Metal-free three-dimensional perovskite ferroelectrics

The perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building perovskites out of only organic compounds is appealing because these materials tend to be flexible, fracture-resistant, and potentially easier to sy...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 361; no. 6398; pp. 151 - 155
Main Authors Ye, Heng-Yun, Tang, Yuan-Yuan, Li, Peng-Fei, Liao, Wei-Qiang, Gao, Ji-Xing, Hua, Xiu-Ni, Cai, Hu, Shi, Ping-Ping, You, Yu-Meng, Xiong, Ren-Gen
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 13.07.2018
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aas9330

Cover

Abstract The perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building perovskites out of only organic compounds is appealing because these materials tend to be flexible, fracture-resistant, and potentially easier to synthesize than their inorganic counterparts. Ye et al. describe a previously unknown family of all-organic perovskites, of which they synthesized 23 different family members (see the Perspective by Li and Ji). The compounds are attractive as ferroelectrics, including one compound with properties close to the well-known inorganic ferroelectric BaTiO 3 . Science , this issue p. 151 ; see also p. 132 A family of all-organic perovskites has attractive ferroelectric properties. Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO ( N -methyl- N' -diazabicyclo[2.2.2]octonium)–ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.
AbstractList Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO ( -methyl- -diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.
Perovskites go organicThe perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building perovskites out of only organic compounds is appealing because these materials tend to be flexible, fracture-resistant, and potentially easier to synthesize than their inorganic counterparts. Ye et al. describe a previously unknown family of all-organic perovskites, of which they synthesized 23 different family members (see the Perspective by Li and Ji). The compounds are attractive as ferroelectrics, including one compound with properties close to the well-known inorganic ferroelectric BaTiO3.Science, this issue p. 151; see also p. 132Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (N-methyl-N'-diazabicyclo[2.2.2]octonium)–ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.
The perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building perovskites out of only organic compounds is appealing because these materials tend to be flexible, fracture-resistant, and potentially easier to synthesize than their inorganic counterparts. Ye et al. describe a previously unknown family of all-organic perovskites, of which they synthesized 23 different family members (see the Perspective by Li and Ji). The compounds are attractive as ferroelectrics, including one compound with properties close to the well-known inorganic ferroelectric BaTiO 3 . Science , this issue p. 151 ; see also p. 132 A family of all-organic perovskites has attractive ferroelectric properties. Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO ( N -methyl- N' -diazabicyclo[2.2.2]octonium)–ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.
Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (N-methyl-N'-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other properties. Organic ferroelectrics are desirable for their mechanical flexibility, low weight, environmentally friendly processing, and low processing temperatures. Although almost a century has passed since the first ferroelectric, Rochelle salt, was discovered, examples of highly desirable organic perovskite ferroelectrics are lacking. We found a family of metal-free organic perovskite ferroelectrics with the characteristic three-dimensional structure, among which MDABCO (N-methyl-N'-diazabicyclo[2.2.2]octonium)-ammonium triiodide has a spontaneous polarization of 22 microcoulombs per square centimeter [close to that of barium titanate (BTO)], a high phase transition temperature of 448 kelvins (above that of BTO), and eight possible polarization directions. These attributes make it attractive for use in flexible devices, soft robotics, biomedical devices, and other applications.
Author Ye, Heng-Yun
Gao, Ji-Xing
Xiong, Ren-Gen
Tang, Yuan-Yuan
Hua, Xiu-Ni
Liao, Wei-Qiang
You, Yu-Meng
Li, Peng-Fei
Shi, Ping-Ping
Cai, Hu
Author_xml – sequence: 1
  givenname: Heng-Yun
  orcidid: 0000-0003-2276-6886
  surname: Ye
  fullname: Ye, Heng-Yun
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
– sequence: 2
  givenname: Yuan-Yuan
  orcidid: 0000-0002-8369-572X
  surname: Tang
  fullname: Tang, Yuan-Yuan
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
– sequence: 3
  givenname: Peng-Fei
  orcidid: 0000-0001-5228-6192
  surname: Li
  fullname: Li, Peng-Fei
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
– sequence: 4
  givenname: Wei-Qiang
  orcidid: 0000-0002-5359-7037
  surname: Liao
  fullname: Liao, Wei-Qiang
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China., Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P.R. China
– sequence: 5
  givenname: Ji-Xing
  surname: Gao
  fullname: Gao, Ji-Xing
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
– sequence: 6
  givenname: Xiu-Ni
  surname: Hua
  fullname: Hua, Xiu-Ni
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
– sequence: 7
  givenname: Hu
  surname: Cai
  fullname: Cai, Hu
  organization: Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P.R. China
– sequence: 8
  givenname: Ping-Ping
  surname: Shi
  fullname: Shi, Ping-Ping
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China., Institute for Advanced Interdisciplinary Research, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R. China
– sequence: 9
  givenname: Yu-Meng
  orcidid: 0000-0002-4258-8733
  surname: You
  fullname: You, Yu-Meng
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
– sequence: 10
  givenname: Ren-Gen
  orcidid: 0000-0003-2364-0193
  surname: Xiong
  fullname: Xiong, Ren-Gen
  organization: Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China., Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P.R. China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30002249$$D View this record in MEDLINE/PubMed
BookMark eNp1kMtLAzEQh4NU7EPP3qTgxcu2eWzS5CjFF1S86Dlk01lM3d3UJCv435vS9lLwkoTJ9xtmvjEadL4DhK4JnhFCxTxaB52FmTFRMYbP0IhgxQtFMRugEcZMFBIv-BCNY9xgnP8Uu0BDlp-UlmqExCsk0xR1AJimz3wWa9dCF53vTDPdQvA_8cslmNYQgocGbArOxkt0XpsmwtXhnqCPx4f35XOxent6Wd6vCssUSUXFiMSW4pKpUvC6JKriFcjKrMFaoSzllgoquZRUUc4VFsaUxOwqRtK6ZhN0t--7Df67h5h066KFpjEd-D5qiheYlkwIktHbE3Tj-5C32FFCqjwK55m6OVB91cJab4NrTfjVRyMZ4HvABh9jgFpbl0zKPlIwrtEE6515fTCvD-Zzbn6SO7b-L_EHV2OHKw
CitedBy_id crossref_primary_10_1002_ange_202213927
crossref_primary_10_1002_ange_202206034
crossref_primary_10_1016_j_ccr_2021_214337
crossref_primary_10_1002_anie_201908945
crossref_primary_10_1126_science_aat5729
crossref_primary_10_1021_acs_chemrev_0c00033
crossref_primary_10_1039_D2NJ00642A
crossref_primary_10_1039_C9SC03378E
crossref_primary_10_1016_j_cjsc_2024_100358
crossref_primary_10_1039_C9CC03485D
crossref_primary_10_1002_ange_202407934
crossref_primary_10_1039_C9QI01197H
crossref_primary_10_1039_D3CP05406C
crossref_primary_10_1039_D4QI00272E
crossref_primary_10_1126_science_abc4727
crossref_primary_10_1038_s41467_022_34819_z
crossref_primary_10_1039_D1TC01261D
crossref_primary_10_7566_JPSJ_89_051009
crossref_primary_10_1021_jacs_2c07434
crossref_primary_10_1039_D3TC02309E
crossref_primary_10_1088_1361_648X_ab420d
crossref_primary_10_1002_cnma_202200390
crossref_primary_10_1002_anie_202015219
crossref_primary_10_1016_j_enmf_2020_12_003
crossref_primary_10_1088_2053_1591_abf0bd
crossref_primary_10_1039_D0TA09618K
crossref_primary_10_3390_cryst14060497
crossref_primary_10_1002_adma_202105071
crossref_primary_10_1002_ejic_201801293
crossref_primary_10_1021_jacs_0c06048
crossref_primary_10_1021_jacs_9b12368
crossref_primary_10_1039_D2CP02826C
crossref_primary_10_1016_j_trechm_2021_09_010
crossref_primary_10_1016_j_jssc_2019_121045
crossref_primary_10_1016_j_matt_2021_05_018
crossref_primary_10_1002_anie_202207198
crossref_primary_10_1016_j_pmatsci_2025_101434
crossref_primary_10_3390_cryst14110978
crossref_primary_10_1002_adma_202405363
crossref_primary_10_1016_j_mser_2024_100817
crossref_primary_10_1021_jacs_8b13827
crossref_primary_10_1002_solr_202300786
crossref_primary_10_1039_D0TC04386A
crossref_primary_10_1073_pnas_2013934117
crossref_primary_10_1021_acs_nanolett_1c00395
crossref_primary_10_1126_sciadv_aay4213
crossref_primary_10_1038_s41467_019_11657_0
crossref_primary_10_1093_nsr_nwac240
crossref_primary_10_1063_5_0034475
crossref_primary_10_1126_science_aav3057
crossref_primary_10_1021_jacs_3c09395
crossref_primary_10_1039_D3TA01749D
crossref_primary_10_1039_C8CC07311B
crossref_primary_10_1021_jacs_1c11000
crossref_primary_10_1039_C8CC07468B
crossref_primary_10_1021_jacs_0c06064
crossref_primary_10_1039_D2QI00369D
crossref_primary_10_1021_acs_cgd_2c00780
crossref_primary_10_1016_j_mtcomm_2023_107939
crossref_primary_10_1021_acs_chemmater_2c02211
crossref_primary_10_1002_asia_201901265
crossref_primary_10_1021_acsenergylett_0c01867
crossref_primary_10_1002_ange_202218349
crossref_primary_10_1021_acs_chemmater_3c00708
crossref_primary_10_1039_D2TA02207A
crossref_primary_10_1021_jacs_0c10686
crossref_primary_10_1002_adma_201806736
crossref_primary_10_1016_j_molstruc_2023_135772
crossref_primary_10_1039_C8TC03517B
crossref_primary_10_1039_D2MH01296K
crossref_primary_10_1002_adma_202211584
crossref_primary_10_1002_adma_202307518
crossref_primary_10_1002_anie_202000290
crossref_primary_10_1002_adma_202308726
crossref_primary_10_1021_acs_inorgchem_3c00998
crossref_primary_10_1039_D0CP06060G
crossref_primary_10_1002_ejic_202100671
crossref_primary_10_1002_anie_201914193
crossref_primary_10_1021_acs_jpclett_1c00315
crossref_primary_10_1002_anie_201916254
crossref_primary_10_1038_s41467_024_52207_7
crossref_primary_10_1038_s41598_023_34923_0
crossref_primary_10_1002_asia_201801853
crossref_primary_10_1002_chem_202403362
crossref_primary_10_1002_cjoc_202300640
crossref_primary_10_1021_acs_jpclett_9b03556
crossref_primary_10_1002_asia_202000241
crossref_primary_10_1021_acs_chemmater_1c04086
crossref_primary_10_54097_hset_v27i_3804
crossref_primary_10_1063_5_0160032
crossref_primary_10_1021_acsaelm_0c00192
crossref_primary_10_1063_5_0025400
crossref_primary_10_1002_anie_202407934
crossref_primary_10_1021_jacsau_2c00353
crossref_primary_10_1002_ejic_202200673
crossref_primary_10_1021_acsomega_2c00878
crossref_primary_10_1039_D0TC00881H
crossref_primary_10_1002_adfm_202307896
crossref_primary_10_1002_adom_201900350
crossref_primary_10_1007_s40843_023_2815_x
crossref_primary_10_1038_s41524_021_00599_1
crossref_primary_10_1088_1674_1056_ad5af0
crossref_primary_10_1038_s41524_019_0157_4
crossref_primary_10_1039_C9TC00663J
crossref_primary_10_1002_smll_202300892
crossref_primary_10_1002_smtd_202000149
crossref_primary_10_1016_j_nanoen_2023_109101
crossref_primary_10_1002_adma_202003353
crossref_primary_10_1088_1361_6463_abb047
crossref_primary_10_1088_1361_6463_ac2867
crossref_primary_10_1021_jacs_0c02924
crossref_primary_10_1016_j_bioactmat_2022_10_003
crossref_primary_10_1038_s41427_022_00395_3
crossref_primary_10_1039_D0TC00688B
crossref_primary_10_1002_ange_202208514
crossref_primary_10_1016_j_jssc_2020_121338
crossref_primary_10_1038_s41467_022_34356_9
crossref_primary_10_1002_ange_202301404
crossref_primary_10_1002_ange_202404202
crossref_primary_10_1002_adom_202301342
crossref_primary_10_1016_j_inoche_2022_110211
crossref_primary_10_1002_aelm_202100635
crossref_primary_10_1002_ange_202000290
crossref_primary_10_1021_acs_chemmater_8b03377
crossref_primary_10_1038_s41578_018_0043_6
crossref_primary_10_1016_j_xinn_2021_100204
crossref_primary_10_1002_ange_201910143
crossref_primary_10_1021_acsami_1c08417
crossref_primary_10_1063_5_0020290
crossref_primary_10_1002_adma_201906224
crossref_primary_10_1107_S2052252522008673
crossref_primary_10_1039_D0TC04813E
crossref_primary_10_1063_5_0137254
crossref_primary_10_1016_j_cjsc_2024_100426
crossref_primary_10_1002_anie_202404202
crossref_primary_10_1021_jacs_9b11697
crossref_primary_10_1021_jacs_8b11222
crossref_primary_10_1002_anie_202301404
crossref_primary_10_3390_ma15238397
crossref_primary_10_1126_science_aaz2795
crossref_primary_10_1002_smll_201803825
crossref_primary_10_1021_jacs_2c08667
crossref_primary_10_1021_acs_cgd_2c00854
crossref_primary_10_3390_nano14080662
crossref_primary_10_1021_acsami_0c19507
crossref_primary_10_1002_smll_202006021
crossref_primary_10_3390_cryst9040207
crossref_primary_10_1039_D4MH00574K
crossref_primary_10_1039_D0RA03968C
crossref_primary_10_1039_C9DT02045D
crossref_primary_10_1039_D3DT01574B
crossref_primary_10_1039_D4SC06620K
crossref_primary_10_1039_D3TC01835K
crossref_primary_10_1039_D1QI00736J
crossref_primary_10_1021_acs_accounts_8b00677
crossref_primary_10_1021_acs_energyfuels_2c01868
crossref_primary_10_1021_acsphotonics_3c00918
crossref_primary_10_1557_s43578_022_00848_z
crossref_primary_10_1002_ange_202102107
crossref_primary_10_7498_aps_69_20200980
crossref_primary_10_1002_crat_201900011
crossref_primary_10_1021_jacs_9b13291
crossref_primary_10_1021_acs_cgd_2c00962
crossref_primary_10_1021_acs_cgd_3c00713
crossref_primary_10_1080_1539445X_2019_1653911
crossref_primary_10_1107_S2052520620011439
crossref_primary_10_3390_micro4020014
crossref_primary_10_1021_jacs_0c00315
crossref_primary_10_1039_D1SC04617A
crossref_primary_10_1021_acsenergylett_0c00039
crossref_primary_10_1021_acs_jpcc_2c03060
crossref_primary_10_1002_ange_201914193
crossref_primary_10_1039_C9RA06489C
crossref_primary_10_1039_D1CS00858G
crossref_primary_10_1002_ange_201916254
crossref_primary_10_1021_jacs_3c08794
crossref_primary_10_1080_15567036_2020_1805047
crossref_primary_10_1021_acsmaterialslett_2c00331
crossref_primary_10_1002_aenm_202003331
crossref_primary_10_1038_s41570_022_00399_1
crossref_primary_10_1016_j_commatsci_2024_112894
crossref_primary_10_1016_j_mattod_2019_09_004
crossref_primary_10_1039_D2DT00506A
crossref_primary_10_1016_j_jallcom_2024_178077
crossref_primary_10_1039_D2NJ03613D
crossref_primary_10_1021_jacs_2c05063
crossref_primary_10_1080_14686996_2024_2418282
crossref_primary_10_1002_adfm_202100205
crossref_primary_10_1021_acs_jpcc_1c03291
crossref_primary_10_1021_acs_nanolett_2c02071
crossref_primary_10_1021_jacs_0c09288
crossref_primary_10_1063_5_0040984
crossref_primary_10_1021_acs_jpclett_4c03050
crossref_primary_10_1016_j_apmt_2020_100687
crossref_primary_10_1021_jacs_8b12102
crossref_primary_10_1039_D2CE00848C
crossref_primary_10_1016_j_cjsc_2023_100212
crossref_primary_10_1002_ange_202207198
crossref_primary_10_1021_jacsau_1c00014
crossref_primary_10_1002_ange_202306732
crossref_primary_10_1038_s41467_021_24941_9
crossref_primary_10_1002_adma_201808088
crossref_primary_10_1021_acs_jpcc_2c05577
crossref_primary_10_1002_ange_201805625
crossref_primary_10_1002_anie_202217910
crossref_primary_10_1002_adma_202413020
crossref_primary_10_1039_D3CC00969F
crossref_primary_10_1063_5_0186789
crossref_primary_10_1002_advs_202003074
crossref_primary_10_1039_C8CE01350K
crossref_primary_10_1002_ange_202008494
crossref_primary_10_1021_acs_jpclett_8b03837
crossref_primary_10_1016_j_mtchem_2023_101486
crossref_primary_10_1039_D1DT03948B
crossref_primary_10_1007_s12598_023_02319_8
crossref_primary_10_1016_j_ccr_2022_214663
crossref_primary_10_1021_acs_jpcc_9b03866
crossref_primary_10_1007_s12598_023_02602_8
crossref_primary_10_1039_D0TC05380E
crossref_primary_10_1098_rsos_200271
crossref_primary_10_1007_s40843_024_2931_3
crossref_primary_10_1039_D0CC01877E
crossref_primary_10_1002_anie_202309600
crossref_primary_10_1016_j_nanoms_2019_10_004
crossref_primary_10_1103_PhysRevB_106_235410
crossref_primary_10_1002_anie_202007660
crossref_primary_10_1039_C8QI00793D
crossref_primary_10_1039_C9CC09238B
crossref_primary_10_1002_adma_202006368
crossref_primary_10_1126_sciadv_abe3068
crossref_primary_10_1002_anie_201904305
crossref_primary_10_1021_jacs_3c00646
crossref_primary_10_1007_s11426_024_1986_6
crossref_primary_10_1039_C9CS00504H
crossref_primary_10_1039_C9CE00458K
crossref_primary_10_1016_j_jallcom_2021_159856
crossref_primary_10_1021_jacs_0c00480
crossref_primary_10_1039_D0TC00266F
crossref_primary_10_1002_adma_202008785
crossref_primary_10_1021_acs_cgd_8b01615
crossref_primary_10_1021_acs_chemmater_1c03276
crossref_primary_10_1021_acs_chemrev_2c00404
crossref_primary_10_1002_advs_202302426
crossref_primary_10_1002_slct_202200428
crossref_primary_10_1021_jacs_0c12513
crossref_primary_10_1039_C9CC03857D
crossref_primary_10_1039_D2CE01150F
crossref_primary_10_1021_acs_chemmater_2c02290
crossref_primary_10_1016_j_cclet_2024_110092
crossref_primary_10_1021_jacs_2c12306
crossref_primary_10_1063_1_5131667
crossref_primary_10_1021_acsaelm_1c00462
crossref_primary_10_1021_jacs_0c07055
crossref_primary_10_1021_jacs_3c00634
crossref_primary_10_1002_adma_202401392
crossref_primary_10_1021_jacs_2c11213
crossref_primary_10_1039_D0CC02547J
crossref_primary_10_1039_D0CE01654C
crossref_primary_10_1002_adma_201902163
crossref_primary_10_1016_j_joule_2021_07_008
crossref_primary_10_1038_s41570_020_00228_3
crossref_primary_10_1021_acs_cgd_8b00994
crossref_primary_10_1021_jacs_8b13223
crossref_primary_10_1002_aelm_202101415
crossref_primary_10_1039_D1CE01632F
crossref_primary_10_1038_s41467_024_54596_1
crossref_primary_10_1039_D2DT00925K
crossref_primary_10_1002_chem_202102142
crossref_primary_10_1021_acs_inorgchem_2c04295
crossref_primary_10_1021_acsami_4c03349
crossref_primary_10_1002_ejic_202300449
crossref_primary_10_1063_5_0059208
crossref_primary_10_1002_advs_202105974
crossref_primary_10_1016_j_nanoen_2025_110774
crossref_primary_10_1038_s41467_019_08363_2
crossref_primary_10_1002_ange_201905087
crossref_primary_10_3390_ma17020491
crossref_primary_10_1039_D4CE00023D
crossref_primary_10_1021_acs_inorgchem_2c04289
crossref_primary_10_1039_D3DT01499A
crossref_primary_10_1021_acsnano_1c06099
crossref_primary_10_1021_jacs_4c07268
crossref_primary_10_1021_jacs_8b13109
crossref_primary_10_1016_j_xcrp_2022_100952
crossref_primary_10_1002_ange_202407675
crossref_primary_10_1016_j_molstruc_2020_127847
crossref_primary_10_1016_j_nanoen_2021_106318
crossref_primary_10_1039_C8RA07671E
crossref_primary_10_1039_D4MA00444B
crossref_primary_10_1021_acs_jpcc_9b09239
crossref_primary_10_3390_molecules28083608
crossref_primary_10_1038_s41467_022_35122_7
crossref_primary_10_1021_acsomega_0c00113
crossref_primary_10_1021_acs_nanolett_3c03062
crossref_primary_10_1016_j_nanoen_2023_109196
crossref_primary_10_1021_acs_jpclett_3c00836
crossref_primary_10_1039_C9TC01661A
crossref_primary_10_1063_5_0083763
crossref_primary_10_1002_anie_202318107
crossref_primary_10_1016_j_cclet_2022_107774
crossref_primary_10_1039_C9TC05954G
crossref_primary_10_1002_aisy_202100163
crossref_primary_10_1021_acs_chemmater_0c04220
crossref_primary_10_1002_inf2_12322
crossref_primary_10_3390_s20102820
crossref_primary_10_1002_aenm_202200792
crossref_primary_10_1063_5_0162380
crossref_primary_10_1039_D1DT01812D
crossref_primary_10_1063_5_0247652
crossref_primary_10_1039_C8DT03047B
crossref_primary_10_1039_D2RA03407G
crossref_primary_10_1002_adfm_202316747
crossref_primary_10_1021_acs_cgd_9b00370
crossref_primary_10_1038_s41565_023_01361_y
crossref_primary_10_1039_D0TA08780G
crossref_primary_10_1016_j_jmst_2022_04_048
crossref_primary_10_1002_adfm_202314790
crossref_primary_10_1038_s41586_022_05384_8
crossref_primary_10_1126_science_abg3886
crossref_primary_10_1039_D3QM00072A
crossref_primary_10_1021_acs_cgd_9b01592
crossref_primary_10_1039_D4DT01795A
crossref_primary_10_1002_adma_201808336
crossref_primary_10_1016_j_cjsc_2022_100003
crossref_primary_10_1039_D3CE00706E
crossref_primary_10_1039_D4NJ04595E
crossref_primary_10_1002_aelm_202400324
crossref_primary_10_1103_PhysRevB_101_180403
crossref_primary_10_1002_cssc_202202109
crossref_primary_10_1021_acs_chemmater_0c01654
crossref_primary_10_7498_aps_69_20200354
crossref_primary_10_1063_5_0053884
crossref_primary_10_1002_anie_202008494
crossref_primary_10_1039_D0QI00137F
crossref_primary_10_1021_acs_inorgchem_0c01404
crossref_primary_10_1039_C9NJ01412H
crossref_primary_10_1002_adma_202413547
crossref_primary_10_1002_anie_202500027
crossref_primary_10_1039_C9QI00365G
crossref_primary_10_7566_JPSJ_91_064702
crossref_primary_10_1016_j_jssc_2021_122548
crossref_primary_10_1016_j_apsusc_2024_161841
crossref_primary_10_1039_D1MA00691F
crossref_primary_10_1021_jacs_4c00679
crossref_primary_10_1002_admt_202301320
crossref_primary_10_1002_advs_201801931
crossref_primary_10_1002_smll_202403198
crossref_primary_10_1016_j_joule_2019_03_021
crossref_primary_10_1039_D3QM00800B
crossref_primary_10_1016_j_matt_2021_10_020
crossref_primary_10_1126_science_adk8912
crossref_primary_10_1002_anie_202501360
crossref_primary_10_1002_ange_202309600
crossref_primary_10_1016_j_vibspec_2019_102935
crossref_primary_10_1021_acs_inorgchem_8b01306
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_1002_ange_202500027
crossref_primary_10_1039_C9TC04765D
crossref_primary_10_1002_anie_202216680
crossref_primary_10_1039_C9CE01454C
crossref_primary_10_1039_D0SC01687J
crossref_primary_10_1038_s41528_024_00330_2
crossref_primary_10_1007_s13738_022_02681_x
crossref_primary_10_1039_D1TA09537D
crossref_primary_10_1039_D1TC04718C
crossref_primary_10_1021_jacs_0c00375
crossref_primary_10_1039_D2TC01063A
crossref_primary_10_1021_jacs_0c00371
crossref_primary_10_1021_acsmaterialslett_2c00070
crossref_primary_10_1016_j_cplett_2019_06_019
crossref_primary_10_1016_j_jssc_2021_122409
crossref_primary_10_1039_D2CE00754A
crossref_primary_10_1002_smll_202100809
crossref_primary_10_1002_adma_201900326
crossref_primary_10_1002_adom_202101741
crossref_primary_10_1063_5_0051129
crossref_primary_10_1002_smll_202301364
crossref_primary_10_1002_ange_202501360
crossref_primary_10_1002_anie_202102107
crossref_primary_10_1002_advs_202104703
crossref_primary_10_1002_anie_202420249
crossref_primary_10_1021_jacs_3c10841
crossref_primary_10_1002_advs_202301603
crossref_primary_10_3390_ma14092126
crossref_primary_10_1039_C8NR10506E
crossref_primary_10_1038_s41578_019_0160_x
crossref_primary_10_1039_D4CC03833A
crossref_primary_10_1039_D2QI01824A
crossref_primary_10_1021_jacs_9b05124
crossref_primary_10_1088_1674_4926_42_4_040201
crossref_primary_10_1039_D2CP01123A
crossref_primary_10_1039_C8CE01263F
crossref_primary_10_5796_denkikagaku_23_FE0014
crossref_primary_10_1039_D0CC01026J
crossref_primary_10_1002_adfm_202104393
crossref_primary_10_1007_s11237_025_09818_y
crossref_primary_10_1073_pnas_1817866116
crossref_primary_10_1021_jacs_2c04872
crossref_primary_10_1002_adfm_202502822
crossref_primary_10_1007_s11664_022_10206_8
crossref_primary_10_1016_j_cej_2025_161034
crossref_primary_10_1002_inf2_12490
crossref_primary_10_1002_smll_202308945
crossref_primary_10_1021_acs_cgd_3c00519
crossref_primary_10_1039_D2CC03881A
crossref_primary_10_1016_j_molstruc_2022_133954
crossref_primary_10_1039_D1CE00147G
crossref_primary_10_1002_anie_202208514
crossref_primary_10_1039_D0TC04686H
crossref_primary_10_1039_D2DT01040B
crossref_primary_10_1002_anie_202413726
crossref_primary_10_1039_D1CE00680K
crossref_primary_10_1063_1_5117302
crossref_primary_10_1002_ange_202217910
crossref_primary_10_1002_adma_202308051
crossref_primary_10_1039_C9TC05621A
crossref_primary_10_1063_5_0016010
crossref_primary_10_1039_C8TC03167C
crossref_primary_10_1039_D0TC02266G
crossref_primary_10_1021_acsami_3c13439
crossref_primary_10_1038_s41566_021_00865_0
crossref_primary_10_1021_acs_jpcc_1c08962
crossref_primary_10_1063_5_0035199
crossref_primary_10_1021_jacs_1c00613
crossref_primary_10_1038_s41467_021_25644_x
crossref_primary_10_1039_D3CC02666C
crossref_primary_10_1002_anie_201910143
crossref_primary_10_1002_chem_201902544
crossref_primary_10_1039_C9CC00580C
crossref_primary_10_1039_D1NR04851A
crossref_primary_10_1002_cjoc_202200212
crossref_primary_10_1039_D2DT04014J
crossref_primary_10_1126_sciadv_abo1621
crossref_primary_10_1002_adfm_202407611
crossref_primary_10_1016_j_matt_2019_12_008
crossref_primary_10_1021_acs_inorgchem_2c00886
crossref_primary_10_1039_D2NJ02531K
crossref_primary_10_1107_S2052520623007862
crossref_primary_10_1016_j_inoche_2021_108526
crossref_primary_10_1039_D4CE00310A
crossref_primary_10_1002_adfm_201805810
crossref_primary_10_1021_acs_jpclett_4c00533
crossref_primary_10_1021_jacs_0c06936
crossref_primary_10_1021_acs_inorgchem_8b03424
crossref_primary_10_1002_advs_202102614
crossref_primary_10_1038_s41467_024_44759_5
crossref_primary_10_1002_ange_202420249
crossref_primary_10_1002_adfm_202300445
crossref_primary_10_1016_j_mtelec_2025_100138
crossref_primary_10_1088_2058_8585_adb595
crossref_primary_10_1002_anie_202407048
crossref_primary_10_1002_chem_202301536
crossref_primary_10_1021_acs_cgd_1c01042
crossref_primary_10_1038_s41467_022_33925_2
crossref_primary_10_1038_s41467_023_42131_7
crossref_primary_10_7498_aps_73_20240385
crossref_primary_10_1002_ange_202407048
crossref_primary_10_1002_ange_202413726
crossref_primary_10_1016_j_eng_2020_05_018
crossref_primary_10_1021_acsami_1c03406
crossref_primary_10_1002_aelm_202000778
crossref_primary_10_1039_C9TC05328J
crossref_primary_10_1016_j_molstruc_2019_127382
crossref_primary_10_1038_s41467_022_28314_8
crossref_primary_10_1016_j_ica_2022_120842
crossref_primary_10_1038_s41467_024_48405_y
crossref_primary_10_1016_j_cclet_2020_02_005
crossref_primary_10_1039_D1CC01675J
crossref_primary_10_1021_jacs_4c03407
crossref_primary_10_1039_C9NR01645G
crossref_primary_10_1039_D1CC06306E
crossref_primary_10_1021_acs_jpcc_3c03931
crossref_primary_10_1021_acs_nanolett_3c01848
crossref_primary_10_1039_C9TC03462E
crossref_primary_10_1063_5_0039066
crossref_primary_10_1039_D0TC02057E
crossref_primary_10_1126_sciadv_adr2886
crossref_primary_10_1038_s41467_021_27282_9
crossref_primary_10_1039_C9QM00133F
crossref_primary_10_1088_1361_6528_ab9e8f
crossref_primary_10_1021_acs_chemmater_1c00362
crossref_primary_10_1039_D3CS00262D
crossref_primary_10_1039_C8DT03456G
crossref_primary_10_1002_apxr_202400087
crossref_primary_10_1002_adma_202300480
crossref_primary_10_1002_anie_202218349
crossref_primary_10_1039_D0QM00288G
crossref_primary_10_1016_j_nanoen_2019_104220
crossref_primary_10_1002_sstr_202000009
crossref_primary_10_1021_jacs_8b08286
crossref_primary_10_1515_pac_2023_1023
crossref_primary_10_1021_acs_chemmater_2c00214
crossref_primary_10_1039_D2CE00541G
crossref_primary_10_1016_j_cclet_2025_110826
crossref_primary_10_7498_aps_73_20240477
crossref_primary_10_1016_j_ensm_2023_102768
crossref_primary_10_1039_D1SC04322F
crossref_primary_10_1002_ejic_201900182
crossref_primary_10_1039_C8TA05794J
crossref_primary_10_1002_cplu_202400386
crossref_primary_10_1002_chem_201903678
crossref_primary_10_1002_wcms_1496
crossref_primary_10_1038_s41563_022_01322_1
crossref_primary_10_1021_acs_jpclett_2c02572
crossref_primary_10_1039_D0QM00360C
crossref_primary_10_1088_2516_1075_acb1e7
crossref_primary_10_1016_j_cclet_2023_109272
crossref_primary_10_1063_5_0039082
crossref_primary_10_35848_1882_0786_acc569
crossref_primary_10_1002_cphc_202400801
crossref_primary_10_1021_acs_inorgchem_9b00161
crossref_primary_10_1021_jacs_3c14310
crossref_primary_10_1021_jacs_9b11665
crossref_primary_10_1016_j_ccr_2019_02_012
crossref_primary_10_1039_D3CC02645K
crossref_primary_10_1039_C9TC07019B
crossref_primary_10_1021_acs_chemmater_0c00973
crossref_primary_10_1021_acs_chemrev_3c00170
crossref_primary_10_1016_j_molstruc_2019_126920
crossref_primary_10_1039_D2DT03889G
crossref_primary_10_3389_fchem_2024_1468434
crossref_primary_10_1021_acs_chemmater_9b02409
crossref_primary_10_1039_D1NJ04470B
crossref_primary_10_1063_1674_0068_cjcp2204067
crossref_primary_10_1039_C9TC01924C
crossref_primary_10_1038_s41563_022_01334_x
crossref_primary_10_1021_jacs_0c05372
crossref_primary_10_1002_ange_201908945
crossref_primary_10_1002_adma_202004999
crossref_primary_10_1080_24701556_2020_1716006
crossref_primary_10_6023_A20080375
crossref_primary_10_1002_smll_201902237
crossref_primary_10_1021_jacs_0c12907
crossref_primary_10_1021_acs_accounts_0c00797
crossref_primary_10_1002_slct_201900081
crossref_primary_10_1021_acs_cgd_4c01453
crossref_primary_10_1039_D3DT02924G
crossref_primary_10_1002_anie_202306732
crossref_primary_10_1021_jacs_9b00886
crossref_primary_10_1021_acs_cgd_3c00495
crossref_primary_10_1039_D1TC03117A
crossref_primary_10_1002_anie_201805625
crossref_primary_10_1039_C9QM00724E
crossref_primary_10_1002_adom_202101545
crossref_primary_10_1039_C9CC04434E
crossref_primary_10_1002_ange_202015219
crossref_primary_10_1002_adma_202003530
crossref_primary_10_1002_smll_202203882
crossref_primary_10_1016_j_cclet_2024_109530
crossref_primary_10_1002_ange_202216680
crossref_primary_10_1002_anie_202407675
crossref_primary_10_1039_C9RA02577D
crossref_primary_10_1016_j_cossms_2020_100806
crossref_primary_10_1038_s41578_020_0181_5
crossref_primary_10_1021_acs_chemmater_2c00546
crossref_primary_10_1039_D0DT03206A
crossref_primary_10_1002_ange_202318107
crossref_primary_10_1002_adma_201908040
crossref_primary_10_1016_j_surfin_2021_101703
crossref_primary_10_1126_science_adj1946
crossref_primary_10_1002_advs_202305016
crossref_primary_10_1103_PhysRevLett_125_127601
crossref_primary_10_1039_C9TC05468E
crossref_primary_10_1039_D0QI00265H
crossref_primary_10_1039_D1SC01345A
crossref_primary_10_1039_D2CE00236A
crossref_primary_10_1002_advs_202400636
crossref_primary_10_1039_D0CE00173B
crossref_primary_10_1002_ange_202007660
crossref_primary_10_1016_j_nanoen_2022_108114
crossref_primary_10_1021_acsomega_3c08711
crossref_primary_10_1002_asia_202201125
crossref_primary_10_1002_anie_201905087
crossref_primary_10_1021_acs_cgd_3c00119
crossref_primary_10_1021_acs_jpclett_3c02238
crossref_primary_10_1016_j_cplett_2018_11_017
crossref_primary_10_1016_j_matt_2021_06_006
crossref_primary_10_1039_D2DT00557C
crossref_primary_10_1039_D4CC03939D
crossref_primary_10_1039_C9CE01739A
crossref_primary_10_1002_cjoc_202200089
crossref_primary_10_1021_acsami_1c18278
crossref_primary_10_1039_D1CE00381J
crossref_primary_10_1021_acs_jpclett_4c01262
crossref_primary_10_1002_cjoc_202401118
crossref_primary_10_1016_j_cclet_2022_108051
crossref_primary_10_1002_adma_202104107
crossref_primary_10_1002_chem_202002198
crossref_primary_10_1021_acs_jpclett_2c01044
crossref_primary_10_1021_jacs_4c06859
crossref_primary_10_1002_adma_202102190
crossref_primary_10_1002_prep_202000306
crossref_primary_10_1021_acs_jpcc_2c03984
crossref_primary_10_1038_s41467_023_43320_0
crossref_primary_10_1016_j_cclet_2021_08_098
crossref_primary_10_1021_acsphotonics_1c00687
crossref_primary_10_1002_cjoc_202200297
crossref_primary_10_1021_jacsau_3c00835
crossref_primary_10_1063_5_0041477
crossref_primary_10_1016_j_inoche_2022_109773
crossref_primary_10_1107_S2052252522006406
crossref_primary_10_1002_ange_201904305
crossref_primary_10_1002_anie_202206034
crossref_primary_10_1021_acs_inorgchem_1c03506
crossref_primary_10_1039_D4CC04010D
crossref_primary_10_1016_j_trechm_2021_05_003
crossref_primary_10_1039_D0RA00245C
crossref_primary_10_1016_j_jhazmat_2023_131578
crossref_primary_10_1002_adom_202203144
crossref_primary_10_1021_acs_nanolett_9b04210
crossref_primary_10_1002_cphc_202100040
crossref_primary_10_1002_bio_3714
crossref_primary_10_1039_D4TC01777C
crossref_primary_10_3390_ma16237323
crossref_primary_10_1039_D2TC01330D
crossref_primary_10_1021_jacs_8b12948
crossref_primary_10_1039_D1TC00619C
crossref_primary_10_1142_S2010135X21500053
crossref_primary_10_1002_aenm_202202298
crossref_primary_10_1002_adma_201807628
crossref_primary_10_1002_anie_202213927
crossref_primary_10_1002_asia_201801921
crossref_primary_10_1039_D3CC04186G
crossref_primary_10_1002_ejic_202000064
crossref_primary_10_1002_smll_202411571
crossref_primary_10_1021_acs_chemmater_0c02966
crossref_primary_10_1002_cphc_202100279
crossref_primary_10_1021_acs_cgd_3c00693
crossref_primary_10_1021_acs_inorgchem_0c02558
Cites_doi 10.1557/mrs2009.176
10.1107/S0365110X67003688
10.1103/PhysRevB.74.184111
10.1126/science.344.6181.237-c
10.1039/c3qi00058c
10.1002/andp.18391241205
10.1002/anie.201001208
10.1126/science.aam8561
10.1103/PhysRev.35.269
10.1021/jacs.7b00492
10.1038/nature08128
10.1039/C5CC00979K
10.1557/mrc.2015.6
10.1002/anie.201103265
10.1063/1.474417
10.1107/S0567740878007098
10.1103/PhysRevLett.19.1286
10.1103/PhysRevB.72.054122
10.1038/ncomms13635
10.1126/science.246.4936.1400
10.1038/nmat2703
10.1126/science.1129564
10.1002/adma.201502294
10.1038/ncomms4279
10.1146/annurev.matsci.37.052506.084323
10.1107/S0021889800015508
10.1103/PhysRev.107.1255
10.1107/S0108768199013622
10.1103/PhysRevB.48.4442
10.1021/ja801952e
10.1002/adma.201102938
10.1021/ja027484e
10.1103/PhysRevB.73.134111
10.1016/0038-1098(68)90571-1
10.1073/pnas.1607471113
10.1021/ja400318v
10.1021/jacs.5b08061
10.1007/978-3-642-85135-3
10.1126/science.aam5655
10.1021/jacs.7b10449
10.1002/pssa.2211470230
10.1021/ja503344b
10.1038/natrevmats.2016.99
10.1126/science.aaa6442
10.1002/adma.201505224
10.1126/science.1229675
10.1021/ja904156s
10.1103/PhysRev.126.1977
10.1103/PhysRevLett.107.147601
10.1038/srep21687
10.1103/PhysRevLett.1.320
10.1021/jacs.7b07715
10.1017/9781316226889
10.1002/chir.10145
10.1063/1.3382344
10.1021/jacs.5b08290
10.1126/science.aai8535
10.1002/anie.201406810
10.1063/1.1654302
10.1021/jacs.6b08817
10.1002/anie.201200407
10.1088/0953-8984/13/48/329
10.1002/anie.201003541
10.1021/ja809598r
10.1038/nmat2377
10.1103/PhysRevB.47.1651
10.1016/0927-0256(96)00008-0
10.1039/C5CS00308C
10.1002/anie.201400348
10.1021/acs.chemrev.5b00715
10.1103/PhysRevLett.77.3865
10.1038/ncomms13199
10.1039/C5DT03481G
10.1103/PhysRevB.54.11169
10.1021/jacs.7b01334
10.1143/JPSJ.27.387
10.1021/ja0376893
10.1002/anie.200700407
10.1038/358136a0
10.1021/jp202192k
10.1007/BF01507527
10.1021/nl403828u
10.1126/science.aad1818
10.1002/anie.201402339
10.1111/j.1151-2916.1999.tb01840.x
10.1080/00150198908007908
10.1038/nmat2137
10.1126/sciadv.1701008
10.1103/PhysRev.82.727
10.1103/PhysRev.110.1309
10.1126/science.aam6323
10.1088/0953-8984/12/33/316
10.1103/PhysRev.17.475
10.1021/je60037a046
10.1039/C4SC02211D
10.1103/PhysRevLett.82.576
10.1021/ja3073319
10.1103/PhysRev.80.1105
10.1103/PhysRev.76.1886.2
10.1016/0038-1098(89)90848-X
10.1002/adma.201400806
10.1103/PhysRev.127.2036
10.1038/ncomms8338
10.1063/1.124536
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aas9330
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Materials Research Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 155
ExternalDocumentID 30002249
10_1126_science_aas9330
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-b3180c20439465f419b5be8badecc69c25c262858829255906aa41a2858a82ff3
ISSN 0036-8075
1095-9203
IngestDate Fri Sep 05 03:33:09 EDT 2025
Fri Jul 25 10:25:30 EDT 2025
Wed Feb 19 02:43:54 EST 2025
Tue Jul 01 01:51:20 EDT 2025
Thu Apr 24 22:59:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6398
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-b3180c20439465f419b5be8badecc69c25c262858829255906aa41a2858a82ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2276-6886
0000-0001-5228-6192
0000-0002-8369-572X
0000-0002-4258-8733
0000-0002-5359-7037
0000-0003-2364-0193
PMID 30002249
PQID 2068931855
PQPubID 1256
PageCount 5
ParticipantIDs proquest_miscellaneous_2070243661
proquest_journals_2068931855
pubmed_primary_30002249
crossref_citationtrail_10_1126_science_aas9330
crossref_primary_10_1126_science_aas9330
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-13
20180713
PublicationDateYYYYMMDD 2018-07-13
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
Donnay G. D. H. (e_1_3_2_70_2) 1937; 22
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
30002242 - Science. 2018 Jul 13;361(6398):132
References_xml – ident: e_1_3_2_48_2
  doi: 10.1557/mrs2009.176
– ident: e_1_3_2_60_2
  doi: 10.1107/S0365110X67003688
– ident: e_1_3_2_82_2
  doi: 10.1103/PhysRevB.74.184111
– volume: 22
  start-page: 446
  year: 1937
  ident: e_1_3_2_70_2
  article-title: A new law of crystal morphology extending the law of Bravais
  publication-title: Am. Mineral.
– ident: e_1_3_2_71_2
  doi: 10.1126/science.344.6181.237-c
– ident: e_1_3_2_87_2
  doi: 10.1039/c3qi00058c
– ident: e_1_3_2_2_2
  doi: 10.1002/andp.18391241205
– ident: e_1_3_2_40_2
  doi: 10.1002/anie.201001208
– ident: e_1_3_2_3_2
  doi: 10.1126/science.aam8561
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRev.35.269
– ident: e_1_3_2_23_2
  doi: 10.1021/jacs.7b00492
– ident: e_1_3_2_49_2
  doi: 10.1038/nature08128
– ident: e_1_3_2_43_2
  doi: 10.1039/C5CC00979K
– ident: e_1_3_2_12_2
  doi: 10.1557/mrc.2015.6
– ident: e_1_3_2_26_2
  doi: 10.1002/anie.201103265
– ident: e_1_3_2_77_2
  doi: 10.1063/1.474417
– ident: e_1_3_2_61_2
  doi: 10.1107/S0567740878007098
– ident: e_1_3_2_103_2
  doi: 10.1103/PhysRevLett.19.1286
– ident: e_1_3_2_96_2
  doi: 10.1103/PhysRevB.72.054122
– ident: e_1_3_2_42_2
  doi: 10.1038/ncomms13635
– ident: e_1_3_2_9_2
  doi: 10.1126/science.246.4936.1400
– ident: e_1_3_2_74_2
  doi: 10.1038/nmat2703
– ident: e_1_3_2_5_2
  doi: 10.1126/science.1129564
– ident: e_1_3_2_18_2
  doi: 10.1002/adma.201502294
– ident: e_1_3_2_7_2
  doi: 10.1038/ncomms4279
– ident: e_1_3_2_47_2
  doi: 10.1146/annurev.matsci.37.052506.084323
– ident: e_1_3_2_79_2
  doi: 10.1107/S0021889800015508
– ident: e_1_3_2_92_2
  doi: 10.1103/PhysRev.107.1255
– ident: e_1_3_2_59_2
  doi: 10.1107/S0108768199013622
– ident: e_1_3_2_65_2
  doi: 10.1103/PhysRevB.48.4442
– ident: e_1_3_2_24_2
  doi: 10.1021/ja801952e
– ident: e_1_3_2_58_2
  doi: 10.1002/adma.201102938
– ident: e_1_3_2_27_2
  doi: 10.1021/ja027484e
– ident: e_1_3_2_84_2
  doi: 10.1103/PhysRevB.73.134111
– ident: e_1_3_2_39_2
  doi: 10.1016/0038-1098(68)90571-1
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.1607471113
– ident: e_1_3_2_91_2
  doi: 10.1021/ja400318v
– ident: e_1_3_2_93_2
  doi: 10.1021/jacs.5b08061
– ident: e_1_3_2_45_2
  doi: 10.1007/978-3-642-85135-3
– ident: e_1_3_2_15_2
  doi: 10.1126/science.aam5655
– ident: e_1_3_2_62_2
  doi: 10.1021/jacs.7b10449
– ident: e_1_3_2_89_2
  doi: 10.1002/pssa.2211470230
– ident: e_1_3_2_53_2
  doi: 10.1021/ja503344b
– ident: e_1_3_2_21_2
  doi: 10.1038/natrevmats.2016.99
– ident: e_1_3_2_46_2
  doi: 10.1126/science.aaa6442
– ident: e_1_3_2_56_2
  doi: 10.1002/adma.201505224
– ident: e_1_3_2_36_2
  doi: 10.1126/science.1229675
– ident: e_1_3_2_25_2
  doi: 10.1021/ja904156s
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRev.126.1977
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevLett.107.147601
– ident: e_1_3_2_44_2
  doi: 10.1038/srep21687
– ident: e_1_3_2_106_2
  doi: 10.1103/PhysRevLett.1.320
– ident: e_1_3_2_102_2
  doi: 10.1021/jacs.7b07715
– ident: e_1_3_2_4_2
  doi: 10.1017/9781316226889
– ident: e_1_3_2_50_2
  doi: 10.1002/chir.10145
– ident: e_1_3_2_69_2
  doi: 10.1063/1.3382344
– ident: e_1_3_2_99_2
  doi: 10.1021/jacs.5b08290
– ident: e_1_3_2_14_2
  doi: 10.1126/science.aai8535
– ident: e_1_3_2_6_2
– ident: e_1_3_2_98_2
  doi: 10.1002/anie.201406810
– ident: e_1_3_2_104_2
  doi: 10.1063/1.1654302
– ident: e_1_3_2_41_2
  doi: 10.1021/jacs.6b08817
– ident: e_1_3_2_86_2
  doi: 10.1002/anie.201200407
– ident: e_1_3_2_94_2
  doi: 10.1088/0953-8984/13/48/329
– ident: e_1_3_2_11_2
– ident: e_1_3_2_28_2
  doi: 10.1002/anie.201003541
– ident: e_1_3_2_16_2
  doi: 10.1021/ja809598r
– ident: e_1_3_2_8_2
  doi: 10.1038/nmat2377
– ident: e_1_3_2_64_2
  doi: 10.1103/PhysRevB.47.1651
– ident: e_1_3_2_67_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_3_2_55_2
  doi: 10.1039/C5CS00308C
– ident: e_1_3_2_73_2
  doi: 10.1002/anie.201400348
– ident: e_1_3_2_17_2
  doi: 10.1021/acs.chemrev.5b00715
– ident: e_1_3_2_68_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_75_2
  doi: 10.1038/ncomms13199
– ident: e_1_3_2_63_2
  doi: 10.1039/C5DT03481G
– ident: e_1_3_2_66_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_2_22_2
  doi: 10.1021/jacs.7b01334
– ident: e_1_3_2_32_2
  doi: 10.1143/JPSJ.27.387
– ident: e_1_3_2_51_2
  doi: 10.1021/ja0376893
– ident: e_1_3_2_85_2
  doi: 10.1002/anie.200700407
– ident: e_1_3_2_38_2
  doi: 10.1038/358136a0
– ident: e_1_3_2_101_2
  doi: 10.1021/jp202192k
– ident: e_1_3_2_30_2
  doi: 10.1007/BF01507527
– ident: e_1_3_2_100_2
  doi: 10.1021/nl403828u
– ident: e_1_3_2_19_2
  doi: 10.1126/science.aad1818
– ident: e_1_3_2_57_2
  doi: 10.1002/anie.201402339
– ident: e_1_3_2_105_2
  doi: 10.1111/j.1151-2916.1999.tb01840.x
– ident: e_1_3_2_81_2
  doi: 10.1080/00150198908007908
– ident: e_1_3_2_35_2
  doi: 10.1038/nmat2137
– ident: e_1_3_2_72_2
  doi: 10.1126/sciadv.1701008
– ident: e_1_3_2_108_2
  doi: 10.1103/PhysRev.82.727
– ident: e_1_3_2_83_2
  doi: 10.1103/PhysRev.110.1309
– ident: e_1_3_2_13_2
  doi: 10.1126/science.aam6323
– ident: e_1_3_2_90_2
  doi: 10.1088/0953-8984/12/33/316
– ident: e_1_3_2_78_2
  doi: 10.1103/PhysRev.17.475
– ident: e_1_3_2_52_2
  doi: 10.1021/je60037a046
– ident: e_1_3_2_31_2
  doi: 10.1039/C4SC02211D
– ident: e_1_3_2_97_2
  doi: 10.1103/PhysRevLett.82.576
– ident: e_1_3_2_80_2
  doi: 10.1021/ja3073319
– ident: e_1_3_2_109_2
  doi: 10.1103/PhysRev.80.1105
– ident: e_1_3_2_110_2
  doi: 10.1103/PhysRev.76.1886.2
– ident: e_1_3_2_10_2
– ident: e_1_3_2_88_2
  doi: 10.1016/0038-1098(89)90848-X
– ident: e_1_3_2_95_2
  doi: 10.1002/adma.201400806
– ident: e_1_3_2_107_2
  doi: 10.1103/PhysRev.127.2036
– ident: e_1_3_2_54_2
  doi: 10.1038/ncomms8338
– ident: e_1_3_2_76_2
  doi: 10.1063/1.124536
– reference: 30002242 - Science. 2018 Jul 13;361(6398):132
SSID ssj0009593
Score 2.6963358
Snippet The perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of applications. Building...
Inorganic perovskite ferroelectrics are widely used in nonvolatile memory elements, capacitors, and sensors because of their excellent ferroelectric and other...
Perovskites go organicThe perovskite structure accommodates many different combinations of elements, making it attractive for use in a wide variety of...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 151
SubjectTerms Ammonium
Barium
Barium titanates
Biomedical materials
Ferroelectric materials
Ferroelectricity
Ferroelectrics
Organic Chemistry
Organic compounds
Perovskite structure
Perovskites
Phase transitions
Polarization
Synthesis
Transition temperature
Transition temperatures
Title Metal-free three-dimensional perovskite ferroelectrics
URI https://www.ncbi.nlm.nih.gov/pubmed/30002249
https://www.proquest.com/docview/2068931855
https://www.proquest.com/docview/2070243661
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZymAvo-2-snbDgz10DAXLlmX7Md0WyqCDQcuaJyPJpxIYzkjiQvdX9E_uKZI_ujXQ7UXYiqwY3-l0d7r7HSHvM6FEmktOTSkM5VqnVGluqMmMVLnmIKU90T39Jk7O-deL5GIwuOlFLdVrNda_780r-R-qYh_S1WbJ_gNl20mxA6-RvtgihbF9EI1PAVVnapYAtt4OAC0tVr_D2bCAxIurlXXOfjSwXC5cwZsmuN3ro83SRj2zPbvpUawNQpy4UIEmcsA_1nMjzMBtYtUlndVdcK_3Rs9qWVHbtPE_cxccjMOnMO965cZz-wPm9Dvy7WXfJ8Ey6-x0KaWNnPUwx26XcaI1tFUhozDuy97YIbF7JkNtKesJU-ahaMHfJfeL_F6RShhLubIumm53a070_9j02lDEjREUicJPUPgJHpGdKE1ZMiQ7k-PPx9OtQM4eLqqXiNW8w11NZ4v5slFjznbJU29_BBPHTHtkANU-eewqkl7vkz1P2VVw5AHJPzwjouOz4C8-Czo-C-7y2XNyPv1y9umE-nobVMc5W1OF8j3ULllaJIazXCUKMiVLXOci11GiI5txi0ZZbi3RUEjJmbQ9MouMiV-QYbWo4BUJSsYkMF3yDDSPTK6UKXMZM8WFYWkcjci4-TaF9mD0tibKz2ILPUbkqH3gl8Nh2T70sPnYhV-sqyIKBWrmqJwmI_Ku_RlFqT0fkxUsajsmtficqLGOyEtHpPa_4g1SFM9fP_w9DsiTbm0ckuF6WcMb1GDX6q1nqlvF6p-n
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metal-free+three-dimensional+perovskite+ferroelectrics&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Ye%2C+Heng-Yun&rft.au=Tang%2C+Yuan-Yuan&rft.au=Li%2C+Peng-Fei&rft.au=Liao%2C+Wei-Qiang&rft.date=2018-07-13&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=361&rft.issue=6398&rft.spage=151&rft.epage=155&rft_id=info:doi/10.1126%2Fscience.aas9330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_aas9330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon