Traumatic Brain Injury Structure Detection Using Advanced Wavelet Transformation Fusion Algorithm with Proposed CNN-ViT
Detecting Traumatic Brain Injuries (TBI) through imaging remains challenging due to limited sensitivity in current methods. This study addresses the gap by proposing a novel approach integrating deep-learning algorithms and advanced image-fusion techniques to enhance detection accuracy. The method c...
Saved in:
| Published in | Information (Basel) Vol. 15; no. 10; p. 612 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2078-2489 2078-2489 |
| DOI | 10.3390/info15100612 |
Cover
| Abstract | Detecting Traumatic Brain Injuries (TBI) through imaging remains challenging due to limited sensitivity in current methods. This study addresses the gap by proposing a novel approach integrating deep-learning algorithms and advanced image-fusion techniques to enhance detection accuracy. The method combines contextual and visual models to effectively assess injury status. Using a dataset of repeat mild TBI (mTBI) cases, we compared various image-fusion algorithms: PCA (89.5%), SWT (89.69%), DCT (89.08%), HIS (83.3%), and averaging (80.99%). Our proposed hybrid model achieved a significantly higher accuracy of 98.78%, demonstrating superior performance. Metrics including Dice coefficient (98%), sensitivity (97%), and specificity (98%) verified that the strategy is efficient in improving image quality and feature extraction. Additional validations with “entropy”, “average pixel intensity”, “standard deviation”, “correlation coefficient”, and “edge similarity measure” confirmed the robustness of the fused images. The hybrid CNN-ViT model, integrating curvelet transform features, was trained and validated on a comprehensive dataset of 24 types of brain injuries. The overall accuracy was 99.8%, with precision, recall, and F1-score of 99.8%. The “average PSNR” was 39.0 dB, “SSIM” was 0.99, and MI was 1.0. Cross-validation across five folds proved the model’s “dependability” and “generalizability”. In conclusion, this study introduces a promising method for TBI detection, leveraging advanced image-fusion and deep-learning techniques, significantly enhancing medical imaging and diagnostic capabilities for brain injuries. |
|---|---|
| AbstractList | Detecting Traumatic Brain Injuries (TBI) through imaging remains challenging due to limited sensitivity in current methods. This study addresses the gap by proposing a novel approach integrating deep-learning algorithms and advanced image-fusion techniques to enhance detection accuracy. The method combines contextual and visual models to effectively assess injury status. Using a dataset of repeat mild TBI (mTBI) cases, we compared various image-fusion algorithms: PCA (89.5%), SWT (89.69%), DCT (89.08%), HIS (83.3%), and averaging (80.99%). Our proposed hybrid model achieved a significantly higher accuracy of 98.78%, demonstrating superior performance. Metrics including Dice coefficient (98%), sensitivity (97%), and specificity (98%) verified that the strategy is efficient in improving image quality and feature extraction. Additional validations with “entropy”, “average pixel intensity”, “standard deviation”, “correlation coefficient”, and “edge similarity measure” confirmed the robustness of the fused images. The hybrid CNN-ViT model, integrating curvelet transform features, was trained and validated on a comprehensive dataset of 24 types of brain injuries. The overall accuracy was 99.8%, with precision, recall, and F1-score of 99.8%. The “average PSNR” was 39.0 dB, “SSIM” was 0.99, and MI was 1.0. Cross-validation across five folds proved the model’s “dependability” and “generalizability”. In conclusion, this study introduces a promising method for TBI detection, leveraging advanced image-fusion and deep-learning techniques, significantly enhancing medical imaging and diagnostic capabilities for brain injuries. |
| Audience | Academic |
| Author | Shaukat, Kamran Fatima, Zulaikha Siddique, Ansar Abdullah |
| Author_xml | – sequence: 1 orcidid: 0000-0002-7983-2189 surname: Abdullah fullname: Abdullah – sequence: 2 givenname: Ansar orcidid: 0009-0001-1695-2896 surname: Siddique fullname: Siddique, Ansar – sequence: 3 givenname: Zulaikha orcidid: 0009-0001-6154-1893 surname: Fatima fullname: Fatima, Zulaikha – sequence: 4 givenname: Kamran orcidid: 0000-0003-2174-3383 surname: Shaukat fullname: Shaukat, Kamran |
| BookMark | eNp9kl1rFDEUhgepYK298wcEvHVqvnYmc7muVhdKFVz1MmSSkzXLTLImmS777824xVYQE8gJh_d9OCcnz6szHzxU1UuCrxjr8BvnbSALgnFD6JPqnOJW1JSL7uzR_Vl1mdIOl9W2ggtyXh02UU2jyk6jt1E5j9Z-N8Uj-pLjpPMUAb2DDDq74NHX5PwWLc2d8hoM-q7uYICMCsEnG-JMKarrKc1hOWxDdPnHiA7lRJ9j2IdUXKvb2_qb27yonlo1JLi8jxfV5vr9ZvWxvvn0Yb1a3tSadSTXum3tgtgWNO1Lc6AZ1lx1uKGN6DHl3IjGAu9aoxlwii23xjRaUwDe94JdVOsT1gS1k_voRhWPMignfydC3EoVS_MDSEEVpbpplLWGU4X7jvVcALW0BWMWqrDqE2vye3U8qGH4AyRYzjOQj2dQ9K9O-n0MPydIWe7CFH3pVjJCcbMQHWseVFtVipgBOSo9uqTlUhBeXqHFM-vqH6qyDYxOl49gXcn_ZXh9MugYUopg_1_rL0zbs9E |
| Cites_doi | 10.3233/NRE-2007-22502 10.1007/s11042-023-15913-w 10.1016/j.inffus.2013.12.002 10.1007/s40120-019-00153-8 10.1109/ACCESS.2020.3048315 10.5772/intechopen.72087 10.3390/math12091296 10.1148/rg.2019190076 10.1007/s12652-021-03308-4 10.1007/s11042-022-13691-5 10.36227/techrxiv.171177312.27398605/v1 10.1186/1532-429X-14-66 10.1016/j.procs.2015.10.057 10.1007/s00330-019-06163-2 10.1016/j.inffus.2005.04.003 10.1007/978-3-642-81897-4_4 10.1007/s40273-023-01345-9 10.3389/fneur.2022.791816 10.1109/ICECTECH.2011.5941881 10.1016/j.compbiomed.2014.07.011 10.1038/s41598-024-58665-9 10.1186/s41747-023-00408-y 10.1109/ACCESS.2021.3062484 10.1109/IJCNN.2008.4633897 10.1149/2.056111jes 10.1007/s10462-019-09766-9 10.5604/12303666.1201130 10.1007/s11831-021-09540-7 10.1007/s11263-023-01948-x 10.3390/app13095521 10.1038/s41598-022-05872-x 10.1080/10408340500526766 10.1016/j.nicl.2021.102785 10.1109/SoutheastCon52093.2024.10500161 10.1007/s10462-022-10227-z 10.1016/j.eswa.2021.116087 10.1109/ACCESS.2019.2898111 10.1117/12.3014054 10.1109/TNSRE.2012.2206609 10.1109/ComPE49325.2020.9200017 10.1080/00207454.2022.2095271 10.1103/PhysRevE.69.066138 10.1038/s41598-021-95533-2 10.1109/TBME.2013.2282461 10.1007/978-3-319-63754-9_8 10.1109/ICPR.2010.579 10.20473/jisebi.10.1.70-80 10.1101/306977 10.1016/j.dsp.2023.104020 10.3390/electronics12010097 10.1038/s41568-021-00408-3 10.1109/CSNT.2012.36 10.1109/MMSP.2008.4665041 10.1038/s41598-023-43873-6 10.1186/s12859-020-3503-0 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/info15100612 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2078-2489 |
| ExternalDocumentID | oai_doaj_org_article_82a22c66affd42a0b93b48e2f27edd5a 10.3390/info15100612 A814391702 10_3390_info15100612 |
| GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC XH6 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c391t-c77f51f7ec2b151ec30c4a906268b0244d86fe497dc3e420f4fdd6cc2ee4bb83 |
| IEDL.DBID | DOA |
| ISSN | 2078-2489 |
| IngestDate | Fri Oct 03 12:53:35 EDT 2025 Sun Sep 07 11:25:37 EDT 2025 Sat Jul 26 00:20:32 EDT 2025 Mon Oct 20 22:48:19 EDT 2025 Mon Oct 20 16:59:48 EDT 2025 Thu Oct 16 04:46:31 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-c77f51f7ec2b151ec30c4a906268b0244d86fe497dc3e420f4fdd6cc2ee4bb83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2174-3383 0009-0001-1695-2896 0000-0002-7983-2189 0009-0001-6154-1893 |
| OpenAccessLink | https://doaj.org/article/82a22c66affd42a0b93b48e2f27edd5a |
| PQID | 3120658936 |
| PQPubID | 2032384 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_82a22c66affd42a0b93b48e2f27edd5a unpaywall_primary_10_3390_info15100612 proquest_journals_3120658936 gale_infotracmisc_A814391702 gale_infotracacademiconefile_A814391702 crossref_primary_10_3390_info15100612 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Information (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Fradi (ref_20) 2018; 11 Venkatesan (ref_38) 2023; 82 ref_56 ref_55 ref_10 James (ref_26) 2014; 19 Khan (ref_27) 2021; 9 ref_19 Das (ref_63) 2013; 60 Boehm (ref_30) 2022; 22 Li (ref_5) 2024; 132 ref_16 ref_15 ref_59 ref_60 Basu (ref_8) 2024; 83 ref_25 Bhavana (ref_61) 2015; 70 ref_24 ref_22 Faragallah (ref_39) 2020; 9 Zheng (ref_47) 2007; 8 ref_66 ref_64 ref_62 Wang (ref_23) 2021; 32 Schweitzer (ref_40) 2019; 39 Rahman (ref_12) 2024; 134 Biglands (ref_41) 2012; 14 Bakurov (ref_57) 2022; 189 Ye (ref_21) 2019; 29 Valliani (ref_28) 2019; 8 Asuero (ref_54) 2006; 36 Zhu (ref_65) 2019; 7 Kraskov (ref_58) 2004; 69 Kaur (ref_31) 2021; 28 Prichep (ref_11) 2012; 20 Tsai (ref_50) 2011; 158 ref_35 ref_34 ref_33 Roy (ref_53) 2023; 14 ref_32 Bhatele (ref_29) 2020; 53 Rajalingam (ref_17) 2017; 7 ref_37 Saad (ref_18) 2015; 74 Lewy (ref_43) 2023; 56 Prichep (ref_14) 2014; 53 Li (ref_52) 2016; 4 ref_46 Hyder (ref_1) 2007; 22 Nerma (ref_36) 2009; 3 ref_45 ref_44 Galbusera (ref_42) 2024; 8 Luo (ref_13) 2021; 2021 ref_3 ref_2 ref_49 Alves (ref_51) 2023; 376 ref_48 ref_9 Singh (ref_4) 2023; 137 ref_7 ref_6 |
| References_xml | – volume: 22 start-page: 341 year: 2007 ident: ref_1 article-title: The impact of traumatic brain injuries: A global perspective publication-title: NeuroRehabilitation doi: 10.3233/NRE-2007-22502 – volume: 83 start-page: 15845 year: 2024 ident: ref_8 article-title: A systematic literature review on multimodal medical image fusion publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-023-15913-w – volume: 19 start-page: 4 year: 2014 ident: ref_26 article-title: Medical image fusion: A survey of the state of the art publication-title: Inf. Fusion doi: 10.1016/j.inffus.2013.12.002 – ident: ref_32 – volume: 3 start-page: 14 year: 2009 ident: ref_36 article-title: An OFDM system based on dual tree complex wavelet transform (DT-CWT) publication-title: Signal Process. Int. J. – volume: 8 start-page: 351 year: 2019 ident: ref_28 article-title: Deep learning and neurology: A systematic review publication-title: Neurol. Ther. doi: 10.1007/s40120-019-00153-8 – volume: 9 start-page: 11358 year: 2020 ident: ref_39 article-title: A comprehensive survey analysis for present solutions of medical image fusion and future directions publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3048315 – ident: ref_49 doi: 10.5772/intechopen.72087 – ident: ref_66 doi: 10.3390/math12091296 – volume: 39 start-page: 1571 year: 2019 ident: ref_40 article-title: Traumatic brain injury: Imaging patterns and complications publication-title: Radiographics doi: 10.1148/rg.2019190076 – volume: 14 start-page: 479 year: 2023 ident: ref_53 article-title: Novel edge detection method for nuclei segmentation of liver cancer histopathology images publication-title: J. Ambient. Intell. Humaniz. Comput. doi: 10.1007/s12652-021-03308-4 – volume: 82 start-page: 7361 year: 2023 ident: ref_38 article-title: A review on multimodal medical image fusion towards future research publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-022-13691-5 – ident: ref_35 – ident: ref_37 doi: 10.36227/techrxiv.171177312.27398605/v1 – volume: 14 start-page: 78 year: 2012 ident: ref_41 article-title: Cardiovascular magnetic resonance physics for clinicians: Part II publication-title: J. Cardiovasc. Magn. Reson. doi: 10.1186/1532-429X-14-66 – volume: 70 start-page: 625 year: 2015 ident: ref_61 article-title: Multi-modality medical image fusion using discrete wavelet transform publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.057 – volume: 29 start-page: 6191 year: 2019 ident: ref_21 article-title: Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06163-2 – volume: 8 start-page: 177 year: 2007 ident: ref_47 article-title: A new metric based on extended spatial frequency and its application to DWT based fusion algorithms publication-title: Inf. Fusion doi: 10.1016/j.inffus.2005.04.003 – ident: ref_45 doi: 10.1007/978-3-642-81897-4_4 – ident: ref_3 doi: 10.1007/s40273-023-01345-9 – ident: ref_10 doi: 10.3389/fneur.2022.791816 – ident: ref_59 doi: 10.1109/ICECTECH.2011.5941881 – volume: 53 start-page: 125 year: 2014 ident: ref_14 article-title: Classification algorithms for the identification of structural injury in TBI using brain electrical activity publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2014.07.011 – ident: ref_6 doi: 10.1038/s41598-024-58665-9 – volume: 8 start-page: 11 year: 2024 ident: ref_42 article-title: Image annotation and curation in radiology: An overview for machine learning practitioners publication-title: Eur. Radiol. Exp. doi: 10.1186/s41747-023-00408-y – volume: 9 start-page: 37622 year: 2021 ident: ref_27 article-title: Machine learning and deep learning approaches for brain disease diagnosis: Principles and recent advances publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062484 – ident: ref_55 doi: 10.1109/IJCNN.2008.4633897 – volume: 158 start-page: H1161 year: 2011 ident: ref_50 article-title: Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization publication-title: J. Electrochem. Soc. doi: 10.1149/2.056111jes – volume: 53 start-page: 3349 year: 2020 ident: ref_29 article-title: Brain structural disorders detection and classification approaches: A review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09766-9 – volume: 4 start-page: 45 year: 2016 ident: ref_52 article-title: Real-time segmentation of yarn images based on an FCM algorithm and intensity gradient analysis publication-title: Fibres Text. East. Eur. doi: 10.5604/12303666.1201130 – volume: 7 start-page: 22 year: 2017 ident: ref_17 article-title: Multimodality Medical Image Fusion Based on Hybrid Fusion Techniques publication-title: Int. J. Eng. Manuf. Sci. – volume: 28 start-page: 4425 year: 2021 ident: ref_31 article-title: Image fusion techniques: A survey publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09540-7 – volume: 11 start-page: 9 year: 2018 ident: ref_20 article-title: Improved USCT of Paired Bones Using Wavelet-Based Image Processing publication-title: Int. J. Image Graph. Signal Process. – volume: 132 start-page: 1625 year: 2024 ident: ref_5 article-title: A deep learning framework for infrared and visible image fusion without strict registration publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-023-01948-x – ident: ref_46 doi: 10.3390/app13095521 – ident: ref_25 doi: 10.1038/s41598-022-05872-x – volume: 36 start-page: 41 year: 2006 ident: ref_54 article-title: The correlation coefficient: An overview publication-title: Crit. Rev. Anal. Chem. doi: 10.1080/10408340500526766 – volume: 32 start-page: 102785 year: 2021 ident: ref_23 article-title: A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2021.102785 – volume: 2021 start-page: 3015238 year: 2021 ident: ref_13 article-title: Machine learning classification of mild traumatic brain injury using whole-brain functional activity: A radiomics analysis publication-title: Dis. Mark. – volume: 74 start-page: 6 year: 2015 ident: ref_18 article-title: Review of Brain Lesion Detection and Classification Using Neuroimaging Analysis Techniques publication-title: J. Teknol. – ident: ref_34 doi: 10.1109/SoutheastCon52093.2024.10500161 – volume: 56 start-page: 2111 year: 2023 ident: ref_43 article-title: An overview of mixing augmentation methods and augmentation strategies publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10227-z – volume: 189 start-page: 116087 year: 2022 ident: ref_57 article-title: Structural similarity index (SSIM) revisited: A data-driven approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116087 – volume: 7 start-page: 20811 year: 2019 ident: ref_65 article-title: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2898111 – ident: ref_15 doi: 10.1117/12.3014054 – volume: 20 start-page: 806 year: 2012 ident: ref_11 article-title: Classification of traumatic brain injury severity using informed data reduction in a series of binary classifier algorithms publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2206609 – ident: ref_16 doi: 10.1109/ComPE49325.2020.9200017 – volume: 134 start-page: 163 year: 2024 ident: ref_12 article-title: Binary classification model of machine learning detected altered gut integrity in controlled-cortical impact model of traumatic brain injury publication-title: Int. J. Neurosci. doi: 10.1080/00207454.2022.2095271 – volume: 69 start-page: 66138 year: 2004 ident: ref_58 article-title: Estimating mutual information publication-title: Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.69.066138 – ident: ref_33 – ident: ref_24 doi: 10.1038/s41598-021-95533-2 – volume: 60 start-page: 3347 year: 2013 ident: ref_63 article-title: A neuro-fuzzy approach for medical image fusion publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2282461 – ident: ref_2 – ident: ref_19 doi: 10.1007/978-3-319-63754-9_8 – ident: ref_56 doi: 10.1109/ICPR.2010.579 – ident: ref_62 doi: 10.20473/jisebi.10.1.70-80 – ident: ref_48 doi: 10.1101/306977 – volume: 137 start-page: 104020 year: 2023 ident: ref_4 article-title: A review of image fusion: Methods, applications and performance metrics publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2023.104020 – ident: ref_9 doi: 10.3390/electronics12010097 – volume: 22 start-page: 114 year: 2022 ident: ref_30 article-title: Harnessing multimodal data integration to advance precision oncology publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-021-00408-3 – ident: ref_64 – ident: ref_60 doi: 10.1109/CSNT.2012.36 – ident: ref_44 doi: 10.1109/MMSP.2008.4665041 – volume: 376 start-page: 1263 year: 2023 ident: ref_51 article-title: Entropy formula for systems with inducing schemes publication-title: Trans. Am. Math. Soc. – ident: ref_7 doi: 10.1038/s41598-023-43873-6 – ident: ref_22 doi: 10.1186/s12859-020-3503-0 |
| SSID | ssj0000778481 |
| Score | 2.31577 |
| Snippet | Detecting Traumatic Brain Injuries (TBI) through imaging remains challenging due to limited sensitivity in current methods. This study addresses the gap by... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 612 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Brain Brain research Classification Comparative analysis Correlation coefficients Data mining Datasets Decision making Decision trees Deep learning Disease Head injuries Hemorrhage Image enhancement image fusion Image quality Injuries Injury prevention Machine learning max–min Medical diagnosis Medical imaging Medical imaging equipment Methods Mortality simple average spatial and frequency domain Traumatic brain injury wavelet Wavelet transforms weighted |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AA9IJ5qoKA98DhZtXfXXvuAUFIaFSSsCgL0Zq33UUDBCamjin_PzMYOiZB6tceveew8PPsNwAuLMYFC7Y0wF8gxQfFxpGOrosSgM_JZxuuArv-xzM6-yA8X6cUelP1eGGqr7NfEsFDbuaEa-bFIOHnLQmRvF78jmhpFf1f7ERq6G61g3wSIsVuwzwkZawD749Py_NOm6hIrRfjx6w54gfn-MckRvV5w9Tu-KUD4_79QH8DtVbPQf671bLbliSb34G4XQrLRWub3Yc81D-BgC1jwIVyjC1oFMFY2phkQ7H3zE5nHPge02NXSsXeuDU1YDQtNA2zU9QKwb5pGUbRsuhXRItVkRWU1NppdIlPa778YFXDZOc1YuMKrTsoy-vpj-gimk9PpyVnUjViIjCiSNjJK-TTxyhleIxecEbGRmrCLs7xG9y1tnnknC2WNcJLHXnprqdXaOVnXuXgMg2beuENgufJCKaQqYi0zZ9Ccba29sqlTNk-LIbzseVst1kAaFSYgJINqWwZDGBPjNzQEfx0OzJeXVWdNVc415ybLtPdWch3Xhahl7rjnylmb6iG8JrGFG7dLbXS31wBfleCuqlGe0I5jFePjjnYo0bjM7ule8FVn3FfVP1UcwquNMtz4VU9uvs9TuMOR2-smwSMYoDK4ZxjstPXzToP_An7P_9Q priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF64I1YaJEPBU4piePYzjF9rAoSq0psoZwiP2nLklbbRBX8esZJtspSCbgm48Qez-QbO-NvALYtxgQCrTfCtYDEBYqPIxVbESUGwchzTnXLrv9xyg-P2YeT7GQNtpdnYQb_71Ncjr8LakZQapH4DqzzDCPuEawfT4-Kr6FuHCJcRJnMu5z2W01W0KYl5b_96d2Au011qX5eq_l8gC2TB3Cw7FWXUvJ9p6n1jvn1B2Hjv7r9EO73wSUpOmt4BGuuegwbA8rBJ3CN4NS0NK1kN1SHIO-rc1Qr-dTyyDYLR_Zd3aZnVaRNJyBFnyVAvqhQpKIms0Gsi1KTJmy4kWL-7WJxVp_-IGFrlxyF6gtX2GpvOo0-n82ewmxyMNs7jPriC5FJ86SOjBA-S7xwhmociTNpbJgKrMZcagR2ZiX3juXCmtQxGnvmrQ1J2M4xrWX6DEbVReWeA5HCp0KgVB4rxp1BR7daeWEzJ6zM8jG8Xs5RedlRbJS4NAl6LId6HMNumMAbmUCM3V5AxZe9n5WSKkoN58p7y6iKdZ5qJh31VDhrMzWGt2H62wfXC2VUfwoBuxqIsMpCJuEssojxdZsrkuh2ZvX20oDK3u2vyjShIaTLUz6GNzdG9ddRvfhfwZdwj6Leu0TCTRihWbgtDIhq_ar3h9-PqAe5 priority: 102 providerName: Unpaywall |
| Title | Traumatic Brain Injury Structure Detection Using Advanced Wavelet Transformation Fusion Algorithm with Proposed CNN-ViT |
| URI | https://www.proquest.com/docview/3120658936 https://doi.org/10.3390/info15100612 https://doaj.org/article/82a22c66affd42a0b93b48e2f27edd5a |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: ABDBF dateStart: 20111201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: ADMLS dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: 8FG dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHKAH1PIQC-3KBx6nqInt2M4x23YpiEYruoVyivyEoiWttllV_HvGTlplhVQunKIkTmLPZ3tmnPE3CL22YBMI6L0J-AISHBSfJiq1IskMKCPPOdGRXf-44ken7ONZfjZI9RViwjp64E5we5IoQgznynvLiEp1QTWTjnginLV5NI1SWQycqTgHCxF44rtIdwp-_V7AC7RbVOlrOihS9f89IW-ih6vmUv2-VovFQONMt9Dj3lTEZVfFbXTPNU_Q5oBA8Cm6BlWziqSreBJyPeAPzU8QEj6JrLCrpcMHro3BVg2OwQG47P_5468qpJxo8XxguUKp6Sosn-Fy8f1ied7--IXDQi2ehVwKV_DUflUlX87nz9B8ejjfP0r6VAqJoUXWJkYIn2deOEM0SMEZmhqmAkcxlxrUNLOSe8cKYQ11jKSeeWtDSLVzTGtJn6ON5qJxLxCWwlMhoFSRKsadgWFrtfLC5k5YmRcj9OZGtvVlR5hRg6MRMKiHGIzQJAj-tkyguY4XAPy6B7_-F_gj9C7AFl_cLpVR_Z4CqGqgtapLmYWdxSKFz-2slYRBZNZv3wBf94P4qqYZCQZaQfkIvb3tDHe26uX_aNUr9IgAJl3I4A7agC7jdsH0afUY3ZfT92P0oDw4_nQCx8lhNfs8jn0fzk6rWfntD5xCCM4 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9FB6QDxFoMAeKJys2rtrr32oUNI2SmgbVRCgN2u9j9IqOCFxFPXH8d-Y3TghEVJvvdrjXXtndl6e_QbgvUafQKD0BhgLpBig2DCQoRZBpNAY2SShhUfXP-8n3W_882V8uQV_lmdhXFnlUid6Ra1HyuXID1hEnbXMWPJp_DtwXaPc39VlCw1Zt1bQhx5irD7YcWpu5xjCTQ97x8jvfUo7J4OjblB3GQgUy6IqUELYOLLCKFqg-TOKhYpLB9-bpAVaMK7TxBqeCa2Y4TS03Grtqo2N4UWRMhz2AWxzhhQN2G6f9C--rJI8oRAOrn5RcM9YFh44scFZvGexYQp9x4D_7cIu7MzKsbydy-FwzfB1HsOj2mMlrYWIPYEtUz6F3TUcw2cwR4s389ivpO1aTpBeeYO8Il89OO1sYsixqXzNV0l8jQJp1aUH5Id0nS8qMlhzoJGqM3NZPNIaXiEPqp-_iMsXkwvX0mGKTx31-8H368FzGNzHWr-ARjkqzUsgqbBMCKTKQskTo1B76EJaoWMjdBpnTdhfrm0-XuB25BjvOB7k6zxoQtst_IrGoW37C6PJVV5v3jylklKVJNJazakMi4wVPDXUUmG0jmUTPjq2-YGriVSyPtqAr-rQtfJWGrkDziLE6fY2KHEvq83bS8bntS6Z5v8kvwkfVsJw51e9unucd7DTHZyf5We9_ulreEhx5Rf1iXvQQMEwb9DPqoq3tTQTyO95__wFVTs9WQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGkIAdEF8ThQE-MDhFTWwnTg4IdStlZVBNosBukeOPASppaVNV-9P473jPSUorpN12TRw7ed_Pef49Ql4aiAkkSG8AuUAKCYoLAxUaGUQanJFLElZ4dP1Po-Tki_hwHp_vkD_tWRgsq2xtojfUZqpxj7zLI4beMuNJ1zVlEWf9wdvZ7wA7SOGf1radRi0ip_ZyBenb4s2wD7w-ZGzwbnx8EjQdBgLNs6gKtJQujpy0mhXg-qzmoRYKoXuTtADvJUyaOCsyaTS3goVOOGOw0thaURQph2lvkJsSQdzxkPrg_Xp7J5QSgerrUnvOs7CLAgNr-Jhiywn6XgH_e4Q9cntZztTlSk0mGy5vcI_cbWJV2quF6z7ZseUDsreBYPiQrMDXLT3qKz3CZhN0WP4ELtHPHpZ2Obe0bytf7VVSX51Ae03RAf2msOdFRccboTOMGixx_472JhdA8er7L4o7xfQMmzks4Knj0Sj4-mP8iIyvg9L7ZLeclvYxoal0XEoYlYVKJFaD3TCFctLEVpo0zjrksKVtPqsRO3LIdJAH-SYPOuQICb8egzjb_sJ0fpE3apunTDGmk0Q5ZwRTYZHxQqSWOSatMbHqkNfINj9xNVdaNYca4FURVyvvpREebZYhLHewNRK0WG_fbhmfN1Zkkf-T-Q55tRaGK7_qydXzvCC3QGvyj8PR6VNyhwHh68LEA7ILcmGfQYBVFc-9KFOSX7Pq_AW6YTrz |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF64I1YaJEPBU4piePYzjF9rAoSq0psoZwiP2nLklbbRBX8esZJtspSCbgm48Qez-QbO-NvALYtxgQCrTfCtYDEBYqPIxVbESUGwchzTnXLrv9xyg-P2YeT7GQNtpdnYQb_71Ncjr8LakZQapH4DqzzDCPuEawfT4-Kr6FuHCJcRJnMu5z2W01W0KYl5b_96d2Au011qX5eq_l8gC2TB3Cw7FWXUvJ9p6n1jvn1B2Hjv7r9EO73wSUpOmt4BGuuegwbA8rBJ3CN4NS0NK1kN1SHIO-rc1Qr-dTyyDYLR_Zd3aZnVaRNJyBFnyVAvqhQpKIms0Gsi1KTJmy4kWL-7WJxVp_-IGFrlxyF6gtX2GpvOo0-n82ewmxyMNs7jPriC5FJ86SOjBA-S7xwhmociTNpbJgKrMZcagR2ZiX3juXCmtQxGnvmrQ1J2M4xrWX6DEbVReWeA5HCp0KgVB4rxp1BR7daeWEzJ6zM8jG8Xs5RedlRbJS4NAl6LId6HMNumMAbmUCM3V5AxZe9n5WSKkoN58p7y6iKdZ5qJh31VDhrMzWGt2H62wfXC2VUfwoBuxqIsMpCJuEssojxdZsrkuh2ZvX20oDK3u2vyjShIaTLUz6GNzdG9ddRvfhfwZdwj6Leu0TCTRihWbgtDIhq_ar3h9-PqAe5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Traumatic+Brain+Injury+Structure+Detection+Using+Advanced+Wavelet+Transformation+Fusion+Algorithm+with+Proposed+CNN-ViT&rft.jtitle=Information+%28Basel%29&rft.au=Abdullah&rft.au=Ansar+Siddique&rft.au=Zulaikha+Fatima&rft.au=Kamran+Shaukat&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=15&rft.issue=10&rft.spage=612&rft_id=info:doi/10.3390%2Finfo15100612&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_82a22c66affd42a0b93b48e2f27edd5a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |