Metal-free three-dimensional perovskite ferroelectrics
The perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building perovskites out of only organic compounds is appealing because these materials tend to be flexible, fracture-resistant, and potentially easier to sy...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 361; no. 6398; pp. 151 - 155 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
13.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.aas9330 |
Cover
Abstract | The perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building perovskites out of only organic compounds is appealing because these materials tend to be flexible, fracture-resistant, and potentially easier to synthesize than their inorganic counterparts. Ye
et al.
describe a previously unknown family of all-organic perovskites, of which they synthesized 23 different family members (see the Perspective by Li and Ji). The compounds are attractive as ferroelectrics, including one compound with properties close to the well-known inorganic ferroelectric BaTiO
3
.
Science
, this issue p.
151
; see also p.
132
A family of all-organic perovskites has attractive ferroelectric properties.
Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (
N
-methyl-
N'
-diazabicyclo[2.2.2]octonium)–ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications. |
---|---|
AbstractList | Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (
-methyl-
-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications. Perovskites go organicThe perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building perovskites out of only organic compounds is appealing because these materials tend to be flexible, fracture-resistant, and potentially easier to synthesize than their inorganic counterparts. Ye et al. describe a previously unknown family of all-organic perovskites, of which they synthesized 23 different family members (see the Perspective by Li and Ji). The compounds are attractive as ferroelectrics, including one compound with properties close to the well-known inorganic ferroelectric BaTiO3.Science, this issue p. 151; see also p. 132Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (N-methyl-N'-diazabicyclo[2.2.2]octonium)–ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications. The perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building perovskites out of only organic compounds is appealing because these materials tend to be flexible, fracture-resistant, and potentially easier to synthesize than their inorganic counterparts. Ye et al. describe a previously unknown family of all-organic perovskites, of which they synthesized 23 different family members (see the Perspective by Li and Ji). The compounds are attractive as ferroelectrics, including one compound with properties close to the well-known inorganic ferroelectric BaTiO 3 . Science , this issue p. 151 ; see also p. 132 A family of all-organic perovskites has attractive ferroelectric properties. Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO ( N -methyl- N' -diazabicyclo[2.2.2]octonium)–ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications. Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (N-methyl-N'-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (N-methyl-N'-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications. |
Author | Ye, Heng-Yun Gao, Ji-Xing Xiong, Ren-Gen Tang, Yuan-Yuan Hua, Xiu-Ni Liao, Wei-Qiang You, Yu-Meng Li, Peng-Fei Shi, Ping-Ping Cai, Hu |
Author_xml | – sequence: 1 givenname: Heng-Yun orcidid: 0000-0003-2276-6886 surname: Ye fullname: Ye, Heng-Yun organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China – sequence: 2 givenname: Yuan-Yuan orcidid: 0000-0002-8369-572X surname: Tang fullname: Tang, Yuan-Yuan organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China – sequence: 3 givenname: Peng-Fei orcidid: 0000-0001-5228-6192 surname: Li fullname: Li, Peng-Fei organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China – sequence: 4 givenname: Wei-Qiang orcidid: 0000-0002-5359-7037 surname: Liao fullname: Liao, Wei-Qiang organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China., Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P.R. China – sequence: 5 givenname: Ji-Xing surname: Gao fullname: Gao, Ji-Xing organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China – sequence: 6 givenname: Xiu-Ni surname: Hua fullname: Hua, Xiu-Ni organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China – sequence: 7 givenname: Hu surname: Cai fullname: Cai, Hu organization: Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P.R. China – sequence: 8 givenname: Ping-Ping surname: Shi fullname: Shi, Ping-Ping organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China., Institute for Advanced Interdisciplinary Research, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R. China – sequence: 9 givenname: Yu-Meng orcidid: 0000-0002-4258-8733 surname: You fullname: You, Yu-Meng organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China – sequence: 10 givenname: Ren-Gen orcidid: 0000-0003-2364-0193 surname: Xiong fullname: Xiong, Ren-Gen organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China., Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P.R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30002249$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtLAzEQh4NU7EPP3qTgxcu2eWzS5CjFF1S86Dlk01lM3d3UJCv435vS9lLwkoTJ9xtmvjEadL4DhK4JnhFCxTxaB52FmTFRMYbP0IhgxQtFMRugEcZMFBIv-BCNY9xgnP8Uu0BDlp-UlmqExCsk0xR1AJimz3wWa9dCF53vTDPdQvA_8cslmNYQgocGbArOxkt0XpsmwtXhnqCPx4f35XOxent6Wd6vCssUSUXFiMSW4pKpUvC6JKriFcjKrMFaoSzllgoquZRUUc4VFsaUxOwqRtK6ZhN0t--7Df67h5h066KFpjEd-D5qiheYlkwIktHbE3Tj-5C32FFCqjwK55m6OVB91cJab4NrTfjVRyMZ4HvABh9jgFpbl0zKPlIwrtEE6515fTCvD-Zzbn6SO7b-L_EHV2OHKw |
CitedBy_id | crossref_primary_10_1002_ange_202213927 crossref_primary_10_1002_ange_202206034 crossref_primary_10_1016_j_ccr_2021_214337 crossref_primary_10_1002_anie_201908945 crossref_primary_10_1126_science_aat5729 crossref_primary_10_1021_acs_chemrev_0c00033 crossref_primary_10_1039_D2NJ00642A crossref_primary_10_1039_C9SC03378E crossref_primary_10_1016_j_cjsc_2024_100358 crossref_primary_10_1039_C9CC03485D crossref_primary_10_1002_ange_202407934 crossref_primary_10_1039_C9QI01197H crossref_primary_10_1039_D3CP05406C crossref_primary_10_1039_D4QI00272E crossref_primary_10_1126_science_abc4727 crossref_primary_10_1038_s41467_022_34819_z crossref_primary_10_1039_D1TC01261D crossref_primary_10_7566_JPSJ_89_051009 crossref_primary_10_1021_jacs_2c07434 crossref_primary_10_1039_D3TC02309E crossref_primary_10_1088_1361_648X_ab420d crossref_primary_10_1002_cnma_202200390 crossref_primary_10_1002_anie_202015219 crossref_primary_10_1016_j_enmf_2020_12_003 crossref_primary_10_1088_2053_1591_abf0bd crossref_primary_10_1039_D0TA09618K crossref_primary_10_3390_cryst14060497 crossref_primary_10_1002_adma_202105071 crossref_primary_10_1002_ejic_201801293 crossref_primary_10_1021_jacs_0c06048 crossref_primary_10_1021_jacs_9b12368 crossref_primary_10_1039_D2CP02826C crossref_primary_10_1016_j_trechm_2021_09_010 crossref_primary_10_1016_j_jssc_2019_121045 crossref_primary_10_1016_j_matt_2021_05_018 crossref_primary_10_1002_anie_202207198 crossref_primary_10_1016_j_pmatsci_2025_101434 crossref_primary_10_3390_cryst14110978 crossref_primary_10_1002_adma_202405363 crossref_primary_10_1016_j_mser_2024_100817 crossref_primary_10_1021_jacs_8b13827 crossref_primary_10_1002_solr_202300786 crossref_primary_10_1039_D0TC04386A crossref_primary_10_1073_pnas_2013934117 crossref_primary_10_1021_acs_nanolett_1c00395 crossref_primary_10_1126_sciadv_aay4213 crossref_primary_10_1038_s41467_019_11657_0 crossref_primary_10_1093_nsr_nwac240 crossref_primary_10_1063_5_0034475 crossref_primary_10_1126_science_aav3057 crossref_primary_10_1021_jacs_3c09395 crossref_primary_10_1039_D3TA01749D crossref_primary_10_1039_C8CC07311B crossref_primary_10_1021_jacs_1c11000 crossref_primary_10_1039_C8CC07468B crossref_primary_10_1021_jacs_0c06064 crossref_primary_10_1039_D2QI00369D crossref_primary_10_1021_acs_cgd_2c00780 crossref_primary_10_1016_j_mtcomm_2023_107939 crossref_primary_10_1021_acs_chemmater_2c02211 crossref_primary_10_1002_asia_201901265 crossref_primary_10_1021_acsenergylett_0c01867 crossref_primary_10_1002_ange_202218349 crossref_primary_10_1021_acs_chemmater_3c00708 crossref_primary_10_1039_D2TA02207A crossref_primary_10_1021_jacs_0c10686 crossref_primary_10_1002_adma_201806736 crossref_primary_10_1016_j_molstruc_2023_135772 crossref_primary_10_1039_C8TC03517B crossref_primary_10_1039_D2MH01296K crossref_primary_10_1002_adma_202211584 crossref_primary_10_1002_adma_202307518 crossref_primary_10_1002_anie_202000290 crossref_primary_10_1002_adma_202308726 crossref_primary_10_1021_acs_inorgchem_3c00998 crossref_primary_10_1039_D0CP06060G crossref_primary_10_1002_ejic_202100671 crossref_primary_10_1002_anie_201914193 crossref_primary_10_1021_acs_jpclett_1c00315 crossref_primary_10_1002_anie_201916254 crossref_primary_10_1038_s41467_024_52207_7 crossref_primary_10_1038_s41598_023_34923_0 crossref_primary_10_1002_asia_201801853 crossref_primary_10_1002_chem_202403362 crossref_primary_10_1002_cjoc_202300640 crossref_primary_10_1021_acs_jpclett_9b03556 crossref_primary_10_1002_asia_202000241 crossref_primary_10_1021_acs_chemmater_1c04086 crossref_primary_10_54097_hset_v27i_3804 crossref_primary_10_1063_5_0160032 crossref_primary_10_1021_acsaelm_0c00192 crossref_primary_10_1063_5_0025400 crossref_primary_10_1002_anie_202407934 crossref_primary_10_1021_jacsau_2c00353 crossref_primary_10_1002_ejic_202200673 crossref_primary_10_1021_acsomega_2c00878 crossref_primary_10_1039_D0TC00881H crossref_primary_10_1002_adfm_202307896 crossref_primary_10_1002_adom_201900350 crossref_primary_10_1007_s40843_023_2815_x crossref_primary_10_1038_s41524_021_00599_1 crossref_primary_10_1088_1674_1056_ad5af0 crossref_primary_10_1038_s41524_019_0157_4 crossref_primary_10_1039_C9TC00663J crossref_primary_10_1002_smll_202300892 crossref_primary_10_1002_smtd_202000149 crossref_primary_10_1016_j_nanoen_2023_109101 crossref_primary_10_1002_adma_202003353 crossref_primary_10_1088_1361_6463_abb047 crossref_primary_10_1088_1361_6463_ac2867 crossref_primary_10_1021_jacs_0c02924 crossref_primary_10_1016_j_bioactmat_2022_10_003 crossref_primary_10_1038_s41427_022_00395_3 crossref_primary_10_1039_D0TC00688B crossref_primary_10_1002_ange_202208514 crossref_primary_10_1016_j_jssc_2020_121338 crossref_primary_10_1038_s41467_022_34356_9 crossref_primary_10_1002_ange_202301404 crossref_primary_10_1002_ange_202404202 crossref_primary_10_1002_adom_202301342 crossref_primary_10_1016_j_inoche_2022_110211 crossref_primary_10_1002_aelm_202100635 crossref_primary_10_1002_ange_202000290 crossref_primary_10_1021_acs_chemmater_8b03377 crossref_primary_10_1038_s41578_018_0043_6 crossref_primary_10_1016_j_xinn_2021_100204 crossref_primary_10_1002_ange_201910143 crossref_primary_10_1021_acsami_1c08417 crossref_primary_10_1063_5_0020290 crossref_primary_10_1002_adma_201906224 crossref_primary_10_1107_S2052252522008673 crossref_primary_10_1039_D0TC04813E crossref_primary_10_1063_5_0137254 crossref_primary_10_1016_j_cjsc_2024_100426 crossref_primary_10_1002_anie_202404202 crossref_primary_10_1021_jacs_9b11697 crossref_primary_10_1021_jacs_8b11222 crossref_primary_10_1002_anie_202301404 crossref_primary_10_3390_ma15238397 crossref_primary_10_1126_science_aaz2795 crossref_primary_10_1002_smll_201803825 crossref_primary_10_1021_jacs_2c08667 crossref_primary_10_1021_acs_cgd_2c00854 crossref_primary_10_3390_nano14080662 crossref_primary_10_1021_acsami_0c19507 crossref_primary_10_1002_smll_202006021 crossref_primary_10_3390_cryst9040207 crossref_primary_10_1039_D4MH00574K crossref_primary_10_1039_D0RA03968C crossref_primary_10_1039_C9DT02045D crossref_primary_10_1039_D3DT01574B crossref_primary_10_1039_D4SC06620K crossref_primary_10_1039_D3TC01835K crossref_primary_10_1039_D1QI00736J crossref_primary_10_1021_acs_accounts_8b00677 crossref_primary_10_1021_acs_energyfuels_2c01868 crossref_primary_10_1021_acsphotonics_3c00918 crossref_primary_10_1557_s43578_022_00848_z crossref_primary_10_1002_ange_202102107 crossref_primary_10_7498_aps_69_20200980 crossref_primary_10_1002_crat_201900011 crossref_primary_10_1021_jacs_9b13291 crossref_primary_10_1021_acs_cgd_2c00962 crossref_primary_10_1021_acs_cgd_3c00713 crossref_primary_10_1080_1539445X_2019_1653911 crossref_primary_10_1107_S2052520620011439 crossref_primary_10_3390_micro4020014 crossref_primary_10_1021_jacs_0c00315 crossref_primary_10_1039_D1SC04617A crossref_primary_10_1021_acsenergylett_0c00039 crossref_primary_10_1021_acs_jpcc_2c03060 crossref_primary_10_1002_ange_201914193 crossref_primary_10_1039_C9RA06489C crossref_primary_10_1039_D1CS00858G crossref_primary_10_1002_ange_201916254 crossref_primary_10_1021_jacs_3c08794 crossref_primary_10_1080_15567036_2020_1805047 crossref_primary_10_1021_acsmaterialslett_2c00331 crossref_primary_10_1002_aenm_202003331 crossref_primary_10_1038_s41570_022_00399_1 crossref_primary_10_1016_j_commatsci_2024_112894 crossref_primary_10_1016_j_mattod_2019_09_004 crossref_primary_10_1039_D2DT00506A crossref_primary_10_1016_j_jallcom_2024_178077 crossref_primary_10_1039_D2NJ03613D crossref_primary_10_1021_jacs_2c05063 crossref_primary_10_1080_14686996_2024_2418282 crossref_primary_10_1002_adfm_202100205 crossref_primary_10_1021_acs_jpcc_1c03291 crossref_primary_10_1021_acs_nanolett_2c02071 crossref_primary_10_1021_jacs_0c09288 crossref_primary_10_1063_5_0040984 crossref_primary_10_1021_acs_jpclett_4c03050 crossref_primary_10_1016_j_apmt_2020_100687 crossref_primary_10_1021_jacs_8b12102 crossref_primary_10_1039_D2CE00848C crossref_primary_10_1016_j_cjsc_2023_100212 crossref_primary_10_1002_ange_202207198 crossref_primary_10_1021_jacsau_1c00014 crossref_primary_10_1002_ange_202306732 crossref_primary_10_1038_s41467_021_24941_9 crossref_primary_10_1002_adma_201808088 crossref_primary_10_1021_acs_jpcc_2c05577 crossref_primary_10_1002_ange_201805625 crossref_primary_10_1002_anie_202217910 crossref_primary_10_1002_adma_202413020 crossref_primary_10_1039_D3CC00969F crossref_primary_10_1063_5_0186789 crossref_primary_10_1002_advs_202003074 crossref_primary_10_1039_C8CE01350K crossref_primary_10_1002_ange_202008494 crossref_primary_10_1021_acs_jpclett_8b03837 crossref_primary_10_1016_j_mtchem_2023_101486 crossref_primary_10_1039_D1DT03948B crossref_primary_10_1007_s12598_023_02319_8 crossref_primary_10_1016_j_ccr_2022_214663 crossref_primary_10_1021_acs_jpcc_9b03866 crossref_primary_10_1007_s12598_023_02602_8 crossref_primary_10_1039_D0TC05380E crossref_primary_10_1098_rsos_200271 crossref_primary_10_1007_s40843_024_2931_3 crossref_primary_10_1039_D0CC01877E crossref_primary_10_1002_anie_202309600 crossref_primary_10_1016_j_nanoms_2019_10_004 crossref_primary_10_1103_PhysRevB_106_235410 crossref_primary_10_1002_anie_202007660 crossref_primary_10_1039_C8QI00793D crossref_primary_10_1039_C9CC09238B crossref_primary_10_1002_adma_202006368 crossref_primary_10_1126_sciadv_abe3068 crossref_primary_10_1002_anie_201904305 crossref_primary_10_1021_jacs_3c00646 crossref_primary_10_1007_s11426_024_1986_6 crossref_primary_10_1039_C9CS00504H crossref_primary_10_1039_C9CE00458K crossref_primary_10_1016_j_jallcom_2021_159856 crossref_primary_10_1021_jacs_0c00480 crossref_primary_10_1039_D0TC00266F crossref_primary_10_1002_adma_202008785 crossref_primary_10_1021_acs_cgd_8b01615 crossref_primary_10_1021_acs_chemmater_1c03276 crossref_primary_10_1021_acs_chemrev_2c00404 crossref_primary_10_1002_advs_202302426 crossref_primary_10_1002_slct_202200428 crossref_primary_10_1021_jacs_0c12513 crossref_primary_10_1039_C9CC03857D crossref_primary_10_1039_D2CE01150F crossref_primary_10_1021_acs_chemmater_2c02290 crossref_primary_10_1016_j_cclet_2024_110092 crossref_primary_10_1021_jacs_2c12306 crossref_primary_10_1063_1_5131667 crossref_primary_10_1021_acsaelm_1c00462 crossref_primary_10_1021_jacs_0c07055 crossref_primary_10_1021_jacs_3c00634 crossref_primary_10_1002_adma_202401392 crossref_primary_10_1021_jacs_2c11213 crossref_primary_10_1039_D0CC02547J crossref_primary_10_1039_D0CE01654C crossref_primary_10_1002_adma_201902163 crossref_primary_10_1016_j_joule_2021_07_008 crossref_primary_10_1038_s41570_020_00228_3 crossref_primary_10_1021_acs_cgd_8b00994 crossref_primary_10_1021_jacs_8b13223 crossref_primary_10_1002_aelm_202101415 crossref_primary_10_1039_D1CE01632F crossref_primary_10_1038_s41467_024_54596_1 crossref_primary_10_1039_D2DT00925K crossref_primary_10_1002_chem_202102142 crossref_primary_10_1021_acs_inorgchem_2c04295 crossref_primary_10_1021_acsami_4c03349 crossref_primary_10_1002_ejic_202300449 crossref_primary_10_1063_5_0059208 crossref_primary_10_1002_advs_202105974 crossref_primary_10_1016_j_nanoen_2025_110774 crossref_primary_10_1038_s41467_019_08363_2 crossref_primary_10_1002_ange_201905087 crossref_primary_10_3390_ma17020491 crossref_primary_10_1039_D4CE00023D crossref_primary_10_1021_acs_inorgchem_2c04289 crossref_primary_10_1039_D3DT01499A crossref_primary_10_1021_acsnano_1c06099 crossref_primary_10_1021_jacs_4c07268 crossref_primary_10_1021_jacs_8b13109 crossref_primary_10_1016_j_xcrp_2022_100952 crossref_primary_10_1002_ange_202407675 crossref_primary_10_1016_j_molstruc_2020_127847 crossref_primary_10_1016_j_nanoen_2021_106318 crossref_primary_10_1039_C8RA07671E crossref_primary_10_1039_D4MA00444B crossref_primary_10_1021_acs_jpcc_9b09239 crossref_primary_10_3390_molecules28083608 crossref_primary_10_1038_s41467_022_35122_7 crossref_primary_10_1021_acsomega_0c00113 crossref_primary_10_1021_acs_nanolett_3c03062 crossref_primary_10_1016_j_nanoen_2023_109196 crossref_primary_10_1021_acs_jpclett_3c00836 crossref_primary_10_1039_C9TC01661A crossref_primary_10_1063_5_0083763 crossref_primary_10_1002_anie_202318107 crossref_primary_10_1016_j_cclet_2022_107774 crossref_primary_10_1039_C9TC05954G crossref_primary_10_1002_aisy_202100163 crossref_primary_10_1021_acs_chemmater_0c04220 crossref_primary_10_1002_inf2_12322 crossref_primary_10_3390_s20102820 crossref_primary_10_1002_aenm_202200792 crossref_primary_10_1063_5_0162380 crossref_primary_10_1039_D1DT01812D crossref_primary_10_1063_5_0247652 crossref_primary_10_1039_C8DT03047B crossref_primary_10_1039_D2RA03407G crossref_primary_10_1002_adfm_202316747 crossref_primary_10_1021_acs_cgd_9b00370 crossref_primary_10_1038_s41565_023_01361_y crossref_primary_10_1039_D0TA08780G crossref_primary_10_1016_j_jmst_2022_04_048 crossref_primary_10_1002_adfm_202314790 crossref_primary_10_1038_s41586_022_05384_8 crossref_primary_10_1126_science_abg3886 crossref_primary_10_1039_D3QM00072A crossref_primary_10_1021_acs_cgd_9b01592 crossref_primary_10_1039_D4DT01795A crossref_primary_10_1002_adma_201808336 crossref_primary_10_1016_j_cjsc_2022_100003 crossref_primary_10_1039_D3CE00706E crossref_primary_10_1039_D4NJ04595E crossref_primary_10_1002_aelm_202400324 crossref_primary_10_1103_PhysRevB_101_180403 crossref_primary_10_1002_cssc_202202109 crossref_primary_10_1021_acs_chemmater_0c01654 crossref_primary_10_7498_aps_69_20200354 crossref_primary_10_1063_5_0053884 crossref_primary_10_1002_anie_202008494 crossref_primary_10_1039_D0QI00137F crossref_primary_10_1021_acs_inorgchem_0c01404 crossref_primary_10_1039_C9NJ01412H crossref_primary_10_1002_adma_202413547 crossref_primary_10_1002_anie_202500027 crossref_primary_10_1039_C9QI00365G crossref_primary_10_7566_JPSJ_91_064702 crossref_primary_10_1016_j_jssc_2021_122548 crossref_primary_10_1016_j_apsusc_2024_161841 crossref_primary_10_1039_D1MA00691F crossref_primary_10_1021_jacs_4c00679 crossref_primary_10_1002_admt_202301320 crossref_primary_10_1002_advs_201801931 crossref_primary_10_1002_smll_202403198 crossref_primary_10_1016_j_joule_2019_03_021 crossref_primary_10_1039_D3QM00800B crossref_primary_10_1016_j_matt_2021_10_020 crossref_primary_10_1126_science_adk8912 crossref_primary_10_1002_anie_202501360 crossref_primary_10_1002_ange_202309600 crossref_primary_10_1016_j_vibspec_2019_102935 crossref_primary_10_1021_acs_inorgchem_8b01306 crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_1002_ange_202500027 crossref_primary_10_1039_C9TC04765D crossref_primary_10_1002_anie_202216680 crossref_primary_10_1039_C9CE01454C crossref_primary_10_1039_D0SC01687J crossref_primary_10_1038_s41528_024_00330_2 crossref_primary_10_1007_s13738_022_02681_x crossref_primary_10_1039_D1TA09537D crossref_primary_10_1039_D1TC04718C crossref_primary_10_1021_jacs_0c00375 crossref_primary_10_1039_D2TC01063A crossref_primary_10_1021_jacs_0c00371 crossref_primary_10_1021_acsmaterialslett_2c00070 crossref_primary_10_1016_j_cplett_2019_06_019 crossref_primary_10_1016_j_jssc_2021_122409 crossref_primary_10_1039_D2CE00754A crossref_primary_10_1002_smll_202100809 crossref_primary_10_1002_adma_201900326 crossref_primary_10_1002_adom_202101741 crossref_primary_10_1063_5_0051129 crossref_primary_10_1002_smll_202301364 crossref_primary_10_1002_ange_202501360 crossref_primary_10_1002_anie_202102107 crossref_primary_10_1002_advs_202104703 crossref_primary_10_1002_anie_202420249 crossref_primary_10_1021_jacs_3c10841 crossref_primary_10_1002_advs_202301603 crossref_primary_10_3390_ma14092126 crossref_primary_10_1039_C8NR10506E crossref_primary_10_1038_s41578_019_0160_x crossref_primary_10_1039_D4CC03833A crossref_primary_10_1039_D2QI01824A crossref_primary_10_1021_jacs_9b05124 crossref_primary_10_1088_1674_4926_42_4_040201 crossref_primary_10_1039_D2CP01123A crossref_primary_10_1039_C8CE01263F crossref_primary_10_5796_denkikagaku_23_FE0014 crossref_primary_10_1039_D0CC01026J crossref_primary_10_1002_adfm_202104393 crossref_primary_10_1007_s11237_025_09818_y crossref_primary_10_1073_pnas_1817866116 crossref_primary_10_1021_jacs_2c04872 crossref_primary_10_1002_adfm_202502822 crossref_primary_10_1007_s11664_022_10206_8 crossref_primary_10_1016_j_cej_2025_161034 crossref_primary_10_1002_inf2_12490 crossref_primary_10_1002_smll_202308945 crossref_primary_10_1021_acs_cgd_3c00519 crossref_primary_10_1039_D2CC03881A crossref_primary_10_1016_j_molstruc_2022_133954 crossref_primary_10_1039_D1CE00147G crossref_primary_10_1002_anie_202208514 crossref_primary_10_1039_D0TC04686H crossref_primary_10_1039_D2DT01040B crossref_primary_10_1002_anie_202413726 crossref_primary_10_1039_D1CE00680K crossref_primary_10_1063_1_5117302 crossref_primary_10_1002_ange_202217910 crossref_primary_10_1002_adma_202308051 crossref_primary_10_1039_C9TC05621A crossref_primary_10_1063_5_0016010 crossref_primary_10_1039_C8TC03167C crossref_primary_10_1039_D0TC02266G crossref_primary_10_1021_acsami_3c13439 crossref_primary_10_1038_s41566_021_00865_0 crossref_primary_10_1021_acs_jpcc_1c08962 crossref_primary_10_1063_5_0035199 crossref_primary_10_1021_jacs_1c00613 crossref_primary_10_1038_s41467_021_25644_x crossref_primary_10_1039_D3CC02666C crossref_primary_10_1002_anie_201910143 crossref_primary_10_1002_chem_201902544 crossref_primary_10_1039_C9CC00580C crossref_primary_10_1039_D1NR04851A crossref_primary_10_1002_cjoc_202200212 crossref_primary_10_1039_D2DT04014J crossref_primary_10_1126_sciadv_abo1621 crossref_primary_10_1002_adfm_202407611 crossref_primary_10_1016_j_matt_2019_12_008 crossref_primary_10_1021_acs_inorgchem_2c00886 crossref_primary_10_1039_D2NJ02531K crossref_primary_10_1107_S2052520623007862 crossref_primary_10_1016_j_inoche_2021_108526 crossref_primary_10_1039_D4CE00310A crossref_primary_10_1002_adfm_201805810 crossref_primary_10_1021_acs_jpclett_4c00533 crossref_primary_10_1021_jacs_0c06936 crossref_primary_10_1021_acs_inorgchem_8b03424 crossref_primary_10_1002_advs_202102614 crossref_primary_10_1038_s41467_024_44759_5 crossref_primary_10_1002_ange_202420249 crossref_primary_10_1002_adfm_202300445 crossref_primary_10_1016_j_mtelec_2025_100138 crossref_primary_10_1088_2058_8585_adb595 crossref_primary_10_1002_anie_202407048 crossref_primary_10_1002_chem_202301536 crossref_primary_10_1021_acs_cgd_1c01042 crossref_primary_10_1038_s41467_022_33925_2 crossref_primary_10_1038_s41467_023_42131_7 crossref_primary_10_7498_aps_73_20240385 crossref_primary_10_1002_ange_202407048 crossref_primary_10_1002_ange_202413726 crossref_primary_10_1016_j_eng_2020_05_018 crossref_primary_10_1021_acsami_1c03406 crossref_primary_10_1002_aelm_202000778 crossref_primary_10_1039_C9TC05328J crossref_primary_10_1016_j_molstruc_2019_127382 crossref_primary_10_1038_s41467_022_28314_8 crossref_primary_10_1016_j_ica_2022_120842 crossref_primary_10_1038_s41467_024_48405_y crossref_primary_10_1016_j_cclet_2020_02_005 crossref_primary_10_1039_D1CC01675J crossref_primary_10_1021_jacs_4c03407 crossref_primary_10_1039_C9NR01645G crossref_primary_10_1039_D1CC06306E crossref_primary_10_1021_acs_jpcc_3c03931 crossref_primary_10_1021_acs_nanolett_3c01848 crossref_primary_10_1039_C9TC03462E crossref_primary_10_1063_5_0039066 crossref_primary_10_1039_D0TC02057E crossref_primary_10_1126_sciadv_adr2886 crossref_primary_10_1038_s41467_021_27282_9 crossref_primary_10_1039_C9QM00133F crossref_primary_10_1088_1361_6528_ab9e8f crossref_primary_10_1021_acs_chemmater_1c00362 crossref_primary_10_1039_D3CS00262D crossref_primary_10_1039_C8DT03456G crossref_primary_10_1002_apxr_202400087 crossref_primary_10_1002_adma_202300480 crossref_primary_10_1002_anie_202218349 crossref_primary_10_1039_D0QM00288G crossref_primary_10_1016_j_nanoen_2019_104220 crossref_primary_10_1002_sstr_202000009 crossref_primary_10_1021_jacs_8b08286 crossref_primary_10_1515_pac_2023_1023 crossref_primary_10_1021_acs_chemmater_2c00214 crossref_primary_10_1039_D2CE00541G crossref_primary_10_1016_j_cclet_2025_110826 crossref_primary_10_7498_aps_73_20240477 crossref_primary_10_1016_j_ensm_2023_102768 crossref_primary_10_1039_D1SC04322F crossref_primary_10_1002_ejic_201900182 crossref_primary_10_1039_C8TA05794J crossref_primary_10_1002_cplu_202400386 crossref_primary_10_1002_chem_201903678 crossref_primary_10_1002_wcms_1496 crossref_primary_10_1038_s41563_022_01322_1 crossref_primary_10_1021_acs_jpclett_2c02572 crossref_primary_10_1039_D0QM00360C crossref_primary_10_1088_2516_1075_acb1e7 crossref_primary_10_1016_j_cclet_2023_109272 crossref_primary_10_1063_5_0039082 crossref_primary_10_35848_1882_0786_acc569 crossref_primary_10_1002_cphc_202400801 crossref_primary_10_1021_acs_inorgchem_9b00161 crossref_primary_10_1021_jacs_3c14310 crossref_primary_10_1021_jacs_9b11665 crossref_primary_10_1016_j_ccr_2019_02_012 crossref_primary_10_1039_D3CC02645K crossref_primary_10_1039_C9TC07019B crossref_primary_10_1021_acs_chemmater_0c00973 crossref_primary_10_1021_acs_chemrev_3c00170 crossref_primary_10_1016_j_molstruc_2019_126920 crossref_primary_10_1039_D2DT03889G crossref_primary_10_3389_fchem_2024_1468434 crossref_primary_10_1021_acs_chemmater_9b02409 crossref_primary_10_1039_D1NJ04470B crossref_primary_10_1063_1674_0068_cjcp2204067 crossref_primary_10_1039_C9TC01924C crossref_primary_10_1038_s41563_022_01334_x crossref_primary_10_1021_jacs_0c05372 crossref_primary_10_1002_ange_201908945 crossref_primary_10_1002_adma_202004999 crossref_primary_10_1080_24701556_2020_1716006 crossref_primary_10_6023_A20080375 crossref_primary_10_1002_smll_201902237 crossref_primary_10_1021_jacs_0c12907 crossref_primary_10_1021_acs_accounts_0c00797 crossref_primary_10_1002_slct_201900081 crossref_primary_10_1021_acs_cgd_4c01453 crossref_primary_10_1039_D3DT02924G crossref_primary_10_1002_anie_202306732 crossref_primary_10_1021_jacs_9b00886 crossref_primary_10_1021_acs_cgd_3c00495 crossref_primary_10_1039_D1TC03117A crossref_primary_10_1002_anie_201805625 crossref_primary_10_1039_C9QM00724E crossref_primary_10_1002_adom_202101545 crossref_primary_10_1039_C9CC04434E crossref_primary_10_1002_ange_202015219 crossref_primary_10_1002_adma_202003530 crossref_primary_10_1002_smll_202203882 crossref_primary_10_1016_j_cclet_2024_109530 crossref_primary_10_1002_ange_202216680 crossref_primary_10_1002_anie_202407675 crossref_primary_10_1039_C9RA02577D crossref_primary_10_1016_j_cossms_2020_100806 crossref_primary_10_1038_s41578_020_0181_5 crossref_primary_10_1021_acs_chemmater_2c00546 crossref_primary_10_1039_D0DT03206A crossref_primary_10_1002_ange_202318107 crossref_primary_10_1002_adma_201908040 crossref_primary_10_1016_j_surfin_2021_101703 crossref_primary_10_1126_science_adj1946 crossref_primary_10_1002_advs_202305016 crossref_primary_10_1103_PhysRevLett_125_127601 crossref_primary_10_1039_C9TC05468E crossref_primary_10_1039_D0QI00265H crossref_primary_10_1039_D1SC01345A crossref_primary_10_1039_D2CE00236A crossref_primary_10_1002_advs_202400636 crossref_primary_10_1039_D0CE00173B crossref_primary_10_1002_ange_202007660 crossref_primary_10_1016_j_nanoen_2022_108114 crossref_primary_10_1021_acsomega_3c08711 crossref_primary_10_1002_asia_202201125 crossref_primary_10_1002_anie_201905087 crossref_primary_10_1021_acs_cgd_3c00119 crossref_primary_10_1021_acs_jpclett_3c02238 crossref_primary_10_1016_j_cplett_2018_11_017 crossref_primary_10_1016_j_matt_2021_06_006 crossref_primary_10_1039_D2DT00557C crossref_primary_10_1039_D4CC03939D crossref_primary_10_1039_C9CE01739A crossref_primary_10_1002_cjoc_202200089 crossref_primary_10_1021_acsami_1c18278 crossref_primary_10_1039_D1CE00381J crossref_primary_10_1021_acs_jpclett_4c01262 crossref_primary_10_1002_cjoc_202401118 crossref_primary_10_1016_j_cclet_2022_108051 crossref_primary_10_1002_adma_202104107 crossref_primary_10_1002_chem_202002198 crossref_primary_10_1021_acs_jpclett_2c01044 crossref_primary_10_1021_jacs_4c06859 crossref_primary_10_1002_adma_202102190 crossref_primary_10_1002_prep_202000306 crossref_primary_10_1021_acs_jpcc_2c03984 crossref_primary_10_1038_s41467_023_43320_0 crossref_primary_10_1016_j_cclet_2021_08_098 crossref_primary_10_1021_acsphotonics_1c00687 crossref_primary_10_1002_cjoc_202200297 crossref_primary_10_1021_jacsau_3c00835 crossref_primary_10_1063_5_0041477 crossref_primary_10_1016_j_inoche_2022_109773 crossref_primary_10_1107_S2052252522006406 crossref_primary_10_1002_ange_201904305 crossref_primary_10_1002_anie_202206034 crossref_primary_10_1021_acs_inorgchem_1c03506 crossref_primary_10_1039_D4CC04010D crossref_primary_10_1016_j_trechm_2021_05_003 crossref_primary_10_1039_D0RA00245C crossref_primary_10_1016_j_jhazmat_2023_131578 crossref_primary_10_1002_adom_202203144 crossref_primary_10_1021_acs_nanolett_9b04210 crossref_primary_10_1002_cphc_202100040 crossref_primary_10_1002_bio_3714 crossref_primary_10_1039_D4TC01777C crossref_primary_10_3390_ma16237323 crossref_primary_10_1039_D2TC01330D crossref_primary_10_1021_jacs_8b12948 crossref_primary_10_1039_D1TC00619C crossref_primary_10_1142_S2010135X21500053 crossref_primary_10_1002_aenm_202202298 crossref_primary_10_1002_adma_201807628 crossref_primary_10_1002_anie_202213927 crossref_primary_10_1002_asia_201801921 crossref_primary_10_1039_D3CC04186G crossref_primary_10_1002_ejic_202000064 crossref_primary_10_1002_smll_202411571 crossref_primary_10_1021_acs_chemmater_0c02966 crossref_primary_10_1002_cphc_202100279 crossref_primary_10_1021_acs_cgd_3c00693 crossref_primary_10_1021_acs_inorgchem_0c02558 |
Cites_doi | 10.1557/mrs2009.176 10.1107/S0365110X67003688 10.1103/PhysRevB.74.184111 10.1126/science.344.6181.237-c 10.1039/c3qi00058c 10.1002/andp.18391241205 10.1002/anie.201001208 10.1126/science.aam8561 10.1103/PhysRev.35.269 10.1021/jacs.7b00492 10.1038/nature08128 10.1039/C5CC00979K 10.1557/mrc.2015.6 10.1002/anie.201103265 10.1063/1.474417 10.1107/S0567740878007098 10.1103/PhysRevLett.19.1286 10.1103/PhysRevB.72.054122 10.1038/ncomms13635 10.1126/science.246.4936.1400 10.1038/nmat2703 10.1126/science.1129564 10.1002/adma.201502294 10.1038/ncomms4279 10.1146/annurev.matsci.37.052506.084323 10.1107/S0021889800015508 10.1103/PhysRev.107.1255 10.1107/S0108768199013622 10.1103/PhysRevB.48.4442 10.1021/ja801952e 10.1002/adma.201102938 10.1021/ja027484e 10.1103/PhysRevB.73.134111 10.1016/0038-1098(68)90571-1 10.1073/pnas.1607471113 10.1021/ja400318v 10.1021/jacs.5b08061 10.1007/978-3-642-85135-3 10.1126/science.aam5655 10.1021/jacs.7b10449 10.1002/pssa.2211470230 10.1021/ja503344b 10.1038/natrevmats.2016.99 10.1126/science.aaa6442 10.1002/adma.201505224 10.1126/science.1229675 10.1021/ja904156s 10.1103/PhysRev.126.1977 10.1103/PhysRevLett.107.147601 10.1038/srep21687 10.1103/PhysRevLett.1.320 10.1021/jacs.7b07715 10.1017/9781316226889 10.1002/chir.10145 10.1063/1.3382344 10.1021/jacs.5b08290 10.1126/science.aai8535 10.1002/anie.201406810 10.1063/1.1654302 10.1021/jacs.6b08817 10.1002/anie.201200407 10.1088/0953-8984/13/48/329 10.1002/anie.201003541 10.1021/ja809598r 10.1038/nmat2377 10.1103/PhysRevB.47.1651 10.1016/0927-0256(96)00008-0 10.1039/C5CS00308C 10.1002/anie.201400348 10.1021/acs.chemrev.5b00715 10.1103/PhysRevLett.77.3865 10.1038/ncomms13199 10.1039/C5DT03481G 10.1103/PhysRevB.54.11169 10.1021/jacs.7b01334 10.1143/JPSJ.27.387 10.1021/ja0376893 10.1002/anie.200700407 10.1038/358136a0 10.1021/jp202192k 10.1007/BF01507527 10.1021/nl403828u 10.1126/science.aad1818 10.1002/anie.201402339 10.1111/j.1151-2916.1999.tb01840.x 10.1080/00150198908007908 10.1038/nmat2137 10.1126/sciadv.1701008 10.1103/PhysRev.82.727 10.1103/PhysRev.110.1309 10.1126/science.aam6323 10.1088/0953-8984/12/33/316 10.1103/PhysRev.17.475 10.1021/je60037a046 10.1039/C4SC02211D 10.1103/PhysRevLett.82.576 10.1021/ja3073319 10.1103/PhysRev.80.1105 10.1103/PhysRev.76.1886.2 10.1016/0038-1098(89)90848-X 10.1002/adma.201400806 10.1103/PhysRev.127.2036 10.1038/ncomms8338 10.1063/1.124536 |
ContentType | Journal Article |
Copyright | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aas9330 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 155 |
ExternalDocumentID | 30002249 10_1126_science_aas9330 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADUKH ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 C51 CITATION CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 0B8 ESX GX1 IGG NPM OK1 PKN RHF UIG VQA YCJ YIF YIN ZKG 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-b3180c20439465f419b5be8badecc69c25c262858829255906aa41a2858a82ff3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Fri Sep 05 03:33:09 EDT 2025 Fri Jul 25 10:25:30 EDT 2025 Wed Feb 19 02:43:54 EST 2025 Tue Jul 01 01:51:20 EDT 2025 Thu Apr 24 22:59:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6398 |
Language | English |
License | Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-b3180c20439465f419b5be8badecc69c25c262858829255906aa41a2858a82ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2276-6886 0000-0001-5228-6192 0000-0002-8369-572X 0000-0002-4258-8733 0000-0002-5359-7037 0000-0003-2364-0193 |
PMID | 30002249 |
PQID | 2068931855 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2070243661 proquest_journals_2068931855 pubmed_primary_30002249 crossref_citationtrail_10_1126_science_aas9330 crossref_primary_10_1126_science_aas9330 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-13 20180713 |
PublicationDateYYYYMMDD | 2018-07-13 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-13 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2018 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_48_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 Donnay G. D. H. (e_1_3_2_70_2) 1937; 22 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_72_2 30002242 - Science. 2018 Jul 13;361(6398):132 |
References_xml | – ident: e_1_3_2_48_2 doi: 10.1557/mrs2009.176 – ident: e_1_3_2_60_2 doi: 10.1107/S0365110X67003688 – ident: e_1_3_2_82_2 doi: 10.1103/PhysRevB.74.184111 – volume: 22 start-page: 446 year: 1937 ident: e_1_3_2_70_2 article-title: A new law of crystal morphology extending the law of Bravais publication-title: Am. Mineral. – ident: e_1_3_2_71_2 doi: 10.1126/science.344.6181.237-c – ident: e_1_3_2_87_2 doi: 10.1039/c3qi00058c – ident: e_1_3_2_2_2 doi: 10.1002/andp.18391241205 – ident: e_1_3_2_40_2 doi: 10.1002/anie.201001208 – ident: e_1_3_2_3_2 doi: 10.1126/science.aam8561 – ident: e_1_3_2_34_2 doi: 10.1103/PhysRev.35.269 – ident: e_1_3_2_23_2 doi: 10.1021/jacs.7b00492 – ident: e_1_3_2_49_2 doi: 10.1038/nature08128 – ident: e_1_3_2_43_2 doi: 10.1039/C5CC00979K – ident: e_1_3_2_12_2 doi: 10.1557/mrc.2015.6 – ident: e_1_3_2_26_2 doi: 10.1002/anie.201103265 – ident: e_1_3_2_77_2 doi: 10.1063/1.474417 – ident: e_1_3_2_61_2 doi: 10.1107/S0567740878007098 – ident: e_1_3_2_103_2 doi: 10.1103/PhysRevLett.19.1286 – ident: e_1_3_2_96_2 doi: 10.1103/PhysRevB.72.054122 – ident: e_1_3_2_42_2 doi: 10.1038/ncomms13635 – ident: e_1_3_2_9_2 doi: 10.1126/science.246.4936.1400 – ident: e_1_3_2_74_2 doi: 10.1038/nmat2703 – ident: e_1_3_2_5_2 doi: 10.1126/science.1129564 – ident: e_1_3_2_18_2 doi: 10.1002/adma.201502294 – ident: e_1_3_2_7_2 doi: 10.1038/ncomms4279 – ident: e_1_3_2_47_2 doi: 10.1146/annurev.matsci.37.052506.084323 – ident: e_1_3_2_79_2 doi: 10.1107/S0021889800015508 – ident: e_1_3_2_92_2 doi: 10.1103/PhysRev.107.1255 – ident: e_1_3_2_59_2 doi: 10.1107/S0108768199013622 – ident: e_1_3_2_65_2 doi: 10.1103/PhysRevB.48.4442 – ident: e_1_3_2_24_2 doi: 10.1021/ja801952e – ident: e_1_3_2_58_2 doi: 10.1002/adma.201102938 – ident: e_1_3_2_27_2 doi: 10.1021/ja027484e – ident: e_1_3_2_84_2 doi: 10.1103/PhysRevB.73.134111 – ident: e_1_3_2_39_2 doi: 10.1016/0038-1098(68)90571-1 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.1607471113 – ident: e_1_3_2_91_2 doi: 10.1021/ja400318v – ident: e_1_3_2_93_2 doi: 10.1021/jacs.5b08061 – ident: e_1_3_2_45_2 doi: 10.1007/978-3-642-85135-3 – ident: e_1_3_2_15_2 doi: 10.1126/science.aam5655 – ident: e_1_3_2_62_2 doi: 10.1021/jacs.7b10449 – ident: e_1_3_2_89_2 doi: 10.1002/pssa.2211470230 – ident: e_1_3_2_53_2 doi: 10.1021/ja503344b – ident: e_1_3_2_21_2 doi: 10.1038/natrevmats.2016.99 – ident: e_1_3_2_46_2 doi: 10.1126/science.aaa6442 – ident: e_1_3_2_56_2 doi: 10.1002/adma.201505224 – ident: e_1_3_2_36_2 doi: 10.1126/science.1229675 – ident: e_1_3_2_25_2 doi: 10.1021/ja904156s – ident: e_1_3_2_33_2 doi: 10.1103/PhysRev.126.1977 – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevLett.107.147601 – ident: e_1_3_2_44_2 doi: 10.1038/srep21687 – ident: e_1_3_2_106_2 doi: 10.1103/PhysRevLett.1.320 – ident: e_1_3_2_102_2 doi: 10.1021/jacs.7b07715 – ident: e_1_3_2_4_2 doi: 10.1017/9781316226889 – ident: e_1_3_2_50_2 doi: 10.1002/chir.10145 – ident: e_1_3_2_69_2 doi: 10.1063/1.3382344 – ident: e_1_3_2_99_2 doi: 10.1021/jacs.5b08290 – ident: e_1_3_2_14_2 doi: 10.1126/science.aai8535 – ident: e_1_3_2_6_2 – ident: e_1_3_2_98_2 doi: 10.1002/anie.201406810 – ident: e_1_3_2_104_2 doi: 10.1063/1.1654302 – ident: e_1_3_2_41_2 doi: 10.1021/jacs.6b08817 – ident: e_1_3_2_86_2 doi: 10.1002/anie.201200407 – ident: e_1_3_2_94_2 doi: 10.1088/0953-8984/13/48/329 – ident: e_1_3_2_11_2 – ident: e_1_3_2_28_2 doi: 10.1002/anie.201003541 – ident: e_1_3_2_16_2 doi: 10.1021/ja809598r – ident: e_1_3_2_8_2 doi: 10.1038/nmat2377 – ident: e_1_3_2_64_2 doi: 10.1103/PhysRevB.47.1651 – ident: e_1_3_2_67_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_3_2_55_2 doi: 10.1039/C5CS00308C – ident: e_1_3_2_73_2 doi: 10.1002/anie.201400348 – ident: e_1_3_2_17_2 doi: 10.1021/acs.chemrev.5b00715 – ident: e_1_3_2_68_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_75_2 doi: 10.1038/ncomms13199 – ident: e_1_3_2_63_2 doi: 10.1039/C5DT03481G – ident: e_1_3_2_66_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_2_22_2 doi: 10.1021/jacs.7b01334 – ident: e_1_3_2_32_2 doi: 10.1143/JPSJ.27.387 – ident: e_1_3_2_51_2 doi: 10.1021/ja0376893 – ident: e_1_3_2_85_2 doi: 10.1002/anie.200700407 – ident: e_1_3_2_38_2 doi: 10.1038/358136a0 – ident: e_1_3_2_101_2 doi: 10.1021/jp202192k – ident: e_1_3_2_30_2 doi: 10.1007/BF01507527 – ident: e_1_3_2_100_2 doi: 10.1021/nl403828u – ident: e_1_3_2_19_2 doi: 10.1126/science.aad1818 – ident: e_1_3_2_57_2 doi: 10.1002/anie.201402339 – ident: e_1_3_2_105_2 doi: 10.1111/j.1151-2916.1999.tb01840.x – ident: e_1_3_2_81_2 doi: 10.1080/00150198908007908 – ident: e_1_3_2_35_2 doi: 10.1038/nmat2137 – ident: e_1_3_2_72_2 doi: 10.1126/sciadv.1701008 – ident: e_1_3_2_108_2 doi: 10.1103/PhysRev.82.727 – ident: e_1_3_2_83_2 doi: 10.1103/PhysRev.110.1309 – ident: e_1_3_2_13_2 doi: 10.1126/science.aam6323 – ident: e_1_3_2_90_2 doi: 10.1088/0953-8984/12/33/316 – ident: e_1_3_2_78_2 doi: 10.1103/PhysRev.17.475 – ident: e_1_3_2_52_2 doi: 10.1021/je60037a046 – ident: e_1_3_2_31_2 doi: 10.1039/C4SC02211D – ident: e_1_3_2_97_2 doi: 10.1103/PhysRevLett.82.576 – ident: e_1_3_2_80_2 doi: 10.1021/ja3073319 – ident: e_1_3_2_109_2 doi: 10.1103/PhysRev.80.1105 – ident: e_1_3_2_110_2 doi: 10.1103/PhysRev.76.1886.2 – ident: e_1_3_2_10_2 – ident: e_1_3_2_88_2 doi: 10.1016/0038-1098(89)90848-X – ident: e_1_3_2_95_2 doi: 10.1002/adma.201400806 – ident: e_1_3_2_107_2 doi: 10.1103/PhysRev.127.2036 – ident: e_1_3_2_54_2 doi: 10.1038/ncomms8338 – ident: e_1_3_2_76_2 doi: 10.1063/1.124536 – reference: 30002242 - Science. 2018 Jul 13;361(6398):132 |
SSID | ssj0009593 |
Score | 2.6963358 |
Snippet | The perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building... Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other... Perovskites go organicThe perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 151 |
SubjectTerms | Ammonium Barium Barium titanates Biomedical materials Ferroelectric materials Ferroelectricity Ferroelectrics Organic Chemistry Organic compounds Perovskite structure Perovskites Phase transitions Polarization Synthesis Transition temperature Transition temperatures |
Title | Metal-free three-dimensional perovskite ferroelectrics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30002249 https://www.proquest.com/docview/2068931855 https://www.proquest.com/docview/2070243661 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZymAvo-2-snbDgz10DAXLlmX7Md0WyqCDQcuaJyPJpxIYzkjiQvdX9E_uKZI_ujXQ7UXYiqwY3-l0d7r7HSHvM6FEmktOTSkM5VqnVGluqMmMVLnmIKU90T39Jk7O-deL5GIwuOlFLdVrNda_780r-R-qYh_S1WbJ_gNl20mxA6-RvtgihbF9EI1PAVVnapYAtt4OAC0tVr_D2bCAxIurlXXOfjSwXC5cwZsmuN3ro83SRj2zPbvpUawNQpy4UIEmcsA_1nMjzMBtYtUlndVdcK_3Rs9qWVHbtPE_cxccjMOnMO965cZz-wPm9Dvy7WXfJ8Ey6-x0KaWNnPUwx26XcaI1tFUhozDuy97YIbF7JkNtKesJU-ahaMHfJfeL_F6RShhLubIumm53a070_9j02lDEjREUicJPUPgJHpGdKE1ZMiQ7k-PPx9OtQM4eLqqXiNW8w11NZ4v5slFjznbJU29_BBPHTHtkANU-eewqkl7vkz1P2VVw5AHJPzwjouOz4C8-Czo-C-7y2XNyPv1y9umE-nobVMc5W1OF8j3ULllaJIazXCUKMiVLXOci11GiI5txi0ZZbi3RUEjJmbQ9MouMiV-QYbWo4BUJSsYkMF3yDDSPTK6UKXMZM8WFYWkcjci4-TaF9mD0tibKz2ILPUbkqH3gl8Nh2T70sPnYhV-sqyIKBWrmqJwmI_Ku_RlFqT0fkxUsajsmtficqLGOyEtHpPa_4g1SFM9fP_w9DsiTbm0ckuF6WcMb1GDX6q1nqlvF6p-n |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-free+three-dimensional+perovskite+ferroelectrics&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Ye%2C+Heng-Yun&rft.au=Tang%2C+Yuan-Yuan&rft.au=Li%2C+Peng-Fei&rft.au=Liao%2C+Wei-Qiang&rft.date=2018-07-13&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=361&rft.issue=6398&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1126%2Fscience.aas9330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aas9330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |