Application scenario-oriented molecule generation platform developed for drug discovery

[Display omitted] •Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN etc.), in combination with various AI learning typ...

Full description

Saved in:
Bibliographic Details
Published inMethods (San Diego, Calif.) Vol. 222; pp. 112 - 121
Main Authors Zheng, Lianjun, Shi, Fangjun, Peng, Chunwang, Xu, Min, Fan, Fangda, Li, Yuanpeng, Zhang, Lin, Du, Jiewen, Wang, Zonghu, Lin, Zhixiong, Sun, Yina, Deng, Chenglong, Duan, Xinli, Wei, Lin, Zhao, Chuanfang, Fang, Lei, Zhang, Peiyu, Ma, Songling, Lai, Lipeng, Yang, Mingjun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2024
Subjects
Online AccessGet full text
ISSN1046-2023
1095-9130
1095-9130
DOI10.1016/j.ymeth.2023.12.009

Cover

Abstract [Display omitted] •Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, and active learning etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, and pharmacophore etc.), to enable customized solutions for a given molecular design scenario.•Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization.•We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations.•Remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics. Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.
AbstractList Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.
[Display omitted] •Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, and active learning etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, and pharmacophore etc.), to enable customized solutions for a given molecular design scenario.•Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization.•We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations.•Remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics. Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.
Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement of multi-parameter optimization. Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This platform utilizes both library or rule based and generative based algorithms (VAE, RNN, GAN, etc.), in combination with various AI learning types (pre-training, transfer learning, reinforcement learning, active learning, etc.) and input representations (1D SMILES, 2D graph, 3D shape, binding site, pharmacophore, etc.), to enable customized solutions for a given molecular design scenario. Besides the usual generation followed screening protocol, goal-directed molecule generation can also be conducted towards predefined goals, enhancing the efficiency of hit identification, lead finding, and lead optimization. We demonstrate the effectiveness of ID4Idea platform through case studies, showcasing customized solutions for different design tasks using various input information, such as binding pockets, pharmacophores, and compound representations. In addition, remaining challenges are discussed to unlock the full potential of AI models in drug discovery and pave the way for the development of novel therapeutics.
Author Zheng, Lianjun
Lin, Zhixiong
Lai, Lipeng
Shi, Fangjun
Fan, Fangda
Zhang, Peiyu
Xu, Min
Wei, Lin
Zhao, Chuanfang
Peng, Chunwang
Li, Yuanpeng
Sun, Yina
Zhang, Lin
Wang, Zonghu
Deng, Chenglong
Yang, Mingjun
Fang, Lei
Du, Jiewen
Duan, Xinli
Ma, Songling
Author_xml – sequence: 1
  givenname: Lianjun
  surname: Zheng
  fullname: Zheng, Lianjun
  organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
– sequence: 2
  givenname: Fangjun
  surname: Shi
  fullname: Shi, Fangjun
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 3
  givenname: Chunwang
  surname: Peng
  fullname: Peng, Chunwang
  organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
– sequence: 4
  givenname: Min
  surname: Xu
  fullname: Xu, Min
  organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
– sequence: 5
  givenname: Fangda
  surname: Fan
  fullname: Fan, Fangda
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 6
  givenname: Yuanpeng
  surname: Li
  fullname: Li, Yuanpeng
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 7
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 8
  givenname: Jiewen
  surname: Du
  fullname: Du, Jiewen
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 9
  givenname: Zonghu
  surname: Wang
  fullname: Wang, Zonghu
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 10
  givenname: Zhixiong
  surname: Lin
  fullname: Lin, Zhixiong
  organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
– sequence: 11
  givenname: Yina
  surname: Sun
  fullname: Sun, Yina
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 12
  givenname: Chenglong
  surname: Deng
  fullname: Deng, Chenglong
  organization: Jingtai Zhiyao Technology (Shanghai) Co., Ltd. (XtalPi), No. 207 Huanqiao Road, Pudong New Area, Shanghai 201315, China
– sequence: 13
  givenname: Xinli
  surname: Duan
  fullname: Duan, Xinli
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 14
  givenname: Lin
  surname: Wei
  fullname: Wei, Lin
  organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
– sequence: 15
  givenname: Chuanfang
  surname: Zhao
  fullname: Zhao, Chuanfang
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 16
  givenname: Lei
  surname: Fang
  fullname: Fang, Lei
  organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
– sequence: 17
  givenname: Peiyu
  surname: Zhang
  fullname: Zhang, Peiyu
  organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
– sequence: 18
  givenname: Songling
  surname: Ma
  fullname: Ma, Songling
  email: songling.ma@xtalpi.com
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 19
  givenname: Lipeng
  surname: Lai
  fullname: Lai, Lipeng
  email: lipeng.lai@xtalpi.com
  organization: XtalPi Innovation Center, XtalPi Inc., Beijing, China
– sequence: 20
  givenname: Mingjun
  surname: Yang
  fullname: Yang, Mingjun
  email: mingjun.yang@xtalpi.com
  organization: Shenzhen Jingtai Technology Co., Ltd. (XtalPi), Floor 3, Sf Industrial Plant, No. 2 Hongliu Road, Fubao Community, Fubao Street, Futian District, Shenzhen 518045, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38215898$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1rFTEUhoNU7If-AkFm6WbGfE4nCxel2CoU3Fi6DJnkpOaSmYxJ5sL992Z6qwsXFgJJyPMcwvueo5M5zoDQe4I7gkn_adcdJig_O4op6wjtMJav0BnBUrSSMHyynXnfbs-n6DznHcaY0MvhDTplAyVikMMZerhaluCNLj7OTTYw6-RjG5OHuYBtphjArAGaR5ghHakl6OJimhoLewhxqVi9Njatj4312cQ9pMNb9NrpkOHd836B7m--_Lj-2t59v_12fXXXGiZpacloNbNWECa5NJyOg9HGEM2dHehIHB8N6520BhPLiXFSCDsKyqgbMXaCswv08Th3SfHXCrmoqX4BQtAzxDUrRkRdfX9JXkSppJTzQQzb1A_P6DpOYNWS_KTTQf3JrQLsCJgUc07g_iIEq60dtVNP7agtfkWoqu1US_5jGV-eQi1J-_CC-_noQk1z7yGpbGpJBqxPYIqy0f_X_w2soq2n
CitedBy_id crossref_primary_10_1016_j_ymeth_2025_01_009
crossref_primary_10_1016_j_ymeth_2024_09_005
crossref_primary_10_1016_j_jii_2025_100796
crossref_primary_10_1080_07391102_2024_2445169
Cites_doi 10.1007/s10462-022-10246-w
10.2174/1568026619666190712205025
10.4155/fmc.11.34
10.1073/pnas.2220778120
10.1038/s41586-023-05905-z
10.18632/oncotarget.14073
10.1016/j.drudis.2021.05.019
10.1109/ACCESS.2018.2870052
10.1016/j.drudis.2018.01.039
10.1186/s13321-017-0235-x
10.1093/nar/gks1059
10.1093/nar/gkr777
10.1016/j.patter.2022.100628
10.1021/acs.jcim.0c01329
10.1038/s41467-017-00833-9
10.1016/j.ejmech.2022.114791
10.1002/jcc.26095
10.1021/acs.accounts.0c00699
10.1021/acs.jcim.8b00706
10.1186/s13321-021-00494-3
10.1016/j.celrep.2013.05.008
10.1021/acs.jcim.2c01191
10.1021/acs.jcim.3c00293
10.1021/acs.jcim.5b00691
10.1038/nature12305
10.3390/ijms20184331
10.1186/s13321-022-00599-3
10.1021/acs.jcim.9b00367
10.1021/ci049714+
10.1038/nrd.2017.232
10.1021/acs.jmedchem.1c02042
10.1002/anie.201603074
10.2533/chimia.2014.472
10.1016/j.cherd.2016.10.014
10.1021/acs.jcim.3c00543
10.1021/acs.jcim.8b00173
10.1021/acs.jmedchem.6b01437
10.1021/acs.jcim.0c00679
10.2144/fsoa-2021-0062
10.1126/science.287.5460.1960
10.1021/acs.jctc.1c00214
10.3389/fmolb.2020.00180
10.1186/s13321-020-00446-3
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ymeth.2023.12.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1095-9130
EndPage 121
ExternalDocumentID 38215898
10_1016_j_ymeth_2023_12_009
S1046202323002190
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HMG
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX2
LZ5
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSU
SSZ
T5K
WUQ
XPP
Y6R
ZGI
ZMT
ZU3
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c392t-1bda3dd513949c42b8cacc1a4fd82b1f4bc36f9dc01d41cf955db5232fb00f543
IEDL.DBID .~1
ISSN 1046-2023
1095-9130
IngestDate Mon Sep 29 05:20:51 EDT 2025
Wed Oct 01 13:26:13 EDT 2025
Wed Feb 19 02:16:01 EST 2025
Wed Oct 01 06:44:59 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Sat Apr 27 15:45:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c392t-1bda3dd513949c42b8cacc1a4fd82b1f4bc36f9dc01d41cf955db5232fb00f543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38215898
PQID 2922448584
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3153156671
proquest_miscellaneous_2922448584
pubmed_primary_38215898
crossref_primary_10_1016_j_ymeth_2023_12_009
crossref_citationtrail_10_1016_j_ymeth_2023_12_009
elsevier_sciencedirect_doi_10_1016_j_ymeth_2023_12_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Methods (San Diego, Calif.)
PublicationTitleAlternate Methods
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Gaulton, Bellis, Bento, Chambers, Davies, Hersey, Light, McGlinchey, Michalovich, Al-Lazikani (b0195) 2012; 40
Kranzusch, Lee, Berger, Doudna (b0220) 2013; 3
Fan, Li, Lai, Wen, Ma (bib286) 2020
Pinzi, Rastelli (b0055) 2019; 20
Austin, Sahinidis, Trahan (b0075) 2016; 116
Blanchard, Stanley, Bhowmik (b0125) 2021; 13
Walters, Barzilay (b0085) 2021; 54
Sadybekov, Katritch (b0045) 2023; 616
Irwin, Shoichet (b0190) 2005; 45
Mosqueira-Rey, Hernández-Pereira, Alonso-Ríos, Bobes-Bascarán, Fernández-Leal (b0265) 2023; 56
Wei, Xu, Liu, Jiang, Lin, Hu, Wen, Zou, Peng, Lin, Wang, Yang, Fang, Yang, Zhang (b0210) 2023; 63
Zhang, Zhang, Huang (b0245) 2023; 63
Bran, A. M.; Cox, S.; White, A. D.; Schwaller, P., ChemCrow: Augmenting large-language models with chemistry tools.
Dalke, Hert, Kramer (b0175) 2018; 58
Levenshtein (b0180) 1966
Sun, Y., Discovery of potent cGAS inhibitor with virtual screening and molecular generation toolkit.
Rao, Zheng, Lu, Yang (b0250) 2022; 3
Takeuchi, Kunimoto, Bajorath (b0025) 2021; 7
Basu, V. Drug Molecule Generation with VAE. https://keras.io/examples/generative/molecule_generation/ (accessed 2022/03/10).
Langer (b0060) 2011; 3
Konze, Bos, Dahlgren, Leswing, Tubert-Brohman, Bortolato, Robbason, Abel, Bhat (b0165) 2019; 59
Shivanyuk, Ryabukhin, Bogolyubsky, Mykytenko, Chuprina, Heilman, Kostyuk, Tolmachev (b0185) 2007; 25
Schneider (b0260) 2018; 17
Zou, Yin, Fang, Yang, Wang, Wu, Bellucci, Zhang (b0150) 2020; 60
Skalic, Jiménez, Sabbadin, De Fabritiis (b0200) 2019; 59
Li (b0020) 2020; 7
Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z., A survey of large language models.
Hu, Stumpfe, Bajorath (b0030) 2017; 60
.
Li, Zhao, Liu, Su, Wang (b0040) 2016; 56
Jin, Barzilay, Jaakkola (b0205) 2018
Chen (b0090) 2022; 65
Meyers, Fabian, Brown (b0080) 2021; 26
Civril, Deimling, de Oliveira Mann, Ablasser, Moldt, Witte, Hornung, Hopfner (b0215) 2013; 498
Yang, Burchett, Steeno, Liu, Yang, Mobley, Hou (b0145) 2020; 41
Mondal, Radeva, Fanlo-Virgós, Otto, Klebe, Hirsch (b0015) 2016; 55
Wirth, Zoete, Michielin, Sauer (b0170) 2013; 41
He, Nittinger, Tyrchan, Czechtizky, Patronov, Bjerrum, Engkvist (b0135) 2022; 14
Tian, Xu, Zhu, Feng, Dai, Zhou, You, Xu (b0230) 2022; 244
de Sena, Pinheiro, Rodrigues, do Couto Maia, Thota, Fraga (b0035) 2019; 19
Goel, Aggarwal, Sridharan, Pal, Priyakumar (b0070) 2023; 13
W. Ma, S. Ma (b0240) 2022
Singh, Sledzieski, Bryson, Cowen, Berger (b0285) 2023; 120
Müller (b0010) 2014; 68
Vincent, Adura, Gao, Luz, Lama, Asano, Okamoto, Imaeda, Aida, Rothamel (b0225) 2017; 8
Chen, Engkvist, Wang, Olivecrona, Blaschke (b0065) 2018; 23
Zou, Li, Liu, Peng, Fang, Wan, Lin, Lee, Raleigh, Yang (b0160) 2021; 17
Fan, Wang, Zheng, Lai, Wen, Ma (bib287) 2022
Drews (b0005) 2000; 287
Ivanenkov, Polykovskiy, Bezrukov, Zagribelnyy, Aladinskiy, Kamya, Aliper, Ren, Zhavoronkov (b0270) 2023; 63
Adadi, Berrada (b0255) 2018; 6
Zhang, Li, Guan, Kong, Shi, Zhou (b0130) 2022
Olivecrona, Blaschke, Engkvist, Chen (b0115) 2017; 9
Wang, W.; Wang, Y.; Zhao, H.; Sciabola, S., A Transformer-based Generative Model for De Novo Molecular Design.
Kadurin, Aliper, Kazennov, Mamoshina, Vanhaelen, Khrabrov, Zhavoronkov (b0095) 2017; 8
Li, Xu, Yao, Lin (b0120) 2020; 12
Dearden (b0050) 2016; 1
Lin, Zou, Liu, Peng, Li, Wan, Fang, Yin, Gobbo, Chen (b0155) 2021; 61
Wang, Y.; Song, Q., Disentangle VAE for Molecular Generation.
Bjerrum, E. J.; Threlfall, R., Molecular generation with recurrent neural networks (RNNs).
10.1016/j.ymeth.2023.12.009_b0105
Irwin (10.1016/j.ymeth.2023.12.009_b0190) 2005; 45
Chen (10.1016/j.ymeth.2023.12.009_b0090) 2022; 65
10.1016/j.ymeth.2023.12.009_b0100
10.1016/j.ymeth.2023.12.009_b0140
Schneider (10.1016/j.ymeth.2023.12.009_b0260) 2018; 17
Yang (10.1016/j.ymeth.2023.12.009_b0145) 2020; 41
Fan (10.1016/j.ymeth.2023.12.009_bib286) 2020
de Sena (10.1016/j.ymeth.2023.12.009_b0035) 2019; 19
Zou (10.1016/j.ymeth.2023.12.009_b0160) 2021; 17
Takeuchi (10.1016/j.ymeth.2023.12.009_b0025) 2021; 7
Austin (10.1016/j.ymeth.2023.12.009_b0075) 2016; 116
W. Ma (10.1016/j.ymeth.2023.12.009_b0240) 2022
Kranzusch (10.1016/j.ymeth.2023.12.009_b0220) 2013; 3
10.1016/j.ymeth.2023.12.009_b0235
Chen (10.1016/j.ymeth.2023.12.009_b0065) 2018; 23
10.1016/j.ymeth.2023.12.009_b0110
10.1016/j.ymeth.2023.12.009_b0275
Langer (10.1016/j.ymeth.2023.12.009_b0060) 2011; 3
Adadi (10.1016/j.ymeth.2023.12.009_b0255) 2018; 6
Wirth (10.1016/j.ymeth.2023.12.009_b0170) 2013; 41
Vincent (10.1016/j.ymeth.2023.12.009_b0225) 2017; 8
Olivecrona (10.1016/j.ymeth.2023.12.009_b0115) 2017; 9
Konze (10.1016/j.ymeth.2023.12.009_b0165) 2019; 59
Li (10.1016/j.ymeth.2023.12.009_b0020) 2020; 7
Dearden (10.1016/j.ymeth.2023.12.009_b0050) 2016; 1
Tian (10.1016/j.ymeth.2023.12.009_b0230) 2022; 244
Fan (10.1016/j.ymeth.2023.12.009_bib287) 2022
Meyers (10.1016/j.ymeth.2023.12.009_b0080) 2021; 26
Zhang (10.1016/j.ymeth.2023.12.009_b0245) 2023; 63
Mosqueira-Rey (10.1016/j.ymeth.2023.12.009_b0265) 2023; 56
He (10.1016/j.ymeth.2023.12.009_b0135) 2022; 14
Sadybekov (10.1016/j.ymeth.2023.12.009_b0045) 2023; 616
Pinzi (10.1016/j.ymeth.2023.12.009_b0055) 2019; 20
Hu (10.1016/j.ymeth.2023.12.009_b0030) 2017; 60
Zhang (10.1016/j.ymeth.2023.12.009_b0130) 2022
Drews (10.1016/j.ymeth.2023.12.009_b0005) 2000; 287
Blanchard (10.1016/j.ymeth.2023.12.009_b0125) 2021; 13
Gaulton (10.1016/j.ymeth.2023.12.009_b0195) 2012; 40
10.1016/j.ymeth.2023.12.009_b0280
Kadurin (10.1016/j.ymeth.2023.12.009_b0095) 2017; 8
Wei (10.1016/j.ymeth.2023.12.009_b0210) 2023; 63
Li (10.1016/j.ymeth.2023.12.009_b0040) 2016; 56
Lin (10.1016/j.ymeth.2023.12.009_b0155) 2021; 61
Skalic (10.1016/j.ymeth.2023.12.009_b0200) 2019; 59
Rao (10.1016/j.ymeth.2023.12.009_b0250) 2022; 3
Zou (10.1016/j.ymeth.2023.12.009_b0150) 2020; 60
Müller (10.1016/j.ymeth.2023.12.009_b0010) 2014; 68
Goel (10.1016/j.ymeth.2023.12.009_b0070) 2023; 13
Singh (10.1016/j.ymeth.2023.12.009_b0285) 2023; 120
Dalke (10.1016/j.ymeth.2023.12.009_b0175) 2018; 58
Jin (10.1016/j.ymeth.2023.12.009_b0205) 2018
Walters (10.1016/j.ymeth.2023.12.009_b0085) 2021; 54
Li (10.1016/j.ymeth.2023.12.009_b0120) 2020; 12
Ivanenkov (10.1016/j.ymeth.2023.12.009_b0270) 2023; 63
Shivanyuk (10.1016/j.ymeth.2023.12.009_b0185) 2007; 25
Mondal (10.1016/j.ymeth.2023.12.009_b0015) 2016; 55
Civril (10.1016/j.ymeth.2023.12.009_b0215) 2013; 498
Levenshtein (10.1016/j.ymeth.2023.12.009_b0180) 1966
References_xml – volume: 17
  start-page: 3710
  year: 2021
  end-page: 3726
  ident: b0160
  article-title: Scaffold hopping transformations using auxiliary restraints for calculating accurate relative binding free energies
  publication-title: J. Chem. Theory Comput.
– reference: Bran, A. M.; Cox, S.; White, A. D.; Schwaller, P., ChemCrow: Augmenting large-language models with chemistry tools.
– volume: 120
  year: 2023
  ident: b0285
  article-title: Contrastive learning in protein language space predicts interactions between drugs and protein targets
  publication-title: Proc. Natl. Acad. Sci.
– volume: 7
  year: 2020
  ident: b0020
  article-title: Application of fragment-based drug discovery to versatile targets
  publication-title: Front. Mol. Biosci.
– volume: 65
  start-page: 100
  year: 2022
  end-page: 102
  ident: b0090
  article-title: Can generative-model-based drug design become a new normal in drug discovery?
  publication-title: J. Med. Chem.
– volume: 244
  year: 2022
  ident: b0230
  article-title: Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors
  publication-title: Eur. J. Med. Chem.
– volume: 41
  start-page: 247
  year: 2020
  end-page: 257
  ident: b0145
  article-title: Optimal designs for pairwise calculation: An application to free energy perturbation in minimizing prediction variability
  publication-title: J. Comput. Chem.
– volume: 7
  start-page: Fso742
  year: 2021
  ident: b0025
  article-title: R-group replacement database for medicinal chemistry
  publication-title: Future Sci. OA
– reference: Bjerrum, E. J.; Threlfall, R., Molecular generation with recurrent neural networks (RNNs).
– reference: Wang, Y.; Song, Q., Disentangle VAE for Molecular Generation.
– volume: 3
  year: 2022
  ident: b0250
  article-title: Quantitative evaluation of explainable graph neural networks for molecular property prediction
  publication-title: Patterns
– volume: 59
  start-page: 1205
  year: 2019
  end-page: 1214
  ident: b0200
  article-title: Shape-based generative modeling for de novo drug design
  publication-title: J. Chem. Inf. Model.
– year: 2020
  ident: bib286
  article-title: A molecular sequence generation method, apparatus, and computing device
  publication-title: China Patent
– volume: 58
  start-page: 902
  year: 2018
  end-page: 910
  ident: b0175
  article-title: mmpdb: An Open-Source Matched Molecular Pair Platform for Large Multiproperty Data Sets
  publication-title: J. Chem. Inf. Model.
– volume: 23
  start-page: 1241
  year: 2018
  end-page: 1250
  ident: b0065
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov. Today
– reference: Wang, W.; Wang, Y.; Zhao, H.; Sciabola, S., A Transformer-based Generative Model for De Novo Molecular Design.
– volume: 54
  start-page: 263
  year: 2021
  end-page: 270
  ident: b0085
  article-title: Applications of deep learning in molecule generation and molecular property prediction
  publication-title: Acc. Chem. Res.
– reference: Sun, Y., Discovery of potent cGAS inhibitor with virtual screening and molecular generation toolkit.
– volume: 116
  start-page: 2
  year: 2016
  end-page: 26
  ident: b0075
  article-title: Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques
  publication-title: Chem. Eng. Res. Des.
– volume: 13
  start-page: 14
  year: 2021
  ident: b0125
  article-title: Using GANs with adaptive training data to search for new molecules
  publication-title: J. Cheminf.
– volume: 55
  start-page: 9422
  year: 2016
  end-page: 9426
  ident: b0015
  article-title: Fragment linking and optimization of inhibitors of the aspartic protease endothiapepsin: fragment-based drug design facilitated by dynamic combinatorial chemistry
  publication-title: Angew. Chem. Internat. Ed.
– start-page: 707
  year: 1966
  end-page: 710
  ident: b0180
  article-title: Binary codes capable of correcting deletions, insertions, and reversals
– volume: 26
  start-page: 2707
  year: 2021
  end-page: 2715
  ident: b0080
  article-title: De novo molecular design and generative models
  publication-title: Drug Discov. Today
– volume: 40
  start-page: D1100
  year: 2012
  end-page: D1107
  ident: b0195
  article-title: ChEMBL: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res.
– volume: 287
  start-page: 1960
  year: 2000
  end-page: 1964
  ident: b0005
  article-title: Drug discovery: a historical perspective
  publication-title: Science
– volume: 6
  start-page: 52138
  year: 2018
  end-page: 52160
  ident: b0255
  article-title: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
  publication-title: IEEE Access
– volume: 17
  start-page: 97
  year: 2018
  end-page: 113
  ident: b0260
  article-title: Automating drug discovery
  publication-title: Nat. Rev. Drug Discov.
– volume: 41
  start-page: D1137
  year: 2013
  end-page: D1143
  ident: b0170
  article-title: SwissBioisostere: a database of molecular replacements for ligand design
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 1712
  year: 2019
  end-page: 1733
  ident: b0035
  article-title: The use of conformational restriction in medicinal chemistry
  publication-title: Curr. Top. Med. Chem.
– volume: 60
  start-page: 1238
  year: 2017
  end-page: 1246
  ident: b0030
  article-title: Recent Advances in Scaffold Hopping
  publication-title: J. Med. Chem.
– volume: 45
  start-page: 177
  year: 2005
  end-page: 182
  ident: b0190
  article-title: ZINC− a free database of commercially available compounds for virtual screening
  publication-title: J. Chem. Inf. Model.
– volume: 68
  start-page: 472
  year: 2014
  ident: b0010
  article-title: Three decades of structure-and property-based molecular design
  publication-title: Chimia
– year: 2022
  ident: b0240
  article-title: A molecular screening method, apparatus, device, and storage medium
  publication-title: China Patent
– reference: Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z., A survey of large language models.
– volume: 12
  start-page: 42
  year: 2020
  ident: b0120
  article-title: Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors
  publication-title: J. Cheminf.
– volume: 3
  start-page: 1362
  year: 2013
  end-page: 1368
  ident: b0220
  article-title: Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity
  publication-title: Cell Rep.
– volume: 63
  start-page: 3719
  year: 2023
  end-page: 3730
  ident: b0245
  article-title: A simple way to incorporate target structural information in molecular generative models
  publication-title: J. Chem. Inf. Model.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 14
  ident: b0115
  article-title: Molecular de-novo design through deep reinforcement learning
  publication-title: J. Cheminf.
– reference: Basu, V. Drug Molecule Generation with VAE. https://keras.io/examples/generative/molecule_generation/ (accessed 2022/03/10).
– volume: 60
  start-page: 5794
  year: 2020
  end-page: 5802
  ident: b0150
  article-title: Computational prediction of mutational effects on SARS-CoV-2 binding by relative free energy calculations
  publication-title: J. Chem. Inf. Model.
– volume: 56
  start-page: 435
  year: 2016
  end-page: 453
  ident: b0040
  article-title: AutoT&T vol 2: An efficient and versatile tool for lead structure generation and optimization
  publication-title: J. Chem. Inf. Model.
– year: 2022
  ident: bib287
  article-title: A molecular generation method, apparatus, device, and storage medium
  publication-title: China Patent
– volume: 3
  start-page: 901
  year: 2011
  end-page: 904
  ident: b0060
  article-title: Pharmacophores for medicinal chemists: a personal view
  publication-title: Future Med. Chem.
– volume: 13
  start-page: e1637
  year: 2023
  ident: b0070
  article-title: Efficient and enhanced sampling of drug-like chemical space for virtual screening and molecular design using modern machine learning methods
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 25
  start-page: 58
  year: 2007
  end-page: 59
  ident: b0185
  article-title: Enamine real database: Making chemical diversity real
  publication-title: Chim. Oggi
– start-page: 233
  year: 2022
  end-page: 273
  ident: b0130
  article-title: GANs for Molecule Generation in Drug Design and Discovery
  publication-title: Generative Adversarial Learning: Architectures and Applications
– volume: 61
  start-page: 2720
  year: 2021
  end-page: 2732
  ident: b0155
  article-title: A cloud computing platform for scalable relative and absolute binding free energy predictions: New opportunities and challenges for drug discovery
  publication-title: J. Chem. Inf. Model.
– volume: 20
  start-page: 4331
  year: 2019
  ident: b0055
  article-title: Molecular Docking: Shifting Paradigms in Drug Discovery
  publication-title: Int. J. Mol. Sci.
– reference: .
– volume: 1
  start-page: 1
  year: 2016
  end-page: 44
  ident: b0050
  article-title: The history and development of quantitative structure-activity relationships (QSARs)
  publication-title: IJQSPR
– volume: 8
  start-page: 750
  year: 2017
  ident: b0225
  article-title: Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice
  publication-title: Nat. Commun.
– volume: 8
  start-page: 10883
  year: 2017
  ident: b0095
  article-title: The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
  publication-title: Oncotarget
– volume: 59
  start-page: 3782
  year: 2019
  end-page: 3793
  ident: b0165
  article-title: Reaction-based enumeration, active learning, and free energy calculations to rapidly explore synthetically tractable chemical space and optimize potency of cyclin-dependent kinase 2 inhibitors
  publication-title: J. Chem. Inf. Model.
– volume: 498
  start-page: 332
  year: 2013
  end-page: 337
  ident: b0215
  article-title: Structural mechanism of cytosolic DNA sensing by cGAS
  publication-title: Nature
– volume: 63
  start-page: 695
  year: 2023
  end-page: 701
  ident: b0270
  article-title: Chemistry42: an AI-Driven platform for molecular design and optimization
  publication-title: J. Chem. Inf. Model.
– volume: 63
  start-page: 5341
  year: 2023
  end-page: 5355
  ident: b0210
  article-title: Hit Identification Driven by Combining Artificial Intelligence and Computational Chemistry Methods: A PI5P4K-β Case Study
  publication-title: J. Chem. Inf. Model.
– volume: 56
  start-page: 3005
  year: 2023
  end-page: 3054
  ident: b0265
  article-title: Human-in-the-loop machine learning: a state of the art
  publication-title: Artif. Intell. Rev.
– volume: 14
  start-page: 18
  year: 2022
  ident: b0135
  article-title: Transformer-based molecular optimization beyond matched molecular pairs
  publication-title: J. Cheminf.
– start-page: 2323
  year: 2018
  end-page: 2332
  ident: b0205
  article-title: Junction tree variational autoencoder for molecular graph generation
  publication-title: International conference on machine learning
– volume: 616
  start-page: 673
  year: 2023
  end-page: 685
  ident: b0045
  article-title: Computational approaches streamlining drug discovery
  publication-title: Nature
– volume: 56
  start-page: 3005
  issue: 4
  year: 2023
  ident: 10.1016/j.ymeth.2023.12.009_b0265
  article-title: Human-in-the-loop machine learning: a state of the art
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10246-w
– volume: 19
  start-page: 1712
  issue: 19
  year: 2019
  ident: 10.1016/j.ymeth.2023.12.009_b0035
  article-title: The use of conformational restriction in medicinal chemistry
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026619666190712205025
– volume: 3
  start-page: 901
  issue: 8
  year: 2011
  ident: 10.1016/j.ymeth.2023.12.009_b0060
  article-title: Pharmacophores for medicinal chemists: a personal view
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc.11.34
– volume: 120
  issue: 24
  year: 2023
  ident: 10.1016/j.ymeth.2023.12.009_b0285
  article-title: Contrastive learning in protein language space predicts interactions between drugs and protein targets
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2220778120
– volume: 616
  start-page: 673
  issue: 7958
  year: 2023
  ident: 10.1016/j.ymeth.2023.12.009_b0045
  article-title: Computational approaches streamlining drug discovery
  publication-title: Nature
  doi: 10.1038/s41586-023-05905-z
– volume: 8
  start-page: 10883
  issue: 7
  year: 2017
  ident: 10.1016/j.ymeth.2023.12.009_b0095
  article-title: The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.14073
– volume: 26
  start-page: 2707
  issue: 11
  year: 2021
  ident: 10.1016/j.ymeth.2023.12.009_b0080
  article-title: De novo molecular design and generative models
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2021.05.019
– volume: 6
  start-page: 52138
  year: 2018
  ident: 10.1016/j.ymeth.2023.12.009_b0255
  article-title: Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 23
  start-page: 1241
  issue: 6
  year: 2018
  ident: 10.1016/j.ymeth.2023.12.009_b0065
  article-title: The rise of deep learning in drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2018.01.039
– volume: 9
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.ymeth.2023.12.009_b0115
  article-title: Molecular de-novo design through deep reinforcement learning
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-017-0235-x
– volume: 41
  start-page: D1137
  issue: D1
  year: 2013
  ident: 10.1016/j.ymeth.2023.12.009_b0170
  article-title: SwissBioisostere: a database of molecular replacements for ligand design
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1059
– volume: 40
  start-page: D1100
  issue: D1
  year: 2012
  ident: 10.1016/j.ymeth.2023.12.009_b0195
  article-title: ChEMBL: a large-scale bioactivity database for drug discovery
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr777
– volume: 3
  issue: 12
  year: 2022
  ident: 10.1016/j.ymeth.2023.12.009_b0250
  article-title: Quantitative evaluation of explainable graph neural networks for molecular property prediction
  publication-title: Patterns
  doi: 10.1016/j.patter.2022.100628
– volume: 61
  start-page: 2720
  issue: 6
  year: 2021
  ident: 10.1016/j.ymeth.2023.12.009_b0155
  article-title: A cloud computing platform for scalable relative and absolute binding free energy predictions: New opportunities and challenges for drug discovery
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c01329
– volume: 8
  start-page: 750
  issue: 1
  year: 2017
  ident: 10.1016/j.ymeth.2023.12.009_b0225
  article-title: Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00833-9
– volume: 244
  year: 2022
  ident: 10.1016/j.ymeth.2023.12.009_b0230
  article-title: Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2022.114791
– volume: 41
  start-page: 247
  issue: 3
  year: 2020
  ident: 10.1016/j.ymeth.2023.12.009_b0145
  article-title: Optimal designs for pairwise calculation: An application to free energy perturbation in minimizing prediction variability
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26095
– ident: 10.1016/j.ymeth.2023.12.009_b0280
– volume: 54
  start-page: 263
  issue: 2
  year: 2021
  ident: 10.1016/j.ymeth.2023.12.009_b0085
  article-title: Applications of deep learning in molecule generation and molecular property prediction
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.0c00699
– volume: 59
  start-page: 1205
  issue: 3
  year: 2019
  ident: 10.1016/j.ymeth.2023.12.009_b0200
  article-title: Shape-based generative modeling for de novo drug design
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00706
– volume: 13
  start-page: 14
  issue: 1
  year: 2021
  ident: 10.1016/j.ymeth.2023.12.009_b0125
  article-title: Using GANs with adaptive training data to search for new molecules
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-021-00494-3
– volume: 3
  start-page: 1362
  issue: 5
  year: 2013
  ident: 10.1016/j.ymeth.2023.12.009_b0220
  article-title: Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.008
– volume: 63
  start-page: 695
  issue: 3
  year: 2023
  ident: 10.1016/j.ymeth.2023.12.009_b0270
  article-title: Chemistry42: an AI-Driven platform for molecular design and optimization
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.2c01191
– volume: 63
  start-page: 3719
  issue: 12
  year: 2023
  ident: 10.1016/j.ymeth.2023.12.009_b0245
  article-title: A simple way to incorporate target structural information in molecular generative models
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00293
– volume: 56
  start-page: 435
  issue: 2
  year: 2016
  ident: 10.1016/j.ymeth.2023.12.009_b0040
  article-title: AutoT&T vol 2: An efficient and versatile tool for lead structure generation and optimization
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00691
– volume: 498
  start-page: 332
  issue: 7454
  year: 2013
  ident: 10.1016/j.ymeth.2023.12.009_b0215
  article-title: Structural mechanism of cytosolic DNA sensing by cGAS
  publication-title: Nature
  doi: 10.1038/nature12305
– volume: 20
  start-page: 4331
  issue: 18
  year: 2019
  ident: 10.1016/j.ymeth.2023.12.009_b0055
  article-title: Molecular Docking: Shifting Paradigms in Drug Discovery
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20184331
– start-page: 707
  year: 1966
  ident: 10.1016/j.ymeth.2023.12.009_b0180
– ident: 10.1016/j.ymeth.2023.12.009_b0105
– volume: 14
  start-page: 18
  issue: 1
  year: 2022
  ident: 10.1016/j.ymeth.2023.12.009_b0135
  article-title: Transformer-based molecular optimization beyond matched molecular pairs
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-022-00599-3
– volume: 59
  start-page: 3782
  issue: 9
  year: 2019
  ident: 10.1016/j.ymeth.2023.12.009_b0165
  article-title: Reaction-based enumeration, active learning, and free energy calculations to rapidly explore synthetically tractable chemical space and optimize potency of cyclin-dependent kinase 2 inhibitors
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.9b00367
– volume: 45
  start-page: 177
  issue: 1
  year: 2005
  ident: 10.1016/j.ymeth.2023.12.009_b0190
  article-title: ZINC− a free database of commercially available compounds for virtual screening
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci049714+
– volume: 17
  start-page: 97
  issue: 2
  year: 2018
  ident: 10.1016/j.ymeth.2023.12.009_b0260
  article-title: Automating drug discovery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.232
– start-page: 2323
  year: 2018
  ident: 10.1016/j.ymeth.2023.12.009_b0205
  article-title: Junction tree variational autoencoder for molecular graph generation
– volume: 65
  start-page: 100
  issue: 1
  year: 2022
  ident: 10.1016/j.ymeth.2023.12.009_b0090
  article-title: Can generative-model-based drug design become a new normal in drug discovery?
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.1c02042
– volume: 55
  start-page: 9422
  issue: 32
  year: 2016
  ident: 10.1016/j.ymeth.2023.12.009_b0015
  article-title: Fragment linking and optimization of inhibitors of the aspartic protease endothiapepsin: fragment-based drug design facilitated by dynamic combinatorial chemistry
  publication-title: Angew. Chem. Internat. Ed.
  doi: 10.1002/anie.201603074
– ident: 10.1016/j.ymeth.2023.12.009_b0235
– volume: 68
  start-page: 472
  issue: 7–8
  year: 2014
  ident: 10.1016/j.ymeth.2023.12.009_b0010
  article-title: Three decades of structure-and property-based molecular design
  publication-title: Chimia
  doi: 10.2533/chimia.2014.472
– volume: 116
  start-page: 2
  year: 2016
  ident: 10.1016/j.ymeth.2023.12.009_b0075
  article-title: Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2016.10.014
– volume: 63
  start-page: 5341
  issue: 16
  year: 2023
  ident: 10.1016/j.ymeth.2023.12.009_b0210
  article-title: Hit Identification Driven by Combining Artificial Intelligence and Computational Chemistry Methods: A PI5P4K-β Case Study
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.3c00543
– year: 2022
  ident: 10.1016/j.ymeth.2023.12.009_bib287
  article-title: A molecular generation method, apparatus, device, and storage medium
  publication-title: China Patent
– volume: 58
  start-page: 902
  issue: 5
  year: 2018
  ident: 10.1016/j.ymeth.2023.12.009_b0175
  article-title: mmpdb: An Open-Source Matched Molecular Pair Platform for Large Multiproperty Data Sets
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.8b00173
– ident: 10.1016/j.ymeth.2023.12.009_b0140
– volume: 60
  start-page: 1238
  issue: 4
  year: 2017
  ident: 10.1016/j.ymeth.2023.12.009_b0030
  article-title: Recent Advances in Scaffold Hopping
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b01437
– volume: 13
  start-page: e1637
  issue: 2
  year: 2023
  ident: 10.1016/j.ymeth.2023.12.009_b0070
  article-title: Efficient and enhanced sampling of drug-like chemical space for virtual screening and molecular design using modern machine learning methods
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– ident: 10.1016/j.ymeth.2023.12.009_b0100
– start-page: 233
  year: 2022
  ident: 10.1016/j.ymeth.2023.12.009_b0130
  article-title: GANs for Molecule Generation in Drug Design and Discovery
– volume: 25
  start-page: 58
  year: 2007
  ident: 10.1016/j.ymeth.2023.12.009_b0185
  article-title: Enamine real database: Making chemical diversity real
  publication-title: Chim. Oggi
– volume: 60
  start-page: 5794
  issue: 12
  year: 2020
  ident: 10.1016/j.ymeth.2023.12.009_b0150
  article-title: Computational prediction of mutational effects on SARS-CoV-2 binding by relative free energy calculations
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00679
– volume: 7
  start-page: Fso742
  issue: 8
  year: 2021
  ident: 10.1016/j.ymeth.2023.12.009_b0025
  article-title: R-group replacement database for medicinal chemistry
  publication-title: Future Sci. OA
  doi: 10.2144/fsoa-2021-0062
– year: 2022
  ident: 10.1016/j.ymeth.2023.12.009_b0240
  article-title: A molecular screening method, apparatus, device, and storage medium
  publication-title: China Patent
– volume: 287
  start-page: 1960
  issue: 5460
  year: 2000
  ident: 10.1016/j.ymeth.2023.12.009_b0005
  article-title: Drug discovery: a historical perspective
  publication-title: Science
  doi: 10.1126/science.287.5460.1960
– ident: 10.1016/j.ymeth.2023.12.009_b0110
– volume: 17
  start-page: 3710
  issue: 6
  year: 2021
  ident: 10.1016/j.ymeth.2023.12.009_b0160
  article-title: Scaffold hopping transformations using auxiliary restraints for calculating accurate relative binding free energies
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.1c00214
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ymeth.2023.12.009_b0050
  article-title: The history and development of quantitative structure-activity relationships (QSARs)
  publication-title: IJQSPR
– volume: 7
  year: 2020
  ident: 10.1016/j.ymeth.2023.12.009_b0020
  article-title: Application of fragment-based drug discovery to versatile targets
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2020.00180
– ident: 10.1016/j.ymeth.2023.12.009_b0275
– volume: 12
  start-page: 42
  issue: 1
  year: 2020
  ident: 10.1016/j.ymeth.2023.12.009_b0120
  article-title: Chemical space exploration based on recurrent neural networks: applications in discovering kinase inhibitors
  publication-title: J. Cheminf.
  doi: 10.1186/s13321-020-00446-3
– year: 2020
  ident: 10.1016/j.ymeth.2023.12.009_bib286
  article-title: A molecular sequence generation method, apparatus, and computing device
  publication-title: China Patent
SSID ssj0001278
Score 2.446086
Snippet [Display omitted] •Here we present an application scenario-oriented platform (ID4Idea) for molecule generation in different scenarios of drug discovery. This...
Design of molecules for candidate compound selection is one of the central challenges in drug discovery due to the complexity of chemical space and requirement...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112
SubjectTerms Algorithms
Binding Sites
Drug Design
Drug Discovery
drugs
Gene Library
pharmacology
therapeutics
Title Application scenario-oriented molecule generation platform developed for drug discovery
URI https://dx.doi.org/10.1016/j.ymeth.2023.12.009
https://www.ncbi.nlm.nih.gov/pubmed/38215898
https://www.proquest.com/docview/2922448584
https://www.proquest.com/docview/3153156671
Volume 222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-9130
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001278
  issn: 1046-2023
  databaseCode: AKRWK
  dateStart: 19900801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED3oR364vIogn65o2aZvjsiirghcVvYXmUVG0u-juYS_-dmfSVhHUg8eECYRMOvNN880MwIHyPEuFwrAkUTISxhiqAZlHnnwDWsfSu8C2uEoHt-LiXt7PQL_NhSFaZWP7a5serHUz021Oszt6fOxe0-skNf9GEI2OSlHcLkRGXQyO379oHjzO6nQ4kUYk3VYeChyvKbVpPqbp8E-QWIk_e6ff0GfwQmdLsNjAR9ard7gMM75agdVehaHzy5QdskDoDH_KV2C-3zZzW4W73tdDNaMCThgiD6MhFTlGyMle6ia5nj2EKtRBavRcjAnRsiavCsVwyNzr5IFRLi9xP6drcHt2etMfRE1PhcgiEhpH3LgicU4i8BPKitjktrCWF6J0eWx4KYxN0lI5e8Kd4LZUUjqDwWpc4vdZSpGsw2w1rPwmMGlyGXtvE1EiqFK8yDD2KKR13nICLh2I27PUtik4Tn0vnnXLLHvSQQGaFKB5rFEBHTj6XDSq6238LZ62StLfro1Gj_D3wv1WpRpVQa8kReWHkzcdK0Q1Ikdg9rtMgn6CAt-Md2Cjvg-fu01yRFG5yrf-u7VtWMCRqKnhOzA7fp34XUQ-Y7MXrvYezPXOLwdXHxCSA30
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOMAFlfeWtrgS6omw2LGT-LhaFS2PcikIblb8yIoKsiu6e9gLv70zTgKqVDj0GGcsWRln5hv7mxmAQx14nkmNYUmqVSKttVQDskgC-Qa0jlXwkW1xlY1u5PmduluCYZcLQ7TK1vY3Nj1a63ak337N_vT-vv-Tbiep-TeCaHRUGuP2FalEThHY8fMrz4OLvMmHk1lC4l3poUjyWlCf5mMajoeCREv8t3t6C35GN3T6AdZb_MgGzRI3YCnUm7A1qDF2flywbywyOuNR-SasDrtubltwO3i9qWZUwQlj5EkyoSrHiDnZY9MlN7BxLEMdpaYP5YwgLWsTq1AMH5l_mo8ZJfMS-XOxDTen36-Ho6RtqpA4hEKzhFtfpt4rRH5SOyls4UrneCkrXwjLK2ldmlXauxPuJXeVVspbjFZFhT9opWS6A8v1pA57wJQtlAjBpbJCVKV5mWPwUSrng-OEXHogum9pXFtxnBpfPJiOWvbLRAUYUoDhwqACenD0MmnaFNx4XzzrlGT-2jcGXcL7E792KjWoCromKeswmf82QiOskQUis7dlUnQUFPnmvAe7zX54WW1aIIwqdPHxf5d2AKuj6x-X5vLs6mIf1vCNbHjin2B59jQPnxEGzeyXuM3_AP5YBRI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+scenario-oriented+molecule+generation+platform+developed+for+drug+discovery&rft.jtitle=Methods+%28San+Diego%2C+Calif.%29&rft.au=Zheng%2C+Lianjun&rft.au=Shi%2C+Fangjun&rft.au=Peng%2C+Chunwang&rft.au=Xu%2C+Min&rft.date=2024-02-01&rft.issn=1095-9130&rft.eissn=1095-9130&rft.volume=222&rft.spage=112&rft_id=info:doi/10.1016%2Fj.ymeth.2023.12.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1046-2023&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1046-2023&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1046-2023&client=summon