T-type calcium channels in the regulation of afferent and efferent arterioles in rats
L-type Ca 2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca 2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro...
Saved in:
Published in | American journal of physiology. Renal physiology Vol. 286; no. 2; pp. F331 - F337 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2004
|
Subjects | |
Online Access | Get full text |
ISSN | 1931-857X 1522-1466 |
DOI | 10.1152/ajprenal.00251.2003 |
Cover
Abstract | L-type Ca
2+
channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca
2+
channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca
2+
channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 μmol/l) or mibefradil (1 μmol/l) dilated both afferent (26.8 ± 3.4 and 24.6 ± 1.9%) and efferent (19.2 ± 2.9 and 19.1 ± 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 μM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca
2+
channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function. |
---|---|
AbstractList | L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 micromol/l) or mibefradil (1 micromol/l) dilated both afferent (26.8 +/- 3.4 and 24.6 +/- 1.9%) and efferent (19.2 +/- 2.9 and 19.1 +/- 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 microM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function. L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 micromol/l) or mibefradil (1 micromol/l) dilated both afferent (26.8 +/- 3.4 and 24.6 +/- 1.9%) and efferent (19.2 +/- 2.9 and 19.1 +/- 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 microM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function.L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 micromol/l) or mibefradil (1 micromol/l) dilated both afferent (26.8 +/- 3.4 and 24.6 +/- 1.9%) and efferent (19.2 +/- 2.9 and 19.1 +/- 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 microM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function. L-type Ca 2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca 2+ channels in regulating the renal microvasculature. We compared the effects of T- and L-type channel blockade on afferent and efferent arterioles using the in vitro blood-perfused juxtamedullary nephron preparation. Single afferent or efferent arterioles of Sprague-Dawley rats were visualized and superfused with solutions containing Ca 2+ channel blockers. We confirmed that L-type channel blockade with diltiazem dilates afferent arterioles but has no significant effects on efferent arterioles. In contrast, T-type channel blockade with pimozide (10 μmol/l) or mibefradil (1 μmol/l) dilated both afferent (26.8 ± 3.4 and 24.6 ± 1.9%) and efferent (19.2 ± 2.9 and 19.1 ± 4.8%) arterioles. Adding diltiazem did not significantly augment the dilation of afferent arterioles elicited by pimozide and mibefradil, and adding pimozide after diltiazem likewise did not elicit further vasodilation. Diltiazem blocked the depolarization-induced afferent arteriolar constriction elicited by 55 mM KCl; however, the constrictor response to KCl remained intact during treatment with 10 μM pimozide. Pimozide also prevented the afferent arterioles from exhibiting autoregulatory-mediated constrictor responses to increases in perfusion pressure. We conclude that T-type channel blockers dilate efferent arterioles as well as afferent arterioles and diminish afferent arteriolar autoregulatory responses to changes in perfusion pressure. To the extent that these agents exert their effects primarily on T-type Ca 2+ channels in our experimental setting, these results indicate that T-type channels are functionally expressed in juxtamedullary afferent and efferent arterioles and may act cooperatively with L-type channels to regulate afferent arteriolar resistance. Because L-type channels are not functionally expressed in efferent arterioles, T-type channels may be particularly significant in the regulation of efferent arteriolar function. |
Author | Navar, L. Gabriel Li, Ming Feng, Ming-Guo |
Author_xml | – sequence: 1 givenname: Ming-Guo surname: Feng fullname: Feng, Ming-Guo – sequence: 2 givenname: Ming surname: Li fullname: Li, Ming – sequence: 3 givenname: L. Gabriel surname: Navar fullname: Navar, L. Gabriel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14583435$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMlqwzAQhkVJaZb2CQpFp96carFs61hCNwj0kkBvRpZHjYMip5J8yNvX2VrooaeZYb5_Br4xGrjWAUK3lEwpFexBrbcenLJTQpigU0YIv0CjfsMSmmbZoO8lp0kh8o8hGoewJoRQyugVGtJUFDzlYoSWiyTutoC1srrpNlivlHNgA24cjivAHj47q2LTOtwarIyB_mfEytUYfgYfwTethUPKqxiu0aVRNsDNqU7Q8vlpMXtN5u8vb7PHeaK5pDHRKjda1BWrOKEylbWuC8Z1XpiqyIVWkkrJTAU8Y5mAutImpzQlFVd1mtUS-ATdH-9uffvVQYjlpgkarFUO2i6UBSEFFb2GCbo7gV21gbrc-maj_K48i-gBfgS0b0PwYH4RUu51l2fd5UF3udfdp-SflG7iwVb0qrH_Zr8BxiKI6A |
CitedBy_id | crossref_primary_10_1161_01_RES_0000256155_31133_49 crossref_primary_10_1139_Y08_101 crossref_primary_10_1152_ajpregu_00276_2014 crossref_primary_10_3390_ijms232416068 crossref_primary_10_1124_jpet_107_133892 crossref_primary_10_1161_HYPERTENSIONAHA_107_105767 crossref_primary_10_1161_HYPERTENSIONAHA_107_094961 crossref_primary_10_1113_jphysiol_2010_199497 crossref_primary_10_1152_ajprenal_00212_2018 crossref_primary_10_1016_j_ancard_2008_02_019 crossref_primary_10_1093_cvr_cvs310 crossref_primary_10_1152_ajpheart_00528_2006 crossref_primary_10_1152_ajpregu_00202_2004 crossref_primary_10_1152_physrev_00042_2012 crossref_primary_10_1111_j_1549_8719_2011_00149_x crossref_primary_10_1152_ajpheart_00476_2012 crossref_primary_10_1152_ajprenal_00321_2010 crossref_primary_10_1161_HYPERTENSIONAHA_115_05274 crossref_primary_10_1113_jphysiol_2014_280347 crossref_primary_10_1152_ajprenal_00422_2004 crossref_primary_10_1007_s00424_015_1770_9 crossref_primary_10_1152_ajpheart_00493_2013 crossref_primary_10_1038_ki_2010_429 crossref_primary_10_1152_ajprenal_00016_2014 crossref_primary_10_3390_ijms252212420 crossref_primary_10_1111_apha_12070 crossref_primary_10_2165_00003495_200565002_00002 crossref_primary_10_1152_physrev_00053_2021 crossref_primary_10_1111_j_1440_1681_2008_05035_x crossref_primary_10_1152_ajprenal_00149_2010 crossref_primary_10_1152_ajprenal_00042_2005 crossref_primary_10_2302_kjm_54_102 crossref_primary_10_1152_ajpheart_01214_2005 crossref_primary_10_1371_journal_pone_0194980 crossref_primary_10_1080_19336950_2016_1273997 crossref_primary_10_1111_apha_12882 crossref_primary_10_1152_ajprenal_00026_2012 crossref_primary_10_1007_s00424_011_1018_2 crossref_primary_10_1002_nau_20654 crossref_primary_10_1152_ajprenal_00493_2007 crossref_primary_10_1152_ajprenal_00117_2016 |
Cites_doi | 10.1016/S0163-7258(98)00027-8 10.1152/ajprenal.1995.268.5.F876 10.1113/jphysiol.1990.sp018125 10.1095/biolreprod60.1.102 10.1074/jbc.275.9.6090 10.1124/mol.62.2.210 10.1161/01.HYP.37.5.1268 10.1161/hh1901.097126 10.1161/hh0302.105662 10.1152/ajpcell.1993.265.3.C617 10.1152/ajprenal.1994.266.2.F325 10.1152/ajpheart.00247.2002 10.1038/310501a0 10.1152/ajprenal.1995.268.2.F251 10.1152/ajprenal.1989.256.6.F1015 10.1016/0735-1097(96)00170-2 10.1254/jjp.85.339 10.1016/S0014-5793(00)01832-9 10.1007/s004240000041 10.1152/ajprenal.1993.265.5.F677 10.1152/ajpcell.1997.272.6.C1757 10.1161/01.RES.83.1.103 10.1152/ajpcell.1994.266.6.C1544 10.1152/ajprenal.1987.253.6.F1157 10.1007/s004240050712 10.1111/j.1540-8167.1994.tb01175.x 10.1161/01.HYP.34.2.273 10.1146/annurev.ph.58.030196.001553 10.1152/physrev.1996.76.2.425 10.1161/01.HYP.38.3.343 10.1146/annurev.physiol.62.1.621 10.1016/0002-9149(88)90037-9 10.1152/physrev.1999.79.2.387 10.1523/JNEUROSCI.22-02-00396.2002 10.1152/ajprenal.1994.267.5.F879 10.1210/mend.7.8.8232302 10.1111/j.1469-7793.1997.689ba.x 10.1523/JNEUROSCI.19-06-01912.1999 10.1038/ki.1986.193 10.1152/ajpheart.1989.256.5.H1361 10.2337/diabetes.49.1.59 10.1046/j.1523-1755.2002.00484.x 10.1161/01.RES.87.7.551 10.1016/S0896-6273(00)81057-0 10.1097/00004872-200111000-00014 10.1113/jphysiol.1989.sp017754 10.1161/01.RES.59.2.229 10.1095/biolreprod.102.014696 10.1152/ajprenal.1997.273.2.F307 10.1007/BF00374376 10.1152/ajpgi.00421.2001 10.1016/S0896-6273(00)80463-8 10.1152/physrev.00018.2002 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1152/ajprenal.00251.2003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1466 |
EndPage | F337 |
ExternalDocumentID | 14583435 10_1152_ajprenal_00251_2003 |
Genre | Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: HL-18426 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 8M5 AAFWJ AAYXX ACPRK ADBBV AENEX AFFNX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c391t-ca7fc5db2b301949dcd823c78fb875ca91992fbe36265edbcf71140b3ad46d9e3 |
ISSN | 1931-857X |
IngestDate | Fri Jul 11 06:26:15 EDT 2025 Wed Apr 30 02:03:38 EDT 2025 Tue Jul 01 03:46:07 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-ca7fc5db2b301949dcd823c78fb875ca91992fbe36265edbcf71140b3ad46d9e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 14583435 |
PQID | 80081519 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_80081519 pubmed_primary_14583435 crossref_primary_10_1152_ajprenal_00251_2003 crossref_citationtrail_10_1152_ajprenal_00251_2003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-02-01 |
PublicationDateYYYYMMDD | 2004-02-01 |
PublicationDate_xml | – month: 02 year: 2004 text: 2004-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | American journal of physiology. Renal physiology |
PublicationTitleAlternate | Am J Physiol Renal Physiol |
PublicationYear | 2004 |
References | REF9 REF7 REF8 REF5 REF6 REF3 REF4 REF40 REF44 REF43 REF42 REF41 REF48 REF47 REF46 REF45 REF49 REF33 REF32 REF31 REF30 REF37 REF36 REF35 REF34 REF1 atypb1 REF2 REF39 REF38 REF62 REF61 REF60 REF22 REF21 REF20 REF26 REF25 REF24 REF23 REF29 REF28 REF27 REF51 REF50 REF11 REF55 REF10 REF54 REF53 REF52 REF15 REF59 REF14 REF58 REF13 REF57 REF12 REF56 REF19 REF18 REF17 |
References_xml | – ident: REF33 doi: 10.1016/S0163-7258(98)00027-8 – ident: REF30 doi: 10.1152/ajprenal.1995.268.5.F876 – ident: REF20 doi: 10.1113/jphysiol.1990.sp018125 – ident: REF21 doi: 10.1095/biolreprod60.1.102 – ident: REF43 doi: 10.1074/jbc.275.9.6090 – ident: REF7 doi: 10.1124/mol.62.2.210 – ident: REF24 doi: 10.1161/01.HYP.37.5.1268 – ident: REF25 doi: 10.1161/hh1901.097126 – ident: REF59 doi: 10.1161/hh0302.105662 – ident: REF61 doi: 10.1152/ajpcell.1993.265.3.C617 – ident: REF12 – ident: REF23 doi: 10.1152/ajprenal.1994.266.2.F325 – ident: REF44 doi: 10.1152/ajpheart.00247.2002 – ident: REF8 doi: 10.1038/310501a0 – ident: REF22 doi: 10.1152/ajprenal.1995.268.2.F251 – ident: REF10 doi: 10.1152/ajprenal.1989.256.6.F1015 – ident: REF34 doi: 10.1016/0735-1097(96)00170-2 – ident: REF27 doi: 10.1254/jjp.85.339 – ident: REF11 doi: 10.1016/S0014-5793(00)01832-9 – ident: REF41 doi: 10.1007/s004240000041 – ident: REF9 doi: 10.1152/ajprenal.1993.265.5.F677 – ident: REF32 doi: 10.1152/ajpcell.1997.272.6.C1757 – ident: REF13 doi: 10.1161/01.RES.83.1.103 – ident: REF35 doi: 10.1152/ajpcell.1994.266.6.C1544 – ident: REF19 doi: 10.1152/ajprenal.1987.253.6.F1157 – ident: REF15 doi: 10.1007/s004240050712 – ident: REF57 doi: 10.1111/j.1540-8167.1994.tb01175.x – ident: REF45 doi: 10.1161/01.HYP.34.2.273 – ident: REF29 doi: 10.1146/annurev.ph.58.030196.001553 – ident: REF46 doi: 10.1152/physrev.1996.76.2.425 – ident: REF47 doi: 10.1161/01.HYP.38.3.343 – ident: REF2 doi: 10.1146/annurev.physiol.62.1.621 – ident: REF31 doi: 10.1016/0002-9149(88)90037-9 – ident: REF14 doi: 10.1152/physrev.1999.79.2.387 – ident: REF51 doi: 10.1523/JNEUROSCI.22-02-00396.2002 – ident: REF54 doi: 10.1152/ajprenal.1994.267.5.F879 – ident: REF3 – ident: REF42 – ident: REF17 doi: 10.1210/mend.7.8.8232302 – ident: REF60 doi: 10.1111/j.1469-7793.1997.689ba.x – ident: REF37 doi: 10.1523/JNEUROSCI.19-06-01912.1999 – ident: REF36 – ident: REF56 – ident: REF53 doi: 10.1038/ki.1986.193 – ident: REF58 doi: 10.1152/ajpheart.1989.256.5.H1361 – ident: REF62 doi: 10.2337/diabetes.49.1.59 – ident: REF26 – ident: REF49 – ident: REF55 doi: 10.1046/j.1523-1755.2002.00484.x – ident: REF38 doi: 10.1161/01.RES.87.7.551 – ident: REF6 – ident: REF18 doi: 10.1016/S0896-6273(00)81057-0 – ident: REF28 doi: 10.1097/00004872-200111000-00014 – ident: REF1 doi: 10.1113/jphysiol.1989.sp017754 – ident: REF5 doi: 10.1161/01.RES.59.2.229 – ident: REF40 doi: 10.1095/biolreprod.102.014696 – ident: REF39 doi: 10.1152/ajprenal.1997.273.2.F307 – ident: REF52 doi: 10.1007/BF00374376 – ident: REF50 doi: 10.1152/ajpgi.00421.2001 – ident: atypb1 – ident: REF4 doi: 10.1016/S0896-6273(00)80463-8 – ident: REF48 doi: 10.1152/physrev.00018.2002 |
SSID | ssj0001121 |
Score | 1.9762366 |
Snippet | L-type Ca
2+
channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca
2+
channels in regulating... L-type Ca2+ channels predominantly influence preglomerular arterioles, but there is less information regarding the role of T-type Ca2+ channels in regulating... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | F331 |
SubjectTerms | Animals Arterioles - drug effects Arterioles - physiology Blood Pressure - drug effects Blood Pressure - physiology Calcium Channel Blockers - pharmacology Calcium Channels, T-Type - physiology Diltiazem - pharmacology Dopamine Antagonists - pharmacology Homeostasis - physiology In Vitro Techniques Male Mibefradil - pharmacology Pimozide - pharmacology Potassium Chloride - pharmacology Rats Rats, Sprague-Dawley Renal Circulation - drug effects Renal Circulation - physiology |
Title | T-type calcium channels in the regulation of afferent and efferent arterioles in rats |
URI | https://www.ncbi.nlm.nih.gov/pubmed/14583435 https://www.proquest.com/docview/80081519 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgSIgXBBsf5dMPiBfwoI69JI8TWjehdoDUSn2LbMeRirYEbemk8ddz5690Yny-RI1VJ5Xv1_Od7-53hLyCTV9m1nIGf-qaCWEE06UWGOQtc6lhz5NYjTw73jtaiI9LuYz97kN1Sa93zfdr60r-R6owBnLFKtl_kGx6KAzAZ5AvXEHCcP07GTN3ggrLbFbrU1fE28JeF3MXz3yf-WASKt8JxWeU23SDKZ0YnHezAA7nm-ZqiudsEEy4sxB3GL8LwsHBYWQwLL0KmcHGyA7XXUr7WcXRdAitLnyK9_TNodLgt59cOYcQMXU5qc4yG7NCusb3SbfywHO92vBxvaachEqtn1W4REpY9RUpPcH9cE6Q420ddqwYpT_-VE0W02k1P1jOb5JbPAfzCePyXwbCeDAnxz6xwP-4QDwFL3l3zSuuGie_8Dic5TG_R-4Gl4Hue_nfJzdsu0129lvVd6eX9DX9nJZ_m9yehVyJHbLw6KABHTSig65aCuigAzpo19CIDgrooDbdJHTgLETHA7KYHMw_HLHQRIOZrBz3zKi8MbLWXIMqL0VZm7rgmcmLRoOralSJ-ceNtkhLJG2tTZODi_xeZ6oWe3Vps4dkq-1a-5jQQmmB3ek50kQqg_O1bFSjG27hUWZEeFy9ygSGeWx0clI5T1PyKi555ZYcW6BmI_I2TfrmCVZ-__WXUSwVKEKMbqnWduvzqkDrFvyREXnkpTU8DnMDwC148se5T8mdAdrPyFZ_trbPwejs9QsHqx_AL4ar |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T-type+calcium+channels+in+the+regulation+of+afferent+and+efferent+arterioles+in+rats&rft.jtitle=American+journal+of+physiology.+Renal+physiology&rft.au=Feng%2C+Ming-Guo&rft.au=Li%2C+Ming&rft.au=Navar%2C+L+Gabriel&rft.date=2004-02-01&rft.issn=1931-857X&rft.volume=286&rft.issue=2&rft.spage=F331&rft_id=info:doi/10.1152%2Fajprenal.00251.2003&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-857X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-857X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-857X&client=summon |