Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture

This paper outlines the fundamentals of the methods of exergy analysis and entropy generation minimization (or thermodynamic optimization—the minimization of exergy destruction). The paper begins with a review of the concept of irreversibility, entropy generation, or exergy destruction. Examples ill...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 26; no. 7
Main Author Bejan, Adrian
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 10.06.2002
Subjects
Online AccessGet full text
ISSN0363-907X
1099-114X
DOI10.1002/er.804

Cover

Abstract This paper outlines the fundamentals of the methods of exergy analysis and entropy generation minimization (or thermodynamic optimization—the minimization of exergy destruction). The paper begins with a review of the concept of irreversibility, entropy generation, or exergy destruction. Examples illustrate the accounting for exergy flows and accumulation in closed systems, open systems, heat transfer processes, and power and refrigeration plants. The proportionality between exergy destruction and entropy generation sends the designer in search of improved thermodynamic performance subject to finite‐size constraints and specified environmental conditions. Examples are drawn from energy storage systems for sensible heat and latent heat, solar energy, and the generation of maximum power in a power plant model with finite heat transfer surface inventory. It is shown that the physical structure (geometric configuration, topology) of the system springs out of the process of global thermodynamic optimization subject to global constraints. This principle generates structure not only in engineering but also in physics and biology (constructal theory). Copyright © 2002 John Wiley & Sons, Ltd.
AbstractList The concepts of irreversibility and of entropy generation (or exergy destruction) are reviewed. Examples illustrate the accounting for exergy flows and accumulation in closed systems, open systems, heat transfer processes, and power and refrigeration plants. The proportionality between exergy destruction and entropy generation sends the designer in search of improved thermodynamic performance subject to finite-size constraints and specified environmental conditions. Examples are drawn from energy storage systems for sensible heat and latent heat, solar energy, and the generation of maximum power in a power plant model with finite heat transfer surface inventory. It is shown that the physical structure (geometric configuration, topology) of the system springs out of the process of global thermodynamic optimization subject to global constraints. This principle generates structure not only in engineering but also in physics and biology (constructal theory). (Original abstract - amended)
The concepts of irreversibility and of entropy generation (or exergy destruction) are reviewed. Examples illustrate the accounting for exergy flows and accumulation in closed systems, open systems, heat transfer processes, and power and refrigeration plants. The proportionality between exergy destruction and entropy generation sends the designer in search of improved thermodynamic performance subject to finite-size constraints and specified environmental conditions. Examples are drawn from energy storage systems for sensible heat and latent heat, solar energy, and the generation of maximum power in a power plant model with finite heat transfer surface inventory. It is shown that the physical structure (geometric configuration, topology) of the system springs out of the process of global thermodynamic optimization subject to global constraints. This principle generates structure not only in engineering but also in physics and biology (constructal theory).
This paper outlines the fundamentals of the methods of exergy analysis and entropy generation minimization (or thermodynamic optimization—the minimization of exergy destruction). The paper begins with a review of the concept of irreversibility, entropy generation, or exergy destruction. Examples illustrate the accounting for exergy flows and accumulation in closed systems, open systems, heat transfer processes, and power and refrigeration plants. The proportionality between exergy destruction and entropy generation sends the designer in search of improved thermodynamic performance subject to finite‐size constraints and specified environmental conditions. Examples are drawn from energy storage systems for sensible heat and latent heat, solar energy, and the generation of maximum power in a power plant model with finite heat transfer surface inventory. It is shown that the physical structure (geometric configuration, topology) of the system springs out of the process of global thermodynamic optimization subject to global constraints. This principle generates structure not only in engineering but also in physics and biology (constructal theory). Copyright © 2002 John Wiley & Sons, Ltd.
Author Bejan, Adrian
Author_xml – sequence: 1
  givenname: Adrian
  surname: Bejan
  fullname: Bejan, Adrian
  organization: Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300, U.S.A
BookMark eNqN0N9LwzAQB_AgE5xT_4Y-CcKqSdOlzaMMNwVREX_hS4jZRaNtOpMMV_96oxUVRPApHPfhe7lbRz3bWEBoi-BdgnG2B263xPkK6hPMeUpIftNDfUwZTTkubtbQuvePGMceKfrITBZ2JmuwQVY-aXQCS3D3bSKtrFpv_DCJLdfM2-QeLDgZTGOT2lhTm9ePYhjpLAkP8BPEHF01L4l06sEEUGHhYAOt6jgDNj_fAbqcHFyMD9Pj0-nReP84VZRnecoLRpXWfKYoUF1o0BIkj5-l5QhTRRjlXIIiMmMjPboDwtgM36lIoChlSegAbXe5c9c8L8AHURuvoKqkhWbhRVaQPMcs-w_MSsJwhMMOKtd470ALZcLHosFJUwmCxfvhBTgRD_-d-8XnztTStb_hTgdfTAXtH0ocnHc27azxAZZfVronwQpajMT1yVSQCbm9Ks_OxAV9AwCFo2k
CitedBy_id crossref_primary_10_1002_er_1416
crossref_primary_10_1002_er_1779
crossref_primary_10_1002_er_1536
crossref_primary_10_1016_j_icheatmasstransfer_2023_106858
crossref_primary_10_4028_www_scientific_net_AMM_253_255_760
crossref_primary_10_1002_er_1539
crossref_primary_10_1016_j_applthermaleng_2014_02_066
crossref_primary_10_1016_j_enconman_2025_119504
crossref_primary_10_1115_1_4041793
crossref_primary_10_1016_j_energy_2018_01_119
crossref_primary_10_1016_j_desal_2022_115989
crossref_primary_10_1016_j_physc_2020_1353634
crossref_primary_10_1016_j_compag_2024_109011
crossref_primary_10_1016_j_energy_2014_11_074
crossref_primary_10_1016_j_rser_2017_04_122
crossref_primary_10_1016_j_apenergy_2009_04_005
crossref_primary_10_1016_j_ijheatmasstransfer_2016_02_081
crossref_primary_10_1016_j_ijrefrig_2021_02_002
crossref_primary_10_1007_s11356_018_2861_x
crossref_primary_10_1016_j_tifs_2012_03_002
crossref_primary_10_1016_j_ijmecsci_2024_109366
crossref_primary_10_1016_j_solener_2022_03_070
crossref_primary_10_1016_j_energy_2020_119268
crossref_primary_10_1002_er_1406
crossref_primary_10_1016_j_physc_2020_1353618
crossref_primary_10_1016_j_ijhydene_2021_07_053
crossref_primary_10_1016_j_jqsrt_2006_08_006
crossref_primary_10_1016_j_ijhydene_2019_01_252
crossref_primary_10_1016_j_ijthermalsci_2017_08_022
crossref_primary_10_1115_1_4066860
crossref_primary_10_1016_j_renene_2012_10_031
crossref_primary_10_1080_01457632_2020_1807103
crossref_primary_10_1016_j_fuel_2013_12_044
crossref_primary_10_1016_j_energy_2017_05_071
crossref_primary_10_4028_www_scientific_net_AMR_1126_59
crossref_primary_10_1002_htj_21017
crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_097
crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_015
crossref_primary_10_1016_j_applthermaleng_2016_12_124
crossref_primary_10_1016_j_enconman_2015_08_017
crossref_primary_10_1002_er_3269
crossref_primary_10_3390_en15030841
crossref_primary_10_4028_www_scientific_net_AMR_433_440_6641
crossref_primary_10_1016_j_apenergy_2014_09_071
crossref_primary_10_1016_j_ijhydene_2022_03_202
crossref_primary_10_1115_1_4038362
crossref_primary_10_1016_j_jer_2024_05_021
crossref_primary_10_3390_e23111493
crossref_primary_10_1115_1_4041898
crossref_primary_10_1155_2024_8850236
crossref_primary_10_1016_j_energy_2020_118949
crossref_primary_10_17533_udea_redin_343230
crossref_primary_10_1016_j_anucene_2018_10_055
crossref_primary_10_1016_j_energy_2016_01_018
crossref_primary_10_1134_S1810232822040129
crossref_primary_10_4236_mme_2012_23013
crossref_primary_10_1016_j_ensm_2022_01_017
crossref_primary_10_1016_j_icheatmasstransfer_2010_12_016
crossref_primary_10_1002_er_3015
crossref_primary_10_1021_acs_iecr_1c03730
crossref_primary_10_1007_s10973_020_09398_0
crossref_primary_10_1002_er_1510
crossref_primary_10_1016_j_applthermaleng_2015_03_011
crossref_primary_10_1080_16583655_2020_1748844
crossref_primary_10_1002_er_2960
crossref_primary_10_1007_s00360_023_01494_5
crossref_primary_10_1016_j_applthermaleng_2021_117970
crossref_primary_10_3390_e22080883
crossref_primary_10_1007_s11630_023_1859_y
crossref_primary_10_1002_er_1508
crossref_primary_10_1016_j_rser_2015_05_034
crossref_primary_10_1016_j_energy_2019_04_015
crossref_primary_10_1016_j_expthermflusci_2016_12_004
crossref_primary_10_3390_en14196315
crossref_primary_10_3390_math11081891
crossref_primary_10_1016_j_jclepro_2018_09_166
crossref_primary_10_1063_5_0245560
crossref_primary_10_1016_j_ijrefrig_2011_08_005
crossref_primary_10_1007_s00231_020_02993_9
crossref_primary_10_1016_j_enconman_2006_05_009
crossref_primary_10_1002_jctb_4422
crossref_primary_10_1002_er_1500
crossref_primary_10_1016_j_fusengdes_2019_04_007
crossref_primary_10_1142_S0217751X22501494
crossref_primary_10_1108_09615530610644244
crossref_primary_10_1016_j_icheatmasstransfer_2024_107341
crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_042
crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_089
crossref_primary_10_1016_j_pecs_2013_02_001
crossref_primary_10_1016_j_energy_2024_130499
crossref_primary_10_1016_j_desal_2015_10_009
crossref_primary_10_1016_j_energy_2017_11_158
crossref_primary_10_1016_j_rser_2011_09_012
crossref_primary_10_1007_s11708_021_0785_5
crossref_primary_10_1115_1_4002395
crossref_primary_10_1016_j_ijrefrig_2018_02_025
crossref_primary_10_1016_j_tsep_2017_06_004
crossref_primary_10_1021_acsenergylett_4c02045
crossref_primary_10_1016_j_energy_2018_06_016
crossref_primary_10_1021_acs_iecr_0c04039
crossref_primary_10_31590_ejosat_1082626
crossref_primary_10_4236_epe_2020_128030
crossref_primary_10_1002_er_1174
crossref_primary_10_1002_er_2940
crossref_primary_10_1016_j_apenergy_2017_12_109
crossref_primary_10_1016_j_enpol_2005_11_003
crossref_primary_10_1016_j_jclepro_2019_02_020
crossref_primary_10_1007_s13369_012_0449_1
crossref_primary_10_1016_j_ijheatfluidflow_2017_01_009
crossref_primary_10_1016_j_apenergy_2009_07_011
crossref_primary_10_1016_j_ijrefrig_2018_05_010
crossref_primary_10_1016_j_solener_2016_08_052
crossref_primary_10_1016_j_jqsrt_2004_11_008
crossref_primary_10_1016_j_applthermaleng_2019_04_048
crossref_primary_10_1002_ep_11687
crossref_primary_10_1016_j_enconman_2015_03_072
crossref_primary_10_1016_j_energy_2007_05_014
crossref_primary_10_1016_j_energy_2011_02_007
crossref_primary_10_1002_ese3_1612
crossref_primary_10_1002_htj_21692
crossref_primary_10_1002_er_3587
crossref_primary_10_1016_j_ijrefrig_2013_02_012
crossref_primary_10_1016_j_apenergy_2009_07_020
crossref_primary_10_1016_j_apenergy_2013_11_042
crossref_primary_10_1016_j_jpowsour_2017_10_008
crossref_primary_10_1016_j_apenergy_2011_06_003
crossref_primary_10_1016_j_ijheatmasstransfer_2011_04_042
crossref_primary_10_1016_j_rser_2009_05_004
crossref_primary_10_1016_j_jclepro_2017_07_100
crossref_primary_10_1080_01430750_2018_1472643
crossref_primary_10_1016_j_icheatmasstransfer_2012_10_002
crossref_primary_10_1016_j_physc_2022_1354102
crossref_primary_10_1002_htj_21425
crossref_primary_10_1016_j_applthermaleng_2018_04_097
crossref_primary_10_1080_20464177_2019_1656324
crossref_primary_10_1016_j_expthermflusci_2017_06_003
crossref_primary_10_1016_j_ijheatmasstransfer_2006_11_006
crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_019
crossref_primary_10_1016_j_energy_2017_08_006
crossref_primary_10_1016_j_ijthermalsci_2004_05_001
crossref_primary_10_1016_j_jestch_2016_08_018
crossref_primary_10_4028_www_scientific_net_AMR_433_440_4952
crossref_primary_10_1016_j_applthermaleng_2011_05_041
crossref_primary_10_3390_e14010058
crossref_primary_10_1016_j_applthermaleng_2018_03_054
crossref_primary_10_1093_ijlct_cts071
crossref_primary_10_1016_j_ijggc_2014_09_001
crossref_primary_10_1016_j_jclepro_2017_04_160
crossref_primary_10_1080_15567036_2019_1587095
crossref_primary_10_1016_j_enconman_2017_05_045
crossref_primary_10_1007_s10973_020_09884_5
crossref_primary_10_2514_1_T5748
crossref_primary_10_1016_j_enconman_2015_05_009
crossref_primary_10_1016_j_proeng_2017_07_131
crossref_primary_10_1016_j_applthermaleng_2016_05_190
crossref_primary_10_30521_jes_1035144
crossref_primary_10_3389_fenvs_2022_876707
crossref_primary_10_1093_jcde_qwaa068
crossref_primary_10_1016_j_asej_2024_103106
crossref_primary_10_1016_j_biosystemseng_2024_02_005
crossref_primary_10_1016_j_rser_2013_08_053
crossref_primary_10_1016_j_egyr_2020_11_166
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124534
crossref_primary_10_1016_j_biombioe_2024_107143
crossref_primary_10_1016_j_energy_2019_02_038
crossref_primary_10_1016_j_energy_2020_119534
crossref_primary_10_2298_TSCI211227356T
crossref_primary_10_1016_j_jclepro_2020_124592
crossref_primary_10_1016_j_apenergy_2017_12_033
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_051
crossref_primary_10_1115_1_4066696
crossref_primary_10_3390_e24040564
crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_048
crossref_primary_10_1177_16878140211042105
crossref_primary_10_1063_5_0203560
crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_017
crossref_primary_10_1016_j_energy_2019_05_137
crossref_primary_10_1016_j_renene_2025_122778
crossref_primary_10_1002_er_1496
crossref_primary_10_17221_4906_RAE
crossref_primary_10_3390_e22080820
crossref_primary_10_1109_TCST_2019_2931493
crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_009
crossref_primary_10_1016_j_ijheatmasstransfer_2006_10_047
crossref_primary_10_1243_09576509JPE897
crossref_primary_10_1016_j_applthermaleng_2003_11_014
crossref_primary_10_5194_esd_14_861_2023
crossref_primary_10_1016_j_jpcs_2018_10_015
crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_057
crossref_primary_10_1016_j_ijrefrig_2012_05_020
crossref_primary_10_1016_j_applthermaleng_2024_124223
crossref_primary_10_1016_j_solener_2017_04_023
crossref_primary_10_1016_j_apenergy_2013_12_033
crossref_primary_10_1016_j_ijheatmasstransfer_2006_02_051
crossref_primary_10_1016_j_energy_2015_09_008
crossref_primary_10_1016_j_ijrefrig_2024_11_035
crossref_primary_10_3389_frsus_2022_902071
crossref_primary_10_1016_j_applthermaleng_2018_03_026
crossref_primary_10_3390_e24070999
crossref_primary_10_1016_j_energy_2020_117490
crossref_primary_10_1016_j_icheatmasstransfer_2017_07_008
crossref_primary_10_1007_s00419_021_02081_2
crossref_primary_10_1016_j_energy_2017_06_064
crossref_primary_10_1016_j_ijhydene_2015_03_029
crossref_primary_10_1016_j_ijrefrig_2008_06_007
crossref_primary_10_1016_j_rineng_2024_101952
crossref_primary_10_1080_10407782_2023_2223777
crossref_primary_10_1016_j_applthermaleng_2015_11_089
crossref_primary_10_1080_01430750_2016_1230557
crossref_primary_10_3992_jgb_10_3_116
crossref_primary_10_1016_j_biosystemseng_2024_01_017
crossref_primary_10_1016_j_applthermaleng_2006_10_029
crossref_primary_10_1002_est2_253
crossref_primary_10_1007_s10973_022_11482_6
crossref_primary_10_3390_e24081099
crossref_primary_10_1002_er_4986
crossref_primary_10_1016_j_energy_2015_06_071
crossref_primary_10_1016_j_ijhydene_2017_04_277
crossref_primary_10_1016_j_csite_2023_103603
crossref_primary_10_1016_j_applthermaleng_2017_09_028
crossref_primary_10_1016_j_rser_2014_08_042
crossref_primary_10_3390_sym11050663
crossref_primary_10_3390_e16105159
crossref_primary_10_1016_j_apenergy_2017_01_091
crossref_primary_10_1016_j_ijheatmasstransfer_2012_02_003
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123072
crossref_primary_10_3390_e23111528
crossref_primary_10_2514_1_T3926
crossref_primary_10_3390_pr10030568
crossref_primary_10_1016_j_applthermaleng_2022_119410
crossref_primary_10_1016_j_paerosci_2017_07_004
crossref_primary_10_1016_j_memsci_2017_05_017
crossref_primary_10_1360_TB_2022_1088
crossref_primary_10_1002_est2_382
crossref_primary_10_1115_1_4053346
crossref_primary_10_1016_j_csite_2022_101931
crossref_primary_10_1080_01430750_2019_1670261
crossref_primary_10_1016_j_energy_2018_06_103
crossref_primary_10_1088_0960_1317_16_10_033
crossref_primary_10_1016_j_ijhydene_2017_04_260
crossref_primary_10_1038_s41467_023_40229_6
crossref_primary_10_1016_j_enconman_2012_01_009
crossref_primary_10_3390_en17112587
crossref_primary_10_1115_1_4062210
crossref_primary_10_3390_e15062081
crossref_primary_10_3390_app5041904
crossref_primary_10_1016_j_rser_2015_11_076
crossref_primary_10_1007_s10973_024_13450_8
crossref_primary_10_3390_e5050366
crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_099
crossref_primary_10_1021_acsanm_4c03184
crossref_primary_10_1016_j_ijheatmasstransfer_2004_10_011
crossref_primary_10_1021_acs_nanolett_7b03479
crossref_primary_10_3390_foundations1010010
crossref_primary_10_1051_mattech_2021003
crossref_primary_10_3390_en10020165
crossref_primary_10_1088_0022_3727_40_11_044
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120414
crossref_primary_10_1016_j_ecmx_2025_100897
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120658
crossref_primary_10_1016_j_energy_2016_12_072
crossref_primary_10_1016_j_energy_2017_08_090
crossref_primary_10_1016_j_ijhydene_2022_11_194
crossref_primary_10_1016_j_ijheatmasstransfer_2012_07_009
crossref_primary_10_1115_1_4063678
crossref_primary_10_18186_thermal_672054
crossref_primary_10_1016_j_enconman_2024_118748
crossref_primary_10_1002_er_3183
crossref_primary_10_1177_09544062241271743
crossref_primary_10_1016_j_applthermaleng_2011_02_001
crossref_primary_10_1016_j_applthermaleng_2014_09_076
crossref_primary_10_1002_ep_12817
crossref_primary_10_1016_j_pnucene_2021_103636
crossref_primary_10_1016_j_asej_2023_102378
crossref_primary_10_1016_j_est_2022_105956
crossref_primary_10_1016_j_apenergy_2011_11_040
crossref_primary_10_2514_1_26824
crossref_primary_10_1016_j_ijrefrig_2014_12_013
crossref_primary_10_1002_jctb_4176
crossref_primary_10_1016_j_apenergy_2003_08_002
crossref_primary_10_2514_1_J053467
crossref_primary_10_1016_j_physc_2019_1353541
crossref_primary_10_1016_j_enconman_2023_117148
crossref_primary_10_1016_j_scient_2012_07_009
crossref_primary_10_1016_j_est_2024_110516
crossref_primary_10_1016_j_enconman_2023_117822
crossref_primary_10_1016_j_solener_2024_112537
crossref_primary_10_1002_er_3294
crossref_primary_10_1016_j_tsep_2019_03_011
crossref_primary_10_1016_j_enconman_2017_10_097
crossref_primary_10_1016_j_energy_2017_03_065
crossref_primary_10_1016_j_solener_2009_02_004
crossref_primary_10_1016_j_apt_2016_11_024
crossref_primary_10_1371_journal_pone_0252056
crossref_primary_10_3390_foundations3030029
crossref_primary_10_1002_ese3_802
crossref_primary_10_1016_j_jclepro_2018_02_006
crossref_primary_10_1016_j_icheatmasstransfer_2012_12_011
crossref_primary_10_1016_j_apenergy_2003_08_009
crossref_primary_10_21603_2074_9414_2023_2_2428
crossref_primary_10_1002_er_1553
crossref_primary_10_1002_er_1794
crossref_primary_10_1016_j_enconman_2014_12_014
crossref_primary_10_1016_j_egypro_2015_07_344
crossref_primary_10_1016_j_apenergy_2016_07_119
crossref_primary_10_1016_j_csite_2021_101393
crossref_primary_10_1208_s12249_023_02511_0
crossref_primary_10_1016_j_applthermaleng_2014_02_013
crossref_primary_10_1088_1757_899X_1225_1_012019
crossref_primary_10_1016_j_enconman_2022_115328
crossref_primary_10_1016_j_applthermaleng_2015_09_039
crossref_primary_10_1140_epjp_s13360_022_02451_x
crossref_primary_10_1016_j_rser_2007_10_002
crossref_primary_10_1002_htj_22920
crossref_primary_10_1016_j_ijheatmasstransfer_2014_10_075
crossref_primary_10_1016_j_solener_2018_01_077
crossref_primary_10_1016_j_tsep_2022_101566
crossref_primary_10_1016_j_solener_2016_05_013
crossref_primary_10_1016_j_applthermaleng_2017_07_124
crossref_primary_10_1016_j_rser_2017_04_070
Cites_doi 10.1063/1.362674
10.1115/1.2905925
10.1016/0360-5442(94)90115-5
10.1007/978-94-011-4593-0
10.1007/978-94-011-4685-2
10.1007/978-94-011-4685-2_8
ContentType Journal Article
Copyright Copyright © 2002 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2002 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7TB
8FD
FR3
F28
DOI 10.1002/er.804
DatabaseName Istex
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 43
ExternalDocumentID 10_1002_er_804
ER804
ark_67375_WNG_1F1ZV8PP_T
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEIMD
AENEX
AFBPY
AFGKR
AFRAH
AFZJQ
AGQPQ
AI.
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
AAYXX
CITATION
7TB
8FD
FR3
F28
ID FETCH-LOGICAL-c3924-9763cff9dc3e3f7fefaea999138503c16399aec1a265f5be166d0bca99e78a813
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Sun Sep 28 00:28:33 EDT 2025
Sat Sep 27 20:46:18 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
Wed Oct 01 02:23:54 EDT 2025
Thu Apr 24 03:18:01 EDT 2025
Sun Sep 21 06:30:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3924-9763cff9dc3e3f7fefaea999138503c16399aec1a265f5be166d0bca99e78a813
Notes ark:/67375/WNG-1F1ZV8PP-T
ArticleID:ER804
istex:8CBB4DE76B5DC1B34EC78CF81780A363509DE5B7
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 27128160
PQPubID 23500
PageCount 44
ParticipantIDs proquest_miscellaneous_27144062
proquest_miscellaneous_27128160
crossref_citationtrail_10_1002_er_804
crossref_primary_10_1002_er_804
wiley_primary_10_1002_er_804_ER804
istex_primary_ark_67375_WNG_1F1ZV8PP_T
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 June 2002
PublicationDateYYYYMMDD 2002-06-10
PublicationDate_xml – month: 06
  year: 2002
  text: 10 June 2002
  day: 10
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle International journal of energy research
PublicationTitleAlternate Int. J. Energy Res
PublicationYear 2002
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Olsommer B, Favrat D, Von Spakovsky MR. 1999b. An approach for the time-dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part II: Reliability and availability). International Journal of Applied Thermodynamics 2(4):177-186.
Stecco SS, Moran MJ. (eds). 1990. A Future for Energy. Pergamon: Oxford, UK.
Bejan A. 1988. Advanced Engineering Thermodynamics. Wiley: New York.
De Vos A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion. Oxford University Press: Oxford, UK.
Benelmir R, Feidt M. 1997. Thermoeconomics and finite size thermodynamics for the optimization of a heat pump, International Journal of Energy Environment Economics 5:129-133.
Moran MJ. 1989. Availability Analysis: A Guide to Efficient Energy Use (2nd edn). ASME Press: New York.
Bejan A. 1996b. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics 79:1191-1218.
Benelmir R, Evans RB, Von Spakovsky MR. 1992. High degree decentralization for the optimum thermoeconomic design of a combined cycle. International Journal of Energy Environment Economics 2:155-164.
Bejan A, Mamut E. (eds). 1999. Thermodynamic Optimization of Complex Energy Systems. Kluwer Academic Publishers: Dordrecht, The Netherlands.
Olsommer B, Favrat D, Von Spakovsky MR. 1999a. An approach for the time-dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part I: Methodology and results). International Journal of Applied Thermodynamics 2(3):97-114.
Bejan A. 1982. Entropy Generation through Heat and Fluid Flow. Wiley: New York.
Lim JS, Bejan A, Kim JH. 1992. Thermodynamic optimization of phase-change energy storage using two or more materials. Journal Energy Resources Technology 114:84-90.
Benelmir R, Lallemand M, Lallemand A, Von Spakovsky MR. 1997. Exergetic and economic optimization of a heat pump cycle. International Journal of Energy Environment Economics 5:135-149.
Haywood RW. 1980. Equilibrium Thermodynamics. Wiley: New York.
Ahern, JE. 1980. The Exergy Method of Energy Systems Analysis. Wiley: New York.
Valero A, Tsatsaronis G. (eds). 1992. ECOS'92, Proceedings of the International Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems, Zaragoza, Spain. ASME Press: New York.
Bejan A. 2000. Shape and Structure, from Engineering to Nature. Cambridge University Press: Cambridge, UK.
Bejan A, Vadasz P, Kröger DG. (eds). 1999. Energy and the Environment. Kluwer Academic Publishers: Dordrecht, The Netherlands.
Brodyanskii VM. 1973. Exergy Method of Thermodynamic Analysis. Energiia: Moskow.
Stecco SS, Moran MJ. (eds). 1992. Energy for the Transition Age. Nova Science: New York.
Sciubba E, Melli R. 1998. Artificial Intelligence in Thermal Systems Design: Concepts and Applications. Nova Science: New York.
Von Spakovsky MR. 1994. Application of engineering functional analysis to the analysis and optimization of the CGAM Problem. Energy-The International Journal 19 (special issue):343-364.
Benelmir R, Evans RB, Von Spakovsky MR. 1991. Thermoeconomic analysis and design of a cogeneration system. International Journal of Energy Environment Economics. 1:71-80.
Sieniutycz S, Salamon P. (eds). 1990. Finite-Time Thermodynamics and Thermoeconomics. Taylor and Francis: New York.
Bejan A, Tsatsaronis G, Moran M. 1996. Thermal Design and Optimization. Wiley: New York.
Radcenco V. 1994. Generalized Thermodynamics. Editura Technica: Bucharest.
Moran MJ, Shapiro HN. 1995. Fundamentals of Engineering Thermodynamics (3rd edn). Wiley: New York.
Nerescu I, Radcenco V. 1970. Exergy Analysis of Thermal Processes. Editura Tehnica: Bucharest.
Bejan A. 1997. Advanced Engineering Thermodynamics (2nd edn). Wiley: New York.
Bejan A. 1996a. Entropy Generation Minimization. CRC Press: Boca Raton.
Kotas TJ. 1995. The Exergy Method of Thermal Plant Analysis. Krieger: Melbourne, FL.
Shiner JS. (ed). 1996. Entropy and Entropy Generation. Kluwer Academic Publishers: Dordrecht.
1996b; 79
1999b; 2
1991; 1
1998
1997
1996
1973
1995
1994
1999a
1992
1970
1999b
1997; 5
1993; 1
1999
1999a; 2
1990
2000
1994; 19
1992; 114
1987
1996a
1982
1980
1992; 2
1969
1989
1988
Reistad (10.1002/er.804-BIB29) 1970
Benelmir (10.1002/er.804-BIB11) 1997; 5
Evans (10.1002/er.804-BIB17) 1969
Bejan (10.1002/er.804-BIB2) 1982
Sciubba (10.1002/er.804-BIB32) 1998
Benelmir (10.1002/er.804-BIB14) 1997; 5
Ahern (10.1002/er.804-BIB1) 1980
Smith (10.1002/er.804-BIB35) 2000
Shiner (10.1002/er.804-BIB33) 1996
Haywood (10.1002/er.804-BIB20) 1980
Valero (10.1002/er.804-BIB40) 1999
Benelmir (10.1002/er.804-BIB13) 1992; 2
Sieniutycz (10.1002/er.804-BIB34) 1990
Olsommer (10.1002/er.804-BIB27) 1999b; 2
Von Spakovsky (10.1002/er.804-BIB41) 1994; 19
Olsommer (10.1002/er.804-BIB26) 1999a; 2
Lim (10.1002/er.804-BIB22) 1992; 114
Nerescu (10.1002/er.804-BIB25) 1970
Bejan (10.1002/er.804-BIB4) 1996a
Bejan (10.1002/er.804-BIB8) 1999
Tsatsaronis (10.1002/er.804-BIB38) 1999
Stecco (10.1002/er.804-BIB37) 1992
Bejan (10.1002/er.804-BIB10) 1999
Feidt (10.1002/er.804-BIB18) 1987
Moran (10.1002/er.804-BIB24) 1995
Feidt (10.1002/er.804-BIB19) 1998
Benelmir (10.1002/er.804-BIB12) 1991; 1
Bejan (10.1002/er.804-BIB3) 1988
Sciubba (10.1002/er.804-BIB30) 1999a
Sciubba (10.1002/er.804-BIB31) 1999b
Bejan (10.1002/er.804-BIB5) 1996b; 79
Bejan (10.1002/er.804-BIB7) 2000
Kotas (10.1002/er.804-BIB21) 1995
Radcenco (10.1002/er.804-BIB28) 1994
De Vos (10.1002/er.804-BIB16) 1992
Moran (10.1002/er.804-BIB23) 1989
Von Spakovsky (10.1002/er.804-BIB43) 1994; AES 33
Von Spakovsky (10.1002/er.804-BIB42) 1993; 1
Bejan (10.1002/er.804-BIB6) 1997
Stecco (10.1002/er.804-BIB36) 1990
Brodyanskii (10.1002/er.804-BIB15) 1973
Valero (10.1002/er.804-BIB39) 1992
Bejan (10.1002/er.804-BIB9) 1996
References_xml – reference: Bejan A. 1996a. Entropy Generation Minimization. CRC Press: Boca Raton.
– reference: Bejan A, Vadasz P, Kröger DG. (eds). 1999. Energy and the Environment. Kluwer Academic Publishers: Dordrecht, The Netherlands.
– reference: Shiner JS. (ed). 1996. Entropy and Entropy Generation. Kluwer Academic Publishers: Dordrecht.
– reference: Lim JS, Bejan A, Kim JH. 1992. Thermodynamic optimization of phase-change energy storage using two or more materials. Journal Energy Resources Technology 114:84-90.
– reference: De Vos A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion. Oxford University Press: Oxford, UK.
– reference: Moran MJ, Shapiro HN. 1995. Fundamentals of Engineering Thermodynamics (3rd edn). Wiley: New York.
– reference: Nerescu I, Radcenco V. 1970. Exergy Analysis of Thermal Processes. Editura Tehnica: Bucharest.
– reference: Benelmir R, Lallemand M, Lallemand A, Von Spakovsky MR. 1997. Exergetic and economic optimization of a heat pump cycle. International Journal of Energy Environment Economics 5:135-149.
– reference: Radcenco V. 1994. Generalized Thermodynamics. Editura Technica: Bucharest.
– reference: Von Spakovsky MR. 1994. Application of engineering functional analysis to the analysis and optimization of the CGAM Problem. Energy-The International Journal 19 (special issue):343-364.
– reference: Bejan A. 1982. Entropy Generation through Heat and Fluid Flow. Wiley: New York.
– reference: Moran MJ. 1989. Availability Analysis: A Guide to Efficient Energy Use (2nd edn). ASME Press: New York.
– reference: Bejan A, Mamut E. (eds). 1999. Thermodynamic Optimization of Complex Energy Systems. Kluwer Academic Publishers: Dordrecht, The Netherlands.
– reference: Bejan A. 2000. Shape and Structure, from Engineering to Nature. Cambridge University Press: Cambridge, UK.
– reference: Valero A, Tsatsaronis G. (eds). 1992. ECOS'92, Proceedings of the International Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems, Zaragoza, Spain. ASME Press: New York.
– reference: Bejan A. 1997. Advanced Engineering Thermodynamics (2nd edn). Wiley: New York.
– reference: Bejan A, Tsatsaronis G, Moran M. 1996. Thermal Design and Optimization. Wiley: New York.
– reference: Ahern, JE. 1980. The Exergy Method of Energy Systems Analysis. Wiley: New York.
– reference: Bejan A. 1996b. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics 79:1191-1218.
– reference: Kotas TJ. 1995. The Exergy Method of Thermal Plant Analysis. Krieger: Melbourne, FL.
– reference: Bejan A. 1988. Advanced Engineering Thermodynamics. Wiley: New York.
– reference: Benelmir R, Evans RB, Von Spakovsky MR. 1991. Thermoeconomic analysis and design of a cogeneration system. International Journal of Energy Environment Economics. 1:71-80.
– reference: Stecco SS, Moran MJ. (eds). 1992. Energy for the Transition Age. Nova Science: New York.
– reference: Stecco SS, Moran MJ. (eds). 1990. A Future for Energy. Pergamon: Oxford, UK.
– reference: Benelmir R, Evans RB, Von Spakovsky MR. 1992. High degree decentralization for the optimum thermoeconomic design of a combined cycle. International Journal of Energy Environment Economics 2:155-164.
– reference: Olsommer B, Favrat D, Von Spakovsky MR. 1999a. An approach for the time-dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part I: Methodology and results). International Journal of Applied Thermodynamics 2(3):97-114.
– reference: Benelmir R, Feidt M. 1997. Thermoeconomics and finite size thermodynamics for the optimization of a heat pump, International Journal of Energy Environment Economics 5:129-133.
– reference: Sciubba E, Melli R. 1998. Artificial Intelligence in Thermal Systems Design: Concepts and Applications. Nova Science: New York.
– reference: Sieniutycz S, Salamon P. (eds). 1990. Finite-Time Thermodynamics and Thermoeconomics. Taylor and Francis: New York.
– reference: Olsommer B, Favrat D, Von Spakovsky MR. 1999b. An approach for the time-dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part II: Reliability and availability). International Journal of Applied Thermodynamics 2(4):177-186.
– reference: Haywood RW. 1980. Equilibrium Thermodynamics. Wiley: New York.
– reference: Brodyanskii VM. 1973. Exergy Method of Thermodynamic Analysis. Energiia: Moskow.
– year: 1999a
– volume: 5
  start-page: 135
  year: 1997
  end-page: 149
  article-title: Exergetic and economic optimization of a heat pump cycle
  publication-title: International Journal of Energy Environment Economics
– volume: 1
  year: 1993
– year: 1987
– year: 1989
– volume: 1
  start-page: 71
  year: 1991
  end-page: 80
  article-title: Thermoeconomic analysis and design of a cogeneration system
  publication-title: International Journal of Energy Environment Economics
– year: 1973
– year: 2000
– year: 1996
– volume: 114
  start-page: 84
  year: 1992
  end-page: 90
  article-title: Thermodynamic optimization of phase‐change energy storage using two or more materials
  publication-title: Journal Energy Resources Technology
– year: 1990
– year: 1992
– year: 1994
– volume: 2
  start-page: 155
  year: 1992
  end-page: 164
  article-title: High degree decentralization for the optimum thermoeconomic design of a combined cycle
  publication-title: International Journal of Energy Environment Economics
– year: 1998
– volume: 19
  start-page: 343
  issue: special issue
  year: 1994
  end-page: 364
  article-title: Application of engineering functional analysis to the analysis and optimization of the CGAM Problem
  publication-title: Energy—The International Journal
– year: 1982
– volume: 2
  start-page: 97
  issue: 3
  year: 1999a
  end-page: 114
  article-title: An approach for the time‐dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part I: Methodology and results)
  publication-title: International Journal of Applied Thermodynamics
– year: 1999b
– year: 1980
– volume: 2
  start-page: 177
  issue: 4
  year: 1999b
  end-page: 186
  article-title: An approach for the time‐dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part II: Reliability and availability)
  publication-title: International Journal of Applied Thermodynamics
– start-page: 117
  year: 1999
  end-page: 136
– year: 1996a
– year: 1969
– year: 1988
– year: 1997
– volume: 5
  start-page: 129
  year: 1997
  end-page: 133
  article-title: Thermoeconomics and finite size thermodynamics for the optimization of a heat pump
  publication-title: International Journal of Energy Environment Economics
– year: 1995
– year: 1970
– volume: 79
  start-page: 1191
  year: 1996b
  end-page: 1218
  article-title: Entropy generation minimization: the new thermodynamics of finite‐size devices and finite‐time processes
  publication-title: Journal of Applied Physics
– year: 1999
– volume-title: Exergy Method of Thermodynamic Analysis
  year: 1973
  ident: 10.1002/er.804-BIB15
– volume-title: Finite-Time Thermodynamics and Thermoeconomics
  year: 1990
  ident: 10.1002/er.804-BIB34
– volume-title: Generalized Thermodynamics
  year: 1994
  ident: 10.1002/er.804-BIB28
– volume: 5
  start-page: 135
  year: 1997
  ident: 10.1002/er.804-BIB14
  publication-title: International Journal of Energy Environment Economics
– volume-title: Availability Analysis: A Guide to Efficient Energy Use
  year: 1989
  ident: 10.1002/er.804-BIB23
– volume: 1
  start-page: 71
  year: 1991
  ident: 10.1002/er.804-BIB12
  publication-title: International Journal of Energy Environment Economics
– volume-title: Thermodynamic Optimization of Complex Energy Systems
  year: 1999b
  ident: 10.1002/er.804-BIB31
– volume-title: Entropy Generation Minimization
  year: 1996a
  ident: 10.1002/er.804-BIB4
– volume-title: Shape and Structure, from Engineering to Nature
  year: 2000
  ident: 10.1002/er.804-BIB7
– volume-title: The Exergy Method of Energy Systems Analysis
  year: 1980
  ident: 10.1002/er.804-BIB1
– year: 1969
  ident: 10.1002/er.804-BIB17
– volume-title: Fundamentals of Engineering Thermodynamics
  year: 1995
  ident: 10.1002/er.804-BIB24
– volume-title: Equilibrium Thermodynamics
  year: 1980
  ident: 10.1002/er.804-BIB20
– volume-title: Thermodynamic Optimization of Complex Energy Systems
  year: 1999a
  ident: 10.1002/er.804-BIB30
– volume: 1
  volume-title: Proceedings of the International Conference on Energy Systems and Ecology. ENSEC '93
  year: 1993
  ident: 10.1002/er.804-BIB42
– volume-title: Thermal Design and Optimization
  year: 1996
  ident: 10.1002/er.804-BIB9
– year: 1987
  ident: 10.1002/er.804-BIB18
– volume: 79
  start-page: 1191
  year: 1996b
  ident: 10.1002/er.804-BIB5
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.362674
– volume: 114
  start-page: 84
  year: 1992
  ident: 10.1002/er.804-BIB22
  publication-title: Journal Energy Resources Technology
  doi: 10.1115/1.2905925
– volume: 19
  start-page: 343
  year: 1994
  ident: 10.1002/er.804-BIB41
  publication-title: Energy?The International Journal
  doi: 10.1016/0360-5442(94)90115-5
– volume-title: Energy for the Transition Age
  year: 1992
  ident: 10.1002/er.804-BIB37
– year: 1970
  ident: 10.1002/er.804-BIB29
– volume-title: Entropy and Entropy Generation
  year: 1996
  ident: 10.1002/er.804-BIB33
– year: 2000
  ident: 10.1002/er.804-BIB35
– volume-title: Endoreversible Thermodynamics of Solar Energy Conversion
  year: 1992
  ident: 10.1002/er.804-BIB16
– volume-title: Thermodynamic Optimization of Complex Energy Systems
  year: 1998
  ident: 10.1002/er.804-BIB19
– volume-title: Energy and the Environment
  year: 1999
  ident: 10.1002/er.804-BIB10
  doi: 10.1007/978-94-011-4593-0
– volume-title: Advanced Engineering Thermodynamics
  year: 1988
  ident: 10.1002/er.804-BIB3
– volume-title: Thermodynamic Optimization of Complex Energy Systems
  year: 1999
  ident: 10.1002/er.804-BIB38
– volume: 2
  start-page: 177
  year: 1999b
  ident: 10.1002/er.804-BIB27
  publication-title: International Journal of Applied Thermodynamics
– volume: 5
  start-page: 129
  year: 1997
  ident: 10.1002/er.804-BIB11
  publication-title: International Journal of Energy Environment Economics
– volume-title: The Exergy Method of Thermal Plant Analysis
  year: 1995
  ident: 10.1002/er.804-BIB21
– volume-title: Advanced Engineering Thermodynamics
  year: 1997
  ident: 10.1002/er.804-BIB6
– volume-title: Artificial Intelligence in Thermal Systems Design: Concepts and Applications
  year: 1998
  ident: 10.1002/er.804-BIB32
– volume: AES 33
  volume-title: Thermodynamics and the Design, Analysis and Improvement of Energy Systems
  year: 1994
  ident: 10.1002/er.804-BIB43
– volume-title: Thermodynamic Optimization of Complex Energy Systems
  year: 1999
  ident: 10.1002/er.804-BIB8
  doi: 10.1007/978-94-011-4685-2
– start-page: 117
  volume-title: Thermodynamic Optimization of Complex Energy Systems
  year: 1999
  ident: 10.1002/er.804-BIB40
  doi: 10.1007/978-94-011-4685-2_8
– volume: 2
  start-page: 155
  year: 1992
  ident: 10.1002/er.804-BIB13
  publication-title: International Journal of Energy Environment Economics
– volume-title: Entropy Generation through Heat and Fluid Flow
  year: 1982
  ident: 10.1002/er.804-BIB2
– volume: 2
  start-page: 97
  year: 1999a
  ident: 10.1002/er.804-BIB26
  publication-title: International Journal of Applied Thermodynamics
– volume-title: A Future for Energy
  year: 1990
  ident: 10.1002/er.804-BIB36
– volume-title: Exergy Analysis of Thermal Processes
  year: 1970
  ident: 10.1002/er.804-BIB25
– volume-title: Proceedings of the International Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems, Zaragoza, Spain
  year: 1992
  ident: 10.1002/er.804-BIB39
SSID ssj0009917
Score 2.2310724
Snippet This paper outlines the fundamentals of the methods of exergy analysis and entropy generation minimization (or thermodynamic optimization—the minimization of...
The concepts of irreversibility and of entropy generation (or exergy destruction) are reviewed. Examples illustrate the accounting for exergy flows and...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 0
SubjectTerms constructal theory
EGM
entropy generation minimization
exergy analysis
self-optimization in nature
self-organization in nature
thermodynamic optimization
topology optimization
Title Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture
URI https://api.istex.fr/ark:/67375/WNG-1F1ZV8PP-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.804
https://www.proquest.com/docview/27128160
https://www.proquest.com/docview/27144062
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0363-907X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8QgFCZGL3pwN44rMerJjqUUSo_GOBoPxhiX0QuhLRjjOJ3MEpdf74O246jRGC-99CuhPB588OB7CG1TkxGuaegFNAq8MOYEfC5hXhxkQmgDo0PiDsie8ZOr8LTJmmNIVHdhCn2I4Yab9Qw3XlsHV0lv_0M0VHfrwgmBEsrdWuriQzcKSE9UBSlh9deskgr5wX7x2adZaMI26MsnijlKVN1M05hBt1UdiwMmj_VBP6mnb1_kG__zE7NouqSf-KDoL3NoTLfn0dSIKOECemjYyyGF5n8P5wbbrEz3r1iV8iV72G4I551XfO8kq61lsVUoeSqvdO4BNMNALEcBUI5p5c94NHCxiK4aR5eHJ16ZkMFLgUaFHlAXmhoTZynV1ERGG6WVZZhUMJ-mxLIdpVOiAs4MSzThPPOTFCA6EkoQuoTG23lbLyOsBI8F4RmgVJjELNawrjLAzrIsNIxFNbRTGUimpVq5TZrRkoXOciB1V0LT1dDmENcp9Dm-IXadfYevVffRnmaLmLw5O5akQe6uxfm5vISiqg4gwcds4ES1dT7oySCy8Ubu_4oIgRoFNbTlzP1DXeTRBTxX_gJaRZMu8YxNk-SvofF-d6DXgf_0kw3X198BvtwE9Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHGgPPFoqtrysqu2JLHEcO84RIZaF0hVCC11xsZzERgi6QcuuWvj1zOSxBCqqqpdc8sVyPB77s8f-hpDP3GVMWh56AY8CL4wlA59LhBcHmVLWweiQFAdke7J7Fh4NxKCR6qvUh5huuKFnFOM1OjhuSO88qYbaUVuhEuhcKGGRgnzo9Ek5CmhPVIcpYf03qNMK-cFO-d2zeWgOm_T3M5LZpKrFXNNZJBd1LcsjJtftyThppw8vBBz_6zeWyELFQOlu2WWWyYwdviNvG7qE78lVB--HlLL_dzR3FBMzXd5TUymYbFPcE85v7-lloVqNxqUoUvKzutW5DdCMArdsAqAcd5P_os3YxQo56-z397pelZPBS4FJhR6wF546F2cpt9xFzjpjDZJMroTPU4aEx9iUmUAKJxLLpMz8JAWIjZRRjH8gs8N8aFcJNUrGiskMUCZMYhFbWFo5IGhZFjohohb5UltIp5VgOebNuNGl1HKg7UhD07XI1hR3W0p0_IH4Whh4-tqMrvFAWyT0j96BZh12ca5OTnQfiqp7gAY3w9iJGdp8cqeDCEOO0v8rIgR2FLTIp8Ler9RF75_C8-O_gLbIfLf__VgfH_a-rZE3RR4azJrkr5PZ8WhiN4AOjZPNouM_AgS5CRY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dTxQxFG0MJEQfQFDDikJD1CdmmU6nnc6jAUb8yGZDQDe8NJ1pSwi4s1l2o_jrvXc-lkGjMb7My5xpOr297Wlvey4hr7i3TDoeBxFPoiBOJQOfy0WQRlYp52F0yKsDsgN5fBZ_GIlRJ9VXrQ-x2HBDz6jGa3RwN7F-_0411E37CpVAl2ORKjzNd3hypxwFtCdpw5Sw_hu1aYXCaL_-7t48tIxN-v0eyexS1WquydbIeVvL-ojJVX8-y_vFj18EHP_rNx6T1YaB0rd1l1knD9x4gzzq6BI-IZcZ3g-pZf9vaOkpJma6uKWmUTDZo7gnXE5u6UWlWo3GpShS8rW51bkHUEuBW3YBUI6_Lr_RbuziKTnLjk4PjoMmJ0NQAJOKA2AvvPA-tQV33CfeeeMMkkyuRMgLhoTHuIKZSAovcsektGFeAMQlyijGn5GlcTl2m4QaJVPFpAWUifNUpA6WVh4ImrWxFyLpkdethXTRCJZj3oxrXUstR9pNNTRdj-wscJNaouM3xJvKwIvXZnqFB9oSob8M3mmWsfPPajjUp1BU2wM0uBnGTszYlfMbHSUYcpThXxExsKOoR3Yre_-hLvroBJ7P_wW0Q1aGh5n-9H7wcYs8rNLQYNKk8AVZmk3n7iWwoVm-XfX7n6GpCJo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamentals+of+exergy+analysis%2C+entropy+generation+minimization%2C+and+the+generation+of+flow+architecture&rft.jtitle=International+journal+of+energy+research&rft.au=Bejan%2C+Adrian&rft.date=2002-06-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=26&rft.issue=7&rft.spage=0&rft.epage=43&rft_id=info:doi/10.1002%2Fer.804&rft.externalDBID=10.1002%252Fer.804&rft.externalDocID=ER804
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon