ident: 10.1016/j.ymeth.2023.12.009_b0020 article-title: Application of fragment-based drug discovery to versatile targets publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2020.00180 – ident: 10.1016/j.ymeth.2023.12.009_b0275 – volume: 12 start-page: 42 issue: 1 year: 2020 ident: 10.1016/j.ymeth.2023.12.009_b0120 article-title: Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors publication-title: J. Cheminf. doi: 10.1186/s13321-020-00446-3 – year: 2020 ident: 10.1016/j.ymeth.2023.12.009_bib286 article-title: A molecular sequence generation method, apparatus, and computing device publication-title: China Patent  | 
    
| SSID | ssj0001278 | 
    
| Score | 2.446086 | 
    
| Snippet | [Display omitted]
•Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This... Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 112 | 
    
| SubjectTerms | Algorithms Binding Sites Drug Design Drug Discovery drugs Gene Library pharmacology therapeutics  | 
    
| Title | Application scenario-oriented molecule generation platform developed for drug discovery | 
    
| URI | https://dx.doi.org/10.1016/j.ymeth.2023.12.009 https://www.ncbi.nlm.nih.gov/pubmed/38215898 https://www.proquest.com/docview/2922448584 https://www.proquest.com/docview/3153156671  | 
    
| Volume | 222 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-9130 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001278 issn: 1046-2023 databaseCode: AKRWK dateStart: 19900801 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED3oR364vIogn65o2aZvjsiirghcVvYXmUVG0u-juYS_-dmfSVhHUg8eECYRMOvNN880MwIHyPEuFwrAkUTISxhiqAZlHnnwDWsfSu8C2uEoHt-LiXt7PQL_NhSFaZWP7a5serHUz021Oszt6fOxe0-skNf9GEI2OSlHcLkRGXQyO379oHjzO6nQ4kUYk3VYeChyvKbVpPqbp8E-QWIk_e6ff0GfwQmdLsNjAR9ard7gMM75agdVehaHzy5QdskDoDH_KV2C-3zZzW4W73tdDNaMCThgiD6MhFTlGyMle6ia5nj2EKtRBavRcjAnRsiavCsVwyNzr5IFRLi9xP6drcHt2etMfRE1PhcgiEhpH3LgicU4i8BPKitjktrCWF6J0eWx4KYxN0lI5e8Kd4LZUUjqDwWpc4vdZSpGsw2w1rPwmMGlyGXtvE1EiqFK8yDD2KKR13nICLh2I27PUtik4Tn0vnnXLLHvSQQGaFKB5rFEBHTj6XDSq6238LZ62StLfro1Gj_D3wv1WpRpVQa8kReWHkzcdK0Q1Ikdg9rtMgn6CAt-Md2Cjvg-fu01yRFG5yrf-u7VtWMCRqKnhOzA7fp34XUQ-Y7MXrvYezPXOLwdXHxCSA30 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOMAFlfeWtrgS6omw2LGT-LhaFS2PcikIblb8yIoKsiu6e9gLv70zTgKqVDj0GGcsWRln5hv7mxmAQx14nkmNYUmqVSKttVQDskgC-Qa0jlXwkW1xlY1u5PmduluCYZcLQ7TK1vY3Nj1a63ak337N_vT-vv-Tbiep-TeCaHRUGuP2FalEThHY8fMrz4OLvMmHk1lC4l3poUjyWlCf5mMajoeCREv8t3t6C35GN3T6AdZb_MgGzRI3YCnUm7A1qDF2flywbywyOuNR-SasDrtubltwO3i9qWZUwQlj5EkyoSrHiDnZY9MlN7BxLEMdpaYP5YwgLWsTq1AMH5l_mo8ZJfMS-XOxDTen36-Ho6RtqpA4hEKzhFtfpt4rRH5SOyls4UrneCkrXwjLK2ldmlXauxPuJXeVVspbjFZFhT9opWS6A8v1pA57wJQtlAjBpbJCVKV5mWPwUSrng-OEXHogum9pXFtxnBpfPJiOWvbLRAUYUoDhwqACenD0MmnaFNx4XzzrlGT-2jcGXcL7E792KjWoCromKeswmf82QiOskQUis7dlUnQUFPnmvAe7zX54WW1aIIwqdPHxf5d2AKuj6x-X5vLs6mIf1vCNbHjin2B59jQPnxEGzeyXuM3_AP5YBRI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+scenario-oriented+molecule+generation+platform+developed+for+drug+discovery&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Zheng%2C+Lianjun&rft.au=Shi%2C+Fangjun&rft.au=Peng%2C+Chunwang&rft.au=Xu%2C+Min&rft.date=2024-02-01&rft.issn=1095-9130&rft.eissn=1095-9130&rft.volume=222&rft.spage=112&rft_id=info:doi/10.1016%2Fj.ymeth.2023.12.009&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon |