Innovative Diagnostic Approaches for Predicting Knee Cartilage Degeneration in Osteoarthritis Patients: A Radiomics-Based Study
Osteoarthritis (OA) is a common joint disease affecting people worldwide, notably impacting quality of life due to joint pain and functional limitations. This study explores the potential of radiomics — quantitative image analysis combined with machine learning — to enhance knee OA diagnosis. Using...
        Saved in:
      
    
          | Published in | Information systems frontiers Vol. 27; no. 1; pp. 51 - 73 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.02.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1387-3326 1572-9419  | 
| DOI | 10.1007/s10796-024-10527-5 | 
Cover
| Abstract | Osteoarthritis (OA) is a common joint disease affecting people worldwide, notably impacting quality of life due to joint pain and functional limitations. This study explores the potential of radiomics — quantitative image analysis combined with machine learning — to enhance knee OA diagnosis. Using a multimodal dataset of MRI and CT scans from 138 knees, radiomic features were extracted from cartilage segments. Machine learning algorithms were employed to classify degenerated and healthy knees based on radiomic features. Feature selection, guided by correlation and importance analyses, revealed texture and shape-related features as key predictors. Robustness analysis, assessing feature stability across segmentation variations, further refined feature selection. Results demonstrate high accuracy in knee OA classification using radiomics, showcasing its potential for early disease detection and personalized treatment approaches. This work contributes to advancing OA assessment and is part of the European SINPAIN project aimed at developing new OA therapies. | 
    
|---|---|
| AbstractList | Osteoarthritis (OA) is a common joint disease affecting people worldwide, notably impacting quality of life due to joint pain and functional limitations. This study explores the potential of radiomics — quantitative image analysis combined with machine learning — to enhance knee OA diagnosis. Using a multimodal dataset of MRI and CT scans from 138 knees, radiomic features were extracted from cartilage segments. Machine learning algorithms were employed to classify degenerated and healthy knees based on radiomic features. Feature selection, guided by correlation and importance analyses, revealed texture and shape-related features as key predictors. Robustness analysis, assessing feature stability across segmentation variations, further refined feature selection. Results demonstrate high accuracy in knee OA classification using radiomics, showcasing its potential for early disease detection and personalized treatment approaches. This work contributes to advancing OA assessment and is part of the European SINPAIN project aimed at developing new OA therapies. | 
    
| Author | Tobia, Giovanni Paolo Gislason, Magnus Kjartan Amato, Francesco Jónsson, Halldór Gargiulo, Paolo Tortorella, Francesco Ciliberti, Federica Kiyomi Ponsiglione, Alfonso Maria Angelone, Francesca  | 
    
| Author_xml | – sequence: 1 givenname: Francesca surname: Angelone fullname: Angelone, Francesca organization: Dept. Electrical Engineering Information Technology, University of Naples, ’Federico II’ – sequence: 2 givenname: Federica Kiyomi orcidid: 0000-0002-8378-9478 surname: Ciliberti fullname: Ciliberti, Federica Kiyomi email: federica21@ru.is organization: Institute of Biomedical and Neural Engineering, Reykjavik University – sequence: 3 givenname: Giovanni Paolo surname: Tobia fullname: Tobia, Giovanni Paolo organization: Dept. of Information Eng., Electrical Eng. and Applied Mathematics (DIEM), University of Salerno – sequence: 4 givenname: Halldór surname: Jónsson fullname: Jónsson, Halldór organization: Institute of Biomedical and Neural Engineering, Reykjavik University, Department of Orthopaedics, Landspitali, University Hospital of Iceland – sequence: 5 givenname: Alfonso Maria surname: Ponsiglione fullname: Ponsiglione, Alfonso Maria organization: Dept. Electrical Engineering Information Technology, University of Naples, ’Federico II’ – sequence: 6 givenname: Magnus Kjartan surname: Gislason fullname: Gislason, Magnus Kjartan organization: Institute of Biomedical and Neural Engineering, Reykjavik University – sequence: 7 givenname: Francesco surname: Tortorella fullname: Tortorella, Francesco organization: Dept. of Information Eng., Electrical Eng. and Applied Mathematics (DIEM), University of Salerno – sequence: 8 givenname: Francesco surname: Amato fullname: Amato, Francesco organization: Dept. Electrical Engineering Information Technology, University of Naples, ’Federico II’ – sequence: 9 givenname: Paolo surname: Gargiulo fullname: Gargiulo, Paolo organization: Institute of Biomedical and Neural Engineering, Reykjavik University, Department of Science, Landspitali, University Hospital of Iceland  | 
    
| BookMark | eNp9kMtKBDEQRYMo-PwBVwHX0STdSafdjeMTBcXHOqTT1W1kTMYkM-DKXzc6guDCVRXUPVV17zZa98EDQvuMHjJKm6PEaNNKQnlNGBW8IWINbTHRcNLWrF0vfaUaUlVcbqLtlF4oZZI3Ygt9XHkflia7JeBTZ0YfUnYWT-bzGIx9hoSHEPFdhN7Z7PyIrz0AnpqY3cyMhYERPMSyIHjsPL5NGUKZPkeXXcJ3ZQA-p2M8wfemd-HV2UROTIIeP-RF_76LNgYzS7D3U3fQ0_nZ4_SS3NxeXE0nN8RWLcsEOEBXS8Oloo2UtLeKqpbbmg_U1oZVVA2Ut3bojDVd1wvVUik74MJKkIxXO-hgtbf4eltAyvolLKIvJ3XFGtUKqYQsKrVS2RhSijBo6_K3txyNm2lG9VfcehW3LnHr77i1KCj_g86jezXx_X-oWkGpiP0I8ferf6hPyoWWVA | 
    
| CitedBy_id | crossref_primary_10_3390_app142210315 crossref_primary_10_3389_fimmu_2025_1532248 crossref_primary_10_1007_s10796_025_10580_8 crossref_primary_10_1016_j_jot_2025_01_007  | 
    
| Cites_doi | 10.1007/s00330-021-07951-5 10.1177/0036933015619588 10.1038/srep13087 10.1016/j.ejrad.2019.108711 10.1016/j.actbio.2018.07.037 10.1007/978-3-319-33383-0_5 10.1158/0008-5472.CAN-17-0339 10.1016/j.cger.2010.03.001 10.1016/j.jot.2023.10.003 10.1109/PHT.2013.6461321 10.1177/19476035221144746 10.1136/ard.16.4.494 10.1016/j.joca.2009.08.003 10.1155/2021/4351499 10.1007/978-3-642-00296-0_5 10.1148/ryct.2020190119 10.3390/cancers14122860 10.1109/MetroXRAINE54828.2022.9967517 10.1038/s41592-020-0772-5 10.3390/diagnostics12020279 10.1038/s41416-023-02317-8 10.1186/s13018-022-03314-y 10.3389/fcvm.2020.591368 10.1148/radiol.2020192498 10.1038/nrrheum.2010.198 10.3390/curroncol30010064 10.1016/j.joca.2013.03.018 10.1016/j.joca.2019.01.008 10.1016/j.joca.2018.07.005 10.1038/nrrheum.2015.135 10.1186/s13018-023-03837-y 10.1038/s41598-021-87598-w 10.1016/S1063-4584(03)00095-5 10.7812/TPP/16-183 10.3389/fonc.2015.00272 10.3390/jpm13071104 10.2967/jnumed.118.222893 10.1002/art.24021 10.1364/BOE.10.002457 10.1038/sj.ijo.0801585  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Feb 2025  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Feb 2025  | 
    
| DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1007/s10796-024-10527-5 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1572-9419 | 
    
| EndPage | 73 | 
    
| ExternalDocumentID | 10_1007_s10796_024_10527_5 | 
    
| GrantInformation_xml | – fundername: Cordis grantid: 101057778 funderid: http://dx.doi.org/10.13039/501100006221  | 
    
| GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29I 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYQZM AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M1O M4Y MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9G OAM OVD P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S27 S3B SAP SBE SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX ABBRH ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PQGLB PRQQA PUEGO 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c391t-e2eeb46a26807660dc80892c42f0c4a1308f029cfbacabbd589066be25c6e6123 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 1387-3326 | 
    
| IngestDate | Sat Aug 16 22:23:17 EDT 2025 Wed Oct 01 06:37:15 EDT 2025 Thu Apr 24 23:04:18 EDT 2025 Thu Mar 20 02:10:26 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | osteoarthritis, knee cartilage, imaging, segmentation, radiomics, machine learning | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c391t-e2eeb46a26807660dc80892c42f0c4a1308f029cfbacabbd589066be25c6e6123 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8378-9478 | 
    
| OpenAccessLink | https://doi.org/10.1007/s10796-024-10527-5 | 
    
| PQID | 3178956856 | 
    
| PQPubID | 26108 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | proquest_journals_3178956856 crossref_citationtrail_10_1007_s10796_024_10527_5 crossref_primary_10_1007_s10796_024_10527_5 springer_journals_10_1007_s10796_024_10527_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-02-01 | 
    
| PublicationDateYYYYMMDD | 2025-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationSubtitle | A Journal of Research and Innovation | 
    
| PublicationTitle | Information systems frontiers | 
    
| PublicationTitleAbbrev | Inf Syst Front | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | E Ringdahl (10527_CR31) 2011; 83 M Cooke (10527_CR9) 2018; 78 M Mayerhoefer (10527_CR25) 2020; 61 10527_CR29 I Cetin (10527_CR5) 2020; 7 P-J Wu (10527_CR40) 2019; 10 S Demehri (10527_CR12) 2018; 26 10527_CR27 10527_CR28 T Cui (10527_CR10) 2023; 18 10527_CR23 AM Ponsiglione (10527_CR30) 2023; 13 S Saarakkala (10527_CR34) 2010; 18 T Jiang (10527_CR18) 2024; 45 10527_CR21 10527_CR43 10527_CR22 10527_CR2 10527_CR41 10527_CR20 10527_CR4 10527_CR6 S Ahlback (10527_CR1) 1968; 277 J Hirvasniemi (10527_CR16) 2021; 31 10527_CR8 M Danalache (10527_CR11) 2019; 27 D Heinegård (10527_CR15) 2011; 7 L Murphy (10527_CR26) 2008; 59 EM Roos (10527_CR33) 2016; 12 F Angelone (10527_CR3) 2023 10527_CR19 Z Liu (10527_CR24) 2023; 129 JJ Van Griethuysen (10527_CR38) 2017; 77 10527_CR39 10527_CR36 M Galli (10527_CR14) 2003; 11 10527_CR37 10527_CR13 10527_CR35 10527_CR32 D Coggon (10527_CR7) 2001; 25 S Hussain (10527_CR17) 2016; 61 Z Xue (10527_CR42) 2022; 17  | 
    
| References_xml | – volume: 31 start-page: 8513 year: 2021 ident: 10527_CR16 publication-title: European Radiology doi: 10.1007/s00330-021-07951-5 – volume: 61 start-page: 7 issue: 1 year: 2016 ident: 10527_CR17 publication-title: Scottish Medical Journal doi: 10.1177/0036933015619588 – ident: 10527_CR28 doi: 10.1038/srep13087 – ident: 10527_CR22 doi: 10.1016/j.ejrad.2019.108711 – volume: 78 start-page: 320 year: 2018 ident: 10527_CR9 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2018.07.037 – ident: 10527_CR20 doi: 10.1007/978-3-319-33383-0_5 – volume: 77 start-page: 104 issue: 21 year: 2017 ident: 10527_CR38 publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-17-0339 – ident: 10527_CR43 doi: 10.1016/j.cger.2010.03.001 – volume: 45 start-page: 100 year: 2024 ident: 10527_CR18 publication-title: Journal of Orthopaedic Translation doi: 10.1016/j.jot.2023.10.003 – ident: 10527_CR21 doi: 10.1109/PHT.2013.6461321 – ident: 10527_CR4 doi: 10.1177/19476035221144746 – ident: 10527_CR19 doi: 10.1136/ard.16.4.494 – volume: 18 start-page: 73 issue: 1 year: 2010 ident: 10527_CR34 publication-title: Osteoarthritis and Cartilage doi: 10.1016/j.joca.2009.08.003 – ident: 10527_CR41 doi: 10.1155/2021/4351499 – ident: 10527_CR8 doi: 10.1007/978-3-642-00296-0_5 – ident: 10527_CR13 doi: 10.1148/ryct.2020190119 – ident: 10527_CR37 doi: 10.3390/cancers14122860 – ident: 10527_CR2 doi: 10.1109/MetroXRAINE54828.2022.9967517 – ident: 10527_CR39 doi: 10.1038/s41592-020-0772-5 – ident: 10527_CR6 doi: 10.3390/diagnostics12020279 – volume: 129 start-page: 741 issue: 5 year: 2023 ident: 10527_CR24 publication-title: British Journal of Cancer doi: 10.1038/s41416-023-02317-8 – volume: 17 start-page: 414 issue: 1 year: 2022 ident: 10527_CR42 publication-title: Journal of Orthopaedic Surgery and Research doi: 10.1186/s13018-022-03314-y – volume: 7 year: 2020 ident: 10527_CR5 publication-title: Frontiers in Cardiovascular Medicine doi: 10.3389/fcvm.2020.591368 – volume: 83 start-page: 1287 issue: 11 year: 2011 ident: 10527_CR31 publication-title: American Family Physician – ident: 10527_CR32 doi: 10.1148/radiol.2020192498 – volume-title: 2023 year: 2023 ident: 10527_CR3 – volume: 7 start-page: 50 issue: 1 year: 2011 ident: 10527_CR15 publication-title: Nature Reviews Rheumatology doi: 10.1038/nrrheum.2010.198 – ident: 10527_CR36 doi: 10.3390/curroncol30010064 – ident: 10527_CR27 doi: 10.1016/j.joca.2013.03.018 – volume: 27 start-page: 823 issue: 5 year: 2019 ident: 10527_CR11 publication-title: Osteoarthritis and Cartilage doi: 10.1016/j.joca.2019.01.008 – volume: 26 start-page: 1412 issue: 11 year: 2018 ident: 10527_CR12 publication-title: Osteoarthritis and Cartilage doi: 10.1016/j.joca.2018.07.005 – volume: 12 start-page: 92 issue: 2 year: 2016 ident: 10527_CR33 publication-title: Nature Reviews Rheumatology doi: 10.1038/nrrheum.2015.135 – volume: 18 start-page: 375 issue: 1 year: 2023 ident: 10527_CR10 publication-title: Journal of Orthopaedic Surgery and Research doi: 10.1186/s13018-023-03837-y – ident: 10527_CR35 doi: 10.1038/s41598-021-87598-w – volume: 11 start-page: 580 issue: 8 year: 2003 ident: 10527_CR14 publication-title: Osteoarthritis and Cartilage doi: 10.1016/S1063-4584(03)00095-5 – volume: 277 start-page: 7 year: 1968 ident: 10527_CR1 publication-title: Acta Radiol Diagn (Suppl) – ident: 10527_CR23 doi: 10.7812/TPP/16-183 – ident: 10527_CR29 doi: 10.3389/fonc.2015.00272 – volume: 13 start-page: 1104 issue: 7 year: 2023 ident: 10527_CR30 publication-title: Journal of Personalized Medicine doi: 10.3390/jpm13071104 – volume: 61 start-page: 488 year: 2020 ident: 10527_CR25 publication-title: The Journal of Nuclear Medicine doi: 10.2967/jnumed.118.222893 – volume: 59 start-page: 1207 issue: 9 year: 2008 ident: 10527_CR26 publication-title: Arthritis Care & Research: Official Journal of the American College of Rheumatology doi: 10.1002/art.24021 – volume: 10 start-page: 2457 issue: 5 year: 2019 ident: 10527_CR40 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.10.002457 – volume: 25 start-page: 622 issue: 5 year: 2001 ident: 10527_CR7 publication-title: International Journal of Obesity doi: 10.1038/sj.ijo.0801585  | 
    
| SSID | ssj0016275 | 
    
| Score | 2.4380364 | 
    
| Snippet | Osteoarthritis (OA) is a common joint disease affecting people worldwide, notably impacting quality of life due to joint pain and functional limitations. This... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 51 | 
    
| SubjectTerms | Algorithms Artificial intelligence Business and Management Cartilage Clinical medicine Computed tomography Control Degeneration Disease Feature selection Image analysis Information systems IT in Business Joints (anatomy) Knee Machine learning Magnetic resonance imaging Management of Computing and Information Systems Operations Research/Decision Theory Osteoarthritis Pain Quality of life Radiomics Risk factors Stability analysis Surgery Systems Theory Tumors X-rays  | 
    
| Title | Innovative Diagnostic Approaches for Predicting Knee Cartilage Degeneration in Osteoarthritis Patients: A Radiomics-Based Study | 
    
| URI | https://link.springer.com/article/10.1007/s10796-024-10527-5 https://www.proquest.com/docview/3178956856  | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-9419 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016275 issn: 1387-3326 databaseCode: AFBBN dateStart: 19990701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-9419 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016275 issn: 1387-3326 databaseCode: AGYKE dateStart: 19990101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-9419 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016275 issn: 1387-3326 databaseCode: U2A dateStart: 19990701 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEV5VB7YwFJibCdhC-VRqHgIUalMke24UKlqUVuQmPjr3LkphQqQWLL4MfizfZ9zd98RsmesjWXAHUu4k0y4ULE4NyGzSG-109w5_KF_da3qTXHZkq1CJgdzYWb895jiFvkwWQEXhuQRk_OkDEZKecesqn16DFBt1z-u8NAAJykSZH6e47sRmjLLGWeotzFny2SpIIc0HaO5QuZcb5UsfpEMXCPvF0UZ01dHT8ZhctCZpoU0uBtSYKH0doD-F4xopg0YSmu4QbpwddAT9-iFphEP2unRG0C5D61PXtyI3o5lVodHNKV3Ou9gzvKQHYOpyymGHL6tk-bZ6X2tzooiCsweJuGIOVhtI5TmKg4ipYLcxkGccCt4O7BCgwmL2wFPbNtoq43JZZwACzGOS6scarNskFKv33ObhBoeaqcSbkJfTl0ZIXIVmSTXSaQPtaiQcLKqmS0UxrHQRTebaiMjEhkgkXkkMlkh-59jnsf6Gn_23pmAlRVnbZgBA4ox6VGqCjmYADht_n22rf913yYLHIv_-pDtHVIaDV7cLjCSkamScnr-0Dit-i0J3yZPPwBgldlb | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NLwQxFH9hHXDwLZZFD25UZqrtzLit9bGsr4hNOE3aThchS8yScPGvazsdiyBx7kc6fa99v8577_cAVqRSMQuIxgnRDFMdchxnMsTKwluhBdHa_tA_OubNNj24YBc-KSwvo91Ll6S7qT8lu0UuYJaaq4ORCLNBGKLmgUIqMFTfu2ztfHgPLPOue2jZA2TwiU-W-XmWrwapjzK_OUadvdkdh3a50iLM5Hb9qSfX1es3Esf_fsoEjHkAiuqFxkzCgO5OwegnWsJpeNv3pVKfNdouQvFMZ1T39OM6RwbpotNH6-OxUdOoZYaihlXCO3M9oW195cisrczRTRedGE26N63XjkAJnRZUrvkmqqMzkd3YvOgcbxlzmiEb1vgyA-3dnfNGE_tCDVhtJGEPayNRSbkgPA4izoNMxUGcEEVJJ1BUGDMZdwKSqI4USkiZsTgxSEdqwhTXlv9lFird-66eAyRJKDRPiAxdyXYuKc14JJNMJJHYELQKYSmtVHkWc1tM4y7t8y_bzU3N5qZuc1NWhdWPMQ8Fh8efvWulEqT-POepQVmxTaxkvAprpUz7zb_PNv-_7ssw3Dw_OkwP949bCzBCbLFhFyJeg0rv8UkvGgTUk0te4d8BwwH65w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0UE6MH42dEUXvwpg27pe3uekOQgB9IjCTcNm23KIlZCaCJJ_-6ne4iaNTEc6c99LWdtzszbxA6VlqH3KOGRNRwwowvSJgon2igt9JIagz80L9pi2aXXfZ4b66K32W7T0OSWU0DqDSlk_Iw6ZfnCt8ClzzL7DPCaUD4Ilpi1rtBD4OaqH3GEUCD131ywVWyTCUvm_l5ja-uacY3v4VInedprKO1nDLiaobxBlow6SZanRMS3ELvrby56avB9Sx5zhrjai4YbsbYclPcGUFUBvKc8ZWdimtwbJ7sg4Lr5sHJTwNKeJDiW4v9sx19dJJHuJOJr47PcBXfyWQAlcxjcm4dYIIhEfFtG3UbF_e1JslbKxBdifwJMRYDxYSkIvQCIbxEh14YUc1o39NMWscW9j0a6b6SWiqV8DCy3EQZyrUwoNiygwrpc2p2EVbUl0ZEVPmuybpQjCUiUFEio0BWJCsif7qrsc51x6H9xVM8U0wGJGKLROyQiHkRnXzOGWaqG39al6ZgxfkNHMeWF4VQCslFEZ1OAZwN_77a3v_Mj9Byp96Ir1vtq320QqE7sMvpLqHCZPRiDixlmahDdyo_AKaN4hQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innovative+Diagnostic+Approaches+for+Predicting+Knee+Cartilage+Degeneration+in+Osteoarthritis+Patients%3A+A+Radiomics-Based+Study&rft.jtitle=Information+systems+frontiers&rft.au=Angelone%2C+Francesca&rft.au=Ciliberti%2C+Federica+Kiyomi&rft.au=Tobia%2C+Giovanni+Paolo&rft.au=J%C3%B3nsson%2C+Halld%C3%B3r&rft.date=2025-02-01&rft.issn=1387-3326&rft.eissn=1572-9419&rft.volume=27&rft.issue=1&rft.spage=51&rft.epage=73&rft_id=info:doi/10.1007%2Fs10796-024-10527-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10796_024_10527_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1387-3326&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1387-3326&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1387-3326&client=summon |