A new level set based multi-material topology optimization method using alternating active-phase algorithm
This paper proposes a new level set based multi-material topology optimization method, where a difference-set-based multi-material level set (DS-MMLS) model is developed for topology description and an alternating active-phase algorithm is implemented. Based on the alternating active-phase algorithm...
        Saved in:
      
    
          | Published in | Computer methods in applied mechanics and engineering Vol. 377; p. 113674 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        15.04.2021
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0045-7825 1879-2138  | 
| DOI | 10.1016/j.cma.2021.113674 | 
Cover
| Abstract | This paper proposes a new level set based multi-material topology optimization method, where a difference-set-based multi-material level set (DS-MMLS) model is developed for topology description and an alternating active-phase algorithm is implemented. Based on the alternating active-phase algorithm, a multi-material topology optimization problem with N + 1 phases is split into N(N + 1)/2 binary-phase topology optimization sub-problems. Compared with the initial multi-material problem, each sub-problem involves fewer design variables and volume constraints. In the DS-MMLS model, N + 1 phases are represented by the sequential difference set of N level set functions. Based on this model, the topological evolution of two active phases can be easily achieved by updating a single level set function in a fixed domain, which contributes a great convenience to the implementation of the alternating active-phase algorithm with level set method. Therefore, the proposed method can be easily extended to topology optimization problems with more material phases. To demonstrate its effectiveness, some 2D and 3D numerical examples with different material phases are presented. The results reveal that the proposed method is effective for multi-material topology optimization problems.
•A new level set based multi-material topology optimization method is proposed.•A difference-set-based multi-material level set (DS-MMLS) topology description model is developed.•DS-MMLS model offers a great convenience to execution of alternating active-phase algorithm with level set method.•The proposed method can be easily extended to topology optimization with more material phases.•The effectiveness of the proposed method is well illustrated by several 2D and 3D numerical examples. | 
    
|---|---|
| AbstractList | This paper proposes a new level set based multi-material topology optimization method, where a difference-set-based multi-material level set (DS-MMLS) model is developed for topology description and an alternating active-phase algorithm is implemented. Based on the alternating active-phase algorithm, a multi-material topology optimization problem with N + 1 phases is split into N(N + 1)/2 binary-phase topology optimization sub-problems. Compared with the initial multi-material problem, each sub-problem involves fewer design variables and volume constraints. In the DS-MMLS model, N + 1 phases are represented by the sequential difference set of N level set functions. Based on this model, the topological evolution of two active phases can be easily achieved by updating a single level set function in a fixed domain, which contributes a great convenience to the implementation of the alternating active-phase algorithm with level set method. Therefore, the proposed method can be easily extended to topology optimization problems with more material phases. To demonstrate its effectiveness, some 2D and 3D numerical examples with different material phases are presented. The results reveal that the proposed method is effective for multi-material topology optimization problems.
•A new level set based multi-material topology optimization method is proposed.•A difference-set-based multi-material level set (DS-MMLS) topology description model is developed.•DS-MMLS model offers a great convenience to execution of alternating active-phase algorithm with level set method.•The proposed method can be easily extended to topology optimization with more material phases.•The effectiveness of the proposed method is well illustrated by several 2D and 3D numerical examples. This paper proposes a new level set based multi-material topology optimization method, where a difference-set-based multi-material level set (DS-MMLS) model is developed for topology description and an alternating active-phase algorithm is implemented. Based on the alternating active-phase algorithm, a multi-material topology optimization problem with N + 1 phases is split into N(N + 1)/2 binary-phase topology optimization sub-problems. Compared with the initial multi-material problem, each sub-problem involves fewer design variables and volume constraints. In the DS-MMLS model, N + 1 phases are represented by the sequential difference set of N level set functions. Based on this model, the topological evolution of two active phases can be easily achieved by updating a single level set function in a fixed domain, which contributes a great convenience to the implementation of the alternating active-phase algorithm with level set method. Therefore, the proposed method can be easily extended to topology optimization problems with more material phases. To demonstrate its effectiveness, some 2D and 3D numerical examples with different material phases are presented. The results reveal that the proposed method is effective for multi-material topology optimization problems.  | 
    
| ArticleNumber | 113674 | 
    
| Author | Sha, Wei Gao, Liang Xiao, Mi Zhang, Yan  | 
    
| Author_xml | – sequence: 1 givenname: Wei surname: Sha fullname: Sha, Wei organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China – sequence: 2 givenname: Mi orcidid: 0000-0002-5544-9935 surname: Xiao fullname: Xiao, Mi organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China – sequence: 3 givenname: Liang surname: Gao fullname: Gao, Liang email: gaoliang@mail.hust.edu.cn organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China – sequence: 4 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China  | 
    
| BookMark | eNp9kMtOwzAQRS1UJMrjA9hZYp3iRxynYoUqXhISG1hbjjNpHTlxsN0i-HpcyooFs5mR5p7R3HuKZqMfAaFLShaU0Oq6X5hBLxhhdEEpr2R5hOa0lsuCUV7P0JyQUhSyZuIEncbYk1w1ZXPU3-IRPrCDHTgcIeFGR2jxsHXJFoNOEKx2OPnJO7_-xH5KdrBfOlk_4gHSxrd4G-24xtpl7ZgX-9kku4Ni2uRbebH2wabNcI6OO-0iXPz2M_R2f_e6eiyeXx6eVrfPheFLmgojqGSkMtBWUvCyq7ul1kxwAZpAo0tWlULWjZFN01aU65qUXDJNmrLuGKecn6Grw90p-PctxKR6v82vuaiYoBXjy5KIrJIHlQk-xgCdMjb9-EpBW6coUftgVa9ysGofrDoEm0n6h5yCHXT4_Je5OTCQje8sBBWNhTGbtAFMUq23_9Dfx_eTjA | 
    
| CitedBy_id | crossref_primary_10_1007_s40430_022_03938_5 crossref_primary_10_1016_j_addma_2022_102742 crossref_primary_10_1016_j_cad_2024_103748 crossref_primary_10_3390_mi13070993 crossref_primary_10_1007_s00158_022_03176_2 crossref_primary_10_1016_j_cma_2022_115166 crossref_primary_10_1016_j_compstruct_2024_118387 crossref_primary_10_1142_S175882512450090X crossref_primary_10_1016_j_cma_2024_117086 crossref_primary_10_1142_S0219876224500233 crossref_primary_10_1080_15397734_2024_2411275 crossref_primary_10_1016_j_matdes_2021_109973 crossref_primary_10_1016_j_compstruct_2022_115773 crossref_primary_10_1016_j_ijsolstr_2023_112411 crossref_primary_10_3390_ma17143591 crossref_primary_10_1016_j_cma_2021_114466 crossref_primary_10_1016_j_cma_2023_115957 crossref_primary_10_1016_j_rineng_2024_102491 crossref_primary_10_1016_j_tws_2025_113173 crossref_primary_10_1016_j_cma_2023_116209 crossref_primary_10_1177_13694332221127340 crossref_primary_10_1016_j_matdes_2022_111448 crossref_primary_10_1016_j_cma_2023_116520 crossref_primary_10_1007_s10999_023_09669_2 crossref_primary_10_1016_j_camwa_2025_03_005 crossref_primary_10_1007_s10999_024_09721_9 crossref_primary_10_1007_s11081_023_09806_y crossref_primary_10_1080_17452759_2023_2181192 crossref_primary_10_1007_s00158_022_03379_7 crossref_primary_10_15625_0866_7136_19613 crossref_primary_10_1016_j_mtcomm_2024_109511 crossref_primary_10_1016_j_cma_2024_116839 crossref_primary_10_1016_j_cma_2021_113949 crossref_primary_10_1080_0305215X_2024_2338875  | 
    
| Cites_doi | 10.1007/s00158-016-1513-3 10.1007/s00466-008-0312-0 10.1016/j.cma.2003.10.008 10.1080/03052150903443780 10.1115/1.1909206 10.1002/nme.5714 10.1007/s00158-010-0527-5 10.1016/j.cma.2017.10.011 10.1080/0305215X.2016.1164853 10.1007/s00158-019-02428-y 10.1016/j.cma.2020.113215 10.1002/nme.1259 10.1016/j.advengsoft.2019.102733 10.1016/j.cma.2018.09.040 10.1016/j.cma.2016.08.015 10.1016/j.cma.2014.04.005 10.1007/s001580050176 10.1007/s00366-017-0503-4 10.1002/nme.2478 10.1016/j.compstruc.2009.01.008 10.1002/nme.5697 10.1016/S0022-5096(96)00114-7 10.1016/S0045-7825(02)00559-5 10.1016/S0045-7825(01)00251-1 10.1002/nme.2092 10.1007/s004190050248 10.1016/j.cma.2020.113090 10.1007/s00158-014-1074-2 10.1007/s00158-018-1904-8 10.1007/s00366-017-0540-z 10.1016/j.cma.2006.08.005 10.1016/j.cma.2020.112876 10.1016/j.cma.2017.05.009 10.1016/j.cma.2019.112749 10.1007/s00158-016-1458-6 10.1016/j.apm.2019.10.019 10.1007/s00158-001-0165-z 10.1007/s00158-013-0999-1 10.1016/j.cma.2014.11.002 10.1016/j.apm.2020.01.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Apr 15, 2021  | 
    
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Apr 15, 2021  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1016/j.cma.2021.113674 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Engineering  | 
    
| EISSN | 1879-2138 | 
    
| ExternalDocumentID | 10_1016_j_cma_2021_113674 S0045782521000104  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH  | 
    
| ID | FETCH-LOGICAL-c391t-c517206ced67534f8f9aa2535ea0eba4264578bc7bbd613a804372a0b48f23133 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0045-7825 | 
    
| IngestDate | Fri Jul 25 06:14:42 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Wed Oct 01 05:14:04 EDT 2025 Fri Feb 23 02:47:07 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Topology optimization Alternating active-phase algorithm Difference set Level set Multi-material  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c391t-c517206ced67534f8f9aa2535ea0eba4264578bc7bbd613a804372a0b48f23133 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-5544-9935 | 
    
| PQID | 2516239405 | 
    
| PQPubID | 2045269 | 
    
| ParticipantIDs | proquest_journals_2516239405 crossref_citationtrail_10_1016_j_cma_2021_113674 crossref_primary_10_1016_j_cma_2021_113674 elsevier_sciencedirect_doi_10_1016_j_cma_2021_113674  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-04-15 | 
    
| PublicationDateYYYYMMDD | 2021-04-15 | 
    
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Computer methods in applied mechanics and engineering | 
    
| PublicationYear | 2021 | 
    
| Publisher | Elsevier B.V Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV  | 
    
| References | Gangl (b32) 2020; 366 Bendsøe, Sigmund (b6) 1999; 69 Majdi, Reza (b16) 2020; 234 Wang, Wang, Guo (b39) 2003; 192 Wang, Liao, Ye, Zhang, Li, Xia (b43) 2020; 139 Wang, Luo, Zhang, Wu (b24) 2016; 54 Wei, Wang (b29) 2009 Wang, Xu, Pasini (b42) 2017; 316 Zuo, Saitou (b11) 2017; 55 Wei, Li, Li, Wang (b45) 2018; 58 Wang, Wang (b20) 2004 Stegmann, Lund (b9) 2005; 62 Gao, Zhang (b10) 2012 Cui, Chen, Zhou, Wang (b15) 2017; 33 Sigmund (b1) 2001; 21 Liu, Ma (b28) 2018; 329 Zhuang, Xiong, Ding (b21) 2007; 196 Zhuang, Xiong, Ding (b22) 2010; 42 Wang, Chen, Wang, Mei (b19) 2005; 127 Tavakoli (b13) 2014; 276 Gao, Luo, Xiao, Gao, Li (b36) 2020; 81 Luo, Tong, Kang (b40) 2009; 87 Wang, Luo, Kang, Zhang (b23) 2015; 283 Zheng, Da, Li, Xiao, Gao (b35) 2020; 78 Vermaak, Michailidis, Parry, Estevez, Allaire, Bréchet (b30) 2014; 50 Luo, Wang, Wang, Wei (b41) 2008 Tavakoli, Mohseni (b14) 2014; 49 Cui, Chen, Zhou (b27) 2016; 73 Huang, Xie (b34) 2009; 43 Sigmund (b4) 2001; 190 Zhang, Song, Zhou, Du, Zhu, Sun, Guo (b33) 2018; 113 Gao, Xiao, Gao, Yan, Yan (b37) 2020; 362 Chu, Gao, Xiao, Luo, Li (b26) 2018; 113 Chu, Yang, Xiao, Qiu, Gao, Gao (b2) 2020; 369 Vogiatzis, Chen, Wang, Li, Wang (b31) 2017; 83 Chu, Gao, Xiao, Zhang (b3) 2020; 61 Sigmund, Torquato (b5) 1997; 45 Gao, Zhang (b7) 2010; 42 Wang, Wang (b18) 2004; 193 Lieu, Lee (b38) 2017; 323 Zhang, Xiao, Zhang, Gao (b44) 2020; 361 Chu, Xiao, Gao, Li, Zhang, Zhang (b12) 2019; 346 Yin, Ananthasuresh (b8) 2001; 23 Cui, Zhang, Yang, Luo (b17) 2018; 34 Wang, Gao, Luo, Brown, N (b25) 2017; 49 Yin (10.1016/j.cma.2021.113674_b8) 2001; 23 Sigmund (10.1016/j.cma.2021.113674_b5) 1997; 45 Zhuang (10.1016/j.cma.2021.113674_b22) 2010; 42 Liu (10.1016/j.cma.2021.113674_b28) 2018; 329 Zuo (10.1016/j.cma.2021.113674_b11) 2017; 55 Chu (10.1016/j.cma.2021.113674_b12) 2019; 346 Wang (10.1016/j.cma.2021.113674_b25) 2017; 49 Gangl (10.1016/j.cma.2021.113674_b32) 2020; 366 Chu (10.1016/j.cma.2021.113674_b2) 2020; 369 Gao (10.1016/j.cma.2021.113674_b7) 2010; 42 Cui (10.1016/j.cma.2021.113674_b17) 2018; 34 Chu (10.1016/j.cma.2021.113674_b26) 2018; 113 Huang (10.1016/j.cma.2021.113674_b34) 2009; 43 Stegmann (10.1016/j.cma.2021.113674_b9) 2005; 62 Gao (10.1016/j.cma.2021.113674_b36) 2020; 81 Zhuang (10.1016/j.cma.2021.113674_b21) 2007; 196 Zheng (10.1016/j.cma.2021.113674_b35) 2020; 78 Tavakoli (10.1016/j.cma.2021.113674_b14) 2014; 49 Vermaak (10.1016/j.cma.2021.113674_b30) 2014; 50 Luo (10.1016/j.cma.2021.113674_b40) 2009; 87 Sigmund (10.1016/j.cma.2021.113674_b1) 2001; 21 Wang (10.1016/j.cma.2021.113674_b42) 2017; 316 Tavakoli (10.1016/j.cma.2021.113674_b13) 2014; 276 Sigmund (10.1016/j.cma.2021.113674_b4) 2001; 190 Majdi (10.1016/j.cma.2021.113674_b16) 2020; 234 Wang (10.1016/j.cma.2021.113674_b39) 2003; 192 Luo (10.1016/j.cma.2021.113674_b41) 2008 Gao (10.1016/j.cma.2021.113674_b10) 2012 Zhang (10.1016/j.cma.2021.113674_b44) 2020; 361 Lieu (10.1016/j.cma.2021.113674_b38) 2017; 323 Wang (10.1016/j.cma.2021.113674_b18) 2004; 193 Gao (10.1016/j.cma.2021.113674_b37) 2020; 362 Wang (10.1016/j.cma.2021.113674_b19) 2005; 127 Wang (10.1016/j.cma.2021.113674_b23) 2015; 283 Wang (10.1016/j.cma.2021.113674_b24) 2016; 54 Wang (10.1016/j.cma.2021.113674_b20) 2004 Vogiatzis (10.1016/j.cma.2021.113674_b31) 2017; 83 Zhang (10.1016/j.cma.2021.113674_b33) 2018; 113 Cui (10.1016/j.cma.2021.113674_b27) 2016; 73 Wang (10.1016/j.cma.2021.113674_b43) 2020; 139 Bendsøe (10.1016/j.cma.2021.113674_b6) 1999; 69 Cui (10.1016/j.cma.2021.113674_b15) 2017; 33 Wei (10.1016/j.cma.2021.113674_b29) 2009 Wei (10.1016/j.cma.2021.113674_b45) 2018; 58 Chu (10.1016/j.cma.2021.113674_b3) 2020; 61  | 
    
| References_xml | – volume: 113 start-page: 1653 year: 2018 end-page: 1675 ident: b33 article-title: Topology optimization with multiple materials via moving morphable component (MMC) method publication-title: Internat. J. Numer. Methods Engrg. – volume: 58 start-page: 831 year: 2018 end-page: 849 ident: b45 article-title: An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions publication-title: Struct. Multidiscip. Optim. – volume: 234 start-page: 2631 year: 2020 end-page: 2642 ident: b16 article-title: Multi-material topology optimization of compliant mechanisms via solid isotropic material with penalization approach and alternating active phase algorithm publication-title: Proc. Inst. Mech. Eng. – volume: 362 year: 2020 ident: b37 article-title: Isogeometric topology optimization for computational design of re-entrant and chiral auxetic composites publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 139 year: 2020 ident: b43 article-title: An efficient isogeometric topology optimization using multilevel mesh, MGCG and local-update strategy publication-title: Adv. Eng. Softw. – volume: 190 start-page: 6577 year: 2001 end-page: 6604 ident: b4 article-title: Design of multiphysics actuators using topology optimization - Part II: Two-material structures publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 23 start-page: 49 year: 2001 end-page: 62 ident: b8 article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme publication-title: Struct. Multidiscip. Optim. – volume: 69 start-page: 635 year: 1999 end-page: 654 ident: b6 article-title: Material interpolation schemes in topology optimization publication-title: Arch. Appl. Mech. – volume: 55 start-page: 477 year: 2017 end-page: 491 ident: b11 article-title: Multi-material topology optimization using ordered SIMP interpolation publication-title: Struct. Multidiscip. Optim. – volume: 49 start-page: 22 year: 2017 end-page: 42 ident: b25 article-title: Level set topology optimization for multimaterial and multifunctional mechanical metamaterials publication-title: Eng. Optim. – volume: 42 start-page: 725 year: 2010 end-page: 738 ident: b7 article-title: Topology optimization involving thermo-elastic stress loads publication-title: Struct. Multidiscip. Optim. – start-page: 1102 year: 2012 end-page: 1119 ident: b10 article-title: A mass constraint formulation for structural topology optimization with multiphase materials publication-title: Internat. J. Numer. Methods Engrg. – volume: 196 start-page: 1074 year: 2007 end-page: 1084 ident: b21 article-title: A level set method for topology optimization of heat conduction problem under multiple load cases publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 323 start-page: 272 year: 2017 end-page: 302 ident: b38 article-title: A multi-resolution approach for multi-material topology optimization based on isogeometric analysis publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 49 start-page: 621 year: 2014 end-page: 642 ident: b14 article-title: Alternating active-phase algorithm for multimaterial topology optimization problems: A 115-line MATLAB implementation publication-title: Struct. Multidiscip. Optim. – volume: 33 start-page: 871 year: 2017 end-page: 884 ident: b15 article-title: A meshless method for multi-material topology optimization based on the alternating active-phase algorithm publication-title: Eng. Comput. – volume: 127 start-page: 941 year: 2005 end-page: 956 ident: b19 article-title: Design of multimaterial compliant mechanisms using level-set methods publication-title: J. Mech. Des. Trans. ASME – volume: 73 start-page: 41 year: 2016 end-page: 52 ident: b27 article-title: A level-set based multi-material topology optimization method using a reaction diffusion equation publication-title: Comput. Des. – volume: 283 start-page: 1570 year: 2015 end-page: 1586 ident: b23 article-title: A multi-material level set-based topology and shape optimization method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 81 start-page: 818 year: 2020 end-page: 843 ident: b36 article-title: A NURBS-based multi-material interpolation (N-MMI) for isogeometric topology optimization of structures publication-title: Appl. Math. Model. – volume: 45 start-page: 1037 year: 1997 end-page: 1067 ident: b5 article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method publication-title: J. Mech. Phys. Solids. – volume: 329 start-page: 444 year: 2018 end-page: 463 ident: b28 article-title: A new multi-material level set topology optimization method with the length scale control capability publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 50 start-page: 623 year: 2014 end-page: 644 ident: b30 article-title: Material interface effects on the topology optimization of multi-phase structures using a level set method publication-title: Struct. Multidiscip. Optim. – start-page: 379 year: 2009 end-page: 402 ident: b29 article-title: Piecewise constant level set method for structural topology optimization peng publication-title: Internat. J. Numer. Methods Engrg. – volume: 346 start-page: 1096 year: 2019 end-page: 1117 ident: b12 article-title: Topology optimization of multi-material structures with graded interfaces publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 42 start-page: 811 year: 2010 end-page: 831 ident: b22 article-title: Topology optimization of multi-material for the heat conduction problem based on the level set method publication-title: Eng. Optim. – start-page: 20 year: 2004 ident: b20 article-title: A level-set based variational method for design and optimization of heterogeneous objects publication-title: Comput. Des. – volume: 83 start-page: 15 year: 2017 end-page: 32 ident: b31 article-title: Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method publication-title: Comput. Des. – volume: 78 start-page: 627 year: 2020 end-page: 647 ident: b35 article-title: Robust topology optimization for multi-material structures under interval uncertainty publication-title: Appl. Math. Model. – volume: 276 start-page: 534 year: 2014 end-page: 565 ident: b13 article-title: Multimaterial topology optimization by volume constrained allen-cahn system and regularized projected steepest descent method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 113 start-page: 1021 year: 2018 end-page: 1044 ident: b26 article-title: Stress-based multi-material topology optimization of compliant mechanisms publication-title: Internat. J. Numer. Methods Engrg. – volume: 43 start-page: 393 year: 2009 end-page: 401 ident: b34 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Comput. Mech. – volume: 34 start-page: 287 year: 2018 end-page: 305 ident: b17 article-title: Multi-material proportional topology optimization based on the modified interpolation scheme publication-title: Eng. Comput. – volume: 192 start-page: 227 year: 2003 end-page: 246 ident: b39 article-title: A level set method for structural topology optimization publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 87 start-page: 425 year: 2009 end-page: 434 ident: b40 article-title: A level set method for structural shape and topology optimization using radial basis functions publication-title: Comput. Struct. – volume: 316 start-page: 568 year: 2017 end-page: 585 ident: b42 article-title: Multiscale isogeometric topology optimization for lattice materials publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 193 start-page: 469 year: 2004 end-page: 496 ident: b18 article-title: Color level sets: A multi-phase method for structural topology optimization with multiple materials publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 21 start-page: 120 year: 2001 end-page: 127 ident: b1 article-title: A 99 line topology optimization code written in matlab publication-title: Struct. Multidiscip. Optim. – volume: 61 start-page: 1473 year: 2020 end-page: 1494 ident: b3 article-title: Multiscale topology optimization for coated structures with multifarious-microstructural infill publication-title: Struct. Multidiscip. Optim. – volume: 369 year: 2020 ident: b2 article-title: Explicit topology optimization of novel polyline-based core sandwich structures using surrogate-assisted evolutionary algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – start-page: 1 year: 2008 end-page: 26 ident: b41 article-title: A level set-based parameterization method for structural shape and topology optimization publication-title: Internat. J. Numer. Methods Engrg. – volume: 62 start-page: 2009 year: 2005 end-page: 2027 ident: b9 article-title: Discrete material optimization of general composite shell structures publication-title: Internat. J. Numer. Methods Engrg. – volume: 54 start-page: 937 year: 2016 end-page: 952 ident: b24 article-title: Topological design for mechanical metamaterials using a multiphase level set method publication-title: Struct. Multidiscip. Optim. – volume: 366 year: 2020 ident: b32 article-title: A multi-material topology optimization algorithm based on the topological derivative publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 361 year: 2020 ident: b44 article-title: Topological design of sandwich structures with graded cellular cores by multiscale optimization publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 55 start-page: 477 year: 2017 ident: 10.1016/j.cma.2021.113674_b11 article-title: Multi-material topology optimization using ordered SIMP interpolation publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1513-3 – volume: 43 start-page: 393 year: 2009 ident: 10.1016/j.cma.2021.113674_b34 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Comput. Mech. doi: 10.1007/s00466-008-0312-0 – volume: 193 start-page: 469 year: 2004 ident: 10.1016/j.cma.2021.113674_b18 article-title: Color level sets: A multi-phase method for structural topology optimization with multiple materials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2003.10.008 – volume: 42 start-page: 811 year: 2010 ident: 10.1016/j.cma.2021.113674_b22 article-title: Topology optimization of multi-material for the heat conduction problem based on the level set method publication-title: Eng. Optim. doi: 10.1080/03052150903443780 – volume: 127 start-page: 941 year: 2005 ident: 10.1016/j.cma.2021.113674_b19 article-title: Design of multimaterial compliant mechanisms using level-set methods publication-title: J. Mech. Des. Trans. ASME doi: 10.1115/1.1909206 – volume: 113 start-page: 1653 year: 2018 ident: 10.1016/j.cma.2021.113674_b33 article-title: Topology optimization with multiple materials via moving morphable component (MMC) method publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.5714 – volume: 42 start-page: 725 year: 2010 ident: 10.1016/j.cma.2021.113674_b7 article-title: Topology optimization involving thermo-elastic stress loads publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0527-5 – volume: 329 start-page: 444 year: 2018 ident: 10.1016/j.cma.2021.113674_b28 article-title: A new multi-material level set topology optimization method with the length scale control capability publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2017.10.011 – volume: 49 start-page: 22 year: 2017 ident: 10.1016/j.cma.2021.113674_b25 article-title: Level set topology optimization for multimaterial and multifunctional mechanical metamaterials publication-title: Eng. Optim. doi: 10.1080/0305215X.2016.1164853 – volume: 61 start-page: 1473 year: 2020 ident: 10.1016/j.cma.2021.113674_b3 article-title: Multiscale topology optimization for coated structures with multifarious-microstructural infill publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02428-y – volume: 369 year: 2020 ident: 10.1016/j.cma.2021.113674_b2 article-title: Explicit topology optimization of novel polyline-based core sandwich structures using surrogate-assisted evolutionary algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113215 – volume: 62 start-page: 2009 year: 2005 ident: 10.1016/j.cma.2021.113674_b9 article-title: Discrete material optimization of general composite shell structures publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1259 – volume: 139 year: 2020 ident: 10.1016/j.cma.2021.113674_b43 article-title: An efficient isogeometric topology optimization using multilevel mesh, MGCG and local-update strategy publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2019.102733 – volume: 346 start-page: 1096 year: 2019 ident: 10.1016/j.cma.2021.113674_b12 article-title: Topology optimization of multi-material structures with graded interfaces publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.09.040 – volume: 316 start-page: 568 year: 2017 ident: 10.1016/j.cma.2021.113674_b42 article-title: Multiscale isogeometric topology optimization for lattice materials publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2016.08.015 – volume: 276 start-page: 534 year: 2014 ident: 10.1016/j.cma.2021.113674_b13 article-title: Multimaterial topology optimization by volume constrained allen-cahn system and regularized projected steepest descent method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.04.005 – volume: 21 start-page: 120 year: 2001 ident: 10.1016/j.cma.2021.113674_b1 article-title: A 99 line topology optimization code written in matlab publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s001580050176 – volume: 33 start-page: 871 year: 2017 ident: 10.1016/j.cma.2021.113674_b15 article-title: A meshless method for multi-material topology optimization based on the alternating active-phase algorithm publication-title: Eng. Comput. doi: 10.1007/s00366-017-0503-4 – start-page: 379 year: 2009 ident: 10.1016/j.cma.2021.113674_b29 article-title: Piecewise constant level set method for structural topology optimization peng publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2478 – volume: 87 start-page: 425 year: 2009 ident: 10.1016/j.cma.2021.113674_b40 article-title: A level set method for structural shape and topology optimization using radial basis functions publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2009.01.008 – volume: 113 start-page: 1021 year: 2018 ident: 10.1016/j.cma.2021.113674_b26 article-title: Stress-based multi-material topology optimization of compliant mechanisms publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.5697 – volume: 45 start-page: 1037 year: 1997 ident: 10.1016/j.cma.2021.113674_b5 article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method publication-title: J. Mech. Phys. Solids. doi: 10.1016/S0022-5096(96)00114-7 – volume: 192 start-page: 227 year: 2003 ident: 10.1016/j.cma.2021.113674_b39 article-title: A level set method for structural topology optimization publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(02)00559-5 – volume: 190 start-page: 6577 year: 2001 ident: 10.1016/j.cma.2021.113674_b4 article-title: Design of multiphysics actuators using topology optimization - Part II: Two-material structures publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(01)00251-1 – volume: 234 start-page: 2631 year: 2020 ident: 10.1016/j.cma.2021.113674_b16 article-title: Multi-material topology optimization of compliant mechanisms via solid isotropic material with penalization approach and alternating active phase algorithm publication-title: Proc. Inst. Mech. Eng. – start-page: 1 year: 2008 ident: 10.1016/j.cma.2021.113674_b41 article-title: A level set-based parameterization method for structural shape and topology optimization publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2092 – volume: 69 start-page: 635 year: 1999 ident: 10.1016/j.cma.2021.113674_b6 article-title: Material interpolation schemes in topology optimization publication-title: Arch. Appl. Mech. doi: 10.1007/s004190050248 – start-page: 1102 year: 2012 ident: 10.1016/j.cma.2021.113674_b10 article-title: A mass constraint formulation for structural topology optimization with multiphase materials publication-title: Internat. J. Numer. Methods Engrg. – volume: 366 year: 2020 ident: 10.1016/j.cma.2021.113674_b32 article-title: A multi-material topology optimization algorithm based on the topological derivative publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113090 – volume: 50 start-page: 623 year: 2014 ident: 10.1016/j.cma.2021.113674_b30 article-title: Material interface effects on the topology optimization of multi-phase structures using a level set method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1074-2 – volume: 58 start-page: 831 year: 2018 ident: 10.1016/j.cma.2021.113674_b45 article-title: An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-018-1904-8 – start-page: 20 year: 2004 ident: 10.1016/j.cma.2021.113674_b20 article-title: A level-set based variational method for design and optimization of heterogeneous objects publication-title: Comput. Des. – volume: 34 start-page: 287 year: 2018 ident: 10.1016/j.cma.2021.113674_b17 article-title: Multi-material proportional topology optimization based on the modified interpolation scheme publication-title: Eng. Comput. doi: 10.1007/s00366-017-0540-z – volume: 196 start-page: 1074 year: 2007 ident: 10.1016/j.cma.2021.113674_b21 article-title: A level set method for topology optimization of heat conduction problem under multiple load cases publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2006.08.005 – volume: 73 start-page: 41 year: 2016 ident: 10.1016/j.cma.2021.113674_b27 article-title: A level-set based multi-material topology optimization method using a reaction diffusion equation publication-title: Comput. Des. – volume: 362 year: 2020 ident: 10.1016/j.cma.2021.113674_b37 article-title: Isogeometric topology optimization for computational design of re-entrant and chiral auxetic composites publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.112876 – volume: 323 start-page: 272 year: 2017 ident: 10.1016/j.cma.2021.113674_b38 article-title: A multi-resolution approach for multi-material topology optimization based on isogeometric analysis publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2017.05.009 – volume: 83 start-page: 15 year: 2017 ident: 10.1016/j.cma.2021.113674_b31 article-title: Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method publication-title: Comput. Des. – volume: 361 year: 2020 ident: 10.1016/j.cma.2021.113674_b44 article-title: Topological design of sandwich structures with graded cellular cores by multiscale optimization publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112749 – volume: 54 start-page: 937 year: 2016 ident: 10.1016/j.cma.2021.113674_b24 article-title: Topological design for mechanical metamaterials using a multiphase level set method publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1458-6 – volume: 78 start-page: 627 year: 2020 ident: 10.1016/j.cma.2021.113674_b35 article-title: Robust topology optimization for multi-material structures under interval uncertainty publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2019.10.019 – volume: 23 start-page: 49 year: 2001 ident: 10.1016/j.cma.2021.113674_b8 article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-001-0165-z – volume: 49 start-page: 621 year: 2014 ident: 10.1016/j.cma.2021.113674_b14 article-title: Alternating active-phase algorithm for multimaterial topology optimization problems: A 115-line MATLAB implementation publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0999-1 – volume: 283 start-page: 1570 year: 2015 ident: 10.1016/j.cma.2021.113674_b23 article-title: A multi-material level set-based topology and shape optimization method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.11.002 – volume: 81 start-page: 818 year: 2020 ident: 10.1016/j.cma.2021.113674_b36 article-title: A NURBS-based multi-material interpolation (N-MMI) for isogeometric topology optimization of structures publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.01.006  | 
    
| SSID | ssj0000812 | 
    
| Score | 2.5208888 | 
    
| Snippet | This paper proposes a new level set based multi-material topology optimization method, where a difference-set-based multi-material level set (DS-MMLS) model is... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 113674 | 
    
| SubjectTerms | Algorithms Alternating active-phase algorithm Constraint modelling Difference set Level set Multi-material Optimization Phases Topology optimization  | 
    
| Title | A new level set based multi-material topology optimization method using alternating active-phase algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.cma.2021.113674 https://www.proquest.com/docview/2516239405  | 
    
| Volume | 377 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2138 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AKRWK dateStart: 19720601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AolMoDE5JpHnaSjlVFVUB0olI3K06cPtSX2jCw8Nu5cxxeEh3Y8rIV-Zz7Psd33xFy4yeOnwKvYIDNsEDJdMiUyEKWeiIFAOSBZxKFnwdBf8gfR2JUId0yFwbDKq3vL3y68db2SsuOZms9nWKOL0ctdsAfx6jMYAY7D7GKwd37V5gHQF6hGM4Fw6fLnU0T45UY6SHPNZVNQv4XNv3y0gZ6esfk0HJG2ile64RU9LJGjix_pPbr3NbIwTdxwVMy61CgzHSOUUF0q3OKgJVSE0HIgKeaqUfzokjCG12B71jYpExa1JWmGBQ_pmZDHX8a4rFxj2w9gb7gxni1meaTxRkZ9u5fun1mKyuwxG-7OUsE8BYngDGG9YLPsyhrx7EnfKFjR6sYWRIMrUpCpVLA-zhCBSQvdhSPMiCEvn9OqsvVUl8QCgvcULm-jnSCGzWRit0gctIUaGCISjx14pRjKhMrO47VL-ayjC-bSTCDRDPIwgx1cvvZZF1obux6mJeGkj8mjgRM2NWsURpV2q92K4HrBaZUvLj8X69XZB_PcLfJFQ1SzTev-hpIS66aZlY2yV7n4ak_-ACfVenH | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBRwFRnh6YkAx52Ek6IkRVnhNIbFacOLQVtFUbBhZ-O3eOw0uiA1sUPxT57Ps-x-fvAI7CzAtz5BUcsRk3KIWJuZZFzPNA5giAIgrsReHbu6j7IK4e5eMcnNd3YSis0vn-yqdbb-3enLrRPB33-3THV5AWO-KPZ1Vm5mFByCCmHdjJ-1ecB2JeJRkuJKfq9dGmDfLKrPZQ4NvUJrH4C5x-uWmLPZ01WHGkkZ1V37UOc2bYhFVHIJlbntMmLH9TF9yAwRlDzsyeKSyITU3JCLFyZkMIORJVO_dYWWVJeGMjdB4v7lYmqxJLM4qKf2L2RJ3-GtKz9Y983MO-sOBpNOmXvZdNeOhc3J93uUutwLOw7Zc8k0hcvAgHGTcMoSiSop2mgQylST2jU6JJOLY6i7XOEfDThCSQgtTTIimQEYbhFjSGo6HZBoY73Fj7oUlMRic1iU79KPHyHHlgTFI8LfDqMVWZ0x2n9BfPqg4wGyg0gyIzqMoMLTj-bDKuRDdmVRa1odSPmaMQFGY126uNqtyynSoke5HNFS93_tfrISx2729v1M3l3fUuLFEJHT35cg8a5eTV7CODKfWBnaEfFybrXA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+level+set+based+multi-material+topology+optimization+method+using+alternating+active-phase+algorithm&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Sha%2C+Wei&rft.au=Xiao%2C+Mi&rft.au=Gao%2C+Liang&rft.au=Zhang%2C+Yan&rft.date=2021-04-15&rft.issn=0045-7825&rft.volume=377&rft.spage=113674&rft_id=info:doi/10.1016%2Fj.cma.2021.113674&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2021_113674 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |