A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance

Objectives To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance. Methods In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were e...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 30; no. 11; pp. 5785 - 5793
Main Authors Joo, Bio, Ahn, Sung Soo, Yoon, Pyeong Ho, Bae, Sohi, Sohn, Beomseok, Lee, Yong Eun, Bae, Jun Ho, Park, Moo Sung, Choi, Hyun Seok, Lee, Seung-Koo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Subjects
Online AccessGet full text
ISSN0938-7994
1432-1084
1432-1084
DOI10.1007/s00330-020-06966-8

Cover

Abstract Objectives To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance. Methods In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets. Results MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively. Conclusion A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set. Key Points • A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings.
AbstractList To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance. In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets. MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively. A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set. • A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings.
To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance.OBJECTIVESTo develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance.In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets.METHODSIn a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets.MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively.RESULTSMR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively.A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set.CONCLUSIONA deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set.• A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings.KEY POINTS• A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings.
Objectives To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance. Methods In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets. Results MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively. Conclusion A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set. Key Points • A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings.
Author Bae, Jun Ho
Yoon, Pyeong Ho
Ahn, Sung Soo
Choi, Hyun Seok
Lee, Seung-Koo
Joo, Bio
Park, Moo Sung
Bae, Sohi
Sohn, Beomseok
Lee, Yong Eun
Author_xml – sequence: 1
  givenname: Bio
  surname: Joo
  fullname: Joo, Bio
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine
– sequence: 2
  givenname: Sung Soo
  orcidid: 0000-0002-0503-5558
  surname: Ahn
  fullname: Ahn, Sung Soo
  email: SUNGSOO@yuhs.ac
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine
– sequence: 3
  givenname: Pyeong Ho
  surname: Yoon
  fullname: Yoon, Pyeong Ho
  organization: Department of Radiology, National Health Insurance Service Ilsan Hospital
– sequence: 4
  givenname: Sohi
  surname: Bae
  fullname: Bae, Sohi
  organization: Department of Radiology, National Health Insurance Service Ilsan Hospital
– sequence: 5
  givenname: Beomseok
  surname: Sohn
  fullname: Sohn, Beomseok
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Department of Radiology, Hongik Hospital
– sequence: 6
  givenname: Yong Eun
  surname: Lee
  fullname: Lee, Yong Eun
  organization: DEEPNOID
– sequence: 7
  givenname: Jun Ho
  surname: Bae
  fullname: Bae, Jun Ho
  organization: DEEPNOID
– sequence: 8
  givenname: Moo Sung
  surname: Park
  fullname: Park, Moo Sung
  organization: DEEPNOID
– sequence: 9
  givenname: Hyun Seok
  surname: Choi
  fullname: Choi, Hyun Seok
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine
– sequence: 10
  givenname: Seung-Koo
  surname: Lee
  fullname: Lee, Seung-Koo
  organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32474633$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFSEUholpY2-rf8CFYelmlK8ZYNk0Vk1qTJq6JqcMM5dmBkZg0sy_l_ZeXbhoTCAseJ_DOQ_n6CTE4BB6R8lHSoj8lAnhnDSE1d3prmvUK7SjgrOGEiVO0I5orhqptThD5zk_EEI0FfI1OuNMSNFxvkPbJe6dW_DkIAUfRgzTGJMv-xnPsGFYS5yhOOxDSWATBA8ThuDWtOW5osXZ4mPAdX2_rRejj2OCZb_hx1oE7_24x72HMcRcvMWLS0NMMwTr3qDTAabs3h7PC_Tz-vPd1dfm5seXb1eXN43lmpbGcacG0IwwpQcpFOv0QFunWA_SKibvpWNcdyCs7Ds5MNu1VY6lrWj7thskv0D8UHcNC2yPME1mSX6GtBlKzJNIcxBpqkjzLNKoSn04UEuKv1aXi5l9tm6a6uxxzYYJolpRm6E1-v4YXe9n1_-t_kdyDbBDwKaYc3LD_zWg_oGsL_Dkun6En15GjxPn-k4YXTIPcU2hSn6J-g1DNrFr
CitedBy_id crossref_primary_10_1007_s11517_025_03345_7
crossref_primary_10_1155_2020_8830200
crossref_primary_10_1136_jnis_2022_019456
crossref_primary_10_1109_TMI_2024_3492313
crossref_primary_10_1155_2022_2017223
crossref_primary_10_3389_fneur_2021_742126
crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106690
crossref_primary_10_1109_ACCESS_2022_3214987
crossref_primary_10_1016_j_neucom_2022_07_005
crossref_primary_10_1080_23311916_2024_2363456
crossref_primary_10_1016_j_media_2021_102333
crossref_primary_10_1111_1754_9485_13744
crossref_primary_10_2174_1570159X19666211108141446
crossref_primary_10_1155_2020_7023754
crossref_primary_10_1007_s00330_022_08729_z
crossref_primary_10_1186_s12880_024_01347_9
crossref_primary_10_2139_ssrn_4174298
crossref_primary_10_1016_j_ijmedinf_2024_105487
crossref_primary_10_1177_15910199221097475
crossref_primary_10_1016_j_wneu_2022_02_006
crossref_primary_10_3390_jpm11040239
crossref_primary_10_1007_s00330_023_10295_x
crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108014
crossref_primary_10_1148_ryai_210064
crossref_primary_10_1016_j_ejrad_2022_110457
crossref_primary_10_3174_ajnr_A7242
crossref_primary_10_1007_s11517_024_03136_6
crossref_primary_10_1109_JBHI_2022_3180326
crossref_primary_10_3389_fnhum_2023_1254417
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1007_s11548_024_03132_z
crossref_primary_10_1155_2022_4494411
crossref_primary_10_1038_s41598_023_43418_x
crossref_primary_10_1136_jnis_2023_020192
crossref_primary_10_1161_SVIN_123_001122
crossref_primary_10_1007_s12021_024_09697_z
crossref_primary_10_3349_ymj_2021_62_11_1052
crossref_primary_10_1016_j_ejrad_2022_110169
crossref_primary_10_1016_j_neurad_2022_03_005
crossref_primary_10_1007_s11604_021_01153_1
crossref_primary_10_1109_ACCESS_2025_3530932
crossref_primary_10_1007_s12021_022_09597_0
crossref_primary_10_3348_kjr_2022_0588
crossref_primary_10_1016_j_mri_2022_09_006
crossref_primary_10_1007_s00521_023_08549_2
crossref_primary_10_1016_j_cag_2024_103976
crossref_primary_10_1016_j_rcl_2023_01_004
crossref_primary_10_1016_j_compmedimag_2022_102126
crossref_primary_10_1016_j_acra_2021_06_013
crossref_primary_10_1016_j_media_2025_103493
Cites_doi 10.1007/s10278-018-0162-z
10.1161/STROKEAHA.113.003133
10.1161/STROKEAHA.115.010698
10.1002/jmri.25842
10.1159/000346087
10.1148/radiol.14122770
10.1093/neuros/nyw049
10.1001/jamanetworkopen.2019.5600
10.1148/radiol.2372041734
10.3174/ajnr.A3996
10.1016/S1474-4422(11)70109-0
10.3174/ajnr.A6468
10.3174/ajnr.A5911
10.1148/radiol.2018180901
10.1007/s10278-009-9254-0
10.3340/jkns.2016.59.1.11
10.1016/j.jneumeth.2014.12.003
10.1016/S0140-6736(07)60153-6
10.1109/CVPR.2016.90
10.1056/NEJMoa1113260
10.2214/AJR.07.2642
10.2214/AJR.10.5329
10.3390/jcm8050683
10.3171/2018.9.jns181736:1-10
ContentType Journal Article
Copyright European Society of Radiology 2020
Copyright_xml – notice: European Society of Radiology 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1007/s00330-020-06966-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 5793
ExternalDocumentID oai:ir.ymlib.yonsei.ac.kr:22282913/182678
32474633
10_1007_s00330_020_06966_8
Genre Multicenter Study
Journal Article
GroupedDBID ---
-53
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7X
Z7Y
Z7Z
Z82
Z83
Z85
Z87
Z88
Z8M
Z8O
Z8R
Z8S
Z8T
Z8V
Z8W
Z8Z
Z91
Z92
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c391t-e3e8fa920289f748269f15e82da7c827b7e2396a4c7d67f2c65100c1545d56f73
IEDL.DBID AGYKE
ISSN 0938-7994
1432-1084
IngestDate Sun Oct 26 03:14:03 EDT 2025
Fri Sep 05 14:50:07 EDT 2025
Thu Apr 03 07:04:24 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Wed Oct 01 03:47:33 EDT 2025
Fri Feb 21 02:33:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
Artificial intelligence
Intracranial aneurysm
Magnetic resonance angiography
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-e3e8fa920289f748269f15e82da7c827b7e2396a4c7d67f2c65100c1545d56f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0503-5558
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/article/10.1007%2Fs00330-020-06966-8
PMID 32474633
PQID 2408542691
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1007_s00330_020_06966_8
proquest_miscellaneous_2408542691
pubmed_primary_32474633
crossref_primary_10_1007_s00330_020_06966_8
crossref_citationtrail_10_1007_s00330_020_06966_8
springer_journals_10_1007_s00330_020_06966_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
2020-Nov
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References van Gijn, Kerr, Rinkel (CR2) 2007; 369
CR5
Stember, Chang, Stember (CR12) 2019; 32
Wang, Li, Wang (CR13) 2015; 241
Shi, Hu, Schoepf (CR8) 2020; 41
Byoun, Huh, Oh, Bang, Hwang, Kwon (CR22) 2016; 59
Sailer, Wagemans, Nelemans, de Graaf, van Zwam (CR6) 2014; 45
Sichtermann, Faron, Sijben, Teichert, Freiherr, Wiesmann (CR11) 2019; 40
CR15
Stepan-Buksakowska, Accurso, Diehn (CR17) 2014; 35
Murayama, Takao, Ishibashi (CR21) 2016; 47
CR14
CR24
CR23
CR20
Ueda, Yamamoto, Nishimori (CR10) 2019; 290
Vlak, Algra, Brandenburg, Rinkel (CR1) 2011; 10
Juvela, Korja (CR3) 2017; 81
Hirai, Korogi, Arimura (CR18) 2005; 237
Li, Li, Gu (CR7) 2014; 271
Steiner, Juvela, Unterberg, Jung, Forsting, Rinkel (CR4) 2013; 35
Park, Chute, Rajpurkar (CR19) 2019; 2
Yang, Blezek, Cheng, Ryan, Kallmes, Erickson (CR16) 2011; 24
Nakao, Hanaoka, Nomura (CR9) 2018; 47
IL Stepan-Buksakowska (6966_CR17) 2014; 35
AM Sailer (6966_CR6) 2014; 45
T Hirai (6966_CR18) 2005; 237
6966_CR5
HS Byoun (6966_CR22) 2016; 59
6966_CR20
6966_CR15
R Wang (6966_CR13) 2015; 241
6966_CR14
A Park (6966_CR19) 2019; 2
T Sichtermann (6966_CR11) 2019; 40
6966_CR24
T Nakao (6966_CR9) 2018; 47
6966_CR23
MH Vlak (6966_CR1) 2011; 10
Y Murayama (6966_CR21) 2016; 47
T Steiner (6966_CR4) 2013; 35
J van Gijn (6966_CR2) 2007; 369
D Ueda (6966_CR10) 2019; 290
Z Shi (6966_CR8) 2020; 41
MH Li (6966_CR7) 2014; 271
JN Stember (6966_CR12) 2019; 32
X Yang (6966_CR16) 2011; 24
S Juvela (6966_CR3) 2017; 81
References_xml – volume: 32
  start-page: 808
  year: 2019
  end-page: 815
  ident: CR12
  article-title: Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0162-z
– volume: 45
  start-page: 119
  year: 2014
  end-page: 126
  ident: CR6
  article-title: Diagnosing intracranial aneurysms with MR angiography: systematic review and meta-analysis
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.003133
– volume: 47
  start-page: 365
  year: 2016
  end-page: 371
  ident: CR21
  article-title: Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.010698
– volume: 47
  start-page: 948
  year: 2018
  end-page: 953
  ident: CR9
  article-title: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25842
– volume: 35
  start-page: 93
  year: 2013
  end-page: 112
  ident: CR4
  article-title: European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000346087
– volume: 271
  start-page: 553
  year: 2014
  end-page: 560
  ident: CR7
  article-title: Accurate diagnosis of small cerebral aneurysms </=5 mm in diameter with 3.0-T MR angiography
  publication-title: Radiology
  doi: 10.1148/radiol.14122770
– volume: 81
  start-page: 432
  year: 2017
  end-page: 440
  ident: CR3
  article-title: Intracranial aneurysm parameters for predicting a future subarachnoid hemorrhage: a long-term follow-up study
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyw049
– volume: 2
  start-page: e195600
  year: 2019
  ident: CR19
  article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.5600
– ident: CR14
– ident: CR15
– volume: 237
  start-page: 605
  year: 2005
  end-page: 610
  ident: CR18
  article-title: Intracranial aneurysms at MR angiography: effect of computer-aided diagnosis on radiologists' detection performance
  publication-title: Radiology
  doi: 10.1148/radiol.2372041734
– volume: 35
  start-page: 1897
  year: 2014
  end-page: 1902
  ident: CR17
  article-title: Computer-aided diagnosis improves detection of small intracranial aneurysms on MRA in a clinical setting
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3996
– volume: 10
  start-page: 626
  year: 2011
  end-page: 636
  ident: CR1
  article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(11)70109-0
– ident: CR5
– volume: 41
  start-page: 373
  year: 2020
  end-page: 379
  ident: CR8
  article-title: Artificial intelligence in the management of intracranial aneurysms: current status and future perspectives
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6468
– volume: 40
  start-page: 25
  year: 2019
  end-page: 32
  ident: CR11
  article-title: Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5911
– volume: 290
  start-page: 187
  year: 2019
  end-page: 194
  ident: CR10
  article-title: Deep learning for MR angiography: automated detection of cerebral aneurysms
  publication-title: Radiology
  doi: 10.1148/radiol.2018180901
– volume: 24
  start-page: 86
  year: 2011
  end-page: 95
  ident: CR16
  article-title: Computer-aided detection of intracranial aneurysms in MR angiography
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-009-9254-0
– volume: 59
  start-page: 11
  year: 2016
  end-page: 16
  ident: CR22
  article-title: Natural history of unruptured intracranial aneurysms : a retrospective single center analysis
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2016.59.1.11
– ident: CR24
– volume: 241
  start-page: 30
  year: 2015
  end-page: 36
  ident: CR13
  article-title: Threshold segmentation algorithm for automatic extraction of cerebral vessels from brain magnetic resonance angiography images
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.12.003
– ident: CR23
– volume: 369
  start-page: 306
  year: 2007
  end-page: 318
  ident: CR2
  article-title: Subarachnoid haemorrhage
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60153-6
– ident: CR20
– volume: 290
  start-page: 187
  year: 2019
  ident: 6966_CR10
  publication-title: Radiology
  doi: 10.1148/radiol.2018180901
– ident: 6966_CR14
  doi: 10.1109/CVPR.2016.90
– volume: 47
  start-page: 365
  year: 2016
  ident: 6966_CR21
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.010698
– volume: 41
  start-page: 373
  year: 2020
  ident: 6966_CR8
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A6468
– volume: 35
  start-page: 1897
  year: 2014
  ident: 6966_CR17
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A3996
– volume: 237
  start-page: 605
  year: 2005
  ident: 6966_CR18
  publication-title: Radiology
  doi: 10.1148/radiol.2372041734
– volume: 45
  start-page: 119
  year: 2014
  ident: 6966_CR6
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.003133
– ident: 6966_CR5
  doi: 10.1056/NEJMoa1113260
– volume: 32
  start-page: 808
  year: 2019
  ident: 6966_CR12
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0162-z
– volume: 59
  start-page: 11
  year: 2016
  ident: 6966_CR22
  publication-title: J Korean Neurosurg Soc
  doi: 10.3340/jkns.2016.59.1.11
– volume: 10
  start-page: 626
  year: 2011
  ident: 6966_CR1
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(11)70109-0
– ident: 6966_CR15
  doi: 10.2214/AJR.07.2642
– volume: 2
  start-page: e195600
  year: 2019
  ident: 6966_CR19
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.5600
– volume: 81
  start-page: 432
  year: 2017
  ident: 6966_CR3
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyw049
– ident: 6966_CR24
  doi: 10.2214/AJR.10.5329
– volume: 271
  start-page: 553
  year: 2014
  ident: 6966_CR7
  publication-title: Radiology
  doi: 10.1148/radiol.14122770
– volume: 47
  start-page: 948
  year: 2018
  ident: 6966_CR9
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25842
– volume: 40
  start-page: 25
  year: 2019
  ident: 6966_CR11
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A5911
– ident: 6966_CR23
  doi: 10.3390/jcm8050683
– ident: 6966_CR20
  doi: 10.3171/2018.9.jns181736:1-10
– volume: 369
  start-page: 306
  year: 2007
  ident: 6966_CR2
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60153-6
– volume: 241
  start-page: 30
  year: 2015
  ident: 6966_CR13
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2014.12.003
– volume: 35
  start-page: 93
  year: 2013
  ident: 6966_CR4
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000346087
– volume: 24
  start-page: 86
  year: 2011
  ident: 6966_CR16
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-009-9254-0
SSID ssj0009147
Score 2.5777335
Snippet Objectives To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and...
To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5785
SubjectTerms Algorithms
Deep Learning
Diagnostic Radiology
Female
Humans
Imaging
Internal Medicine
Interventional Radiology
Intracranial Aneurysm - diagnosis
Magnetic Resonance
Magnetic Resonance Angiography - methods
Male
Medicine
Medicine & Public Health
Middle Aged
Neuroradiology
Radiology
Retrospective Studies
ROC Curve
Ultrasound
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66FDb2sHa_M9qiwd5WldiSJfsxjJUySCljge5JyLKUhSVOqG1G9tfvZMtZ1kLZZvxmSZZOJ-mTTvcdwLuc2ygWmtNRZnLKE51T7YShzOVWpwUiXOv9nSeX4mLKP10n1-HArepvu_cmyXamDhLcsehXPgDZiPqNz0ggXKfpA9gXCWLxAexPL6_GX1uCPRzJMmsjISImiHG-SXnwmml95-4U8ufKdAdu7phKH8OjplzrzQ-9WOysRucHoPp2dJdQvp81dX5mft6iePz_hh7CkwBUybhL_hT2bPkMHk6CKf45bMaksHZNQtiJGdGL2epmXn9bkqXeEN3UKwTDlsz96bHBFREVnWhPn7mplpi1bu-AlQTfyWf8MJsH8mzij4aJp1EmRXcPEGtA1r8dHF7A9Pzjlw8XNMRxoIZlUU0ts6nTWeyNmk5y3NBkLkpsGhdamjSWubQxy1BhjCyEdLEROFGMjAd3RSKcZC9hUK5K-xqIjbUp8JFYANeMaceFSwwvEMUKJswQor4PlQkk5z7WxkJt6ZlbmSqUqWplqtIhvN_mWXcUH_emfturhsKR6M0rKLtVU6mWLM57BkdDeNXpzLY8hK2-gmwIp32fqzBZVPf-7HSraH9Rtzf_lvwIBvVNY48RVdX5SRg6vwA1kBjd
  priority: 102
  providerName: Unpaywall
Title A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance
URI https://link.springer.com/article/10.1007/s00330-020-06966-8
https://www.ncbi.nlm.nih.gov/pubmed/32474633
https://www.proquest.com/docview/2408542691
https://link.springer.com/article/10.1007%2Fs00330-020-06966-8
UnpaywallVersion submittedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD6sKezysPsluwQN9raqxLIs24_uaFo2EsaYoX0ysixlYYkTGpuR_fod2bLbXSir8YsvOpalI-mTjs53AN7lXHtMSE7HscopD2ROpRGK-ibXMioQ4Wrr7zydidOUfzwLzpxT2Lbb7d6ZJJueund2s2HHxtROd8YCQTqN9mC_4dsawH5ycv7p-JJs12sCi-FkPaJhHHPnLPNvKb8PSH-hzCsW0ntwpy43cvdDLpdXBqHJA0i77Ld7T74f1lV-qH7-wex40_97CPcdKiVJq0aP4JYuH8PtqbO7P4FdQgqtN8TFmJgTuZyvLxbVtxVZyR2RdbVG5KvJwi4VKxz-UKuJtFyZu-0Kk1bNhq-S4Dn9gg_mC8eUTew6MLGcyaRoN_1hDsjm0pvhKaST468fTqkL2kCVH3sV1b6OjIyZtWCakOPsJTZeoCNWyFBFLMxDzfwYtUOFhQgNUwJ7hbGySK4IhAn9ZzAo16V-AUQzqQo8QhTApe9Lw4UJFC8QsgpfqCF4Xc1lyjGa28Aay6znYm7KNMMyzZoyzaIhvO_TbFo-j2vfftspRIbNztpSsOzW9TZrmOGsG7A3hOetpvTyEKPaDPpDOOhqOnM9w_bajx306vUfeXt5M-mv4C6zutW4Ub6GQXVR6zeIp6p8BHvR5GSEjWhydDQbucaEd1OW4FU6-5yc_wJSixl8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xJo3xgPZ7HWPzpL0NS43t2MljNYEKozwgKvFmOY5dkNq0WlNN_e85p04ADaEtylvii-U7x9_5fN8BfC-ES5g0gvZzW1CRmoIaLy3lvnAmKxHhupDvPDqXw7E4vUqvYlLYsj3t3oYkmz91l-wWyo71aXB3-hJBOs2ewfNAYBUY88dscEe1mzRlxdBVz6jKcxFTZR6X8XA5-gtj3ouP7sLOqlqY9R8znd5bgo5fwV7EjmSwUfZr2HLVG3gxitHxt7AekNK5BYmVICbETCdzdP6vZ2Rm1sSs6jniU0duwoauxUUKbY-YwGi5Xs6wad0cy6oI3qMLfDC5iXzWJOzWksBsTMrN0TzsAVnc5Ry8g_Hx0eXPIY2lFajleVJTx13mTc5CnNErgT5G7pPUZaw0ymZMFcoxnqMOrSql8sxKnLt9G_BWmUqv-HvYruaV-wjEMWNLvBQKEIZz44X0qRUlAkvJpe1B0o6wtpF3PJS_mOqOMbnRikat6EYrOuvBj67NYsO68eTb31rFaZwcIeKBYzdfLXXD3xaSdZMefNhotJOHSDJ0kPfgsFWxjvN3-eTHDjsz-Ie-ffo_6V9hZ3g5OtNnJ-e_9uElC5baJD5-hu3698odIAKqiy-Nwd8ClGv6Xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEB7aLWzbQ-l706cKvXXFxpIs2cfQNmwfWUppYG9C1iMNJI7ZOCz59x3ZjjelZWmNb7bHQt8IfdJovgF4WwifMGkEHea2oCI1BTVBWspD4U3mkOH6mO88OZOnU_H5PD3fy-JvTrvvQpJtTkNUaSrrk8qFkz7xLZYgG9K49BlKJOw0uwm3RBRKQI-estGV7G7SlBjDZXtGVZ6LLm3m7zZ-n5r-4Jt7sdK7cHtTVmZ7aRaLvelofB_udTySjFrgH8ANXz6Ew0kXKX8E2xFx3lekqwoxI2YxW13M659LsjRbYjb1CrmqJ_O4uWtxwkI_JCaqW27XS_y0bo5olQTvyXd8MJt32tYk7tySqHJMXHtMD1tAqqv8g8cwHX_88f6UdmUWqOV5UlPPfRZMzmLMMSiB6408JKnPmDPKZkwVyjOeI55WOakCsxLH8dBG7uVSGRR_AgflqvRHQDwz1uGl0IAwnJsgZEitcEgyJZd2AMmuh7XtNMhjKYyF7tWTG1Q0oqIbVHQ2gHf9N1WrwHHt2292wGkcKDH6gX232qx1o-UWE3eTATxtEe3tIauMDeQDON5BrLuxvL72Z8e9G_xD2579n_XXcPjtw1h__XT25TncYdFRmxzIF3BQX2z8SyRDdfGq8fdfBOj-mg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66FDb2sHa_M9qiwd5WldiSJfsxjJUySCljge5JyLKUhSVOqG1G9tfvZMtZ1kLZZvxmSZZOJ-mTTvcdwLuc2ygWmtNRZnLKE51T7YShzOVWpwUiXOv9nSeX4mLKP10n1-HArepvu_cmyXamDhLcsehXPgDZiPqNz0ggXKfpA9gXCWLxAexPL6_GX1uCPRzJMmsjISImiHG-SXnwmml95-4U8ufKdAdu7phKH8OjplzrzQ-9WOysRucHoPp2dJdQvp81dX5mft6iePz_hh7CkwBUybhL_hT2bPkMHk6CKf45bMaksHZNQtiJGdGL2epmXn9bkqXeEN3UKwTDlsz96bHBFREVnWhPn7mplpi1bu-AlQTfyWf8MJsH8mzij4aJp1EmRXcPEGtA1r8dHF7A9Pzjlw8XNMRxoIZlUU0ts6nTWeyNmk5y3NBkLkpsGhdamjSWubQxy1BhjCyEdLEROFGMjAd3RSKcZC9hUK5K-xqIjbUp8JFYANeMaceFSwwvEMUKJswQor4PlQkk5z7WxkJt6ZlbmSqUqWplqtIhvN_mWXcUH_emfturhsKR6M0rKLtVU6mWLM57BkdDeNXpzLY8hK2-gmwIp32fqzBZVPf-7HSraH9Rtzf_lvwIBvVNY48RVdX5SRg6vwA1kBjd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+algorithm+may+automate+intracranial+aneurysm+detection+on+MR+angiography+with+high+diagnostic+performance&rft.jtitle=European+radiology&rft.au=Joo%2C+Bio&rft.au=Ahn%2C+Sung+Soo&rft.au=Yoon%2C+Pyeong+Ho&rft.au=Bae%2C+Sohi&rft.date=2020-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=30&rft.issue=11&rft.spage=5785&rft.epage=5793&rft_id=info:doi/10.1007%2Fs00330-020-06966-8&rft.externalDocID=10_1007_s00330_020_06966_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon