Two-Stage Convolutional Neural Network for Classification of Movement Patterns in Tremor Patients

Accurate tremor classification is crucial for effective patient management and treatment. However, clinical diagnoses are often hindered by misdiagnoses, necessitating the development of robust technical methods. Here, we present a two-stage convolutional neural network (CNN)-based system for classi...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 15; no. 4; p. 231
Main Authors Weede, Patricia, Smietana, Piotr Dariusz, Kuhlenbäumer, Gregor, Deuschl, Günther, Schmidt, Gerhard
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2024
Subjects
Online AccessGet full text
ISSN2078-2489
2078-2489
DOI10.3390/info15040231

Cover

Abstract Accurate tremor classification is crucial for effective patient management and treatment. However, clinical diagnoses are often hindered by misdiagnoses, necessitating the development of robust technical methods. Here, we present a two-stage convolutional neural network (CNN)-based system for classifying physiological tremor, essential tremor (ET), and Parkinson’s disease (PD) tremor. Employing acceleration signals from the hands of 408 patients, our system utilizes both medically motivated signal features and (nearly) raw data (by means of spectrograms) as system inputs. Our model employs a hybrid approach of data-based and feature-based methods to leverage the strengths of both while mitigating their weaknesses. By incorporating various data augmentation techniques for model training, we achieved an overall accuracy of 88.12%. This promising approach demonstrates improved accuracy in discriminating between the three tremor types, paving the way for more precise tremor diagnosis and enhanced patient care.
AbstractList Accurate tremor classification is crucial for effective patient management and treatment. However, clinical diagnoses are often hindered by misdiagnoses, necessitating the development of robust technical methods. Here, we present a two-stage convolutional neural network (CNN)-based system for classifying physiological tremor, essential tremor (ET), and Parkinson’s disease (PD) tremor. Employing acceleration signals from the hands of 408 patients, our system utilizes both medically motivated signal features and (nearly) raw data (by means of spectrograms) as system inputs. Our model employs a hybrid approach of data-based and feature-based methods to leverage the strengths of both while mitigating their weaknesses. By incorporating various data augmentation techniques for model training, we achieved an overall accuracy of 88.12%. This promising approach demonstrates improved accuracy in discriminating between the three tremor types, paving the way for more precise tremor diagnosis and enhanced patient care.
Audience Academic
Author Schmidt, Gerhard
Kuhlenbäumer, Gregor
Deuschl, Günther
Weede, Patricia
Smietana, Piotr Dariusz
Author_xml – sequence: 1
  givenname: Patricia
  orcidid: 0009-0003-4617-7805
  surname: Weede
  fullname: Weede, Patricia
– sequence: 2
  givenname: Piotr Dariusz
  surname: Smietana
  fullname: Smietana, Piotr Dariusz
– sequence: 3
  givenname: Gregor
  orcidid: 0000-0002-3262-8113
  surname: Kuhlenbäumer
  fullname: Kuhlenbäumer, Gregor
– sequence: 4
  givenname: Günther
  surname: Deuschl
  fullname: Deuschl, Günther
– sequence: 5
  givenname: Gerhard
  orcidid: 0000-0002-6128-4831
  surname: Schmidt
  fullname: Schmidt, Gerhard
BookMark eNptUU1r3DAQNSWFpmlu_QGCXutkZMmWdAxLPwJJE8jmLGRptGhrW6mkTei_rzZb2hQ6Oszw5s0bNO9tc7TEBZvmPYUzxhSch8VH2gOHjtFXzXEHQrYdl-roRf2mOc15CzWEkFzS48asn2J7V8wGySouj3HalRAXM5FvuEvPqTzF9J34mMhqMjkHH6zZc0j05Do-4oxLIbemFExLJmEh64RzZVco1FZ-17z2Zsp4-jufNPefP61XX9urmy-Xq4ur1jJFS6tAGInd2AF1gipn0TnpzYDeS-6AjsxS5rlXjnEcEaADz3kvOgqSM6DspLk86LpotvohhdmknzqaoJ-BmDbapBLshNoYELxHOtSVfBSdqnuZp046ORrXD1Xrw0HrIcUfO8xFb-Mu1bNkzYAPivZ8kH9ZG1NF9_cvydg5ZKsvhGJ9D0zttc7-w6rP4Rxs9dCHiv8z8PEwYFPMOaH_8xkKem-1fmk1-wUoi5yE
Cites_doi 10.1145/3136755.3136817
10.1109/iCBEB.2012.387
10.1145/3544558
10.3389/fnhum.2012.00357
10.24963/ijcai.2021/631
10.1016/0013-4694(78)90106-2
10.1002/mds.870131308
10.1093/biomet/26.4.404
10.1212/WNL.57.8.1497
10.1002/mds.27121
10.3389/fpubh.2017.00307
10.1038/s41598-023-39862-4
10.1515/bmt-2021-0140
10.1212/WNL.0000000000002350
10.1016/j.gltp.2022.04.020
10.1056/NEJMcp1707928
10.1016/S1388-2457(03)00006-3
10.1186/s40537-019-0197-0
10.1002/mds.870131303
10.1167/16.12.326
10.1136/jnnp.55.3.181
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info15040231
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_aa0745e167a84b729e2b3f1d8d8bad56
A793550396
10_3390_info15040231
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
XH6
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c391t-907a8e2b201d719dcedd8fa6eff84d01b3c13f4f9d34ebe0020f4457210843013
IEDL.DBID DOA
ISSN 2078-2489
IngestDate Wed Aug 27 01:09:17 EDT 2025
Sat Jul 26 00:15:36 EDT 2025
Tue Jun 17 22:10:39 EDT 2025
Tue Jun 10 21:06:47 EDT 2025
Tue Jul 01 04:24:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-907a8e2b201d719dcedd8fa6eff84d01b3c13f4f9d34ebe0020f4457210843013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-4617-7805
0000-0002-6128-4831
0000-0002-3262-8113
OpenAccessLink https://doaj.org/article/aa0745e167a84b729e2b3f1d8d8bad56
PQID 3046915468
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_aa0745e167a84b729e2b3f1d8d8bad56
proquest_journals_3046915468
gale_infotracmisc_A793550396
gale_infotracacademiconefile_A793550396
crossref_primary_10_3390_info15040231
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gunning (ref_32) 2019; 40
(ref_23) 2023; 7
ref_13
ref_12
Bayer (ref_18) 2022; 55
Trevethan (ref_21) 2017; 5
Hughes (ref_29) 1992; 55
ref_16
ref_15
Maharana (ref_24) 2022; 3
Haubenberger (ref_2) 2018; 378
Clopper (ref_22) 1934; 26
Hallett (ref_11) 1998; 13
Deuschl (ref_4) 1998; 13
Fakoor (ref_5) 2013; Volume 28
Hossen (ref_26) 2013; 21
Daneault (ref_10) 2013; 6
Hughes (ref_30) 2001; 57
ref_20
Elble (ref_28) 2003; 114
ref_3
Piepjohn (ref_7) 2022; 67
Elble (ref_25) 1978; 44
Bhatia (ref_1) 2018; 33
ref_27
Wang (ref_14) 2019; 7
Shorten (ref_19) 2019; 6
ref_9
Rizzo (ref_31) 2016; 86
ref_8
Uchitomi (ref_17) 2023; 13
ref_6
References_xml – ident: ref_16
  doi: 10.1145/3136755.3136817
– ident: ref_9
– ident: ref_3
– ident: ref_27
  doi: 10.1109/iCBEB.2012.387
– volume: 55
  start-page: 1
  year: 2022
  ident: ref_18
  article-title: A Survey on Data Augmentation for Text Classification
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3544558
– volume: 6
  start-page: 357
  year: 2013
  ident: ref_10
  article-title: Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2012.00357
– ident: ref_20
  doi: 10.24963/ijcai.2021/631
– volume: 44
  start-page: 72
  year: 1978
  ident: ref_25
  article-title: Mechanistic components of normal hand tremor
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(78)90106-2
– volume: 13
  start-page: 43
  year: 1998
  ident: ref_11
  article-title: Overview of Human Tremor Physiology
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.870131308
– volume: 26
  start-page: 404
  year: 1934
  ident: ref_22
  article-title: The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial
  publication-title: Biometrika
  doi: 10.1093/biomet/26.4.404
– volume: 7
  start-page: 26
  year: 2023
  ident: ref_23
  article-title: Confusion Matrix in Three-class Classification Problems: A Step-by-Step Tutorial
  publication-title: J. Eng. Res.
– volume: 57
  start-page: 1497
  year: 2001
  ident: ref_30
  article-title: Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease
  publication-title: Neurology
  doi: 10.1212/WNL.57.8.1497
– volume: 33
  start-page: 75
  year: 2018
  ident: ref_1
  article-title: Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.27121
– volume: 5
  start-page: 2296
  year: 2017
  ident: ref_21
  article-title: Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2017.00307
– ident: ref_6
– ident: ref_8
– volume: 13
  start-page: 12638
  year: 2023
  ident: ref_17
  article-title: Classification of mild Parkinson’s disease: Data augmentation of time-series gait data obtained via inertial measurement units
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-39862-4
– volume: 67
  start-page: 119
  year: 2022
  ident: ref_7
  article-title: Real-time classification of movement patterns of tremor patients
  publication-title: Biomed. Tech. Biomed. Eng.
  doi: 10.1515/bmt-2021-0140
– volume: 21
  start-page: 345
  year: 2013
  ident: ref_26
  article-title: A neural network approach for feature extraction and discrimination between Parkinsonian tremor and essential tremor
  publication-title: Technol. Health Care Off. J. Eur. Soc. Eng. Med.
– volume: 7
  start-page: 148967
  year: 2019
  ident: ref_14
  article-title: Cellular structure image classification with small targeted training samples
  publication-title: IEEE Access Pract. Innov. Open Solut.
– ident: ref_12
– volume: 86
  start-page: 566
  year: 2016
  ident: ref_31
  article-title: Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000002350
– volume: 3
  start-page: 91
  year: 2022
  ident: ref_24
  article-title: A review: Data pre-processing and data augmentation techniques
  publication-title: Glob. Transit. Proc.
  doi: 10.1016/j.gltp.2022.04.020
– ident: ref_15
– volume: 378
  start-page: 1802
  year: 2018
  ident: ref_2
  article-title: Essential tremor
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcp1707928
– volume: 40
  start-page: 44
  year: 2019
  ident: ref_32
  article-title: DARPA’s Explainable Artificial Intelligence (XAI) Program
  publication-title: AI Mag.
– volume: Volume 28
  start-page: 3937
  year: 2013
  ident: ref_5
  article-title: Using deep learning to enhance cancer diagnosis and classification
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 114
  start-page: 624
  year: 2003
  ident: ref_28
  article-title: Characteristics of physiologic tremor in young and elderly adults
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(03)00006-3
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_19
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 13
  start-page: 2
  year: 1998
  ident: ref_4
  article-title: Consensus statement of the Movement Disorder Society on tremor: Ad Hoc Scientific Committee
  publication-title: Mov. Disord. Off. J. Mov. Disord. Soc.
  doi: 10.1002/mds.870131303
– ident: ref_13
  doi: 10.1167/16.12.326
– volume: 55
  start-page: 181
  year: 1992
  ident: ref_29
  article-title: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases
  publication-title: J. Neurol. Neurosurgery Psychiatry
  doi: 10.1136/jnnp.55.3.181
SSID ssj0000778481
Score 2.2786763
Snippet Accurate tremor classification is crucial for effective patient management and treatment. However, clinical diagnoses are often hindered by misdiagnoses,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 231
SubjectTerms acceleration
Algorithms
Artificial intelligence
Artificial neural networks
Classification
convolutional neural network
Data augmentation
Datasets
essential tremor
Fourier transforms
Machine learning
Movement disorders
Neural networks
Parkinson's disease
Patients
Physiological aspects
physiological tremor
Physiology
Signal processing
spectrogram
Spectrograms
System theory
Tremor (Muscular contraction)
tremor classification
Tremors
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4LDAgnqJQkAcQk0XSOHE8oYIoCKmIoUhskZ-IJSltgL_PnetCO8AUyXYix-fzfT6fvyPkTKARKDVnRgrFOPeOKe8Ey5U0XAujnUY_5PCxuH_mDy_5S3S4TWNY5XxNDAu1bQz6yC_xBE-CvS_Kq_E7w6xReLoaU2iskvW0B7YWb4oP7n58LIkQyBY_i3fPYHd_iVIDCMSR9WzJEgXC_r-W5WBrBttkK4JE2p9JdYesuHqXbC5QB-4RNfpqGCDFV0dvmvozTiB4Cdk2wiOEd1PApDQkvsSQoCAF2ng6bAJNeEufAr1mPaVvNR1NMOoWi_CO5HSfPA9uRzf3LKZLYCaTactgm6tK19Ng0q1IpTXO2tKrwnlfcpukOjNp5rmXNuMgOgSKnvMctoBJyUHPswOyVje1OyQ0kZYnSlqAZ4CXCq68STRgSZWnWhRSdMj5fOiq8YwVo4LdBA5xtTjEHXKN4_rTBrmsQ0Ezea2ialRKAYzJXVpA92F69CT8Q-ZTW9pSK5sXHXKBUgkfbifKqHhxALqK3FVVXyBHfJJJaNldagmaYpar53KtoqZOq995dfR_9THZ6AGgmUXtdMlaO_lwJwBIWn0aZt03_CHgdQ
  priority: 102
  providerName: ProQuest
Title Two-Stage Convolutional Neural Network for Classification of Movement Patterns in Tremor Patients
URI https://www.proquest.com/docview/3046915468
https://doaj.org/article/aa0745e167a84b729e2b3f1d8d8bad56
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4LDAgnqI8Kg8gpoikcWJ7LI-CEK0QFIkt8hOxJKgN8Pe5c1LUDoiFyZJjR9Z3tu-75PyZkBOOTkBoFhnJVcSYd5HyjkeZkoZpbrTT-B1yOMpvn9ndS_Yyd9UX5oQ18sANcOdKgZPLXJJzJaBzT7qeTn1ihRVa2SyIbccyngumwh7MOerEN5nuKcT152gvID8M9c4WfFCQ6v9tQw5eZrBJNlp6SPvNsLbIkiu3yfqcaOAOUeOvKgKO-OroZVV-tlMHOqHORihCYjcFNkrDlZeYDBTwp5WnwyoIhNf0IQhrllP6VtLxBPNtsQpPR053yfPgenx5G7UXJUQmlUkdQYCrBOACztzyRFrjrBVe5c57wWyc6NQkqWde2pSB0ZAiesYyCP5iwWCFp3tkpaxKt09oLC2LlbRAzIAp5Ux5E2tgkSpLNM8l75DTGXTFe6OHUUAcgRAX8xB3yAXi-tMGVaxDBdi2aG1b_GXbDjlDq4QX1xNlVHtkAIaKqlVFn6M6fJxKaHm00BLWiFl8PLNr0a7RaYH_hCUwyFwc_MdgD8laDwhPk9VzRFbqyYc7BsJS6y5ZFoObLlntXw3vn6C8uB49PHbDjP0G8njtfA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYAPVJyiJrETx4cKtaXVlnZXFdpKvQU_Ky5J2Q1U_Dl-GzPepHQPcOspku1Y9njs-WyPvwF4L8kIVEYkVkmdCBF8ooOXSaGVFUZa4w2dQ05n5eRcfL4oLjbg9_AWhtwqhzUxLtSutXRGvkM3eArtfVl9vPqeUNQoul0dQmjoPrSC240UY_3DjhP_6xq3cMvd40843tt5fnQ4P5gkfZSBxHKVdQnuDnXlc4OW0MlMOeudq4IufQiVcGlmuM14EEE5LrDHhK-CEAXunNJK4PTgWO892BR0gDKCzf3D2dmXm1OeVEriq1953HOu0h3SGwRhgnjX1mxhDBnwL8MQrd3RY3jUw1S2t9KrJ7Dhm6fw8BZ54TPQ8-s2Qax66dlB2_zsVRh_Ir6P-IkO5gxRMYuhN8kpKeoBawObtpGovGNnkeCzWbJvDZsvyO-XkuiV5vI5nN-JKF_AqGkb_xJYqpxItXIIEBGxlUIHmxpEs7rIjCyVHMP2ILr6asXLUeN-hkRc3xbxGPZJrjdliE07JrSLy7qfnLXWCKQKn5XYfFTQXGEfeMhc5SqjXVGO4QONSqy4W2ir-6cL2FRiz6r3JLHUp1xhya21kjhX7Xr2MK51v1Ys67-a_er_2e_g_mQ-Pa1Pj2cnr-FBjvBq5UO0BaNu8cO_QXjUmbe9DjL4etdq_wfStSOZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkRA9ID7F0gI-UHGyNomdOD4gVFqWltKqh63Um_FnxSVpd0Mr_hq_jhknKd0D3HqK5DhWMn72PDvjN4S8k-gEaiuYU9IwIWJgJgbJSqOcsNLZYHEf8ui42j8VX8_KszXyezwLg2GV45yYJmrfOtwjn-IfPAX-vqqncQiLONmbfby4ZJhBCv-0juk0eogchl_XsHxbfjjYg77eLorZ5_nuPhsyDDDHVd4xWBmaOhQWvKCXufIueF9HU4UYa-Gz3HKX8yii8lzA1yK3ikKUsGrKagFDg0O798h9yWGc4Cn12Zeb_Z1MSlSq72PtOVfZFBED9Eug4tqKF0zJAv7lEpKfmz0mjwaCSnd6RD0ha6F5SjZuyRY-I2Z-3TJgqeeB7rbN1QBeeAiVPtIlhZZT4MM0Jd3EcKSEANpGetQmifKOniRpz2ZJfzR0vsCIXyzC85nL5-T0Tgz5gqw3bRNeEpopLzKjPFBD4GqVMNFlFnisKXMrKyUnZHs0nb7oFTk0rGTQxPq2iSfkE9r1pg7qaKeCdnGuh2GpjQEKVYa8gtcHaBYKvoHH3Ne-tsaX1YS8x15JDXcL48xwaAFeFXWz9I5EffqMK6i5tVITRqlbvT32qx5miaX-i-lX_7_9ljwAsOtvB8eHm-RhAbyqDx7aIuvd4md4Dbyos28SACn5fteI_wPg7SE1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Convolutional+Neural+Network+for+Classification+of+Movement+Patterns+in+Tremor+Patients&rft.jtitle=Information+%28Basel%29&rft.au=Weede%2C+Patricia&rft.au=Smietana%2C+Piotr+Dariusz&rft.au=Kuhlenb%C3%A4umer%2C+Gregor&rft.au=Deuschl%2C+G%C3%BCnther&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=15&rft.issue=4&rft_id=info:doi/10.3390%2Finfo15040231&rft.externalDocID=A793550396
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon