A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance
Objectives To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance. Methods In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were e...
Saved in:
| Published in | European radiology Vol. 30; no. 11; pp. 5785 - 5793 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0938-7994 1432-1084 1432-1084 |
| DOI | 10.1007/s00330-020-06966-8 |
Cover
| Abstract | Objectives
To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance.
Methods
In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets.
Results
MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively.
Conclusion
A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set.
Key Points
• A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity.
• The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner.
• The algorithm might be robust and effective for general use in real clinical settings. |
|---|---|
| AbstractList | To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance.
In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets.
MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively.
A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set.
• A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings. To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance.OBJECTIVESTo develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance.In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets.METHODSIn a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets.MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively.RESULTSMR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively.A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set.CONCLUSIONA deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set.• A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings.KEY POINTS• A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings. Objectives To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance. Methods In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets. Results MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively. Conclusion A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set. Key Points • A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings. |
| Author | Bae, Jun Ho Yoon, Pyeong Ho Ahn, Sung Soo Choi, Hyun Seok Lee, Seung-Koo Joo, Bio Park, Moo Sung Bae, Sohi Sohn, Beomseok Lee, Yong Eun |
| Author_xml | – sequence: 1 givenname: Bio surname: Joo fullname: Joo, Bio organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine – sequence: 2 givenname: Sung Soo orcidid: 0000-0002-0503-5558 surname: Ahn fullname: Ahn, Sung Soo email: SUNGSOO@yuhs.ac organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine – sequence: 3 givenname: Pyeong Ho surname: Yoon fullname: Yoon, Pyeong Ho organization: Department of Radiology, National Health Insurance Service Ilsan Hospital – sequence: 4 givenname: Sohi surname: Bae fullname: Bae, Sohi organization: Department of Radiology, National Health Insurance Service Ilsan Hospital – sequence: 5 givenname: Beomseok surname: Sohn fullname: Sohn, Beomseok organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine, Department of Radiology, Hongik Hospital – sequence: 6 givenname: Yong Eun surname: Lee fullname: Lee, Yong Eun organization: DEEPNOID – sequence: 7 givenname: Jun Ho surname: Bae fullname: Bae, Jun Ho organization: DEEPNOID – sequence: 8 givenname: Moo Sung surname: Park fullname: Park, Moo Sung organization: DEEPNOID – sequence: 9 givenname: Hyun Seok surname: Choi fullname: Choi, Hyun Seok organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine – sequence: 10 givenname: Seung-Koo surname: Lee fullname: Lee, Seung-Koo organization: Department of Radiology, Research Institute of Radiological Science and Center for Clinical Image Data Science, Yonsei University College of Medicine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32474633$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vFSEUholpY2-rf8CFYelmlK8ZYNk0Vk1qTJq6JqcMM5dmBkZg0sy_l_ZeXbhoTCAseJ_DOQ_n6CTE4BB6R8lHSoj8lAnhnDSE1d3prmvUK7SjgrOGEiVO0I5orhqptThD5zk_EEI0FfI1OuNMSNFxvkPbJe6dW_DkIAUfRgzTGJMv-xnPsGFYS5yhOOxDSWATBA8ThuDWtOW5osXZ4mPAdX2_rRejj2OCZb_hx1oE7_24x72HMcRcvMWLS0NMMwTr3qDTAabs3h7PC_Tz-vPd1dfm5seXb1eXN43lmpbGcacG0IwwpQcpFOv0QFunWA_SKibvpWNcdyCs7Ds5MNu1VY6lrWj7thskv0D8UHcNC2yPME1mSX6GtBlKzJNIcxBpqkjzLNKoSn04UEuKv1aXi5l9tm6a6uxxzYYJolpRm6E1-v4YXe9n1_-t_kdyDbBDwKaYc3LD_zWg_oGsL_Dkun6En15GjxPn-k4YXTIPcU2hSn6J-g1DNrFr |
| CitedBy_id | crossref_primary_10_1007_s11517_025_03345_7 crossref_primary_10_1155_2020_8830200 crossref_primary_10_1136_jnis_2022_019456 crossref_primary_10_1109_TMI_2024_3492313 crossref_primary_10_1155_2022_2017223 crossref_primary_10_3389_fneur_2021_742126 crossref_primary_10_1016_j_jstrokecerebrovasdis_2022_106690 crossref_primary_10_1109_ACCESS_2022_3214987 crossref_primary_10_1016_j_neucom_2022_07_005 crossref_primary_10_1080_23311916_2024_2363456 crossref_primary_10_1016_j_media_2021_102333 crossref_primary_10_1111_1754_9485_13744 crossref_primary_10_2174_1570159X19666211108141446 crossref_primary_10_1155_2020_7023754 crossref_primary_10_1007_s00330_022_08729_z crossref_primary_10_1186_s12880_024_01347_9 crossref_primary_10_2139_ssrn_4174298 crossref_primary_10_1016_j_ijmedinf_2024_105487 crossref_primary_10_1177_15910199221097475 crossref_primary_10_1016_j_wneu_2022_02_006 crossref_primary_10_3390_jpm11040239 crossref_primary_10_1007_s00330_023_10295_x crossref_primary_10_1016_j_jstrokecerebrovasdis_2024_108014 crossref_primary_10_1148_ryai_210064 crossref_primary_10_1016_j_ejrad_2022_110457 crossref_primary_10_3174_ajnr_A7242 crossref_primary_10_1007_s11517_024_03136_6 crossref_primary_10_1109_JBHI_2022_3180326 crossref_primary_10_3389_fnhum_2023_1254417 crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_1007_s11548_024_03132_z crossref_primary_10_1155_2022_4494411 crossref_primary_10_1038_s41598_023_43418_x crossref_primary_10_1136_jnis_2023_020192 crossref_primary_10_1161_SVIN_123_001122 crossref_primary_10_1007_s12021_024_09697_z crossref_primary_10_3349_ymj_2021_62_11_1052 crossref_primary_10_1016_j_ejrad_2022_110169 crossref_primary_10_1016_j_neurad_2022_03_005 crossref_primary_10_1007_s11604_021_01153_1 crossref_primary_10_1109_ACCESS_2025_3530932 crossref_primary_10_1007_s12021_022_09597_0 crossref_primary_10_3348_kjr_2022_0588 crossref_primary_10_1016_j_mri_2022_09_006 crossref_primary_10_1007_s00521_023_08549_2 crossref_primary_10_1016_j_cag_2024_103976 crossref_primary_10_1016_j_rcl_2023_01_004 crossref_primary_10_1016_j_compmedimag_2022_102126 crossref_primary_10_1016_j_acra_2021_06_013 crossref_primary_10_1016_j_media_2025_103493 |
| Cites_doi | 10.1007/s10278-018-0162-z 10.1161/STROKEAHA.113.003133 10.1161/STROKEAHA.115.010698 10.1002/jmri.25842 10.1159/000346087 10.1148/radiol.14122770 10.1093/neuros/nyw049 10.1001/jamanetworkopen.2019.5600 10.1148/radiol.2372041734 10.3174/ajnr.A3996 10.1016/S1474-4422(11)70109-0 10.3174/ajnr.A6468 10.3174/ajnr.A5911 10.1148/radiol.2018180901 10.1007/s10278-009-9254-0 10.3340/jkns.2016.59.1.11 10.1016/j.jneumeth.2014.12.003 10.1016/S0140-6736(07)60153-6 10.1109/CVPR.2016.90 10.1056/NEJMoa1113260 10.2214/AJR.07.2642 10.2214/AJR.10.5329 10.3390/jcm8050683 10.3171/2018.9.jns181736:1-10 |
| ContentType | Journal Article |
| Copyright | European Society of Radiology 2020 |
| Copyright_xml | – notice: European Society of Radiology 2020 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1007/s00330-020-06966-8 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1432-1084 |
| EndPage | 5793 |
| ExternalDocumentID | oai:ir.ymlib.yonsei.ac.kr:22282913/182678 32474633 10_1007_s00330_020_06966_8 |
| Genre | Multicenter Study Journal Article |
| GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7U Z7X Z7Y Z7Z Z82 Z83 Z85 Z87 Z88 Z8M Z8O Z8R Z8S Z8T Z8V Z8W Z8Z Z91 Z92 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c391t-e3e8fa920289f748269f15e82da7c827b7e2396a4c7d67f2c65100c1545d56f73 |
| IEDL.DBID | AGYKE |
| ISSN | 0938-7994 1432-1084 |
| IngestDate | Sun Oct 26 03:14:03 EDT 2025 Fri Sep 05 14:50:07 EDT 2025 Thu Apr 03 07:04:24 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Wed Oct 01 03:47:33 EDT 2025 Fri Feb 21 02:33:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Deep learning Artificial intelligence Intracranial aneurysm Magnetic resonance angiography |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-e3e8fa920289f748269f15e82da7c827b7e2396a4c7d67f2c65100c1545d56f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0503-5558 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/article/10.1007%2Fs00330-020-06966-8 |
| PMID | 32474633 |
| PQID | 2408542691 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1007_s00330_020_06966_8 proquest_miscellaneous_2408542691 pubmed_primary_32474633 crossref_primary_10_1007_s00330_020_06966_8 crossref_citationtrail_10_1007_s00330_020_06966_8 springer_journals_10_1007_s00330_020_06966_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20201100 2020-11-00 2020-Nov 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
| PublicationTitle | European radiology |
| PublicationTitleAbbrev | Eur Radiol |
| PublicationTitleAlternate | Eur Radiol |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | van Gijn, Kerr, Rinkel (CR2) 2007; 369 CR5 Stember, Chang, Stember (CR12) 2019; 32 Wang, Li, Wang (CR13) 2015; 241 Shi, Hu, Schoepf (CR8) 2020; 41 Byoun, Huh, Oh, Bang, Hwang, Kwon (CR22) 2016; 59 Sailer, Wagemans, Nelemans, de Graaf, van Zwam (CR6) 2014; 45 Sichtermann, Faron, Sijben, Teichert, Freiherr, Wiesmann (CR11) 2019; 40 CR15 Stepan-Buksakowska, Accurso, Diehn (CR17) 2014; 35 Murayama, Takao, Ishibashi (CR21) 2016; 47 CR14 CR24 CR23 CR20 Ueda, Yamamoto, Nishimori (CR10) 2019; 290 Vlak, Algra, Brandenburg, Rinkel (CR1) 2011; 10 Juvela, Korja (CR3) 2017; 81 Hirai, Korogi, Arimura (CR18) 2005; 237 Li, Li, Gu (CR7) 2014; 271 Steiner, Juvela, Unterberg, Jung, Forsting, Rinkel (CR4) 2013; 35 Park, Chute, Rajpurkar (CR19) 2019; 2 Yang, Blezek, Cheng, Ryan, Kallmes, Erickson (CR16) 2011; 24 Nakao, Hanaoka, Nomura (CR9) 2018; 47 IL Stepan-Buksakowska (6966_CR17) 2014; 35 AM Sailer (6966_CR6) 2014; 45 T Hirai (6966_CR18) 2005; 237 6966_CR5 HS Byoun (6966_CR22) 2016; 59 6966_CR20 6966_CR15 R Wang (6966_CR13) 2015; 241 6966_CR14 A Park (6966_CR19) 2019; 2 T Sichtermann (6966_CR11) 2019; 40 6966_CR24 T Nakao (6966_CR9) 2018; 47 6966_CR23 MH Vlak (6966_CR1) 2011; 10 Y Murayama (6966_CR21) 2016; 47 T Steiner (6966_CR4) 2013; 35 J van Gijn (6966_CR2) 2007; 369 D Ueda (6966_CR10) 2019; 290 Z Shi (6966_CR8) 2020; 41 MH Li (6966_CR7) 2014; 271 JN Stember (6966_CR12) 2019; 32 X Yang (6966_CR16) 2011; 24 S Juvela (6966_CR3) 2017; 81 |
| References_xml | – volume: 32 start-page: 808 year: 2019 end-page: 815 ident: CR12 article-title: Convolutional neural networks for the detection and measurement of cerebral aneurysms on magnetic resonance angiography publication-title: J Digit Imaging doi: 10.1007/s10278-018-0162-z – volume: 45 start-page: 119 year: 2014 end-page: 126 ident: CR6 article-title: Diagnosing intracranial aneurysms with MR angiography: systematic review and meta-analysis publication-title: Stroke doi: 10.1161/STROKEAHA.113.003133 – volume: 47 start-page: 365 year: 2016 end-page: 371 ident: CR21 article-title: Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study publication-title: Stroke doi: 10.1161/STROKEAHA.115.010698 – volume: 47 start-page: 948 year: 2018 end-page: 953 ident: CR9 article-title: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25842 – volume: 35 start-page: 93 year: 2013 end-page: 112 ident: CR4 article-title: European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage publication-title: Cerebrovasc Dis doi: 10.1159/000346087 – volume: 271 start-page: 553 year: 2014 end-page: 560 ident: CR7 article-title: Accurate diagnosis of small cerebral aneurysms </=5 mm in diameter with 3.0-T MR angiography publication-title: Radiology doi: 10.1148/radiol.14122770 – volume: 81 start-page: 432 year: 2017 end-page: 440 ident: CR3 article-title: Intracranial aneurysm parameters for predicting a future subarachnoid hemorrhage: a long-term follow-up study publication-title: Neurosurgery doi: 10.1093/neuros/nyw049 – volume: 2 start-page: e195600 year: 2019 ident: CR19 article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.5600 – ident: CR14 – ident: CR15 – volume: 237 start-page: 605 year: 2005 end-page: 610 ident: CR18 article-title: Intracranial aneurysms at MR angiography: effect of computer-aided diagnosis on radiologists' detection performance publication-title: Radiology doi: 10.1148/radiol.2372041734 – volume: 35 start-page: 1897 year: 2014 end-page: 1902 ident: CR17 article-title: Computer-aided diagnosis improves detection of small intracranial aneurysms on MRA in a clinical setting publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3996 – volume: 10 start-page: 626 year: 2011 end-page: 636 ident: CR1 article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(11)70109-0 – ident: CR5 – volume: 41 start-page: 373 year: 2020 end-page: 379 ident: CR8 article-title: Artificial intelligence in the management of intracranial aneurysms: current status and future perspectives publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6468 – volume: 40 start-page: 25 year: 2019 end-page: 32 ident: CR11 article-title: Deep learning-based detection of intracranial aneurysms in 3D TOF-MRA publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5911 – volume: 290 start-page: 187 year: 2019 end-page: 194 ident: CR10 article-title: Deep learning for MR angiography: automated detection of cerebral aneurysms publication-title: Radiology doi: 10.1148/radiol.2018180901 – volume: 24 start-page: 86 year: 2011 end-page: 95 ident: CR16 article-title: Computer-aided detection of intracranial aneurysms in MR angiography publication-title: J Digit Imaging doi: 10.1007/s10278-009-9254-0 – volume: 59 start-page: 11 year: 2016 end-page: 16 ident: CR22 article-title: Natural history of unruptured intracranial aneurysms : a retrospective single center analysis publication-title: J Korean Neurosurg Soc doi: 10.3340/jkns.2016.59.1.11 – ident: CR24 – volume: 241 start-page: 30 year: 2015 end-page: 36 ident: CR13 article-title: Threshold segmentation algorithm for automatic extraction of cerebral vessels from brain magnetic resonance angiography images publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.12.003 – ident: CR23 – volume: 369 start-page: 306 year: 2007 end-page: 318 ident: CR2 article-title: Subarachnoid haemorrhage publication-title: Lancet doi: 10.1016/S0140-6736(07)60153-6 – ident: CR20 – volume: 290 start-page: 187 year: 2019 ident: 6966_CR10 publication-title: Radiology doi: 10.1148/radiol.2018180901 – ident: 6966_CR14 doi: 10.1109/CVPR.2016.90 – volume: 47 start-page: 365 year: 2016 ident: 6966_CR21 publication-title: Stroke doi: 10.1161/STROKEAHA.115.010698 – volume: 41 start-page: 373 year: 2020 ident: 6966_CR8 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A6468 – volume: 35 start-page: 1897 year: 2014 ident: 6966_CR17 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A3996 – volume: 237 start-page: 605 year: 2005 ident: 6966_CR18 publication-title: Radiology doi: 10.1148/radiol.2372041734 – volume: 45 start-page: 119 year: 2014 ident: 6966_CR6 publication-title: Stroke doi: 10.1161/STROKEAHA.113.003133 – ident: 6966_CR5 doi: 10.1056/NEJMoa1113260 – volume: 32 start-page: 808 year: 2019 ident: 6966_CR12 publication-title: J Digit Imaging doi: 10.1007/s10278-018-0162-z – volume: 59 start-page: 11 year: 2016 ident: 6966_CR22 publication-title: J Korean Neurosurg Soc doi: 10.3340/jkns.2016.59.1.11 – volume: 10 start-page: 626 year: 2011 ident: 6966_CR1 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(11)70109-0 – ident: 6966_CR15 doi: 10.2214/AJR.07.2642 – volume: 2 start-page: e195600 year: 2019 ident: 6966_CR19 publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.5600 – volume: 81 start-page: 432 year: 2017 ident: 6966_CR3 publication-title: Neurosurgery doi: 10.1093/neuros/nyw049 – ident: 6966_CR24 doi: 10.2214/AJR.10.5329 – volume: 271 start-page: 553 year: 2014 ident: 6966_CR7 publication-title: Radiology doi: 10.1148/radiol.14122770 – volume: 47 start-page: 948 year: 2018 ident: 6966_CR9 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25842 – volume: 40 start-page: 25 year: 2019 ident: 6966_CR11 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A5911 – ident: 6966_CR23 doi: 10.3390/jcm8050683 – ident: 6966_CR20 doi: 10.3171/2018.9.jns181736:1-10 – volume: 369 start-page: 306 year: 2007 ident: 6966_CR2 publication-title: Lancet doi: 10.1016/S0140-6736(07)60153-6 – volume: 241 start-page: 30 year: 2015 ident: 6966_CR13 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2014.12.003 – volume: 35 start-page: 93 year: 2013 ident: 6966_CR4 publication-title: Cerebrovasc Dis doi: 10.1159/000346087 – volume: 24 start-page: 86 year: 2011 ident: 6966_CR16 publication-title: J Digit Imaging doi: 10.1007/s10278-009-9254-0 |
| SSID | ssj0009147 |
| Score | 2.5777335 |
| Snippet | Objectives
To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and... To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its... |
| SourceID | unpaywall proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5785 |
| SubjectTerms | Algorithms Deep Learning Diagnostic Radiology Female Humans Imaging Internal Medicine Interventional Radiology Intracranial Aneurysm - diagnosis Magnetic Resonance Magnetic Resonance Angiography - methods Male Medicine Medicine & Public Health Middle Aged Neuroradiology Radiology Retrospective Studies ROC Curve Ultrasound |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66FDb2sHa_M9qiwd5WldiSJfsxjJUySCljge5JyLKUhSVOqG1G9tfvZMtZ1kLZZvxmSZZOJ-mTTvcdwLuc2ygWmtNRZnLKE51T7YShzOVWpwUiXOv9nSeX4mLKP10n1-HArepvu_cmyXamDhLcsehXPgDZiPqNz0ggXKfpA9gXCWLxAexPL6_GX1uCPRzJMmsjISImiHG-SXnwmml95-4U8ufKdAdu7phKH8OjplzrzQ-9WOysRucHoPp2dJdQvp81dX5mft6iePz_hh7CkwBUybhL_hT2bPkMHk6CKf45bMaksHZNQtiJGdGL2epmXn9bkqXeEN3UKwTDlsz96bHBFREVnWhPn7mplpi1bu-AlQTfyWf8MJsH8mzij4aJp1EmRXcPEGtA1r8dHF7A9Pzjlw8XNMRxoIZlUU0ts6nTWeyNmk5y3NBkLkpsGhdamjSWubQxy1BhjCyEdLEROFGMjAd3RSKcZC9hUK5K-xqIjbUp8JFYANeMaceFSwwvEMUKJswQor4PlQkk5z7WxkJt6ZlbmSqUqWplqtIhvN_mWXcUH_emfturhsKR6M0rKLtVU6mWLM57BkdDeNXpzLY8hK2-gmwIp32fqzBZVPf-7HSraH9Rtzf_lvwIBvVNY48RVdX5SRg6vwA1kBjd priority: 102 providerName: Unpaywall |
| Title | A deep learning algorithm may automate intracranial aneurysm detection on MR angiography with high diagnostic performance |
| URI | https://link.springer.com/article/10.1007/s00330-020-06966-8 https://www.ncbi.nlm.nih.gov/pubmed/32474633 https://www.proquest.com/docview/2408542691 https://link.springer.com/article/10.1007%2Fs00330-020-06966-8 |
| UnpaywallVersion | submittedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1432-1084 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD6sKezysPsluwQN9raqxLIs24_uaFo2EsaYoX0ysixlYYkTGpuR_fod2bLbXSir8YsvOpalI-mTjs53AN7lXHtMSE7HscopD2ROpRGK-ibXMioQ4Wrr7zydidOUfzwLzpxT2Lbb7d6ZJJueund2s2HHxtROd8YCQTqN9mC_4dsawH5ycv7p-JJs12sCi-FkPaJhHHPnLPNvKb8PSH-hzCsW0ntwpy43cvdDLpdXBqHJA0i77Ld7T74f1lV-qH7-wex40_97CPcdKiVJq0aP4JYuH8PtqbO7P4FdQgqtN8TFmJgTuZyvLxbVtxVZyR2RdbVG5KvJwi4VKxz-UKuJtFyZu-0Kk1bNhq-S4Dn9gg_mC8eUTew6MLGcyaRoN_1hDsjm0pvhKaST468fTqkL2kCVH3sV1b6OjIyZtWCakOPsJTZeoCNWyFBFLMxDzfwYtUOFhQgNUwJ7hbGySK4IhAn9ZzAo16V-AUQzqQo8QhTApe9Lw4UJFC8QsgpfqCF4Xc1lyjGa28Aay6znYm7KNMMyzZoyzaIhvO_TbFo-j2vfftspRIbNztpSsOzW9TZrmOGsG7A3hOetpvTyEKPaDPpDOOhqOnM9w_bajx306vUfeXt5M-mv4C6zutW4Ub6GQXVR6zeIp6p8BHvR5GSEjWhydDQbucaEd1OW4FU6-5yc_wJSixl8 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xJo3xgPZ7HWPzpL0NS43t2MljNYEKozwgKvFmOY5dkNq0WlNN_e85p04ADaEtylvii-U7x9_5fN8BfC-ES5g0gvZzW1CRmoIaLy3lvnAmKxHhupDvPDqXw7E4vUqvYlLYsj3t3oYkmz91l-wWyo71aXB3-hJBOs2ewfNAYBUY88dscEe1mzRlxdBVz6jKcxFTZR6X8XA5-gtj3ouP7sLOqlqY9R8znd5bgo5fwV7EjmSwUfZr2HLVG3gxitHxt7AekNK5BYmVICbETCdzdP6vZ2Rm1sSs6jniU0duwoauxUUKbY-YwGi5Xs6wad0cy6oI3qMLfDC5iXzWJOzWksBsTMrN0TzsAVnc5Ry8g_Hx0eXPIY2lFajleVJTx13mTc5CnNErgT5G7pPUZaw0ymZMFcoxnqMOrSql8sxKnLt9G_BWmUqv-HvYruaV-wjEMWNLvBQKEIZz44X0qRUlAkvJpe1B0o6wtpF3PJS_mOqOMbnRikat6EYrOuvBj67NYsO68eTb31rFaZwcIeKBYzdfLXXD3xaSdZMefNhotJOHSDJ0kPfgsFWxjvN3-eTHDjsz-Ie-ffo_6V9hZ3g5OtNnJ-e_9uElC5baJD5-hu3698odIAKqiy-Nwd8ClGv6Xg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEB7aLWzbQ-l706cKvXXFxpIs2cfQNmwfWUppYG9C1iMNJI7ZOCz59x3ZjjelZWmNb7bHQt8IfdJovgF4WwifMGkEHea2oCI1BTVBWspD4U3mkOH6mO88OZOnU_H5PD3fy-JvTrvvQpJtTkNUaSrrk8qFkz7xLZYgG9K49BlKJOw0uwm3RBRKQI-estGV7G7SlBjDZXtGVZ6LLm3m7zZ-n5r-4Jt7sdK7cHtTVmZ7aRaLvelofB_udTySjFrgH8ANXz6Ew0kXKX8E2xFx3lekqwoxI2YxW13M659LsjRbYjb1CrmqJ_O4uWtxwkI_JCaqW27XS_y0bo5olQTvyXd8MJt32tYk7tySqHJMXHtMD1tAqqv8g8cwHX_88f6UdmUWqOV5UlPPfRZMzmLMMSiB6408JKnPmDPKZkwVyjOeI55WOakCsxLH8dBG7uVSGRR_AgflqvRHQDwz1uGl0IAwnJsgZEitcEgyJZd2AMmuh7XtNMhjKYyF7tWTG1Q0oqIbVHQ2gHf9N1WrwHHt2292wGkcKDH6gX232qx1o-UWE3eTATxtEe3tIauMDeQDON5BrLuxvL72Z8e9G_xD2579n_XXcPjtw1h__XT25TncYdFRmxzIF3BQX2z8SyRDdfGq8fdfBOj-mg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED66FDb2sHa_M9qiwd5WldiSJfsxjJUySCljge5JyLKUhSVOqG1G9tfvZMtZ1kLZZvxmSZZOJ-mTTvcdwLuc2ygWmtNRZnLKE51T7YShzOVWpwUiXOv9nSeX4mLKP10n1-HArepvu_cmyXamDhLcsehXPgDZiPqNz0ggXKfpA9gXCWLxAexPL6_GX1uCPRzJMmsjISImiHG-SXnwmml95-4U8ufKdAdu7phKH8OjplzrzQ-9WOysRucHoPp2dJdQvp81dX5mft6iePz_hh7CkwBUybhL_hT2bPkMHk6CKf45bMaksHZNQtiJGdGL2epmXn9bkqXeEN3UKwTDlsz96bHBFREVnWhPn7mplpi1bu-AlQTfyWf8MJsH8mzij4aJp1EmRXcPEGtA1r8dHF7A9Pzjlw8XNMRxoIZlUU0ts6nTWeyNmk5y3NBkLkpsGhdamjSWubQxy1BhjCyEdLEROFGMjAd3RSKcZC9hUK5K-xqIjbUp8JFYANeMaceFSwwvEMUKJswQor4PlQkk5z7WxkJt6ZlbmSqUqWplqtIhvN_mWXcUH_emfturhsKR6M0rKLtVU6mWLM57BkdDeNXpzLY8hK2-gmwIp32fqzBZVPf-7HSraH9Rtzf_lvwIBvVNY48RVdX5SRg6vwA1kBjd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+algorithm+may+automate+intracranial+aneurysm+detection+on+MR+angiography+with+high+diagnostic+performance&rft.jtitle=European+radiology&rft.au=Joo%2C+Bio&rft.au=Ahn%2C+Sung+Soo&rft.au=Yoon%2C+Pyeong+Ho&rft.au=Bae%2C+Sohi&rft.date=2020-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0938-7994&rft.eissn=1432-1084&rft.volume=30&rft.issue=11&rft.spage=5785&rft.epage=5793&rft_id=info:doi/10.1007%2Fs00330-020-06966-8&rft.externalDocID=10_1007_s00330_020_06966_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-7994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-7994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-7994&client=summon |