T-type calcium channels in the regulation of afferent and efferent arterioles in rats

L-type Ca 2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca 2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Renal physiology Vol. 286; no. 2; pp. F331 - F337
Main Authors Feng, Ming-Guo, Li, Ming, Navar, L. Gabriel
Format Journal Article
LanguageEnglish
Published United States 01.02.2004
Subjects
Online AccessGet full text
ISSN1931-857X
1522-1466
DOI10.1152/ajprenal.00251.2003

Cover

Abstract L-type Ca 2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca 2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca 2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 μmol/l) or mibefradil (1 μmol/l) dilated both afferent (26.8 ± 3.4 and 24.6 ± 1.9%) and efferent (19.2 ± 2.9 and 19.1 ± 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 μM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca 2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function.
AbstractList L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 micromol/l) or mibefradil (1 micromol/l) dilated both afferent (26.8 +/- 3.4 and 24.6 +/- 1.9%) and efferent (19.2 +/- 2.9 and 19.1 +/- 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 microM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function.
L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 micromol/l) or mibefradil (1 micromol/l) dilated both afferent (26.8 +/- 3.4 and 24.6 +/- 1.9%) and efferent (19.2 +/- 2.9 and 19.1 +/- 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 microM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function.L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 micromol/l) or mibefradil (1 micromol/l) dilated both afferent (26.8 +/- 3.4 and 24.6 +/- 1.9%) and efferent (19.2 +/- 2.9 and 19.1 +/- 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 microM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function.
L-type Ca 2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca 2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca 2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 μmol/l) or mibefradil (1 μmol/l) dilated both afferent (26.8 ± 3.4 and 24.6 ± 1.9%) and efferent (19.2 ± 2.9 and 19.1 ± 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 μM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca 2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function.
Author Navar, L. Gabriel
Li, Ming
Feng, Ming-Guo
Author_xml – sequence: 1
  givenname: Ming-Guo
  surname: Feng
  fullname: Feng, Ming-Guo
– sequence: 2
  givenname: Ming
  surname: Li
  fullname: Li, Ming
– sequence: 3
  givenname: L. Gabriel
  surname: Navar
  fullname: Navar, L. Gabriel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14583435$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlqwzAQhkVJaZb2CQpFp96carFs61hCNwj0kkBvRpZHjYMip5J8yNvX2VrooaeZYb5_Br4xGrjWAUK3lEwpFexBrbcenLJTQpigU0YIv0CjfsMSmmbZoO8lp0kh8o8hGoewJoRQyugVGtJUFDzlYoSWiyTutoC1srrpNlivlHNgA24cjivAHj47q2LTOtwarIyB_mfEytUYfgYfwTethUPKqxiu0aVRNsDNqU7Q8vlpMXtN5u8vb7PHeaK5pDHRKjda1BWrOKEylbWuC8Z1XpiqyIVWkkrJTAU8Y5mAutImpzQlFVd1mtUS-ATdH-9uffvVQYjlpgkarFUO2i6UBSEFFb2GCbo7gV21gbrc-maj_K48i-gBfgS0b0PwYH4RUu51l2fd5UF3udfdp-SflG7iwVb0qrH_Zr8BxiKI6A
CitedBy_id crossref_primary_10_1161_01_RES_0000256155_31133_49
crossref_primary_10_1139_Y08_101
crossref_primary_10_1152_ajpregu_00276_2014
crossref_primary_10_3390_ijms232416068
crossref_primary_10_1124_jpet_107_133892
crossref_primary_10_1161_HYPERTENSIONAHA_107_105767
crossref_primary_10_1161_HYPERTENSIONAHA_107_094961
crossref_primary_10_1113_jphysiol_2010_199497
crossref_primary_10_1152_ajprenal_00212_2018
crossref_primary_10_1016_j_ancard_2008_02_019
crossref_primary_10_1093_cvr_cvs310
crossref_primary_10_1152_ajpheart_00528_2006
crossref_primary_10_1152_ajpregu_00202_2004
crossref_primary_10_1152_physrev_00042_2012
crossref_primary_10_1111_j_1549_8719_2011_00149_x
crossref_primary_10_1152_ajpheart_00476_2012
crossref_primary_10_1152_ajprenal_00321_2010
crossref_primary_10_1161_HYPERTENSIONAHA_115_05274
crossref_primary_10_1113_jphysiol_2014_280347
crossref_primary_10_1152_ajprenal_00422_2004
crossref_primary_10_1007_s00424_015_1770_9
crossref_primary_10_1152_ajpheart_00493_2013
crossref_primary_10_1038_ki_2010_429
crossref_primary_10_1152_ajprenal_00016_2014
crossref_primary_10_3390_ijms252212420
crossref_primary_10_1111_apha_12070
crossref_primary_10_2165_00003495_200565002_00002
crossref_primary_10_1152_physrev_00053_2021
crossref_primary_10_1111_j_1440_1681_2008_05035_x
crossref_primary_10_1152_ajprenal_00149_2010
crossref_primary_10_1152_ajprenal_00042_2005
crossref_primary_10_2302_kjm_54_102
crossref_primary_10_1152_ajpheart_01214_2005
crossref_primary_10_1371_journal_pone_0194980
crossref_primary_10_1080_19336950_2016_1273997
crossref_primary_10_1111_apha_12882
crossref_primary_10_1152_ajprenal_00026_2012
crossref_primary_10_1007_s00424_011_1018_2
crossref_primary_10_1002_nau_20654
crossref_primary_10_1152_ajprenal_00493_2007
crossref_primary_10_1152_ajprenal_00117_2016
Cites_doi 10.1016/S0163-7258(98)00027-8
10.1152/ajprenal.1995.268.5.F876
10.1113/jphysiol.1990.sp018125
10.1095/biolreprod60.1.102
10.1074/jbc.275.9.6090
10.1124/mol.62.2.210
10.1161/01.HYP.37.5.1268
10.1161/hh1901.097126
10.1161/hh0302.105662
10.1152/ajpcell.1993.265.3.C617
10.1152/ajprenal.1994.266.2.F325
10.1152/ajpheart.00247.2002
10.1038/310501a0
10.1152/ajprenal.1995.268.2.F251
10.1152/ajprenal.1989.256.6.F1015
10.1016/0735-1097(96)00170-2
10.1254/jjp.85.339
10.1016/S0014-5793(00)01832-9
10.1007/s004240000041
10.1152/ajprenal.1993.265.5.F677
10.1152/ajpcell.1997.272.6.C1757
10.1161/01.RES.83.1.103
10.1152/ajpcell.1994.266.6.C1544
10.1152/ajprenal.1987.253.6.F1157
10.1007/s004240050712
10.1111/j.1540-8167.1994.tb01175.x
10.1161/01.HYP.34.2.273
10.1146/annurev.ph.58.030196.001553
10.1152/physrev.1996.76.2.425
10.1161/01.HYP.38.3.343
10.1146/annurev.physiol.62.1.621
10.1016/0002-9149(88)90037-9
10.1152/physrev.1999.79.2.387
10.1523/JNEUROSCI.22-02-00396.2002
10.1152/ajprenal.1994.267.5.F879
10.1210/mend.7.8.8232302
10.1111/j.1469-7793.1997.689ba.x
10.1523/JNEUROSCI.19-06-01912.1999
10.1038/ki.1986.193
10.1152/ajpheart.1989.256.5.H1361
10.2337/diabetes.49.1.59
10.1046/j.1523-1755.2002.00484.x
10.1161/01.RES.87.7.551
10.1016/S0896-6273(00)81057-0
10.1097/00004872-200111000-00014
10.1113/jphysiol.1989.sp017754
10.1161/01.RES.59.2.229
10.1095/biolreprod.102.014696
10.1152/ajprenal.1997.273.2.F307
10.1007/BF00374376
10.1152/ajpgi.00421.2001
10.1016/S0896-6273(00)80463-8
10.1152/physrev.00018.2002
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/ajprenal.00251.2003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1466
EndPage F337
ExternalDocumentID 14583435
10_1152_ajprenal_00251_2003
Genre Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: HL-18426
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
8M5
AAFWJ
AAYXX
ACPRK
ADBBV
AENEX
AFFNX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WOQ
XSW
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c391t-ca7fc5db2b301949dcd823c78fb875ca91992fbe36265edbcf71140b3ad46d9e3
ISSN 1931-857X
IngestDate Fri Jul 11 06:26:15 EDT 2025
Wed Apr 30 02:03:38 EDT 2025
Tue Jul 01 03:46:07 EDT 2025
Thu Apr 24 23:02:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-ca7fc5db2b301949dcd823c78fb875ca91992fbe36265edbcf71140b3ad46d9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 14583435
PQID 80081519
PQPubID 23479
ParticipantIDs proquest_miscellaneous_80081519
pubmed_primary_14583435
crossref_primary_10_1152_ajprenal_00251_2003
crossref_citationtrail_10_1152_ajprenal_00251_2003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-02-01
PublicationDateYYYYMMDD 2004-02-01
PublicationDate_xml – month: 02
  year: 2004
  text: 2004-02-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology. Renal physiology
PublicationTitleAlternate Am J Physiol Renal Physiol
PublicationYear 2004
References REF9
REF7
REF8
REF5
REF6
REF3
REF4
REF40
REF44
REF43
REF42
REF41
REF48
REF47
REF46
REF45
REF49
REF33
REF32
REF31
REF30
REF37
REF36
REF35
REF34
REF1
atypb1
REF2
REF39
REF38
REF62
REF61
REF60
REF22
REF21
REF20
REF26
REF25
REF24
REF23
REF29
REF28
REF27
REF51
REF50
REF11
REF55
REF10
REF54
REF53
REF52
REF15
REF59
REF14
REF58
REF13
REF57
REF12
REF56
REF19
REF18
REF17
References_xml – ident: REF33
  doi: 10.1016/S0163-7258(98)00027-8
– ident: REF30
  doi: 10.1152/ajprenal.1995.268.5.F876
– ident: REF20
  doi: 10.1113/jphysiol.1990.sp018125
– ident: REF21
  doi: 10.1095/biolreprod60.1.102
– ident: REF43
  doi: 10.1074/jbc.275.9.6090
– ident: REF7
  doi: 10.1124/mol.62.2.210
– ident: REF24
  doi: 10.1161/01.HYP.37.5.1268
– ident: REF25
  doi: 10.1161/hh1901.097126
– ident: REF59
  doi: 10.1161/hh0302.105662
– ident: REF61
  doi: 10.1152/ajpcell.1993.265.3.C617
– ident: REF12
– ident: REF23
  doi: 10.1152/ajprenal.1994.266.2.F325
– ident: REF44
  doi: 10.1152/ajpheart.00247.2002
– ident: REF8
  doi: 10.1038/310501a0
– ident: REF22
  doi: 10.1152/ajprenal.1995.268.2.F251
– ident: REF10
  doi: 10.1152/ajprenal.1989.256.6.F1015
– ident: REF34
  doi: 10.1016/0735-1097(96)00170-2
– ident: REF27
  doi: 10.1254/jjp.85.339
– ident: REF11
  doi: 10.1016/S0014-5793(00)01832-9
– ident: REF41
  doi: 10.1007/s004240000041
– ident: REF9
  doi: 10.1152/ajprenal.1993.265.5.F677
– ident: REF32
  doi: 10.1152/ajpcell.1997.272.6.C1757
– ident: REF13
  doi: 10.1161/01.RES.83.1.103
– ident: REF35
  doi: 10.1152/ajpcell.1994.266.6.C1544
– ident: REF19
  doi: 10.1152/ajprenal.1987.253.6.F1157
– ident: REF15
  doi: 10.1007/s004240050712
– ident: REF57
  doi: 10.1111/j.1540-8167.1994.tb01175.x
– ident: REF45
  doi: 10.1161/01.HYP.34.2.273
– ident: REF29
  doi: 10.1146/annurev.ph.58.030196.001553
– ident: REF46
  doi: 10.1152/physrev.1996.76.2.425
– ident: REF47
  doi: 10.1161/01.HYP.38.3.343
– ident: REF2
  doi: 10.1146/annurev.physiol.62.1.621
– ident: REF31
  doi: 10.1016/0002-9149(88)90037-9
– ident: REF14
  doi: 10.1152/physrev.1999.79.2.387
– ident: REF51
  doi: 10.1523/JNEUROSCI.22-02-00396.2002
– ident: REF54
  doi: 10.1152/ajprenal.1994.267.5.F879
– ident: REF3
– ident: REF42
– ident: REF17
  doi: 10.1210/mend.7.8.8232302
– ident: REF60
  doi: 10.1111/j.1469-7793.1997.689ba.x
– ident: REF37
  doi: 10.1523/JNEUROSCI.19-06-01912.1999
– ident: REF36
– ident: REF56
– ident: REF53
  doi: 10.1038/ki.1986.193
– ident: REF58
  doi: 10.1152/ajpheart.1989.256.5.H1361
– ident: REF62
  doi: 10.2337/diabetes.49.1.59
– ident: REF26
– ident: REF49
– ident: REF55
  doi: 10.1046/j.1523-1755.2002.00484.x
– ident: REF38
  doi: 10.1161/01.RES.87.7.551
– ident: REF6
– ident: REF18
  doi: 10.1016/S0896-6273(00)81057-0
– ident: REF28
  doi: 10.1097/00004872-200111000-00014
– ident: REF1
  doi: 10.1113/jphysiol.1989.sp017754
– ident: REF5
  doi: 10.1161/01.RES.59.2.229
– ident: REF40
  doi: 10.1095/biolreprod.102.014696
– ident: REF39
  doi: 10.1152/ajprenal.1997.273.2.F307
– ident: REF52
  doi: 10.1007/BF00374376
– ident: REF50
  doi: 10.1152/ajpgi.00421.2001
– ident: atypb1
– ident: REF4
  doi: 10.1016/S0896-6273(00)80463-8
– ident: REF48
  doi: 10.1152/physrev.00018.2002
SSID ssj0001121
Score 1.9762366
Snippet L-type Ca 2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca 2+ channels in regulating...
L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage F331
SubjectTerms Animals
Arterioles - drug effects
Arterioles - physiology
Blood Pressure - drug effects
Blood Pressure - physiology
Calcium Channel Blockers - pharmacology
Calcium Channels, T-Type - physiology
Diltiazem - pharmacology
Dopamine Antagonists - pharmacology
Homeostasis - physiology
In Vitro Techniques
Male
Mibefradil - pharmacology
Pimozide - pharmacology
Potassium Chloride - pharmacology
Rats
Rats, Sprague-Dawley
Renal Circulation - drug effects
Renal Circulation - physiology
Title T-type calcium channels in the regulation of afferent and efferent arterioles in rats
URI https://www.ncbi.nlm.nih.gov/pubmed/14583435
https://www.proquest.com/docview/80081519
Volume 286
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXBBsf5dMPiBfwoI69JI8TWjehdoDUSn2LbMeRirYEbemk8ddz5690Yny-RI1VJ5Xv1_Od7-53hLyCTV9m1nIGf-qaCWEE06UWGOQtc6lhz5NYjTw73jtaiI9LuYz97kN1Sa93zfdr60r-R6owBnLFKtl_kGx6KAzAZ5AvXEHCcP07GTN3ggrLbFbrU1fE28JeF3MXz3yf-WASKt8JxWeU23SDKZ0YnHezAA7nm-ZqiudsEEy4sxB3GL8LwsHBYWQwLL0KmcHGyA7XXUr7WcXRdAitLnyK9_TNodLgt59cOYcQMXU5qc4yG7NCusb3SbfywHO92vBxvaachEqtn1W4REpY9RUpPcH9cE6Q420ddqwYpT_-VE0W02k1P1jOb5JbPAfzCePyXwbCeDAnxz6xwP-4QDwFL3l3zSuuGie_8Dic5TG_R-4Gl4Hue_nfJzdsu0129lvVd6eX9DX9nJZ_m9yehVyJHbLw6KABHTSig65aCuigAzpo19CIDgrooDbdJHTgLETHA7KYHMw_HLHQRIOZrBz3zKi8MbLWXIMqL0VZm7rgmcmLRoOralSJ-ceNtkhLJG2tTZODi_xeZ6oWe3Vps4dkq-1a-5jQQmmB3ek50kQqg_O1bFSjG27hUWZEeFy9ygSGeWx0clI5T1PyKi555ZYcW6BmI_I2TfrmCVZ-__WXUSwVKEKMbqnWduvzqkDrFvyREXnkpTU8DnMDwC148se5T8mdAdrPyFZ_trbPwejs9QsHqx_AL4ar
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T-type+calcium+channels+in+the+regulation+of+afferent+and+efferent+arterioles+in+rats&rft.jtitle=American+journal+of+physiology.+Renal+physiology&rft.au=Feng%2C+Ming-Guo&rft.au=Li%2C+Ming&rft.au=Navar%2C+L+Gabriel&rft.date=2004-02-01&rft.issn=1931-857X&rft.volume=286&rft.issue=2&rft.spage=F331&rft_id=info:doi/10.1152%2Fajprenal.00251.2003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-857X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-857X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-857X&client=summon