A Novel Neural Network Approach to Transformer Fault Diagnosis Based on Momentum-Embedded BP Neural Network Optimized by Genetic Algorithm and Fuzzy c-Means
Transformer is one of the critical equipments for electric power transmission and distribution, and its safety situation plays an important role on stability and security level of power systems. Therefore, the diagnosis of its abnormal situation has always drawn enormous attention from both domestic...
Saved in:
| Published in | Arabian Journal for Science and Engineering Vol. 41; no. 9; pp. 3451 - 3461 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1319-8025 2191-4281 |
| DOI | 10.1007/s13369-015-2001-6 |
Cover
| Abstract | Transformer is one of the critical equipments for electric power transmission and distribution, and its safety situation plays an important role on stability and security level of power systems. Therefore, the diagnosis of its abnormal situation has always drawn enormous attention from both domestic and international scholars. Dissolved gas analysis (DGA) is a widely used method in transformer fault diagnosis field. However, the conventional DGA is not well suitable for transformer fault diagnosis because transformer’s structure is complex and operating environment is changeable. On the other hand, the back propagation (BP) neural network, frequently employed in related field, also has some inherent disadvantages, such as local optimization, over-fitting and difficulties in convergence. So simply integrating conventional DGA to BP is not a good approach for fault diagnosis. Moreover, disturbance or noises within the training data, which is unavoidable due to systematic errors, may greatly influence the accuracy of diagnosis model with the growing size of the data. Thus, in this study, we integrate a combination ratio of taking advantages of IEC and Doernenburg, instead of usual DGA, into genetic algorithm (GA) and fuzzy c-means clustering algorithm (FCM) optimized BP, successfully building a novel model which has not been reported previously. Our results show this model has a better diagnosis accuracy rate and generalization ability than other models, and FCM and GA can significantly overcome the disadvantages of training data and BP, offering the potential of implementation for real-time diagnosis systems. |
|---|---|
| AbstractList | Transformer is one of the critical equipments for electric power transmission and distribution, and its safety situation plays an important role on stability and security level of power systems. Therefore, the diagnosis of its abnormal situation has always drawn enormous attention from both domestic and international scholars. Dissolved gas analysis (DGA) is a widely used method in transformer fault diagnosis field. However, the conventional DGA is not well suitable for transformer fault diagnosis because transformer's structure is complex and operating environment is changeable. On the other hand, the back propagation (BP) neural network, frequently employed in related field, also has some inherent disadvantages, such as local optimization, over-fitting and difficulties in convergence. So simply integrating conventional DGA to BP is not a good approach for fault diagnosis. Moreover, disturbance or noises within the training data, which is unavoidable due to systematic errors, may greatly influence the accuracy of diagnosis model with the growing size of the data. Thus, in this study, we integrate a combination ratio of taking advantages of IEC and Doernenburg, instead of usual DGA, into genetic algorithm (GA) and fuzzy c-means clustering algorithm (FCM) optimized BP, successfully building a novel model which has not been reported previously. Our results show this model has a better diagnosis accuracy rate and generalization ability than other models, and FCM and GA can significantly overcome the disadvantages of training data and BP, offering the potential of implementation for real-time diagnosis systems. |
| Author | Yuan, Fang Zhang, Kefei Guo, Jiang Wang, Guoping |
| Author_xml | – sequence: 1 givenname: Kefei surname: Zhang fullname: Zhang, Kefei organization: College of Power and Mechanical Engineering, Wuhan University – sequence: 2 givenname: Fang surname: Yuan fullname: Yuan, Fang email: coderyuan@foxmail.com organization: College of Power and Mechanical Engineering, Wuhan University – sequence: 3 givenname: Jiang surname: Guo fullname: Guo, Jiang organization: College of Power and Mechanical Engineering, Wuhan University – sequence: 4 givenname: Guoping surname: Wang fullname: Wang, Guoping organization: College of Power and Mechanical Engineering, Wuhan University |
| BookMark | eNp9kb9u2zAQxoUiBeqkfYBuHLuw5YkSJY5OGqcB8qdDOhMUeXaYSqRLUinsZ-nDhoY7Zch0wN39vg9332l14oPHqvoM7Csw1n1LwLmQlEFLa8aAinfVogYJtKl7OKkWwEHSntXth-o0pSfGBPQdX1T_luQuPONI7nCO-lDy3xB_k-V2G4M2jyQH8hC1T-sQJ4xkpecxk-9Ob3xILpFzndCS4MltmNDneaKX04DWlub5z9ei99vsJrcvs2FHrtBjdoYsx02ILj9ORHtLVvN-vyOG3mLx_Fi9X-sx4af_9az6tbp8uPhBb-6vri-WN9RwCZnajhtgDdSDkNi1VrRsEKD5mnPbGonSSm2sZC0I3nHRMGTSNmBbGAClQH5WfTnqlpv_zJiymlwyOI7aY5iTgr4vP21E3ZZVOK6aGFKKuFbb6CYddwqYOiShjkmokoQ6JKFEYbpXjHFZZxd8jtqNb5L1kUzFxW8wqqcwR19-8Qb0AlEJn-k |
| CitedBy_id | crossref_primary_10_3390_app112210619 crossref_primary_10_3390_en11030653 crossref_primary_10_1109_ACCESS_2019_2923746 crossref_primary_10_1109_ACCESS_2019_2923812 crossref_primary_10_1007_s10706_023_02516_3 crossref_primary_10_1177_0020720920940601 crossref_primary_10_1155_2020_8838468 crossref_primary_10_3390_app15052395 crossref_primary_10_1109_ACCESS_2020_2989378 crossref_primary_10_1016_j_rser_2021_111347 crossref_primary_10_3390_en13071687 crossref_primary_10_1109_TDEI_2020_008984 crossref_primary_10_1177_01423312211045844 crossref_primary_10_3389_fenrg_2022_1006215 crossref_primary_10_1109_TDEI_2024_3381093 crossref_primary_10_3390_electronics12061356 crossref_primary_10_3390_en11040913 crossref_primary_10_1109_ACCESS_2020_2979024 crossref_primary_10_1155_2022_5631787 crossref_primary_10_1109_ACCESS_2019_2892729 crossref_primary_10_2174_2352096516666230427142632 crossref_primary_10_1007_s13369_016_2361_6 crossref_primary_10_1007_s13369_017_2907_2 |
| Cites_doi | 10.1109/61.956751 10.1006/mssp.2001.1454 10.1016/j.apenergy.2014.07.104 10.2528/PIER11010302 10.1109/MED.2013.6608781 10.1007/s00170-014-5606-0 10.1109/TCSI.2015.2434101 10.1109/TDEI.2013.6518967 10.1016/j.ijepes.2014.12.017 10.1109/TDEI.2012.6311507 10.1016/j.neucom.2014.10.077 10.1016/j.ijepes.2012.05.067 10.1016/j.ijepes.2012.11.018 10.1007/s13369-014-1030-x 10.1109/61.544265 10.1109/TAC.2014.2329235 10.1016/j.ijepes.2012.06.042 10.1007/s00521-013-1427-6 10.1016/j.im.2014.11.001 10.1109/61.584363 10.1109/SSD.2013.6564073 10.1109/SISY.2010.5647319 10.1109/TCSI.2004.823672 10.1109/UKSim.2013.147 10.1016/j.jngse.2015.04.014 10.1007/s13369-014-1004-z 10.1016/j.eswa.2014.06.014 10.1016/j.eswa.2009.03.022 10.1109/TDEI.2013.6678885 10.1109/TAC.2005.849233 10.1002/etep.431 10.1016/j.eswa.2013.12.045 10.1016/j.matdes.2011.01.058 10.1177/0040517514521117 10.1002/er.2944 10.1016/j.eswa.2009.11.004 |
| ContentType | Journal Article |
| Copyright | King Fahd University of Petroleum & Minerals 2015 |
| Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2015 |
| DBID | AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1007/s13369-015-2001-6 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2191-4281 |
| EndPage | 3461 |
| ExternalDocumentID | 10_1007_s13369_015_2001_6 |
| GrantInformation_xml | – fundername: The National Nature Science Foundation of China grantid: 51077102 |
| GroupedDBID | 06D 0VY 23M 29~ 2KM 30V 4.4 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ABULA ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL ALMA_UNASSIGNED_HOLDINGS AMKLP AMYQR ANMIH AYJHY BGNMA C1A ESBYG ESX FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HF~ HMJXF HRMNR HZ~ I0C IXD J9A KOV M4Y NU0 O9- O93 OK1 P9P R9I RLLFE S1Z S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 AAYXX CITATION OVT 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c391t-d73c10412b69e75d650b61a3f33d5c9e9d9acd90516373640e09d41d51b1e96e3 |
| IEDL.DBID | U2A |
| ISSN | 1319-8025 |
| IngestDate | Fri Jul 11 10:40:39 EDT 2025 Tue Jul 01 01:33:56 EDT 2025 Thu Apr 24 22:58:45 EDT 2025 Fri Feb 21 02:37:01 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Fault diagnosis Fuzzy c-means clustering algorithm Genetic algorithm Dissolved gas analysis Transformers Combination ratio method Neural network |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-d73c10412b69e75d650b61a3f33d5c9e9d9acd90516373640e09d41d51b1e96e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1880014625 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1880014625 crossref_primary_10_1007_s13369_015_2001_6 crossref_citationtrail_10_1007_s13369_015_2001_6 springer_journals_10_1007_s13369_015_2001_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20160900 2016-9-00 20160901 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 9 year: 2016 text: 20160900 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationTitle | Arabian Journal for Science and Engineering |
| PublicationTitleAbbrev | Arab J Sci Eng |
| PublicationYear | 2016 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | ZhangH.Q.BP Neural Network and Its Improved Algorithm In the Power System Transformer Fault DiagnosisApplied Mechatronics and Android Robotics.2013418200204 LiuL.T.DingZ.J.Modeling analysis of power transformer fault diagnosis based on improved relevance vector machineMath. Probl. Eng.2013616 SouahliaS.BachaK.ChaariA.MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA.Int. JElectr. Power Energy Syst.20124311346135310.1016/j.ijepes.2012.05.067 TanS.L.LuJ.H.HillD.J.Towards A Theoretical Framework for Analysis and Intervention of Random Drift on General NetworksIEEE Trans. Autom. Control.2015602576581331019010.1109/TAC.2014.2329235 JackL.B.NandiA.K.Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithmsMech. Syst. Signal Proc.200216237339010.1006/mssp.2001.1454 VahediA.BehjatV.Online monitoring of power transformers for detection of internal winding short circuit faults using negative sequence analysisEur. Trans. Electr. Power.201121119621110.1002/etep.431 YangM.T.HuL.S.Intelligent Fault Types Diagnostic System for Dissolved Gas Analysis of Oil-immersed Power TransformerIEEE Trns. Dielectr. Electr. Insul.201320623172324171912010.1109/TDEI.2013.6678885 YuF.XuX.Z.A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural networkAppl. Energy.201413410211310.1016/j.apenergy.2014.07.104 PaydarniaH.HajiaghasiS.AbbaszadehK.Improved Structure of PNN Using PCA in Transformer Fault DiagnosticArab. J. Sci. Eng.20143964845485110.1007/s13369-014-1004-z GuardadoJ.L.NaredoJ.L.MorenoP.FuerteC.R.A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysisIEEE Trans. Power Deliv.200116464364710.1109/61.956751 SreepradhaC.KumariA.K.PerumalA.E.PandaR.C.HarshabardhanK.AribalaganM.Neural network model for condition monitoring of wear and film thickness in a gearboxNeural Comput. Appl.20142471943195210.1007/s00521-013-1427-6 BhallaD.BansalR.K.GuptaH.O.Integrating AI based DGA fault diagnosis using Dempster-Shafer TheoryInt. J. Electr. Power Energy Syst.201348313810.1016/j.ijepes.2012.11.018 ShangW.L.ZhouX.F.YuanJ.An intelligent fault diagnosis system for newly assembled transmissionExpert Syst. Appl.20144194060407210.1016/j.eswa.2013.12.045 Souahlia, S.; Bacha, K.; Chaari, A.: SVM-based decision for power transformers fault diagnosis using Rogers and Doernenburg ratios DGA.Proceeding of 10th International Multi-Conference on Systems, Signals & Devices. 1-6, Hammamet, TUNISIA, March 18-21 (2013) LiuK.X.ZhuH.H.LuJ.H.Bridging the Gap Between Transmission Noise and Sampled Data for Robust Consensus of Multi-Agent SystemsIEEE Trans. Circuits Syst. I-Regul. Pap.201562718361844336162310.1109/TCSI.2015.2434101 UmasankarL.KalaiarasiN.Internal Fault Identification and Classification of Transformer with the Aid of Radial Basis Neural Network (RBNN)Arab. J. Sci. Eng.20143964865487310.1007/s13369-014-1030-x AshrafiK.ShafiepourM.GhasemiL.AraabiB.N.Prediction of Climate Change Induced Temperature Rise in Regional Scale Using Neural NetworkInt. J. Environ. Res.201263677688 FeiS.W.ZhangX.B.Fault diagnosis of power transformer based on support vector machine with genetic algorithmExpert Syst. Appl.2009368113521135710.1016/j.eswa.2009.03.022 WangN.I.CaiM.S.New Method on Power Transformer Fault DiagnosisAdvanced Materials and Process Technology.201221726232628 YinF.MaoH.J.HuaL.A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parametersMater. Des.20113263457346410.1016/j.matdes.2011.01.058 PerrierC.MaruganM.BeroualA.DGA Comparison between Ester and Mineral OilsIEEE Trns. Dielectr. Electr. Insul.20121951609161410.1109/TDEI.2012.6311507 GouJ.HouF.ChenW.Y.WangC.LuoW.Improving Wang-Mendel method performance in fuzzy rules generation using the fuzzy C-means clustering algorithmNeurocomputing.20151511293130410.1016/j.neucom.2014.10.077 HuangY.Q.ZhangJ.LiX.TianL.J.Thermal error modeling by integrating GA and BP algorithms for the high-speed spindleInt. J. Adv. Manuf. Technol.2014719–121669167510.1007/s00170-014-5606-0 ZhangY.DingX.LiuY.GriffinP.J.An artificial neural network approach to transformer fault diagnosisIEEE Trans. Power Deliv.199611418318410.1109/61.544265 GholamiA.R.ShahbazianM.Soft sensor design based on fuzzy C-Means and RFN_SVR for a stripper columnJ. Nat. Gas Sci. Eng.201525232910.1016/j.jngse.2015.04.014 Abu-SiadaA.HmoodS.A new fuzzy logic approach to identify power transformer criticality using dissolved gas-in-oil analysisInt. J. Electr. Power Energy Syst.20156740140810.1016/j.ijepes.2014.12.017 KuoC.F.J.HuangC.C.GaoT.C.LiaoC.C.TangT.T.Recognition of fault process conditions based on spinline tension in melt spinningText. Res. J.201484141549155710.1177/0040517514521117 IEEE guide for the interpretation of gases generated in oil-immersed transformers. IEEE Standard C57. 104–2008 HuangY.C.SunH.C.Dissolved Gas Analysis of Mineral Oil for Power Transformer Fault Diagnosis Using Fuzzy LogicIEEE Trns. Dielectr. Electr. Insul.201320397498110.1109/TDEI.2013.6518967 CabanasM.F.PedrayesF.MeleroM.G.RojasC.H.OrcajoG.A.CanoJ.M.NorniellaJ.G.Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysisProg. Electromagn. Res.201111421123410.2528/PIER11010302 Ahmed, M.R.; Geliel, M.A.; Khalil, A.: Power transformer fault diagnosis using Fuzzy logic technique based on dissolved gas analysis. In: Proceeding of 21st Mediterranean Conference on Control and Automation, pp. 584–589, New York, USA, 25–28 June 2013 BhallaD.BansalR.K.GuptaH.O.Function analysis based rule extraction from artificial neural networks for transformer incipient fault diagnosisInt. J. Electr. Power Energy Syst.20124311196120310.1016/j.ijepes.2012.06.042 YangF.M.LiuC.SunY.LongQ.FanY.P.Fault prediction based on dissolved gas concentration from insulating oil in power transformer using Neural NetworkMachinery Electronics and Control Engineering Iii.2014441312317 DuanH.D.YaoX.Power Transformer Fault Diagnosis based on fuzzy-RBF neural networkAdvances in Power and Electrical Engineering.201361413031306 LuJ.H.ChenG.R.A time-varying complex dynamical network model and its controlled synchronization criteriaIEEE Trans. Autom. Control.2005506841846214200010.1109/TAC.2005.849233 Gill, J.; Singh, B.; Singh, S. (2010) Training back propagation neural networks with genetic algorithm for weather forecasting. Proceeding of 8th IEEE International Symposium on Intelligent Systems and Informatics.465-469,Ludhiana, India, September 10-11 Nina, D.L.F.; Neto, J.V.D.; Ferreira E.F.M.; dos Santos A.M.: Hybrid Support System for Decision Making Based on MLP-ANN, IED and SCADA for Disturbances Analysis of Electrical Power Distribution Transformers. Proceeding of Uksim-Amss 15th International Conference on Computer Modeling and Simulation. 12-20, ENGLAND, APR 10-12 (2013) LuJ.H.YuX.H.ChenG.R.ChengD.Z.Characterizing the synchronizability of small-world dynamical networksIEEE Trans. Circuits Syst. I-Regul. Pap.2004514787796206621410.1109/TCSI.2004.823672 HuangY.C.YangH.T.HuangC.L.Developing a new transformer fault diagnosis system through evolutionary fuzzy logicIEEE Trans. Power Deliv.199712276176710.1109/61.584363 EsmaieliA.KeshavarzM.P.ShakibS.E.AmidpourM.Applying different optimization approaches to achieve optimal configuration of a dual pressure heat recovery steam generatorInt. J. Energy Res.201337121440145210.1002/er.2944 AltinkayaH.OrakI.M.EsenI.Artificial neural network application for modeling the rail rolling processExpert Syst. Appl.201441167135714610.1016/j.eswa.2014.06.014 KuoC.C.Artificial identification system for transformer insulation agingExpert Syst. Appl.20103764190419710.1016/j.eswa.2009.11.004 BoseI.ChenX.Detecting the migration of mobile service customers using fuzzy clusteringInf. Manage.201552222723810.1016/j.im.2014.11.001 Y.C. Huang (2001_CR7) 2013; 20 S.L. Tan (2001_CR24) 2015; 60 C.C. Kuo (2001_CR33) 2010; 37 M.F. Cabanas (2001_CR2) 2011; 114 A. Esmaieli (2001_CR34) 2013; 37 J.H. Lu (2001_CR14) 2005; 50 2001_CR23 2001_CR25 H.Q. Zhang (2001_CR41) 2013; 418 C. Perrier (2001_CR27) 2012; 19 J.H. Lu (2001_CR43) 2004; 51 2001_CR1 L.T. Liu (2001_CR5) 2013; 6 H. Paydarnia (2001_CR11) 2014; 39 J. Gou (2001_CR37) 2015; 151 A. Vahedi (2001_CR3) 2011; 21 S.W. Fei (2001_CR35) 2009; 36 D. Bhalla (2001_CR22) 2013; 48 Y. Zhang (2001_CR4) 1996; 11 H.D. Duan (2001_CR42) 2013; 614 M.T. Yang (2001_CR9) 2013; 20 L.B. Jack (2001_CR36) 2002; 16 J.L. Guardado (2001_CR6) 2001; 16 F. Yin (2001_CR18) 2011; 32 S. Souahlia (2001_CR19) 2012; 43 N.I. Wang (2001_CR40) 2012; 217 F. Yu (2001_CR20) 2014; 134 K.X. Liu (2001_CR21) 2015; 62 Y.Q. Huang (2001_CR17) 2014; 71 H. Altinkaya (2001_CR30) 2014; 41 A.R. Gholami (2001_CR39) 2015; 25 2001_CR13 K. Ashrafi (2001_CR15) 2012; 6 W.L. Shang (2001_CR29) 2014; 41 D. Bhalla (2001_CR28) 2012; 43 I. Bose (2001_CR38) 2015; 52 2001_CR16 F.M. Yang (2001_CR10) 2014; 441 Y.C. Huang (2001_CR8) 1997; 12 L. Umasankar (2001_CR12) 2014; 39 C.F.J. Kuo (2001_CR32) 2014; 84 C. Sreepradha (2001_CR31) 2014; 24 A. Abu-Siada (2001_CR26) 2015; 67 |
| References_xml | – reference: VahediA.BehjatV.Online monitoring of power transformers for detection of internal winding short circuit faults using negative sequence analysisEur. Trans. Electr. Power.201121119621110.1002/etep.431 – reference: YangF.M.LiuC.SunY.LongQ.FanY.P.Fault prediction based on dissolved gas concentration from insulating oil in power transformer using Neural NetworkMachinery Electronics and Control Engineering Iii.2014441312317 – reference: HuangY.C.YangH.T.HuangC.L.Developing a new transformer fault diagnosis system through evolutionary fuzzy logicIEEE Trans. Power Deliv.199712276176710.1109/61.584363 – reference: Gill, J.; Singh, B.; Singh, S. (2010) Training back propagation neural networks with genetic algorithm for weather forecasting. Proceeding of 8th IEEE International Symposium on Intelligent Systems and Informatics.465-469,Ludhiana, India, September 10-11 – reference: LiuK.X.ZhuH.H.LuJ.H.Bridging the Gap Between Transmission Noise and Sampled Data for Robust Consensus of Multi-Agent SystemsIEEE Trans. Circuits Syst. I-Regul. Pap.201562718361844336162310.1109/TCSI.2015.2434101 – reference: GuardadoJ.L.NaredoJ.L.MorenoP.FuerteC.R.A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysisIEEE Trans. Power Deliv.200116464364710.1109/61.956751 – reference: HuangY.Q.ZhangJ.LiX.TianL.J.Thermal error modeling by integrating GA and BP algorithms for the high-speed spindleInt. J. Adv. Manuf. Technol.2014719–121669167510.1007/s00170-014-5606-0 – reference: BhallaD.BansalR.K.GuptaH.O.Function analysis based rule extraction from artificial neural networks for transformer incipient fault diagnosisInt. J. Electr. Power Energy Syst.20124311196120310.1016/j.ijepes.2012.06.042 – reference: AshrafiK.ShafiepourM.GhasemiL.AraabiB.N.Prediction of Climate Change Induced Temperature Rise in Regional Scale Using Neural NetworkInt. J. Environ. Res.201263677688 – reference: WangN.I.CaiM.S.New Method on Power Transformer Fault DiagnosisAdvanced Materials and Process Technology.201221726232628 – reference: BoseI.ChenX.Detecting the migration of mobile service customers using fuzzy clusteringInf. Manage.201552222723810.1016/j.im.2014.11.001 – reference: GholamiA.R.ShahbazianM.Soft sensor design based on fuzzy C-Means and RFN_SVR for a stripper columnJ. Nat. Gas Sci. Eng.201525232910.1016/j.jngse.2015.04.014 – reference: KuoC.C.Artificial identification system for transformer insulation agingExpert Syst. Appl.20103764190419710.1016/j.eswa.2009.11.004 – reference: ShangW.L.ZhouX.F.YuanJ.An intelligent fault diagnosis system for newly assembled transmissionExpert Syst. Appl.20144194060407210.1016/j.eswa.2013.12.045 – reference: SreepradhaC.KumariA.K.PerumalA.E.PandaR.C.HarshabardhanK.AribalaganM.Neural network model for condition monitoring of wear and film thickness in a gearboxNeural Comput. Appl.20142471943195210.1007/s00521-013-1427-6 – reference: GouJ.HouF.ChenW.Y.WangC.LuoW.Improving Wang-Mendel method performance in fuzzy rules generation using the fuzzy C-means clustering algorithmNeurocomputing.20151511293130410.1016/j.neucom.2014.10.077 – reference: Souahlia, S.; Bacha, K.; Chaari, A.: SVM-based decision for power transformers fault diagnosis using Rogers and Doernenburg ratios DGA.Proceeding of 10th International Multi-Conference on Systems, Signals & Devices. 1-6, Hammamet, TUNISIA, March 18-21 (2013) – reference: IEEE guide for the interpretation of gases generated in oil-immersed transformers. IEEE Standard C57. 104–2008 – reference: EsmaieliA.KeshavarzM.P.ShakibS.E.AmidpourM.Applying different optimization approaches to achieve optimal configuration of a dual pressure heat recovery steam generatorInt. J. Energy Res.201337121440145210.1002/er.2944 – reference: TanS.L.LuJ.H.HillD.J.Towards A Theoretical Framework for Analysis and Intervention of Random Drift on General NetworksIEEE Trans. Autom. Control.2015602576581331019010.1109/TAC.2014.2329235 – reference: FeiS.W.ZhangX.B.Fault diagnosis of power transformer based on support vector machine with genetic algorithmExpert Syst. Appl.2009368113521135710.1016/j.eswa.2009.03.022 – reference: ZhangH.Q.BP Neural Network and Its Improved Algorithm In the Power System Transformer Fault DiagnosisApplied Mechatronics and Android Robotics.2013418200204 – reference: BhallaD.BansalR.K.GuptaH.O.Integrating AI based DGA fault diagnosis using Dempster-Shafer TheoryInt. J. Electr. Power Energy Syst.201348313810.1016/j.ijepes.2012.11.018 – reference: PerrierC.MaruganM.BeroualA.DGA Comparison between Ester and Mineral OilsIEEE Trns. Dielectr. Electr. Insul.20121951609161410.1109/TDEI.2012.6311507 – reference: LuJ.H.YuX.H.ChenG.R.ChengD.Z.Characterizing the synchronizability of small-world dynamical networksIEEE Trans. Circuits Syst. I-Regul. Pap.2004514787796206621410.1109/TCSI.2004.823672 – reference: ZhangY.DingX.LiuY.GriffinP.J.An artificial neural network approach to transformer fault diagnosisIEEE Trans. Power Deliv.199611418318410.1109/61.544265 – reference: HuangY.C.SunH.C.Dissolved Gas Analysis of Mineral Oil for Power Transformer Fault Diagnosis Using Fuzzy LogicIEEE Trns. Dielectr. Electr. Insul.201320397498110.1109/TDEI.2013.6518967 – reference: UmasankarL.KalaiarasiN.Internal Fault Identification and Classification of Transformer with the Aid of Radial Basis Neural Network (RBNN)Arab. J. Sci. Eng.20143964865487310.1007/s13369-014-1030-x – reference: CabanasM.F.PedrayesF.MeleroM.G.RojasC.H.OrcajoG.A.CanoJ.M.NorniellaJ.G.Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysisProg. Electromagn. Res.201111421123410.2528/PIER11010302 – reference: LiuL.T.DingZ.J.Modeling analysis of power transformer fault diagnosis based on improved relevance vector machineMath. Probl. Eng.2013616 – reference: AltinkayaH.OrakI.M.EsenI.Artificial neural network application for modeling the rail rolling processExpert Syst. Appl.201441167135714610.1016/j.eswa.2014.06.014 – reference: Abu-SiadaA.HmoodS.A new fuzzy logic approach to identify power transformer criticality using dissolved gas-in-oil analysisInt. J. Electr. Power Energy Syst.20156740140810.1016/j.ijepes.2014.12.017 – reference: Ahmed, M.R.; Geliel, M.A.; Khalil, A.: Power transformer fault diagnosis using Fuzzy logic technique based on dissolved gas analysis. In: Proceeding of 21st Mediterranean Conference on Control and Automation, pp. 584–589, New York, USA, 25–28 June 2013 – reference: JackL.B.NandiA.K.Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithmsMech. Syst. Signal Proc.200216237339010.1006/mssp.2001.1454 – reference: YinF.MaoH.J.HuaL.A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parametersMater. Des.20113263457346410.1016/j.matdes.2011.01.058 – reference: SouahliaS.BachaK.ChaariA.MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA.Int. JElectr. Power Energy Syst.20124311346135310.1016/j.ijepes.2012.05.067 – reference: YangM.T.HuL.S.Intelligent Fault Types Diagnostic System for Dissolved Gas Analysis of Oil-immersed Power TransformerIEEE Trns. Dielectr. Electr. Insul.201320623172324171912010.1109/TDEI.2013.6678885 – reference: LuJ.H.ChenG.R.A time-varying complex dynamical network model and its controlled synchronization criteriaIEEE Trans. Autom. Control.2005506841846214200010.1109/TAC.2005.849233 – reference: DuanH.D.YaoX.Power Transformer Fault Diagnosis based on fuzzy-RBF neural networkAdvances in Power and Electrical Engineering.201361413031306 – reference: Nina, D.L.F.; Neto, J.V.D.; Ferreira E.F.M.; dos Santos A.M.: Hybrid Support System for Decision Making Based on MLP-ANN, IED and SCADA for Disturbances Analysis of Electrical Power Distribution Transformers. Proceeding of Uksim-Amss 15th International Conference on Computer Modeling and Simulation. 12-20, ENGLAND, APR 10-12 (2013) – reference: YuF.XuX.Z.A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural networkAppl. Energy.201413410211310.1016/j.apenergy.2014.07.104 – reference: PaydarniaH.HajiaghasiS.AbbaszadehK.Improved Structure of PNN Using PCA in Transformer Fault DiagnosticArab. J. Sci. Eng.20143964845485110.1007/s13369-014-1004-z – reference: KuoC.F.J.HuangC.C.GaoT.C.LiaoC.C.TangT.T.Recognition of fault process conditions based on spinline tension in melt spinningText. Res. J.201484141549155710.1177/0040517514521117 – volume: 16 start-page: 643 issue: 4 year: 2001 ident: 2001_CR6 publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.956751 – volume: 16 start-page: 373 issue: 2 year: 2002 ident: 2001_CR36 publication-title: Mech. Syst. Signal Proc. doi: 10.1006/mssp.2001.1454 – volume: 134 start-page: 102 year: 2014 ident: 2001_CR20 publication-title: Appl. Energy. doi: 10.1016/j.apenergy.2014.07.104 – volume: 114 start-page: 211 year: 2011 ident: 2001_CR2 publication-title: Prog. Electromagn. Res. doi: 10.2528/PIER11010302 – ident: 2001_CR25 – volume: 6 start-page: 677 issue: 3 year: 2012 ident: 2001_CR15 publication-title: Int. J. Environ. Res. – ident: 2001_CR1 doi: 10.1109/MED.2013.6608781 – volume: 71 start-page: 1669 issue: 9–12 year: 2014 ident: 2001_CR17 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-5606-0 – volume: 62 start-page: 1836 issue: 7 year: 2015 ident: 2001_CR21 publication-title: IEEE Trans. Circuits Syst. I-Regul. Pap. doi: 10.1109/TCSI.2015.2434101 – volume: 20 start-page: 974 issue: 3 year: 2013 ident: 2001_CR7 publication-title: IEEE Trns. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2013.6518967 – volume: 67 start-page: 401 year: 2015 ident: 2001_CR26 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.12.017 – volume: 19 start-page: 1609 issue: 5 year: 2012 ident: 2001_CR27 publication-title: IEEE Trns. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2012.6311507 – volume: 151 start-page: 1293 year: 2015 ident: 2001_CR37 publication-title: Neurocomputing. doi: 10.1016/j.neucom.2014.10.077 – volume: 43 start-page: 1346 issue: 1 year: 2012 ident: 2001_CR19 publication-title: Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.05.067 – volume: 48 start-page: 31 year: 2013 ident: 2001_CR22 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.11.018 – volume: 614 start-page: 1303 year: 2013 ident: 2001_CR42 publication-title: Advances in Power and Electrical Engineering. – volume: 39 start-page: 4865 issue: 6 year: 2014 ident: 2001_CR12 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-014-1030-x – volume: 11 start-page: 183 issue: 4 year: 1996 ident: 2001_CR4 publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.544265 – volume: 60 start-page: 576 issue: 2 year: 2015 ident: 2001_CR24 publication-title: IEEE Trans. Autom. Control. doi: 10.1109/TAC.2014.2329235 – volume: 43 start-page: 1196 issue: 1 year: 2012 ident: 2001_CR28 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.06.042 – volume: 24 start-page: 1943 issue: 7 year: 2014 ident: 2001_CR31 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1427-6 – volume: 52 start-page: 227 issue: 2 year: 2015 ident: 2001_CR38 publication-title: Inf. Manage. doi: 10.1016/j.im.2014.11.001 – volume: 441 start-page: 312 year: 2014 ident: 2001_CR10 publication-title: Machinery Electronics and Control Engineering Iii. – volume: 12 start-page: 761 issue: 2 year: 1997 ident: 2001_CR8 publication-title: IEEE Trans. Power Deliv. doi: 10.1109/61.584363 – ident: 2001_CR23 doi: 10.1109/SSD.2013.6564073 – ident: 2001_CR16 doi: 10.1109/SISY.2010.5647319 – volume: 51 start-page: 787 issue: 4 year: 2004 ident: 2001_CR43 publication-title: IEEE Trans. Circuits Syst. I-Regul. Pap. doi: 10.1109/TCSI.2004.823672 – ident: 2001_CR13 doi: 10.1109/UKSim.2013.147 – volume: 217 start-page: 2623 year: 2012 ident: 2001_CR40 publication-title: Advanced Materials and Process Technology. – volume: 25 start-page: 23 year: 2015 ident: 2001_CR39 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.04.014 – volume: 39 start-page: 4845 issue: 6 year: 2014 ident: 2001_CR11 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-014-1004-z – volume: 41 start-page: 7135 issue: 16 year: 2014 ident: 2001_CR30 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.06.014 – volume: 6 start-page: 1 year: 2013 ident: 2001_CR5 publication-title: Math. Probl. Eng. – volume: 36 start-page: 11352 issue: 8 year: 2009 ident: 2001_CR35 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.03.022 – volume: 20 start-page: 2317 issue: 6 year: 2013 ident: 2001_CR9 publication-title: IEEE Trns. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2013.6678885 – volume: 50 start-page: 841 issue: 6 year: 2005 ident: 2001_CR14 publication-title: IEEE Trans. Autom. Control. doi: 10.1109/TAC.2005.849233 – volume: 21 start-page: 196 issue: 1 year: 2011 ident: 2001_CR3 publication-title: Eur. Trans. Electr. Power. doi: 10.1002/etep.431 – volume: 418 start-page: 200 year: 2013 ident: 2001_CR41 publication-title: Applied Mechatronics and Android Robotics. – volume: 41 start-page: 4060 issue: 9 year: 2014 ident: 2001_CR29 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.045 – volume: 32 start-page: 3457 issue: 6 year: 2011 ident: 2001_CR18 publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.01.058 – volume: 84 start-page: 1549 issue: 14 year: 2014 ident: 2001_CR32 publication-title: Text. Res. J. doi: 10.1177/0040517514521117 – volume: 37 start-page: 1440 issue: 12 year: 2013 ident: 2001_CR34 publication-title: Int. J. Energy Res. doi: 10.1002/er.2944 – volume: 37 start-page: 4190 issue: 6 year: 2010 ident: 2001_CR33 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.11.004 |
| SSID | ssj0061873 ssj0001916267 |
| Score | 2.1935134 |
| Snippet | Transformer is one of the critical equipments for electric power transmission and distribution, and its safety situation plays an important role on stability... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3451 |
| SubjectTerms | Back propagation Diagnosis Engineering Fault diagnosis Fuzzy Genetic algorithms Humanities and Social Sciences multidisciplinary Neural networks Research Article - Electrical Engineering Science Training Transformers |
| Title | A Novel Neural Network Approach to Transformer Fault Diagnosis Based on Momentum-Embedded BP Neural Network Optimized by Genetic Algorithm and Fuzzy c-Means |
| URI | https://link.springer.com/article/10.1007/s13369-015-2001-6 https://www.proquest.com/docview/1880014625 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2191-4281 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0001916267 issn: 1319-8025 databaseCode: ABDBF dateStart: 20041001 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 1319-8025 databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001916267 issn: 1319-8025 databaseCode: AFBBN dateStart: 20110101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061873 issn: 1319-8025 databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2191-4281 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061873 issn: 1319-8025 databaseCode: U2A dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lj9MwEMdH7O4FDoinKI9qkDiBLNV17NTHLLS7AnXhsJXKKXJsh63UJqhNkLafhQ-LJw8KK0DilEMSJ8rYM39lZn4GeOVoGRrtWBz0KguKWLDME3Lf5mORG6XzphdmfqHOF9H7pVx2fdy7vtq9T0k2nvrQ7CaEotoeyZo6IHUEJ5JoXmESL8bJ4cdKEDzNrkqtO1Z80qSZOXXrTEKE71Obfxry9-B0UJw3kqRN7Jndg7udaMSktfJ9uOWLB3DnF5TgQ_ie4EX5za-RaBuGDk15NyYdMxyrEi97keq3ODP1usJ3baHdaoenIZo5LAucE5Khqjdsusl88EoOTz_dHPRj8DOb1T6cy66RwNXhvTBZfym3q-pqg6ZwOKv3-2u0bO7DMx_BYja9fHvOup0XmBWaV8zFwnIicWVK-1i6IOMyxY3IhXDSaq-dNtYR2kuJWKho5EfaRdxJnnGvlReP4bgoC_8EMOZeKkdYsFxHKnKG20zbnOcyysfcTwYw6j95ajssOe2OsU4PQGWyUhqsRHtm8lQN4PXPW762TI5_Xfyyt2MaVg6lQ0zhy3qXEomO0DljOYA3vYHTbgnv_j7i0_-6-hncDhpLtWVpz-G42tb-RdAxVTaEk-Ts84fpEI7OlnzYzOIfqZDpnw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9swDMeFNTu0OwxbH1jWPVhgpxYCosiWo6O7NcjWJO0hAXozZEluAyT2kNgFms-yDzvRj2UL1gI9-WBZNkyL_MMkfyLki8FlqKShgdOr1CliTmOLyH2ddHmihEzKXpjRWAym3o8b_6bu41411e5NSrL01JtmN84F1vb4tKwDEjvkJfKrEJg_7YabHytO8JS7KlXuWLBemWZm2K3TcxG-SW3-b8p_g9NGcW4lScvY039DXteiEcLKym_JC5vuk1d_oQQPyK8Qxtm9nQPSNhQeyvJuCGtmOOQZTBqRapfQV8U8h29Vod1sBecumhnIUhghkiEvFvRiEVvnlQycX29PeuX8zGK2dufiB0BwtXsuCOe32XKW3y1ApQb6xXr9AJqOrLvnIZn2LyZfB7TeeYFqLllOTcA1QxJXLKQNfONkXCyY4gnnxtfSSiOVNoj2EjzgwuvYjjQeMz6LmZXC8iPSSrPUviMQMOsLg1iwRHrCM4rpWOqEJb6XdJnttUmneeWRrrHkuDvGPNoAldFKkbMS7pnJItEmp38u-VkxOZ4afNLYMXIrB9MhKrVZsYqQRIfonK7fJmeNgaN6Ca8en_H9s0Z_JruDyWgYDb-PL4_JntNboipR-0Ba-bKwH52myeNP5Tf8G-7G6gY |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdX0EqIHipaQA0tMEg9Fa2azdrr7NF9WOWRtIdG6s1a7wMiJXaV2EjNZ-HDsuNHUypA4uSD7bXl2d35yzPzG0IODS5DJQ2NvF6lXhFzmllE7ms34E4J6epamNFYXEyCzzfhTdvndNllu3chyaamASlNeXl8a9zxuvCNc4F5PiGtc4LEU7IZICfBT-jJIF7_ZPHip-6w1GzNgg3rkDPDyp2h9_ZdmPNPQ_7uqNbq81HAtPZDyQuy3QpIiBuL75AnNt8lWw-wgi_JzxjGxQ87AyRvKDzUqd4Qt_xwKAu47gSrXUCiqlkJZ03S3XQJJ96zGShyGCGeoazm9HyeWb9DGTi5ejzopd9z5tOVP5fdAUKs_XtBPPtWLKbl9zmo3EBSrVZ3oOnI-me-IpPk_Pr0grZdGKjmkpXURFwzpHJlQtooNF7SZYIp7jg3oZZWGqm0QcyX4BEXQd_2pQmYCVnGrBSWvyYbeZHbPQIRs6EwiAhzMhCBUUxnUjvmwsANmB32SL_75KluEeXYKWOWruHKaKXUWwn7Z7JU9MjR_S23DZ_jXxd_6OyY-lWEoRGV26JapkilQ4zOIOyRj52B03Y5L_8-4pv_uvo9eXZ1lqRfP42_7JPnXnqJJlvtgGyUi8q-9fKmzN7VU_gXjMnuQg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Neural+Network+Approach+to+Transformer+Fault+Diagnosis+Based+on+Momentum-Embedded+BP+Neural+Network+Optimized+by+Genetic+Algorithm+and+Fuzzy+c-Means&rft.jtitle=Arabian+Journal+for+Science+and+Engineering&rft.au=Zhang%2C+Kefei&rft.au=Yuan%2C+Fang&rft.au=Guo%2C+Jiang&rft.au=Wang%2C+Guoping&rft.date=2016-09-01&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=41&rft.issue=9&rft.spage=3451&rft.epage=3461&rft_id=info:doi/10.1007%2Fs13369-015-2001-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_015_2001_6 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-8025&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-8025&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-8025&client=summon |