Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture
This paper outlines the fundamentals of the methods of exergy analysis and entropy generation minimization (or thermodynamic optimization—the minimization of exergy destruction). The paper begins with a review of the concept of irreversibility, entropy generation, or exergy destruction. Examples ill...
        Saved in:
      
    
          | Published in | International journal of energy research Vol. 26; no. 7 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Chichester, UK
          John Wiley & Sons, Ltd
    
        10.06.2002
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0363-907X 1099-114X  | 
| DOI | 10.1002/er.804 | 
Cover
| Abstract | This paper outlines the fundamentals of the methods of exergy analysis and entropy generation minimization (or thermodynamic optimization—the minimization of exergy destruction). The paper begins with a review of the concept of irreversibility, entropy generation, or exergy destruction. Examples illustrate the accounting for exergy flows and accumulation in closed systems, open systems, heat transfer processes, and power and refrigeration plants. The proportionality between exergy destruction and entropy generation sends the designer in search of improved thermodynamic performance subject to finite‐size constraints and specified environmental conditions. Examples are drawn from energy storage systems for sensible heat and latent heat, solar energy, and the generation of maximum power in a power plant model with finite heat transfer surface inventory. It is shown that the physical structure (geometric configuration, topology) of the system springs out of the process of global thermodynamic optimization subject to global constraints. This principle generates structure not only in engineering but also in physics and biology (constructal theory). Copyright © 2002 John Wiley & Sons, Ltd. | 
    
|---|---|
| AbstractList | The concepts of irreversibility and of entropy generation (or exergy destruction) are reviewed. Examples illustrate the accounting for exergy flows and accumulation in closed systems, open systems, heat transfer processes, and power and refrigeration plants. The proportionality between exergy destruction and entropy generation sends the designer in search of improved thermodynamic performance subject to finite-size constraints and specified environmental conditions. Examples are drawn from energy storage systems for sensible heat and latent heat, solar energy, and the generation of maximum power in a power plant model with finite heat transfer surface inventory. It is shown that the physical structure (geometric configuration, topology) of the system springs out of the process of global thermodynamic optimization subject to global constraints. This principle generates structure not only in engineering but also in physics and biology (constructal theory). (Original abstract - amended) The concepts of irreversibility and of entropy generation (or exergy destruction) are reviewed. Examples illustrate the accounting for exergy flows and accumulation in closed systems, open systems, heat transfer processes, and power and refrigeration plants. The proportionality between exergy destruction and entropy generation sends the designer in search of improved thermodynamic performance subject to finite-size constraints and specified environmental conditions. Examples are drawn from energy storage systems for sensible heat and latent heat, solar energy, and the generation of maximum power in a power plant model with finite heat transfer surface inventory. It is shown that the physical structure (geometric configuration, topology) of the system springs out of the process of global thermodynamic optimization subject to global constraints. This principle generates structure not only in engineering but also in physics and biology (constructal theory). This paper outlines the fundamentals of the methods of exergy analysis and entropy generation minimization (or thermodynamic optimization—the minimization of exergy destruction). The paper begins with a review of the concept of irreversibility, entropy generation, or exergy destruction. Examples illustrate the accounting for exergy flows and accumulation in closed systems, open systems, heat transfer processes, and power and refrigeration plants. The proportionality between exergy destruction and entropy generation sends the designer in search of improved thermodynamic performance subject to finite‐size constraints and specified environmental conditions. Examples are drawn from energy storage systems for sensible heat and latent heat, solar energy, and the generation of maximum power in a power plant model with finite heat transfer surface inventory. It is shown that the physical structure (geometric configuration, topology) of the system springs out of the process of global thermodynamic optimization subject to global constraints. This principle generates structure not only in engineering but also in physics and biology (constructal theory). Copyright © 2002 John Wiley & Sons, Ltd.  | 
    
| Author | Bejan, Adrian | 
    
| Author_xml | – sequence: 1 givenname: Adrian surname: Bejan fullname: Bejan, Adrian organization: Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300, U.S.A  | 
    
| BookMark | eNqN0N9LwzAQB_AgE5xT_4Y-CcKqSdOlzaMMNwVREX_hS4jZRaNtOpMMV_96oxUVRPApHPfhe7lbRz3bWEBoi-BdgnG2B263xPkK6hPMeUpIftNDfUwZTTkubtbQuvePGMceKfrITBZ2JmuwQVY-aXQCS3D3bSKtrFpv_DCJLdfM2-QeLDgZTGOT2lhTm9ePYhjpLAkP8BPEHF01L4l06sEEUGHhYAOt6jgDNj_fAbqcHFyMD9Pj0-nReP84VZRnecoLRpXWfKYoUF1o0BIkj5-l5QhTRRjlXIIiMmMjPboDwtgM36lIoChlSegAbXe5c9c8L8AHURuvoKqkhWbhRVaQPMcs-w_MSsJwhMMOKtd470ALZcLHosFJUwmCxfvhBTgRD_-d-8XnztTStb_hTgdfTAXtH0ocnHc27azxAZZfVronwQpajMT1yVSQCbm9Ks_OxAV9AwCFo2k | 
    
| CitedBy_id | crossref_primary_10_1002_er_1416 crossref_primary_10_1002_er_1779 crossref_primary_10_1002_er_1536 crossref_primary_10_1016_j_icheatmasstransfer_2023_106858 crossref_primary_10_4028_www_scientific_net_AMM_253_255_760 crossref_primary_10_1002_er_1539 crossref_primary_10_1016_j_applthermaleng_2014_02_066 crossref_primary_10_1016_j_enconman_2025_119504 crossref_primary_10_1115_1_4041793 crossref_primary_10_1016_j_energy_2018_01_119 crossref_primary_10_1016_j_desal_2022_115989 crossref_primary_10_1016_j_physc_2020_1353634 crossref_primary_10_1016_j_compag_2024_109011 crossref_primary_10_1016_j_energy_2014_11_074 crossref_primary_10_1016_j_rser_2017_04_122 crossref_primary_10_1016_j_apenergy_2009_04_005 crossref_primary_10_1016_j_ijheatmasstransfer_2016_02_081 crossref_primary_10_1016_j_ijrefrig_2021_02_002 crossref_primary_10_1007_s11356_018_2861_x crossref_primary_10_1016_j_tifs_2012_03_002 crossref_primary_10_1016_j_ijmecsci_2024_109366 crossref_primary_10_1016_j_solener_2022_03_070 crossref_primary_10_1016_j_energy_2020_119268 crossref_primary_10_1002_er_1406 crossref_primary_10_1016_j_physc_2020_1353618 crossref_primary_10_1016_j_ijhydene_2021_07_053 crossref_primary_10_1016_j_jqsrt_2006_08_006 crossref_primary_10_1016_j_ijhydene_2019_01_252 crossref_primary_10_1016_j_ijthermalsci_2017_08_022 crossref_primary_10_1115_1_4066860 crossref_primary_10_1016_j_renene_2012_10_031 crossref_primary_10_1080_01457632_2020_1807103 crossref_primary_10_1016_j_fuel_2013_12_044 crossref_primary_10_1016_j_energy_2017_05_071 crossref_primary_10_4028_www_scientific_net_AMR_1126_59 crossref_primary_10_1002_htj_21017 crossref_primary_10_1016_j_ijheatmasstransfer_2018_10_097 crossref_primary_10_1016_j_ijheatmasstransfer_2019_02_015 crossref_primary_10_1016_j_applthermaleng_2016_12_124 crossref_primary_10_1016_j_enconman_2015_08_017 crossref_primary_10_1002_er_3269 crossref_primary_10_3390_en15030841 crossref_primary_10_4028_www_scientific_net_AMR_433_440_6641 crossref_primary_10_1016_j_apenergy_2014_09_071 crossref_primary_10_1016_j_ijhydene_2022_03_202 crossref_primary_10_1115_1_4038362 crossref_primary_10_1016_j_jer_2024_05_021 crossref_primary_10_3390_e23111493 crossref_primary_10_1115_1_4041898 crossref_primary_10_1155_2024_8850236 crossref_primary_10_1016_j_energy_2020_118949 crossref_primary_10_17533_udea_redin_343230 crossref_primary_10_1016_j_anucene_2018_10_055 crossref_primary_10_1016_j_energy_2016_01_018 crossref_primary_10_1134_S1810232822040129 crossref_primary_10_4236_mme_2012_23013 crossref_primary_10_1016_j_ensm_2022_01_017 crossref_primary_10_1016_j_icheatmasstransfer_2010_12_016 crossref_primary_10_1002_er_3015 crossref_primary_10_1021_acs_iecr_1c03730 crossref_primary_10_1007_s10973_020_09398_0 crossref_primary_10_1002_er_1510 crossref_primary_10_1016_j_applthermaleng_2015_03_011 crossref_primary_10_1080_16583655_2020_1748844 crossref_primary_10_1002_er_2960 crossref_primary_10_1007_s00360_023_01494_5 crossref_primary_10_1016_j_applthermaleng_2021_117970 crossref_primary_10_3390_e22080883 crossref_primary_10_1007_s11630_023_1859_y crossref_primary_10_1002_er_1508 crossref_primary_10_1016_j_rser_2015_05_034 crossref_primary_10_1016_j_energy_2019_04_015 crossref_primary_10_1016_j_expthermflusci_2016_12_004 crossref_primary_10_3390_en14196315 crossref_primary_10_3390_math11081891 crossref_primary_10_1016_j_jclepro_2018_09_166 crossref_primary_10_1063_5_0245560 crossref_primary_10_1016_j_ijrefrig_2011_08_005 crossref_primary_10_1007_s00231_020_02993_9 crossref_primary_10_1016_j_enconman_2006_05_009 crossref_primary_10_1002_jctb_4422 crossref_primary_10_1002_er_1500 crossref_primary_10_1016_j_fusengdes_2019_04_007 crossref_primary_10_1142_S0217751X22501494 crossref_primary_10_1108_09615530610644244 crossref_primary_10_1016_j_icheatmasstransfer_2024_107341 crossref_primary_10_1016_j_ijheatmasstransfer_2014_04_042 crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_089 crossref_primary_10_1016_j_pecs_2013_02_001 crossref_primary_10_1016_j_energy_2024_130499 crossref_primary_10_1016_j_desal_2015_10_009 crossref_primary_10_1016_j_energy_2017_11_158 crossref_primary_10_1016_j_rser_2011_09_012 crossref_primary_10_1007_s11708_021_0785_5 crossref_primary_10_1115_1_4002395 crossref_primary_10_1016_j_ijrefrig_2018_02_025 crossref_primary_10_1016_j_tsep_2017_06_004 crossref_primary_10_1021_acsenergylett_4c02045 crossref_primary_10_1016_j_energy_2018_06_016 crossref_primary_10_1021_acs_iecr_0c04039 crossref_primary_10_31590_ejosat_1082626 crossref_primary_10_4236_epe_2020_128030 crossref_primary_10_1002_er_1174 crossref_primary_10_1002_er_2940 crossref_primary_10_1016_j_apenergy_2017_12_109 crossref_primary_10_1016_j_enpol_2005_11_003 crossref_primary_10_1016_j_jclepro_2019_02_020 crossref_primary_10_1007_s13369_012_0449_1 crossref_primary_10_1016_j_ijheatfluidflow_2017_01_009 crossref_primary_10_1016_j_apenergy_2009_07_011 crossref_primary_10_1016_j_ijrefrig_2018_05_010 crossref_primary_10_1016_j_solener_2016_08_052 crossref_primary_10_1016_j_jqsrt_2004_11_008 crossref_primary_10_1016_j_applthermaleng_2019_04_048 crossref_primary_10_1002_ep_11687 crossref_primary_10_1016_j_enconman_2015_03_072 crossref_primary_10_1016_j_energy_2007_05_014 crossref_primary_10_1016_j_energy_2011_02_007 crossref_primary_10_1002_ese3_1612 crossref_primary_10_1002_htj_21692 crossref_primary_10_1002_er_3587 crossref_primary_10_1016_j_ijrefrig_2013_02_012 crossref_primary_10_1016_j_apenergy_2009_07_020 crossref_primary_10_1016_j_apenergy_2013_11_042 crossref_primary_10_1016_j_jpowsour_2017_10_008 crossref_primary_10_1016_j_apenergy_2011_06_003 crossref_primary_10_1016_j_ijheatmasstransfer_2011_04_042 crossref_primary_10_1016_j_rser_2009_05_004 crossref_primary_10_1016_j_jclepro_2017_07_100 crossref_primary_10_1080_01430750_2018_1472643 crossref_primary_10_1016_j_icheatmasstransfer_2012_10_002 crossref_primary_10_1016_j_physc_2022_1354102 crossref_primary_10_1002_htj_21425 crossref_primary_10_1016_j_applthermaleng_2018_04_097 crossref_primary_10_1080_20464177_2019_1656324 crossref_primary_10_1016_j_expthermflusci_2017_06_003 crossref_primary_10_1016_j_ijheatmasstransfer_2006_11_006 crossref_primary_10_1016_j_ijheatmasstransfer_2013_03_019 crossref_primary_10_1016_j_energy_2017_08_006 crossref_primary_10_1016_j_ijthermalsci_2004_05_001 crossref_primary_10_1016_j_jestch_2016_08_018 crossref_primary_10_4028_www_scientific_net_AMR_433_440_4952 crossref_primary_10_1016_j_applthermaleng_2011_05_041 crossref_primary_10_3390_e14010058 crossref_primary_10_1016_j_applthermaleng_2018_03_054 crossref_primary_10_1093_ijlct_cts071 crossref_primary_10_1016_j_ijggc_2014_09_001 crossref_primary_10_1016_j_jclepro_2017_04_160 crossref_primary_10_1080_15567036_2019_1587095 crossref_primary_10_1016_j_enconman_2017_05_045 crossref_primary_10_1007_s10973_020_09884_5 crossref_primary_10_2514_1_T5748 crossref_primary_10_1016_j_enconman_2015_05_009 crossref_primary_10_1016_j_proeng_2017_07_131 crossref_primary_10_1016_j_applthermaleng_2016_05_190 crossref_primary_10_30521_jes_1035144 crossref_primary_10_3389_fenvs_2022_876707 crossref_primary_10_1093_jcde_qwaa068 crossref_primary_10_1016_j_asej_2024_103106 crossref_primary_10_1016_j_biosystemseng_2024_02_005 crossref_primary_10_1016_j_rser_2013_08_053 crossref_primary_10_1016_j_egyr_2020_11_166 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124534 crossref_primary_10_1016_j_biombioe_2024_107143 crossref_primary_10_1016_j_energy_2019_02_038 crossref_primary_10_1016_j_energy_2020_119534 crossref_primary_10_2298_TSCI211227356T crossref_primary_10_1016_j_jclepro_2020_124592 crossref_primary_10_1016_j_apenergy_2017_12_033 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_051 crossref_primary_10_1115_1_4066696 crossref_primary_10_3390_e24040564 crossref_primary_10_1016_j_ijheatmasstransfer_2013_05_048 crossref_primary_10_1177_16878140211042105 crossref_primary_10_1063_5_0203560 crossref_primary_10_1016_j_ijheatmasstransfer_2019_04_017 crossref_primary_10_1016_j_energy_2019_05_137 crossref_primary_10_1016_j_renene_2025_122778 crossref_primary_10_1002_er_1496 crossref_primary_10_17221_4906_RAE crossref_primary_10_3390_e22080820 crossref_primary_10_1109_TCST_2019_2931493 crossref_primary_10_1016_j_ijheatmasstransfer_2018_06_009 crossref_primary_10_1016_j_ijheatmasstransfer_2006_10_047 crossref_primary_10_1243_09576509JPE897 crossref_primary_10_1016_j_applthermaleng_2003_11_014 crossref_primary_10_5194_esd_14_861_2023 crossref_primary_10_1016_j_jpcs_2018_10_015 crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_057 crossref_primary_10_1016_j_ijrefrig_2012_05_020 crossref_primary_10_1016_j_applthermaleng_2024_124223 crossref_primary_10_1016_j_solener_2017_04_023 crossref_primary_10_1016_j_apenergy_2013_12_033 crossref_primary_10_1016_j_ijheatmasstransfer_2006_02_051 crossref_primary_10_1016_j_energy_2015_09_008 crossref_primary_10_1016_j_ijrefrig_2024_11_035 crossref_primary_10_3389_frsus_2022_902071 crossref_primary_10_1016_j_applthermaleng_2018_03_026 crossref_primary_10_3390_e24070999 crossref_primary_10_1016_j_energy_2020_117490 crossref_primary_10_1016_j_icheatmasstransfer_2017_07_008 crossref_primary_10_1007_s00419_021_02081_2 crossref_primary_10_1016_j_energy_2017_06_064 crossref_primary_10_1016_j_ijhydene_2015_03_029 crossref_primary_10_1016_j_ijrefrig_2008_06_007 crossref_primary_10_1016_j_rineng_2024_101952 crossref_primary_10_1080_10407782_2023_2223777 crossref_primary_10_1016_j_applthermaleng_2015_11_089 crossref_primary_10_1080_01430750_2016_1230557 crossref_primary_10_3992_jgb_10_3_116 crossref_primary_10_1016_j_biosystemseng_2024_01_017 crossref_primary_10_1016_j_applthermaleng_2006_10_029 crossref_primary_10_1002_est2_253 crossref_primary_10_1007_s10973_022_11482_6 crossref_primary_10_3390_e24081099 crossref_primary_10_1002_er_4986 crossref_primary_10_1016_j_energy_2015_06_071 crossref_primary_10_1016_j_ijhydene_2017_04_277 crossref_primary_10_1016_j_csite_2023_103603 crossref_primary_10_1016_j_applthermaleng_2017_09_028 crossref_primary_10_1016_j_rser_2014_08_042 crossref_primary_10_3390_sym11050663 crossref_primary_10_3390_e16105159 crossref_primary_10_1016_j_apenergy_2017_01_091 crossref_primary_10_1016_j_ijheatmasstransfer_2012_02_003 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123072 crossref_primary_10_3390_e23111528 crossref_primary_10_2514_1_T3926 crossref_primary_10_3390_pr10030568 crossref_primary_10_1016_j_applthermaleng_2022_119410 crossref_primary_10_1016_j_paerosci_2017_07_004 crossref_primary_10_1016_j_memsci_2017_05_017 crossref_primary_10_1360_TB_2022_1088 crossref_primary_10_1002_est2_382 crossref_primary_10_1115_1_4053346 crossref_primary_10_1016_j_csite_2022_101931 crossref_primary_10_1080_01430750_2019_1670261 crossref_primary_10_1016_j_energy_2018_06_103 crossref_primary_10_1088_0960_1317_16_10_033 crossref_primary_10_1016_j_ijhydene_2017_04_260 crossref_primary_10_1038_s41467_023_40229_6 crossref_primary_10_1016_j_enconman_2012_01_009 crossref_primary_10_3390_en17112587 crossref_primary_10_1115_1_4062210 crossref_primary_10_3390_e15062081 crossref_primary_10_3390_app5041904 crossref_primary_10_1016_j_rser_2015_11_076 crossref_primary_10_1007_s10973_024_13450_8 crossref_primary_10_3390_e5050366 crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_099 crossref_primary_10_1021_acsanm_4c03184 crossref_primary_10_1016_j_ijheatmasstransfer_2004_10_011 crossref_primary_10_1021_acs_nanolett_7b03479 crossref_primary_10_3390_foundations1010010 crossref_primary_10_1051_mattech_2021003 crossref_primary_10_3390_en10020165 crossref_primary_10_1088_0022_3727_40_11_044 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120414 crossref_primary_10_1016_j_ecmx_2025_100897 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120658 crossref_primary_10_1016_j_energy_2016_12_072 crossref_primary_10_1016_j_energy_2017_08_090 crossref_primary_10_1016_j_ijhydene_2022_11_194 crossref_primary_10_1016_j_ijheatmasstransfer_2012_07_009 crossref_primary_10_1115_1_4063678 crossref_primary_10_18186_thermal_672054 crossref_primary_10_1016_j_enconman_2024_118748 crossref_primary_10_1002_er_3183 crossref_primary_10_1177_09544062241271743 crossref_primary_10_1016_j_applthermaleng_2011_02_001 crossref_primary_10_1016_j_applthermaleng_2014_09_076 crossref_primary_10_1002_ep_12817 crossref_primary_10_1016_j_pnucene_2021_103636 crossref_primary_10_1016_j_asej_2023_102378 crossref_primary_10_1016_j_est_2022_105956 crossref_primary_10_1016_j_apenergy_2011_11_040 crossref_primary_10_2514_1_26824 crossref_primary_10_1016_j_ijrefrig_2014_12_013 crossref_primary_10_1002_jctb_4176 crossref_primary_10_1016_j_apenergy_2003_08_002 crossref_primary_10_2514_1_J053467 crossref_primary_10_1016_j_physc_2019_1353541 crossref_primary_10_1016_j_enconman_2023_117148 crossref_primary_10_1016_j_scient_2012_07_009 crossref_primary_10_1016_j_est_2024_110516 crossref_primary_10_1016_j_enconman_2023_117822 crossref_primary_10_1016_j_solener_2024_112537 crossref_primary_10_1002_er_3294 crossref_primary_10_1016_j_tsep_2019_03_011 crossref_primary_10_1016_j_enconman_2017_10_097 crossref_primary_10_1016_j_energy_2017_03_065 crossref_primary_10_1016_j_solener_2009_02_004 crossref_primary_10_1016_j_apt_2016_11_024 crossref_primary_10_1371_journal_pone_0252056 crossref_primary_10_3390_foundations3030029 crossref_primary_10_1002_ese3_802 crossref_primary_10_1016_j_jclepro_2018_02_006 crossref_primary_10_1016_j_icheatmasstransfer_2012_12_011 crossref_primary_10_1016_j_apenergy_2003_08_009 crossref_primary_10_21603_2074_9414_2023_2_2428 crossref_primary_10_1002_er_1553 crossref_primary_10_1002_er_1794 crossref_primary_10_1016_j_enconman_2014_12_014 crossref_primary_10_1016_j_egypro_2015_07_344 crossref_primary_10_1016_j_apenergy_2016_07_119 crossref_primary_10_1016_j_csite_2021_101393 crossref_primary_10_1208_s12249_023_02511_0 crossref_primary_10_1016_j_applthermaleng_2014_02_013 crossref_primary_10_1088_1757_899X_1225_1_012019 crossref_primary_10_1016_j_enconman_2022_115328 crossref_primary_10_1016_j_applthermaleng_2015_09_039 crossref_primary_10_1140_epjp_s13360_022_02451_x crossref_primary_10_1016_j_rser_2007_10_002 crossref_primary_10_1002_htj_22920 crossref_primary_10_1016_j_ijheatmasstransfer_2014_10_075 crossref_primary_10_1016_j_solener_2018_01_077 crossref_primary_10_1016_j_tsep_2022_101566 crossref_primary_10_1016_j_solener_2016_05_013 crossref_primary_10_1016_j_applthermaleng_2017_07_124 crossref_primary_10_1016_j_rser_2017_04_070  | 
    
| Cites_doi | 10.1063/1.362674 10.1115/1.2905925 10.1016/0360-5442(94)90115-5 10.1007/978-94-011-4593-0 10.1007/978-94-011-4685-2 10.1007/978-94-011-4685-2_8  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2002 John Wiley & Sons, Ltd. | 
    
| Copyright_xml | – notice: Copyright © 2002 John Wiley & Sons, Ltd. | 
    
| DBID | BSCLL AAYXX CITATION 7TB 8FD FR3 F28  | 
    
| DOI | 10.1002/er.804 | 
    
| DatabaseName | Istex CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering  | 
    
| DatabaseTitleList | Technology Research Database Technology Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1099-114X | 
    
| EndPage | 43 | 
    
| ExternalDocumentID | 10_1002_er_804 ER804 ark_67375_WNG_1F1ZV8PP_T  | 
    
| Genre | article | 
    
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEIMD AENEX AFBPY AFGKR AFRAH AFZJQ AGQPQ AI. AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA H.T H.X HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE AAYXX CITATION 7TB 8FD FR3 F28  | 
    
| ID | FETCH-LOGICAL-c3924-9763cff9dc3e3f7fefaea999138503c16399aec1a265f5be166d0bca99e78a813 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0363-907X | 
    
| IngestDate | Sun Sep 28 00:28:33 EDT 2025 Sat Sep 27 20:46:18 EDT 2025 Thu Apr 24 23:02:26 EDT 2025 Wed Oct 01 02:23:54 EDT 2025 Thu Apr 24 03:18:01 EDT 2025 Sun Sep 21 06:30:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Language | English | 
    
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3924-9763cff9dc3e3f7fefaea999138503c16399aec1a265f5be166d0bca99e78a813 | 
    
| Notes | ark:/67375/WNG-1F1ZV8PP-T ArticleID:ER804 istex:8CBB4DE76B5DC1B34EC78CF81780A363509DE5B7 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 27128160 | 
    
| PQPubID | 23500 | 
    
| PageCount | 44 | 
    
| ParticipantIDs | proquest_miscellaneous_27144062 proquest_miscellaneous_27128160 crossref_citationtrail_10_1002_er_804 crossref_primary_10_1002_er_804 wiley_primary_10_1002_er_804_ER804 istex_primary_ark_67375_WNG_1F1ZV8PP_T  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 10 June 2002 | 
    
| PublicationDateYYYYMMDD | 2002-06-10 | 
    
| PublicationDate_xml | – month: 06 year: 2002 text: 10 June 2002 day: 10  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Chichester, UK | 
    
| PublicationPlace_xml | – name: Chichester, UK | 
    
| PublicationTitle | International journal of energy research | 
    
| PublicationTitleAlternate | Int. J. Energy Res | 
    
| PublicationYear | 2002 | 
    
| Publisher | John Wiley & Sons, Ltd | 
    
| Publisher_xml | – name: John Wiley & Sons, Ltd | 
    
| References | Olsommer B, Favrat D, Von Spakovsky MR. 1999b. An approach for the time-dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part II: Reliability and availability). International Journal of Applied Thermodynamics 2(4):177-186. Stecco SS, Moran MJ. (eds). 1990. A Future for Energy. Pergamon: Oxford, UK. Bejan A. 1988. Advanced Engineering Thermodynamics. Wiley: New York. De Vos A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion. Oxford University Press: Oxford, UK. Benelmir R, Feidt M. 1997. Thermoeconomics and finite size thermodynamics for the optimization of a heat pump, International Journal of Energy Environment Economics 5:129-133. Moran MJ. 1989. Availability Analysis: A Guide to Efficient Energy Use (2nd edn). ASME Press: New York. Bejan A. 1996b. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics 79:1191-1218. Benelmir R, Evans RB, Von Spakovsky MR. 1992. High degree decentralization for the optimum thermoeconomic design of a combined cycle. International Journal of Energy Environment Economics 2:155-164. Bejan A, Mamut E. (eds). 1999. Thermodynamic Optimization of Complex Energy Systems. Kluwer Academic Publishers: Dordrecht, The Netherlands. Olsommer B, Favrat D, Von Spakovsky MR. 1999a. An approach for the time-dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part I: Methodology and results). International Journal of Applied Thermodynamics 2(3):97-114. Bejan A. 1982. Entropy Generation through Heat and Fluid Flow. Wiley: New York. Lim JS, Bejan A, Kim JH. 1992. Thermodynamic optimization of phase-change energy storage using two or more materials. Journal Energy Resources Technology 114:84-90. Benelmir R, Lallemand M, Lallemand A, Von Spakovsky MR. 1997. Exergetic and economic optimization of a heat pump cycle. International Journal of Energy Environment Economics 5:135-149. Haywood RW. 1980. Equilibrium Thermodynamics. Wiley: New York. Ahern, JE. 1980. The Exergy Method of Energy Systems Analysis. Wiley: New York. Valero A, Tsatsaronis G. (eds). 1992. ECOS'92, Proceedings of the International Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems, Zaragoza, Spain. ASME Press: New York. Bejan A. 2000. Shape and Structure, from Engineering to Nature. Cambridge University Press: Cambridge, UK. Bejan A, Vadasz P, Kröger DG. (eds). 1999. Energy and the Environment. Kluwer Academic Publishers: Dordrecht, The Netherlands. Brodyanskii VM. 1973. Exergy Method of Thermodynamic Analysis. Energiia: Moskow. Stecco SS, Moran MJ. (eds). 1992. Energy for the Transition Age. Nova Science: New York. Sciubba E, Melli R. 1998. Artificial Intelligence in Thermal Systems Design: Concepts and Applications. Nova Science: New York. Von Spakovsky MR. 1994. Application of engineering functional analysis to the analysis and optimization of the CGAM Problem. Energy-The International Journal 19 (special issue):343-364. Benelmir R, Evans RB, Von Spakovsky MR. 1991. Thermoeconomic analysis and design of a cogeneration system. International Journal of Energy Environment Economics. 1:71-80. Sieniutycz S, Salamon P. (eds). 1990. Finite-Time Thermodynamics and Thermoeconomics. Taylor and Francis: New York. Bejan A, Tsatsaronis G, Moran M. 1996. Thermal Design and Optimization. Wiley: New York. Radcenco V. 1994. Generalized Thermodynamics. Editura Technica: Bucharest. Moran MJ, Shapiro HN. 1995. Fundamentals of Engineering Thermodynamics (3rd edn). Wiley: New York. Nerescu I, Radcenco V. 1970. Exergy Analysis of Thermal Processes. Editura Tehnica: Bucharest. Bejan A. 1997. Advanced Engineering Thermodynamics (2nd edn). Wiley: New York. Bejan A. 1996a. Entropy Generation Minimization. CRC Press: Boca Raton. Kotas TJ. 1995. The Exergy Method of Thermal Plant Analysis. Krieger: Melbourne, FL. Shiner JS. (ed). 1996. Entropy and Entropy Generation. Kluwer Academic Publishers: Dordrecht. 1996b; 79 1999b; 2 1991; 1 1998 1997 1996 1973 1995 1994 1999a 1992 1970 1999b 1997; 5 1993; 1 1999 1999a; 2 1990 2000 1994; 19 1992; 114 1987 1996a 1982 1980 1992; 2 1969 1989 1988 Reistad (10.1002/er.804-BIB29) 1970 Benelmir (10.1002/er.804-BIB11) 1997; 5 Evans (10.1002/er.804-BIB17) 1969 Bejan (10.1002/er.804-BIB2) 1982 Sciubba (10.1002/er.804-BIB32) 1998 Benelmir (10.1002/er.804-BIB14) 1997; 5 Ahern (10.1002/er.804-BIB1) 1980 Smith (10.1002/er.804-BIB35) 2000 Shiner (10.1002/er.804-BIB33) 1996 Haywood (10.1002/er.804-BIB20) 1980 Valero (10.1002/er.804-BIB40) 1999 Benelmir (10.1002/er.804-BIB13) 1992; 2 Sieniutycz (10.1002/er.804-BIB34) 1990 Olsommer (10.1002/er.804-BIB27) 1999b; 2 Von Spakovsky (10.1002/er.804-BIB41) 1994; 19 Olsommer (10.1002/er.804-BIB26) 1999a; 2 Lim (10.1002/er.804-BIB22) 1992; 114 Nerescu (10.1002/er.804-BIB25) 1970 Bejan (10.1002/er.804-BIB4) 1996a Bejan (10.1002/er.804-BIB8) 1999 Tsatsaronis (10.1002/er.804-BIB38) 1999 Stecco (10.1002/er.804-BIB37) 1992 Bejan (10.1002/er.804-BIB10) 1999 Feidt (10.1002/er.804-BIB18) 1987 Moran (10.1002/er.804-BIB24) 1995 Feidt (10.1002/er.804-BIB19) 1998 Benelmir (10.1002/er.804-BIB12) 1991; 1 Bejan (10.1002/er.804-BIB3) 1988 Sciubba (10.1002/er.804-BIB30) 1999a Sciubba (10.1002/er.804-BIB31) 1999b Bejan (10.1002/er.804-BIB5) 1996b; 79 Bejan (10.1002/er.804-BIB7) 2000 Kotas (10.1002/er.804-BIB21) 1995 Radcenco (10.1002/er.804-BIB28) 1994 De Vos (10.1002/er.804-BIB16) 1992 Moran (10.1002/er.804-BIB23) 1989 Von Spakovsky (10.1002/er.804-BIB43) 1994; AES 33 Von Spakovsky (10.1002/er.804-BIB42) 1993; 1 Bejan (10.1002/er.804-BIB6) 1997 Stecco (10.1002/er.804-BIB36) 1990 Brodyanskii (10.1002/er.804-BIB15) 1973 Valero (10.1002/er.804-BIB39) 1992 Bejan (10.1002/er.804-BIB9) 1996  | 
    
| References_xml | – reference: Bejan A. 1996a. Entropy Generation Minimization. CRC Press: Boca Raton. – reference: Bejan A, Vadasz P, Kröger DG. (eds). 1999. Energy and the Environment. Kluwer Academic Publishers: Dordrecht, The Netherlands. – reference: Shiner JS. (ed). 1996. Entropy and Entropy Generation. Kluwer Academic Publishers: Dordrecht. – reference: Lim JS, Bejan A, Kim JH. 1992. Thermodynamic optimization of phase-change energy storage using two or more materials. Journal Energy Resources Technology 114:84-90. – reference: De Vos A. 1992. Endoreversible Thermodynamics of Solar Energy Conversion. Oxford University Press: Oxford, UK. – reference: Moran MJ, Shapiro HN. 1995. Fundamentals of Engineering Thermodynamics (3rd edn). Wiley: New York. – reference: Nerescu I, Radcenco V. 1970. Exergy Analysis of Thermal Processes. Editura Tehnica: Bucharest. – reference: Benelmir R, Lallemand M, Lallemand A, Von Spakovsky MR. 1997. Exergetic and economic optimization of a heat pump cycle. International Journal of Energy Environment Economics 5:135-149. – reference: Radcenco V. 1994. Generalized Thermodynamics. Editura Technica: Bucharest. – reference: Von Spakovsky MR. 1994. Application of engineering functional analysis to the analysis and optimization of the CGAM Problem. Energy-The International Journal 19 (special issue):343-364. – reference: Bejan A. 1982. Entropy Generation through Heat and Fluid Flow. Wiley: New York. – reference: Moran MJ. 1989. Availability Analysis: A Guide to Efficient Energy Use (2nd edn). ASME Press: New York. – reference: Bejan A, Mamut E. (eds). 1999. Thermodynamic Optimization of Complex Energy Systems. Kluwer Academic Publishers: Dordrecht, The Netherlands. – reference: Bejan A. 2000. Shape and Structure, from Engineering to Nature. Cambridge University Press: Cambridge, UK. – reference: Valero A, Tsatsaronis G. (eds). 1992. ECOS'92, Proceedings of the International Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems, Zaragoza, Spain. ASME Press: New York. – reference: Bejan A. 1997. Advanced Engineering Thermodynamics (2nd edn). Wiley: New York. – reference: Bejan A, Tsatsaronis G, Moran M. 1996. Thermal Design and Optimization. Wiley: New York. – reference: Ahern, JE. 1980. The Exergy Method of Energy Systems Analysis. Wiley: New York. – reference: Bejan A. 1996b. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics 79:1191-1218. – reference: Kotas TJ. 1995. The Exergy Method of Thermal Plant Analysis. Krieger: Melbourne, FL. – reference: Bejan A. 1988. Advanced Engineering Thermodynamics. Wiley: New York. – reference: Benelmir R, Evans RB, Von Spakovsky MR. 1991. Thermoeconomic analysis and design of a cogeneration system. International Journal of Energy Environment Economics. 1:71-80. – reference: Stecco SS, Moran MJ. (eds). 1992. Energy for the Transition Age. Nova Science: New York. – reference: Stecco SS, Moran MJ. (eds). 1990. A Future for Energy. Pergamon: Oxford, UK. – reference: Benelmir R, Evans RB, Von Spakovsky MR. 1992. High degree decentralization for the optimum thermoeconomic design of a combined cycle. International Journal of Energy Environment Economics 2:155-164. – reference: Olsommer B, Favrat D, Von Spakovsky MR. 1999a. An approach for the time-dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part I: Methodology and results). International Journal of Applied Thermodynamics 2(3):97-114. – reference: Benelmir R, Feidt M. 1997. Thermoeconomics and finite size thermodynamics for the optimization of a heat pump, International Journal of Energy Environment Economics 5:129-133. – reference: Sciubba E, Melli R. 1998. Artificial Intelligence in Thermal Systems Design: Concepts and Applications. Nova Science: New York. – reference: Sieniutycz S, Salamon P. (eds). 1990. Finite-Time Thermodynamics and Thermoeconomics. Taylor and Francis: New York. – reference: Olsommer B, Favrat D, Von Spakovsky MR. 1999b. An approach for the time-dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part II: Reliability and availability). International Journal of Applied Thermodynamics 2(4):177-186. – reference: Haywood RW. 1980. Equilibrium Thermodynamics. Wiley: New York. – reference: Brodyanskii VM. 1973. Exergy Method of Thermodynamic Analysis. Energiia: Moskow. – year: 1999a – volume: 5 start-page: 135 year: 1997 end-page: 149 article-title: Exergetic and economic optimization of a heat pump cycle publication-title: International Journal of Energy Environment Economics – volume: 1 year: 1993 – year: 1987 – year: 1989 – volume: 1 start-page: 71 year: 1991 end-page: 80 article-title: Thermoeconomic analysis and design of a cogeneration system publication-title: International Journal of Energy Environment Economics – year: 1973 – year: 2000 – year: 1996 – volume: 114 start-page: 84 year: 1992 end-page: 90 article-title: Thermodynamic optimization of phase‐change energy storage using two or more materials publication-title: Journal Energy Resources Technology – year: 1990 – year: 1992 – year: 1994 – volume: 2 start-page: 155 year: 1992 end-page: 164 article-title: High degree decentralization for the optimum thermoeconomic design of a combined cycle publication-title: International Journal of Energy Environment Economics – year: 1998 – volume: 19 start-page: 343 issue: special issue year: 1994 end-page: 364 article-title: Application of engineering functional analysis to the analysis and optimization of the CGAM Problem publication-title: Energy—The International Journal – year: 1982 – volume: 2 start-page: 97 issue: 3 year: 1999a end-page: 114 article-title: An approach for the time‐dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part I: Methodology and results) publication-title: International Journal of Applied Thermodynamics – year: 1999b – year: 1980 – volume: 2 start-page: 177 issue: 4 year: 1999b end-page: 186 article-title: An approach for the time‐dependent thermoeconomic modeling and optimization of energy system synthesis, design and operation (Part II: Reliability and availability) publication-title: International Journal of Applied Thermodynamics – start-page: 117 year: 1999 end-page: 136 – year: 1996a – year: 1969 – year: 1988 – year: 1997 – volume: 5 start-page: 129 year: 1997 end-page: 133 article-title: Thermoeconomics and finite size thermodynamics for the optimization of a heat pump publication-title: International Journal of Energy Environment Economics – year: 1995 – year: 1970 – volume: 79 start-page: 1191 year: 1996b end-page: 1218 article-title: Entropy generation minimization: the new thermodynamics of finite‐size devices and finite‐time processes publication-title: Journal of Applied Physics – year: 1999 – volume-title: Exergy Method of Thermodynamic Analysis year: 1973 ident: 10.1002/er.804-BIB15 – volume-title: Finite-Time Thermodynamics and Thermoeconomics year: 1990 ident: 10.1002/er.804-BIB34 – volume-title: Generalized Thermodynamics year: 1994 ident: 10.1002/er.804-BIB28 – volume: 5 start-page: 135 year: 1997 ident: 10.1002/er.804-BIB14 publication-title: International Journal of Energy Environment Economics – volume-title: Availability Analysis: A Guide to Efficient Energy Use year: 1989 ident: 10.1002/er.804-BIB23 – volume: 1 start-page: 71 year: 1991 ident: 10.1002/er.804-BIB12 publication-title: International Journal of Energy Environment Economics – volume-title: Thermodynamic Optimization of Complex Energy Systems year: 1999b ident: 10.1002/er.804-BIB31 – volume-title: Entropy Generation Minimization year: 1996a ident: 10.1002/er.804-BIB4 – volume-title: Shape and Structure, from Engineering to Nature year: 2000 ident: 10.1002/er.804-BIB7 – volume-title: The Exergy Method of Energy Systems Analysis year: 1980 ident: 10.1002/er.804-BIB1 – year: 1969 ident: 10.1002/er.804-BIB17 – volume-title: Fundamentals of Engineering Thermodynamics year: 1995 ident: 10.1002/er.804-BIB24 – volume-title: Equilibrium Thermodynamics year: 1980 ident: 10.1002/er.804-BIB20 – volume-title: Thermodynamic Optimization of Complex Energy Systems year: 1999a ident: 10.1002/er.804-BIB30 – volume: 1 volume-title: Proceedings of the International Conference on Energy Systems and Ecology. ENSEC '93 year: 1993 ident: 10.1002/er.804-BIB42 – volume-title: Thermal Design and Optimization year: 1996 ident: 10.1002/er.804-BIB9 – year: 1987 ident: 10.1002/er.804-BIB18 – volume: 79 start-page: 1191 year: 1996b ident: 10.1002/er.804-BIB5 publication-title: Journal of Applied Physics doi: 10.1063/1.362674 – volume: 114 start-page: 84 year: 1992 ident: 10.1002/er.804-BIB22 publication-title: Journal Energy Resources Technology doi: 10.1115/1.2905925 – volume: 19 start-page: 343 year: 1994 ident: 10.1002/er.804-BIB41 publication-title: Energy?The International Journal doi: 10.1016/0360-5442(94)90115-5 – volume-title: Energy for the Transition Age year: 1992 ident: 10.1002/er.804-BIB37 – year: 1970 ident: 10.1002/er.804-BIB29 – volume-title: Entropy and Entropy Generation year: 1996 ident: 10.1002/er.804-BIB33 – year: 2000 ident: 10.1002/er.804-BIB35 – volume-title: Endoreversible Thermodynamics of Solar Energy Conversion year: 1992 ident: 10.1002/er.804-BIB16 – volume-title: Thermodynamic Optimization of Complex Energy Systems year: 1998 ident: 10.1002/er.804-BIB19 – volume-title: Energy and the Environment year: 1999 ident: 10.1002/er.804-BIB10 doi: 10.1007/978-94-011-4593-0 – volume-title: Advanced Engineering Thermodynamics year: 1988 ident: 10.1002/er.804-BIB3 – volume-title: Thermodynamic Optimization of Complex Energy Systems year: 1999 ident: 10.1002/er.804-BIB38 – volume: 2 start-page: 177 year: 1999b ident: 10.1002/er.804-BIB27 publication-title: International Journal of Applied Thermodynamics – volume: 5 start-page: 129 year: 1997 ident: 10.1002/er.804-BIB11 publication-title: International Journal of Energy Environment Economics – volume-title: The Exergy Method of Thermal Plant Analysis year: 1995 ident: 10.1002/er.804-BIB21 – volume-title: Advanced Engineering Thermodynamics year: 1997 ident: 10.1002/er.804-BIB6 – volume-title: Artificial Intelligence in Thermal Systems Design: Concepts and Applications year: 1998 ident: 10.1002/er.804-BIB32 – volume: AES 33 volume-title: Thermodynamics and the Design, Analysis and Improvement of Energy Systems year: 1994 ident: 10.1002/er.804-BIB43 – volume-title: Thermodynamic Optimization of Complex Energy Systems year: 1999 ident: 10.1002/er.804-BIB8 doi: 10.1007/978-94-011-4685-2 – start-page: 117 volume-title: Thermodynamic Optimization of Complex Energy Systems year: 1999 ident: 10.1002/er.804-BIB40 doi: 10.1007/978-94-011-4685-2_8 – volume: 2 start-page: 155 year: 1992 ident: 10.1002/er.804-BIB13 publication-title: International Journal of Energy Environment Economics – volume-title: Entropy Generation through Heat and Fluid Flow year: 1982 ident: 10.1002/er.804-BIB2 – volume: 2 start-page: 97 year: 1999a ident: 10.1002/er.804-BIB26 publication-title: International Journal of Applied Thermodynamics – volume-title: A Future for Energy year: 1990 ident: 10.1002/er.804-BIB36 – volume-title: Exergy Analysis of Thermal Processes year: 1970 ident: 10.1002/er.804-BIB25 – volume-title: Proceedings of the International Symposium on Efficiency, Costs, Optimization and Simulation of Energy Systems, Zaragoza, Spain year: 1992 ident: 10.1002/er.804-BIB39  | 
    
| SSID | ssj0009917 | 
    
| Score | 2.2310724 | 
    
| Snippet | This paper outlines the fundamentals of the methods of exergy analysis and entropy generation minimization (or thermodynamic optimization—the minimization of... The concepts of irreversibility and of entropy generation (or exergy destruction) are reviewed. Examples illustrate the accounting for exergy flows and...  | 
    
| SourceID | proquest crossref wiley istex  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 0 | 
    
| SubjectTerms | constructal theory EGM entropy generation minimization exergy analysis self-optimization in nature self-organization in nature thermodynamic optimization topology optimization  | 
    
| Title | Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-1F1ZV8PP-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.804 https://www.proquest.com/docview/27128160 https://www.proquest.com/docview/27144062  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0363-907X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT8QgFCZGL3pwN44rMerJjqUUSo_GOBoPxhiX0QuhLRjjOJ3MEpdf74O246jRGC-99CuhPB588OB7CG1TkxGuaegFNAq8MOYEfC5hXhxkQmgDo0PiDsie8ZOr8LTJmmNIVHdhCn2I4Yab9Qw3XlsHV0lv_0M0VHfrwgmBEsrdWuriQzcKSE9UBSlh9deskgr5wX7x2adZaMI26MsnijlKVN1M05hBt1UdiwMmj_VBP6mnb1_kG__zE7NouqSf-KDoL3NoTLfn0dSIKOECemjYyyGF5n8P5wbbrEz3r1iV8iV72G4I551XfO8kq61lsVUoeSqvdO4BNMNALEcBUI5p5c94NHCxiK4aR5eHJ16ZkMFLgUaFHlAXmhoTZynV1ERGG6WVZZhUMJ-mxLIdpVOiAs4MSzThPPOTFCA6EkoQuoTG23lbLyOsBI8F4RmgVJjELNawrjLAzrIsNIxFNbRTGUimpVq5TZrRkoXOciB1V0LT1dDmENcp9Dm-IXadfYevVffRnmaLmLw5O5akQe6uxfm5vISiqg4gwcds4ES1dT7oySCy8Ubu_4oIgRoFNbTlzP1DXeTRBTxX_gJaRZMu8YxNk-SvofF-d6DXgf_0kw3X198BvtwE9Q | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHGgPPFoqtrysqu2JLHEcO84RIZaF0hVCC11xsZzERgi6QcuuWvj1zOSxBCqqqpdc8sVyPB77s8f-hpDP3GVMWh56AY8CL4wlA59LhBcHmVLWweiQFAdke7J7Fh4NxKCR6qvUh5huuKFnFOM1OjhuSO88qYbaUVuhEuhcKGGRgnzo9Ek5CmhPVIcpYf03qNMK-cFO-d2zeWgOm_T3M5LZpKrFXNNZJBd1LcsjJtftyThppw8vBBz_6zeWyELFQOlu2WWWyYwdviNvG7qE78lVB--HlLL_dzR3FBMzXd5TUymYbFPcE85v7-lloVqNxqUoUvKzutW5DdCMArdsAqAcd5P_os3YxQo56-z397pelZPBS4FJhR6wF546F2cpt9xFzjpjDZJMroTPU4aEx9iUmUAKJxLLpMz8JAWIjZRRjH8gs8N8aFcJNUrGiskMUCZMYhFbWFo5IGhZFjohohb5UltIp5VgOebNuNGl1HKg7UhD07XI1hR3W0p0_IH4Whh4-tqMrvFAWyT0j96BZh12ca5OTnQfiqp7gAY3w9iJGdp8cqeDCEOO0v8rIgR2FLTIp8Ler9RF75_C8-O_gLbIfLf__VgfH_a-rZE3RR4azJrkr5PZ8WhiN4AOjZPNouM_AgS5CRY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dTxQxFG0MJEQfQFDDikJD1CdmmU6nnc6jAUb8yGZDQDe8NJ1pSwi4s1l2o_jrvXc-lkGjMb7My5xpOr297Wlvey4hr7i3TDoeBxFPoiBOJQOfy0WQRlYp52F0yKsDsgN5fBZ_GIlRJ9VXrQ-x2HBDz6jGa3RwN7F-_0411E37CpVAl2ORKjzNd3hypxwFtCdpw5Sw_hu1aYXCaL_-7t48tIxN-v0eyexS1WquydbIeVvL-ojJVX8-y_vFj18EHP_rNx6T1YaB0rd1l1knD9x4gzzq6BI-IZcZ3g-pZf9vaOkpJma6uKWmUTDZo7gnXE5u6UWlWo3GpShS8rW51bkHUEuBW3YBUI6_Lr_RbuziKTnLjk4PjoMmJ0NQAJOKA2AvvPA-tQV33CfeeeMMkkyuRMgLhoTHuIKZSAovcsektGFeAMQlyijGn5GlcTl2m4QaJVPFpAWUifNUpA6WVh4ImrWxFyLpkdethXTRCJZj3oxrXUstR9pNNTRdj-wscJNaouM3xJvKwIvXZnqFB9oSob8M3mmWsfPPajjUp1BU2wM0uBnGTszYlfMbHSUYcpThXxExsKOoR3Yre_-hLvroBJ7P_wW0Q1aGh5n-9H7wcYs8rNLQYNKk8AVZmk3n7iWwoVm-XfX7n6GpCJo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fundamentals+of+exergy+analysis%2C+entropy+generation+minimization%2C+and+the+generation+of+flow+architecture&rft.jtitle=International+journal+of+energy+research&rft.au=Bejan%2C+Adrian&rft.date=2002-06-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=26&rft.issue=7&rft.spage=0&rft.epage=43&rft_id=info:doi/10.1002%2Fer.804&rft.externalDBID=10.1002%252Fer.804&rft.externalDocID=ER804 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |