A Novel Neural Network Approach to Transformer Fault Diagnosis Based on Momentum-Embedded BP Neural Network Optimized by Genetic Algorithm and Fuzzy c-Means

Transformer is one of the critical equipments for electric power transmission and distribution, and its safety situation plays an important role on stability and security level of power systems. Therefore, the diagnosis of its abnormal situation has always drawn enormous attention from both domestic...

Full description

Saved in:
Bibliographic Details
Published inArabian Journal for Science and Engineering Vol. 41; no. 9; pp. 3451 - 3461
Main Authors Zhang, Kefei, Yuan, Fang, Guo, Jiang, Wang, Guoping
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2016
Subjects
Online AccessGet full text
ISSN1319-8025
2191-4281
DOI10.1007/s13369-015-2001-6

Cover

Abstract Transformer is one of the critical equipments for electric power transmission and distribution, and its safety situation plays an important role on stability and security level of power systems. Therefore, the diagnosis of its abnormal situation has always drawn enormous attention from both domestic and international scholars. Dissolved gas analysis (DGA) is a widely used method in transformer fault diagnosis field. However, the conventional DGA is not well suitable for transformer fault diagnosis because transformer’s structure is complex and operating environment is changeable. On the other hand, the back propagation (BP) neural network, frequently employed in related field, also has some inherent disadvantages, such as local optimization, over-fitting and difficulties in convergence. So simply integrating conventional DGA to BP is not a good approach for fault diagnosis. Moreover, disturbance or noises within the training data, which is unavoidable due to systematic errors, may greatly influence the accuracy of diagnosis model with the growing size of the data. Thus, in this study, we integrate a combination ratio of taking advantages of IEC and Doernenburg, instead of usual DGA, into genetic algorithm (GA) and fuzzy c-means clustering algorithm (FCM) optimized BP, successfully building a novel model which has not been reported previously. Our results show this model has a better diagnosis accuracy rate and generalization ability than other models, and FCM and GA can significantly overcome the disadvantages of training data and BP, offering the potential of implementation for real-time diagnosis systems.
AbstractList Transformer is one of the critical equipments for electric power transmission and distribution, and its safety situation plays an important role on stability and security level of power systems. Therefore, the diagnosis of its abnormal situation has always drawn enormous attention from both domestic and international scholars. Dissolved gas analysis (DGA) is a widely used method in transformer fault diagnosis field. However, the conventional DGA is not well suitable for transformer fault diagnosis because transformer's structure is complex and operating environment is changeable. On the other hand, the back propagation (BP) neural network, frequently employed in related field, also has some inherent disadvantages, such as local optimization, over-fitting and difficulties in convergence. So simply integrating conventional DGA to BP is not a good approach for fault diagnosis. Moreover, disturbance or noises within the training data, which is unavoidable due to systematic errors, may greatly influence the accuracy of diagnosis model with the growing size of the data. Thus, in this study, we integrate a combination ratio of taking advantages of IEC and Doernenburg, instead of usual DGA, into genetic algorithm (GA) and fuzzy c-means clustering algorithm (FCM) optimized BP, successfully building a novel model which has not been reported previously. Our results show this model has a better diagnosis accuracy rate and generalization ability than other models, and FCM and GA can significantly overcome the disadvantages of training data and BP, offering the potential of implementation for real-time diagnosis systems.
Author Yuan, Fang
Zhang, Kefei
Guo, Jiang
Wang, Guoping
Author_xml – sequence: 1
  givenname: Kefei
  surname: Zhang
  fullname: Zhang, Kefei
  organization: College of Power and Mechanical Engineering, Wuhan University
– sequence: 2
  givenname: Fang
  surname: Yuan
  fullname: Yuan, Fang
  email: coderyuan@foxmail.com
  organization: College of Power and Mechanical Engineering, Wuhan University
– sequence: 3
  givenname: Jiang
  surname: Guo
  fullname: Guo, Jiang
  organization: College of Power and Mechanical Engineering, Wuhan University
– sequence: 4
  givenname: Guoping
  surname: Wang
  fullname: Wang, Guoping
  organization: College of Power and Mechanical Engineering, Wuhan University
BookMark eNp9kb9u2zAQxoUiBeqkfYBuHLuw5YkSJY5OGqcB8qdDOhMUeXaYSqRLUinsZ-nDhoY7Zch0wN39vg9332l14oPHqvoM7Csw1n1LwLmQlEFLa8aAinfVogYJtKl7OKkWwEHSntXth-o0pSfGBPQdX1T_luQuPONI7nCO-lDy3xB_k-V2G4M2jyQH8hC1T-sQJ4xkpecxk-9Ob3xILpFzndCS4MltmNDneaKX04DWlub5z9ei99vsJrcvs2FHrtBjdoYsx02ILj9ORHtLVvN-vyOG3mLx_Fi9X-sx4af_9az6tbp8uPhBb-6vri-WN9RwCZnajhtgDdSDkNi1VrRsEKD5mnPbGonSSm2sZC0I3nHRMGTSNmBbGAClQH5WfTnqlpv_zJiymlwyOI7aY5iTgr4vP21E3ZZVOK6aGFKKuFbb6CYddwqYOiShjkmokoQ6JKFEYbpXjHFZZxd8jtqNb5L1kUzFxW8wqqcwR19-8Qb0AlEJn-k
CitedBy_id crossref_primary_10_3390_app112210619
crossref_primary_10_3390_en11030653
crossref_primary_10_1109_ACCESS_2019_2923746
crossref_primary_10_1109_ACCESS_2019_2923812
crossref_primary_10_1007_s10706_023_02516_3
crossref_primary_10_1177_0020720920940601
crossref_primary_10_1155_2020_8838468
crossref_primary_10_3390_app15052395
crossref_primary_10_1109_ACCESS_2020_2989378
crossref_primary_10_1016_j_rser_2021_111347
crossref_primary_10_3390_en13071687
crossref_primary_10_1109_TDEI_2020_008984
crossref_primary_10_1177_01423312211045844
crossref_primary_10_3389_fenrg_2022_1006215
crossref_primary_10_1109_TDEI_2024_3381093
crossref_primary_10_3390_electronics12061356
crossref_primary_10_3390_en11040913
crossref_primary_10_1109_ACCESS_2020_2979024
crossref_primary_10_1155_2022_5631787
crossref_primary_10_1109_ACCESS_2019_2892729
crossref_primary_10_2174_2352096516666230427142632
crossref_primary_10_1007_s13369_016_2361_6
crossref_primary_10_1007_s13369_017_2907_2
Cites_doi 10.1109/61.956751
10.1006/mssp.2001.1454
10.1016/j.apenergy.2014.07.104
10.2528/PIER11010302
10.1109/MED.2013.6608781
10.1007/s00170-014-5606-0
10.1109/TCSI.2015.2434101
10.1109/TDEI.2013.6518967
10.1016/j.ijepes.2014.12.017
10.1109/TDEI.2012.6311507
10.1016/j.neucom.2014.10.077
10.1016/j.ijepes.2012.05.067
10.1016/j.ijepes.2012.11.018
10.1007/s13369-014-1030-x
10.1109/61.544265
10.1109/TAC.2014.2329235
10.1016/j.ijepes.2012.06.042
10.1007/s00521-013-1427-6
10.1016/j.im.2014.11.001
10.1109/61.584363
10.1109/SSD.2013.6564073
10.1109/SISY.2010.5647319
10.1109/TCSI.2004.823672
10.1109/UKSim.2013.147
10.1016/j.jngse.2015.04.014
10.1007/s13369-014-1004-z
10.1016/j.eswa.2014.06.014
10.1016/j.eswa.2009.03.022
10.1109/TDEI.2013.6678885
10.1109/TAC.2005.849233
10.1002/etep.431
10.1016/j.eswa.2013.12.045
10.1016/j.matdes.2011.01.058
10.1177/0040517514521117
10.1002/er.2944
10.1016/j.eswa.2009.11.004
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2015
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2015
DBID AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s13369-015-2001-6
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 3461
ExternalDocumentID 10_1007_s13369_015_2001_6
GrantInformation_xml – fundername: The National Nature Science Foundation of China
  grantid: 51077102
GroupedDBID 06D
0VY
23M
29~
2KM
30V
4.4
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ABULA
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYQR
ANMIH
AYJHY
BGNMA
C1A
ESBYG
ESX
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HF~
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
M4Y
NU0
O9-
O93
OK1
P9P
R9I
RLLFE
S1Z
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
AAYXX
CITATION
OVT
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c391t-d73c10412b69e75d650b61a3f33d5c9e9d9acd90516373640e09d41d51b1e96e3
IEDL.DBID U2A
ISSN 1319-8025
IngestDate Fri Jul 11 10:40:39 EDT 2025
Tue Jul 01 01:33:56 EDT 2025
Thu Apr 24 22:58:45 EDT 2025
Fri Feb 21 02:37:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Fault diagnosis
Fuzzy c-means clustering algorithm
Genetic algorithm
Dissolved gas analysis
Transformers
Combination ratio method
Neural network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-d73c10412b69e75d650b61a3f33d5c9e9d9acd90516373640e09d41d51b1e96e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1880014625
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1880014625
crossref_primary_10_1007_s13369_015_2001_6
crossref_citationtrail_10_1007_s13369_015_2001_6
springer_journals_10_1007_s13369_015_2001_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160900
2016-9-00
20160901
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 9
  year: 2016
  text: 20160900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Arabian Journal for Science and Engineering
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2016
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References ZhangH.Q.BP Neural Network and Its Improved Algorithm In the Power System Transformer Fault DiagnosisApplied Mechatronics and Android Robotics.2013418200204
LiuL.T.DingZ.J.Modeling analysis of power transformer fault diagnosis based on improved relevance vector machineMath. Probl. Eng.2013616
SouahliaS.BachaK.ChaariA.MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA.Int. JElectr. Power Energy Syst.20124311346135310.1016/j.ijepes.2012.05.067
TanS.L.LuJ.H.HillD.J.Towards A Theoretical Framework for Analysis and Intervention of Random Drift on General NetworksIEEE Trans. Autom. Control.2015602576581331019010.1109/TAC.2014.2329235
JackL.B.NandiA.K.Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithmsMech. Syst. Signal Proc.200216237339010.1006/mssp.2001.1454
VahediA.BehjatV.Online monitoring of power transformers for detection of internal winding short circuit faults using negative sequence analysisEur. Trans. Electr. Power.201121119621110.1002/etep.431
YangM.T.HuL.S.Intelligent Fault Types Diagnostic System for Dissolved Gas Analysis of Oil-immersed Power TransformerIEEE Trns. Dielectr. Electr. Insul.201320623172324171912010.1109/TDEI.2013.6678885
YuF.XuX.Z.A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural networkAppl. Energy.201413410211310.1016/j.apenergy.2014.07.104
PaydarniaH.HajiaghasiS.AbbaszadehK.Improved Structure of PNN Using PCA in Transformer Fault DiagnosticArab. J. Sci. Eng.20143964845485110.1007/s13369-014-1004-z
GuardadoJ.L.NaredoJ.L.MorenoP.FuerteC.R.A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysisIEEE Trans. Power Deliv.200116464364710.1109/61.956751
SreepradhaC.KumariA.K.PerumalA.E.PandaR.C.HarshabardhanK.AribalaganM.Neural network model for condition monitoring of wear and film thickness in a gearboxNeural Comput. Appl.20142471943195210.1007/s00521-013-1427-6
BhallaD.BansalR.K.GuptaH.O.Integrating AI based DGA fault diagnosis using Dempster-Shafer TheoryInt. J. Electr. Power Energy Syst.201348313810.1016/j.ijepes.2012.11.018
ShangW.L.ZhouX.F.YuanJ.An intelligent fault diagnosis system for newly assembled transmissionExpert Syst. Appl.20144194060407210.1016/j.eswa.2013.12.045
Souahlia, S.; Bacha, K.; Chaari, A.: SVM-based decision for power transformers fault diagnosis using Rogers and Doernenburg ratios DGA.Proceeding of 10th International Multi-Conference on Systems, Signals & Devices. 1-6, Hammamet, TUNISIA, March 18-21 (2013)
LiuK.X.ZhuH.H.LuJ.H.Bridging the Gap Between Transmission Noise and Sampled Data for Robust Consensus of Multi-Agent SystemsIEEE Trans. Circuits Syst. I-Regul. Pap.201562718361844336162310.1109/TCSI.2015.2434101
UmasankarL.KalaiarasiN.Internal Fault Identification and Classification of Transformer with the Aid of Radial Basis Neural Network (RBNN)Arab. J. Sci. Eng.20143964865487310.1007/s13369-014-1030-x
AshrafiK.ShafiepourM.GhasemiL.AraabiB.N.Prediction of Climate Change Induced Temperature Rise in Regional Scale Using Neural NetworkInt. J. Environ. Res.201263677688
FeiS.W.ZhangX.B.Fault diagnosis of power transformer based on support vector machine with genetic algorithmExpert Syst. Appl.2009368113521135710.1016/j.eswa.2009.03.022
WangN.I.CaiM.S.New Method on Power Transformer Fault DiagnosisAdvanced Materials and Process Technology.201221726232628
YinF.MaoH.J.HuaL.A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parametersMater. Des.20113263457346410.1016/j.matdes.2011.01.058
PerrierC.MaruganM.BeroualA.DGA Comparison between Ester and Mineral OilsIEEE Trns. Dielectr. Electr. Insul.20121951609161410.1109/TDEI.2012.6311507
GouJ.HouF.ChenW.Y.WangC.LuoW.Improving Wang-Mendel method performance in fuzzy rules generation using the fuzzy C-means clustering algorithmNeurocomputing.20151511293130410.1016/j.neucom.2014.10.077
HuangY.Q.ZhangJ.LiX.TianL.J.Thermal error modeling by integrating GA and BP algorithms for the high-speed spindleInt. J. Adv. Manuf. Technol.2014719–121669167510.1007/s00170-014-5606-0
ZhangY.DingX.LiuY.GriffinP.J.An artificial neural network approach to transformer fault diagnosisIEEE Trans. Power Deliv.199611418318410.1109/61.544265
GholamiA.R.ShahbazianM.Soft sensor design based on fuzzy C-Means and RFN_SVR for a stripper columnJ. Nat. Gas Sci. Eng.201525232910.1016/j.jngse.2015.04.014
Abu-SiadaA.HmoodS.A new fuzzy logic approach to identify power transformer criticality using dissolved gas-in-oil analysisInt. J. Electr. Power Energy Syst.20156740140810.1016/j.ijepes.2014.12.017
KuoC.F.J.HuangC.C.GaoT.C.LiaoC.C.TangT.T.Recognition of fault process conditions based on spinline tension in melt spinningText. Res. J.201484141549155710.1177/0040517514521117
IEEE guide for the interpretation of gases generated in oil-immersed transformers. IEEE Standard C57. 104–2008
HuangY.C.SunH.C.Dissolved Gas Analysis of Mineral Oil for Power Transformer Fault Diagnosis Using Fuzzy LogicIEEE Trns. Dielectr. Electr. Insul.201320397498110.1109/TDEI.2013.6518967
CabanasM.F.PedrayesF.MeleroM.G.RojasC.H.OrcajoG.A.CanoJ.M.NorniellaJ.G.Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysisProg. Electromagn. Res.201111421123410.2528/PIER11010302
Ahmed, M.R.; Geliel, M.A.; Khalil, A.: Power transformer fault diagnosis using Fuzzy logic technique based on dissolved gas analysis. In: Proceeding of 21st Mediterranean Conference on Control and Automation, pp. 584–589, New York, USA, 25–28 June 2013
BhallaD.BansalR.K.GuptaH.O.Function analysis based rule extraction from artificial neural networks for transformer incipient fault diagnosisInt. J. Electr. Power Energy Syst.20124311196120310.1016/j.ijepes.2012.06.042
YangF.M.LiuC.SunY.LongQ.FanY.P.Fault prediction based on dissolved gas concentration from insulating oil in power transformer using Neural NetworkMachinery Electronics and Control Engineering Iii.2014441312317
DuanH.D.YaoX.Power Transformer Fault Diagnosis based on fuzzy-RBF neural networkAdvances in Power and Electrical Engineering.201361413031306
LuJ.H.ChenG.R.A time-varying complex dynamical network model and its controlled synchronization criteriaIEEE Trans. Autom. Control.2005506841846214200010.1109/TAC.2005.849233
Gill, J.; Singh, B.; Singh, S. (2010) Training back propagation neural networks with genetic algorithm for weather forecasting. Proceeding of 8th IEEE International Symposium on Intelligent Systems and Informatics.465-469,Ludhiana, India, September 10-11
Nina, D.L.F.; Neto, J.V.D.; Ferreira E.F.M.; dos Santos A.M.: Hybrid Support System for Decision Making Based on MLP-ANN, IED and SCADA for Disturbances Analysis of Electrical Power Distribution Transformers. Proceeding of Uksim-Amss 15th International Conference on Computer Modeling and Simulation. 12-20, ENGLAND, APR 10-12 (2013)
LuJ.H.YuX.H.ChenG.R.ChengD.Z.Characterizing the synchronizability of small-world dynamical networksIEEE Trans. Circuits Syst. I-Regul. Pap.2004514787796206621410.1109/TCSI.2004.823672
HuangY.C.YangH.T.HuangC.L.Developing a new transformer fault diagnosis system through evolutionary fuzzy logicIEEE Trans. Power Deliv.199712276176710.1109/61.584363
EsmaieliA.KeshavarzM.P.ShakibS.E.AmidpourM.Applying different optimization approaches to achieve optimal configuration of a dual pressure heat recovery steam generatorInt. J. Energy Res.201337121440145210.1002/er.2944
AltinkayaH.OrakI.M.EsenI.Artificial neural network application for modeling the rail rolling processExpert Syst. Appl.201441167135714610.1016/j.eswa.2014.06.014
KuoC.C.Artificial identification system for transformer insulation agingExpert Syst. Appl.20103764190419710.1016/j.eswa.2009.11.004
BoseI.ChenX.Detecting the migration of mobile service customers using fuzzy clusteringInf. Manage.201552222723810.1016/j.im.2014.11.001
Y.C. Huang (2001_CR7) 2013; 20
S.L. Tan (2001_CR24) 2015; 60
C.C. Kuo (2001_CR33) 2010; 37
M.F. Cabanas (2001_CR2) 2011; 114
A. Esmaieli (2001_CR34) 2013; 37
J.H. Lu (2001_CR14) 2005; 50
2001_CR23
2001_CR25
H.Q. Zhang (2001_CR41) 2013; 418
C. Perrier (2001_CR27) 2012; 19
J.H. Lu (2001_CR43) 2004; 51
2001_CR1
L.T. Liu (2001_CR5) 2013; 6
H. Paydarnia (2001_CR11) 2014; 39
J. Gou (2001_CR37) 2015; 151
A. Vahedi (2001_CR3) 2011; 21
S.W. Fei (2001_CR35) 2009; 36
D. Bhalla (2001_CR22) 2013; 48
Y. Zhang (2001_CR4) 1996; 11
H.D. Duan (2001_CR42) 2013; 614
M.T. Yang (2001_CR9) 2013; 20
L.B. Jack (2001_CR36) 2002; 16
J.L. Guardado (2001_CR6) 2001; 16
F. Yin (2001_CR18) 2011; 32
S. Souahlia (2001_CR19) 2012; 43
N.I. Wang (2001_CR40) 2012; 217
F. Yu (2001_CR20) 2014; 134
K.X. Liu (2001_CR21) 2015; 62
Y.Q. Huang (2001_CR17) 2014; 71
H. Altinkaya (2001_CR30) 2014; 41
A.R. Gholami (2001_CR39) 2015; 25
2001_CR13
K. Ashrafi (2001_CR15) 2012; 6
W.L. Shang (2001_CR29) 2014; 41
D. Bhalla (2001_CR28) 2012; 43
I. Bose (2001_CR38) 2015; 52
2001_CR16
F.M. Yang (2001_CR10) 2014; 441
Y.C. Huang (2001_CR8) 1997; 12
L. Umasankar (2001_CR12) 2014; 39
C.F.J. Kuo (2001_CR32) 2014; 84
C. Sreepradha (2001_CR31) 2014; 24
A. Abu-Siada (2001_CR26) 2015; 67
References_xml – reference: VahediA.BehjatV.Online monitoring of power transformers for detection of internal winding short circuit faults using negative sequence analysisEur. Trans. Electr. Power.201121119621110.1002/etep.431
– reference: YangF.M.LiuC.SunY.LongQ.FanY.P.Fault prediction based on dissolved gas concentration from insulating oil in power transformer using Neural NetworkMachinery Electronics and Control Engineering Iii.2014441312317
– reference: HuangY.C.YangH.T.HuangC.L.Developing a new transformer fault diagnosis system through evolutionary fuzzy logicIEEE Trans. Power Deliv.199712276176710.1109/61.584363
– reference: Gill, J.; Singh, B.; Singh, S. (2010) Training back propagation neural networks with genetic algorithm for weather forecasting. Proceeding of 8th IEEE International Symposium on Intelligent Systems and Informatics.465-469,Ludhiana, India, September 10-11
– reference: LiuK.X.ZhuH.H.LuJ.H.Bridging the Gap Between Transmission Noise and Sampled Data for Robust Consensus of Multi-Agent SystemsIEEE Trans. Circuits Syst. I-Regul. Pap.201562718361844336162310.1109/TCSI.2015.2434101
– reference: GuardadoJ.L.NaredoJ.L.MorenoP.FuerteC.R.A comparative study of neural network efficiency in power transformers diagnosis using dissolved gas analysisIEEE Trans. Power Deliv.200116464364710.1109/61.956751
– reference: HuangY.Q.ZhangJ.LiX.TianL.J.Thermal error modeling by integrating GA and BP algorithms for the high-speed spindleInt. J. Adv. Manuf. Technol.2014719–121669167510.1007/s00170-014-5606-0
– reference: BhallaD.BansalR.K.GuptaH.O.Function analysis based rule extraction from artificial neural networks for transformer incipient fault diagnosisInt. J. Electr. Power Energy Syst.20124311196120310.1016/j.ijepes.2012.06.042
– reference: AshrafiK.ShafiepourM.GhasemiL.AraabiB.N.Prediction of Climate Change Induced Temperature Rise in Regional Scale Using Neural NetworkInt. J. Environ. Res.201263677688
– reference: WangN.I.CaiM.S.New Method on Power Transformer Fault DiagnosisAdvanced Materials and Process Technology.201221726232628
– reference: BoseI.ChenX.Detecting the migration of mobile service customers using fuzzy clusteringInf. Manage.201552222723810.1016/j.im.2014.11.001
– reference: GholamiA.R.ShahbazianM.Soft sensor design based on fuzzy C-Means and RFN_SVR for a stripper columnJ. Nat. Gas Sci. Eng.201525232910.1016/j.jngse.2015.04.014
– reference: KuoC.C.Artificial identification system for transformer insulation agingExpert Syst. Appl.20103764190419710.1016/j.eswa.2009.11.004
– reference: ShangW.L.ZhouX.F.YuanJ.An intelligent fault diagnosis system for newly assembled transmissionExpert Syst. Appl.20144194060407210.1016/j.eswa.2013.12.045
– reference: SreepradhaC.KumariA.K.PerumalA.E.PandaR.C.HarshabardhanK.AribalaganM.Neural network model for condition monitoring of wear and film thickness in a gearboxNeural Comput. Appl.20142471943195210.1007/s00521-013-1427-6
– reference: GouJ.HouF.ChenW.Y.WangC.LuoW.Improving Wang-Mendel method performance in fuzzy rules generation using the fuzzy C-means clustering algorithmNeurocomputing.20151511293130410.1016/j.neucom.2014.10.077
– reference: Souahlia, S.; Bacha, K.; Chaari, A.: SVM-based decision for power transformers fault diagnosis using Rogers and Doernenburg ratios DGA.Proceeding of 10th International Multi-Conference on Systems, Signals & Devices. 1-6, Hammamet, TUNISIA, March 18-21 (2013)
– reference: IEEE guide for the interpretation of gases generated in oil-immersed transformers. IEEE Standard C57. 104–2008
– reference: EsmaieliA.KeshavarzM.P.ShakibS.E.AmidpourM.Applying different optimization approaches to achieve optimal configuration of a dual pressure heat recovery steam generatorInt. J. Energy Res.201337121440145210.1002/er.2944
– reference: TanS.L.LuJ.H.HillD.J.Towards A Theoretical Framework for Analysis and Intervention of Random Drift on General NetworksIEEE Trans. Autom. Control.2015602576581331019010.1109/TAC.2014.2329235
– reference: FeiS.W.ZhangX.B.Fault diagnosis of power transformer based on support vector machine with genetic algorithmExpert Syst. Appl.2009368113521135710.1016/j.eswa.2009.03.022
– reference: ZhangH.Q.BP Neural Network and Its Improved Algorithm In the Power System Transformer Fault DiagnosisApplied Mechatronics and Android Robotics.2013418200204
– reference: BhallaD.BansalR.K.GuptaH.O.Integrating AI based DGA fault diagnosis using Dempster-Shafer TheoryInt. J. Electr. Power Energy Syst.201348313810.1016/j.ijepes.2012.11.018
– reference: PerrierC.MaruganM.BeroualA.DGA Comparison between Ester and Mineral OilsIEEE Trns. Dielectr. Electr. Insul.20121951609161410.1109/TDEI.2012.6311507
– reference: LuJ.H.YuX.H.ChenG.R.ChengD.Z.Characterizing the synchronizability of small-world dynamical networksIEEE Trans. Circuits Syst. I-Regul. Pap.2004514787796206621410.1109/TCSI.2004.823672
– reference: ZhangY.DingX.LiuY.GriffinP.J.An artificial neural network approach to transformer fault diagnosisIEEE Trans. Power Deliv.199611418318410.1109/61.544265
– reference: HuangY.C.SunH.C.Dissolved Gas Analysis of Mineral Oil for Power Transformer Fault Diagnosis Using Fuzzy LogicIEEE Trns. Dielectr. Electr. Insul.201320397498110.1109/TDEI.2013.6518967
– reference: UmasankarL.KalaiarasiN.Internal Fault Identification and Classification of Transformer with the Aid of Radial Basis Neural Network (RBNN)Arab. J. Sci. Eng.20143964865487310.1007/s13369-014-1030-x
– reference: CabanasM.F.PedrayesF.MeleroM.G.RojasC.H.OrcajoG.A.CanoJ.M.NorniellaJ.G.Insulation fault diagnosis in high voltage power transformers by means of leakage flux analysisProg. Electromagn. Res.201111421123410.2528/PIER11010302
– reference: LiuL.T.DingZ.J.Modeling analysis of power transformer fault diagnosis based on improved relevance vector machineMath. Probl. Eng.2013616
– reference: AltinkayaH.OrakI.M.EsenI.Artificial neural network application for modeling the rail rolling processExpert Syst. Appl.201441167135714610.1016/j.eswa.2014.06.014
– reference: Abu-SiadaA.HmoodS.A new fuzzy logic approach to identify power transformer criticality using dissolved gas-in-oil analysisInt. J. Electr. Power Energy Syst.20156740140810.1016/j.ijepes.2014.12.017
– reference: Ahmed, M.R.; Geliel, M.A.; Khalil, A.: Power transformer fault diagnosis using Fuzzy logic technique based on dissolved gas analysis. In: Proceeding of 21st Mediterranean Conference on Control and Automation, pp. 584–589, New York, USA, 25–28 June 2013
– reference: JackL.B.NandiA.K.Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithmsMech. Syst. Signal Proc.200216237339010.1006/mssp.2001.1454
– reference: YinF.MaoH.J.HuaL.A hybrid of back propagation neural network and genetic algorithm for optimization of injection molding process parametersMater. Des.20113263457346410.1016/j.matdes.2011.01.058
– reference: SouahliaS.BachaK.ChaariA.MLP neural network-based decision for power transformers fault diagnosis using an improved combination of Rogers and Doernenburg ratios DGA.Int. JElectr. Power Energy Syst.20124311346135310.1016/j.ijepes.2012.05.067
– reference: YangM.T.HuL.S.Intelligent Fault Types Diagnostic System for Dissolved Gas Analysis of Oil-immersed Power TransformerIEEE Trns. Dielectr. Electr. Insul.201320623172324171912010.1109/TDEI.2013.6678885
– reference: LuJ.H.ChenG.R.A time-varying complex dynamical network model and its controlled synchronization criteriaIEEE Trans. Autom. Control.2005506841846214200010.1109/TAC.2005.849233
– reference: DuanH.D.YaoX.Power Transformer Fault Diagnosis based on fuzzy-RBF neural networkAdvances in Power and Electrical Engineering.201361413031306
– reference: Nina, D.L.F.; Neto, J.V.D.; Ferreira E.F.M.; dos Santos A.M.: Hybrid Support System for Decision Making Based on MLP-ANN, IED and SCADA for Disturbances Analysis of Electrical Power Distribution Transformers. Proceeding of Uksim-Amss 15th International Conference on Computer Modeling and Simulation. 12-20, ENGLAND, APR 10-12 (2013)
– reference: YuF.XuX.Z.A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural networkAppl. Energy.201413410211310.1016/j.apenergy.2014.07.104
– reference: PaydarniaH.HajiaghasiS.AbbaszadehK.Improved Structure of PNN Using PCA in Transformer Fault DiagnosticArab. J. Sci. Eng.20143964845485110.1007/s13369-014-1004-z
– reference: KuoC.F.J.HuangC.C.GaoT.C.LiaoC.C.TangT.T.Recognition of fault process conditions based on spinline tension in melt spinningText. Res. J.201484141549155710.1177/0040517514521117
– volume: 16
  start-page: 643
  issue: 4
  year: 2001
  ident: 2001_CR6
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.956751
– volume: 16
  start-page: 373
  issue: 2
  year: 2002
  ident: 2001_CR36
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1006/mssp.2001.1454
– volume: 134
  start-page: 102
  year: 2014
  ident: 2001_CR20
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2014.07.104
– volume: 114
  start-page: 211
  year: 2011
  ident: 2001_CR2
  publication-title: Prog. Electromagn. Res.
  doi: 10.2528/PIER11010302
– ident: 2001_CR25
– volume: 6
  start-page: 677
  issue: 3
  year: 2012
  ident: 2001_CR15
  publication-title: Int. J. Environ. Res.
– ident: 2001_CR1
  doi: 10.1109/MED.2013.6608781
– volume: 71
  start-page: 1669
  issue: 9–12
  year: 2014
  ident: 2001_CR17
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-5606-0
– volume: 62
  start-page: 1836
  issue: 7
  year: 2015
  ident: 2001_CR21
  publication-title: IEEE Trans. Circuits Syst. I-Regul. Pap.
  doi: 10.1109/TCSI.2015.2434101
– volume: 20
  start-page: 974
  issue: 3
  year: 2013
  ident: 2001_CR7
  publication-title: IEEE Trns. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2013.6518967
– volume: 67
  start-page: 401
  year: 2015
  ident: 2001_CR26
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.12.017
– volume: 19
  start-page: 1609
  issue: 5
  year: 2012
  ident: 2001_CR27
  publication-title: IEEE Trns. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2012.6311507
– volume: 151
  start-page: 1293
  year: 2015
  ident: 2001_CR37
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2014.10.077
– volume: 43
  start-page: 1346
  issue: 1
  year: 2012
  ident: 2001_CR19
  publication-title: Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.05.067
– volume: 48
  start-page: 31
  year: 2013
  ident: 2001_CR22
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.11.018
– volume: 614
  start-page: 1303
  year: 2013
  ident: 2001_CR42
  publication-title: Advances in Power and Electrical Engineering.
– volume: 39
  start-page: 4865
  issue: 6
  year: 2014
  ident: 2001_CR12
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-014-1030-x
– volume: 11
  start-page: 183
  issue: 4
  year: 1996
  ident: 2001_CR4
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.544265
– volume: 60
  start-page: 576
  issue: 2
  year: 2015
  ident: 2001_CR24
  publication-title: IEEE Trans. Autom. Control.
  doi: 10.1109/TAC.2014.2329235
– volume: 43
  start-page: 1196
  issue: 1
  year: 2012
  ident: 2001_CR28
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.06.042
– volume: 24
  start-page: 1943
  issue: 7
  year: 2014
  ident: 2001_CR31
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1427-6
– volume: 52
  start-page: 227
  issue: 2
  year: 2015
  ident: 2001_CR38
  publication-title: Inf. Manage.
  doi: 10.1016/j.im.2014.11.001
– volume: 441
  start-page: 312
  year: 2014
  ident: 2001_CR10
  publication-title: Machinery Electronics and Control Engineering Iii.
– volume: 12
  start-page: 761
  issue: 2
  year: 1997
  ident: 2001_CR8
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.584363
– ident: 2001_CR23
  doi: 10.1109/SSD.2013.6564073
– ident: 2001_CR16
  doi: 10.1109/SISY.2010.5647319
– volume: 51
  start-page: 787
  issue: 4
  year: 2004
  ident: 2001_CR43
  publication-title: IEEE Trans. Circuits Syst. I-Regul. Pap.
  doi: 10.1109/TCSI.2004.823672
– ident: 2001_CR13
  doi: 10.1109/UKSim.2013.147
– volume: 217
  start-page: 2623
  year: 2012
  ident: 2001_CR40
  publication-title: Advanced Materials and Process Technology.
– volume: 25
  start-page: 23
  year: 2015
  ident: 2001_CR39
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.04.014
– volume: 39
  start-page: 4845
  issue: 6
  year: 2014
  ident: 2001_CR11
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-014-1004-z
– volume: 41
  start-page: 7135
  issue: 16
  year: 2014
  ident: 2001_CR30
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.06.014
– volume: 6
  start-page: 1
  year: 2013
  ident: 2001_CR5
  publication-title: Math. Probl. Eng.
– volume: 36
  start-page: 11352
  issue: 8
  year: 2009
  ident: 2001_CR35
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.03.022
– volume: 20
  start-page: 2317
  issue: 6
  year: 2013
  ident: 2001_CR9
  publication-title: IEEE Trns. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2013.6678885
– volume: 50
  start-page: 841
  issue: 6
  year: 2005
  ident: 2001_CR14
  publication-title: IEEE Trans. Autom. Control.
  doi: 10.1109/TAC.2005.849233
– volume: 21
  start-page: 196
  issue: 1
  year: 2011
  ident: 2001_CR3
  publication-title: Eur. Trans. Electr. Power.
  doi: 10.1002/etep.431
– volume: 418
  start-page: 200
  year: 2013
  ident: 2001_CR41
  publication-title: Applied Mechatronics and Android Robotics.
– volume: 41
  start-page: 4060
  issue: 9
  year: 2014
  ident: 2001_CR29
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.045
– volume: 32
  start-page: 3457
  issue: 6
  year: 2011
  ident: 2001_CR18
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.01.058
– volume: 84
  start-page: 1549
  issue: 14
  year: 2014
  ident: 2001_CR32
  publication-title: Text. Res. J.
  doi: 10.1177/0040517514521117
– volume: 37
  start-page: 1440
  issue: 12
  year: 2013
  ident: 2001_CR34
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.2944
– volume: 37
  start-page: 4190
  issue: 6
  year: 2010
  ident: 2001_CR33
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.11.004
SSID ssj0061873
ssj0001916267
Score 2.1935134
Snippet Transformer is one of the critical equipments for electric power transmission and distribution, and its safety situation plays an important role on stability...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3451
SubjectTerms Back propagation
Diagnosis
Engineering
Fault diagnosis
Fuzzy
Genetic algorithms
Humanities and Social Sciences
multidisciplinary
Neural networks
Research Article - Electrical Engineering
Science
Training
Transformers
Title A Novel Neural Network Approach to Transformer Fault Diagnosis Based on Momentum-Embedded BP Neural Network Optimized by Genetic Algorithm and Fuzzy c-Means
URI https://link.springer.com/article/10.1007/s13369-015-2001-6
https://www.proquest.com/docview/1880014625
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2191-4281
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0001916267
  issn: 1319-8025
  databaseCode: ABDBF
  dateStart: 20041001
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 1319-8025
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001916267
  issn: 1319-8025
  databaseCode: AFBBN
  dateStart: 20110101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061873
  issn: 1319-8025
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2191-4281
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061873
  issn: 1319-8025
  databaseCode: U2A
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lj9MwEMdH7O4FDoinKI9qkDiBLNV17NTHLLS7AnXhsJXKKXJsh63UJqhNkLafhQ-LJw8KK0DilEMSJ8rYM39lZn4GeOVoGRrtWBz0KguKWLDME3Lf5mORG6XzphdmfqHOF9H7pVx2fdy7vtq9T0k2nvrQ7CaEotoeyZo6IHUEJ5JoXmESL8bJ4cdKEDzNrkqtO1Z80qSZOXXrTEKE71Obfxry9-B0UJw3kqRN7Jndg7udaMSktfJ9uOWLB3DnF5TgQ_ie4EX5za-RaBuGDk15NyYdMxyrEi97keq3ODP1usJ3baHdaoenIZo5LAucE5Khqjdsusl88EoOTz_dHPRj8DOb1T6cy66RwNXhvTBZfym3q-pqg6ZwOKv3-2u0bO7DMx_BYja9fHvOup0XmBWaV8zFwnIicWVK-1i6IOMyxY3IhXDSaq-dNtYR2kuJWKho5EfaRdxJnnGvlReP4bgoC_8EMOZeKkdYsFxHKnKG20zbnOcyysfcTwYw6j95ajssOe2OsU4PQGWyUhqsRHtm8lQN4PXPW762TI5_Xfyyt2MaVg6lQ0zhy3qXEomO0DljOYA3vYHTbgnv_j7i0_-6-hncDhpLtWVpz-G42tb-RdAxVTaEk-Ts84fpEI7OlnzYzOIfqZDpnw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9swDMeFNTu0OwxbH1jWPVhgpxYCosiWo6O7NcjWJO0hAXozZEluAyT2kNgFms-yDzvRj2UL1gI9-WBZNkyL_MMkfyLki8FlqKShgdOr1CliTmOLyH2ddHmihEzKXpjRWAym3o8b_6bu41411e5NSrL01JtmN84F1vb4tKwDEjvkJfKrEJg_7YabHytO8JS7KlXuWLBemWZm2K3TcxG-SW3-b8p_g9NGcW4lScvY039DXteiEcLKym_JC5vuk1d_oQQPyK8Qxtm9nQPSNhQeyvJuCGtmOOQZTBqRapfQV8U8h29Vod1sBecumhnIUhghkiEvFvRiEVvnlQycX29PeuX8zGK2dufiB0BwtXsuCOe32XKW3y1ApQb6xXr9AJqOrLvnIZn2LyZfB7TeeYFqLllOTcA1QxJXLKQNfONkXCyY4gnnxtfSSiOVNoj2EjzgwuvYjjQeMz6LmZXC8iPSSrPUviMQMOsLg1iwRHrCM4rpWOqEJb6XdJnttUmneeWRrrHkuDvGPNoAldFKkbMS7pnJItEmp38u-VkxOZ4afNLYMXIrB9MhKrVZsYqQRIfonK7fJmeNgaN6Ca8en_H9s0Z_JruDyWgYDb-PL4_JntNboipR-0Ba-bKwH52myeNP5Tf8G-7G6gY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdX0EqIHipaQA0tMEg9Fa2azdrr7NF9WOWRtIdG6s1a7wMiJXaV2EjNZ-HDsuNHUypA4uSD7bXl2d35yzPzG0IODS5DJQ2NvF6lXhFzmllE7ms34E4J6epamNFYXEyCzzfhTdvndNllu3chyaamASlNeXl8a9zxuvCNc4F5PiGtc4LEU7IZICfBT-jJIF7_ZPHip-6w1GzNgg3rkDPDyp2h9_ZdmPNPQ_7uqNbq81HAtPZDyQuy3QpIiBuL75AnNt8lWw-wgi_JzxjGxQ87AyRvKDzUqd4Qt_xwKAu47gSrXUCiqlkJZ03S3XQJJ96zGShyGCGeoazm9HyeWb9DGTi5ejzopd9z5tOVP5fdAUKs_XtBPPtWLKbl9zmo3EBSrVZ3oOnI-me-IpPk_Pr0grZdGKjmkpXURFwzpHJlQtooNF7SZYIp7jg3oZZWGqm0QcyX4BEXQd_2pQmYCVnGrBSWvyYbeZHbPQIRs6EwiAhzMhCBUUxnUjvmwsANmB32SL_75KluEeXYKWOWruHKaKXUWwn7Z7JU9MjR_S23DZ_jXxd_6OyY-lWEoRGV26JapkilQ4zOIOyRj52B03Y5L_8-4pv_uvo9eXZ1lqRfP42_7JPnXnqJJlvtgGyUi8q-9fKmzN7VU_gXjMnuQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Neural+Network+Approach+to+Transformer+Fault+Diagnosis+Based+on+Momentum-Embedded+BP+Neural+Network+Optimized+by+Genetic+Algorithm+and+Fuzzy+c-Means&rft.jtitle=Arabian+Journal+for+Science+and+Engineering&rft.au=Zhang%2C+Kefei&rft.au=Yuan%2C+Fang&rft.au=Guo%2C+Jiang&rft.au=Wang%2C+Guoping&rft.date=2016-09-01&rft.issn=1319-8025&rft.eissn=2191-4281&rft.volume=41&rft.issue=9&rft.spage=3451&rft.epage=3461&rft_id=info:doi/10.1007%2Fs13369-015-2001-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_015_2001_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-8025&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-8025&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-8025&client=summon