Two-Stage Convolutional Neural Network for Classification of Movement Patterns in Tremor Patients
Accurate tremor classification is crucial for effective patient management and treatment. However, clinical diagnoses are often hindered by misdiagnoses, necessitating the development of robust technical methods. Here, we present a two-stage convolutional neural network (CNN)-based system for classi...
Saved in:
Published in | Information (Basel) Vol. 15; no. 4; p. 231 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2078-2489 2078-2489 |
DOI | 10.3390/info15040231 |
Cover
Abstract | Accurate tremor classification is crucial for effective patient management and treatment. However, clinical diagnoses are often hindered by misdiagnoses, necessitating the development of robust technical methods. Here, we present a two-stage convolutional neural network (CNN)-based system for classifying physiological tremor, essential tremor (ET), and Parkinson’s disease (PD) tremor. Employing acceleration signals from the hands of 408 patients, our system utilizes both medically motivated signal features and (nearly) raw data (by means of spectrograms) as system inputs. Our model employs a hybrid approach of data-based and feature-based methods to leverage the strengths of both while mitigating their weaknesses. By incorporating various data augmentation techniques for model training, we achieved an overall accuracy of 88.12%. This promising approach demonstrates improved accuracy in discriminating between the three tremor types, paving the way for more precise tremor diagnosis and enhanced patient care. |
---|---|
AbstractList | Accurate tremor classification is crucial for effective patient management and treatment. However, clinical diagnoses are often hindered by misdiagnoses, necessitating the development of robust technical methods. Here, we present a two-stage convolutional neural network (CNN)-based system for classifying physiological tremor, essential tremor (ET), and Parkinson’s disease (PD) tremor. Employing acceleration signals from the hands of 408 patients, our system utilizes both medically motivated signal features and (nearly) raw data (by means of spectrograms) as system inputs. Our model employs a hybrid approach of data-based and feature-based methods to leverage the strengths of both while mitigating their weaknesses. By incorporating various data augmentation techniques for model training, we achieved an overall accuracy of 88.12%. This promising approach demonstrates improved accuracy in discriminating between the three tremor types, paving the way for more precise tremor diagnosis and enhanced patient care. |
Audience | Academic |
Author | Schmidt, Gerhard Kuhlenbäumer, Gregor Deuschl, Günther Weede, Patricia Smietana, Piotr Dariusz |
Author_xml | – sequence: 1 givenname: Patricia orcidid: 0009-0003-4617-7805 surname: Weede fullname: Weede, Patricia – sequence: 2 givenname: Piotr Dariusz surname: Smietana fullname: Smietana, Piotr Dariusz – sequence: 3 givenname: Gregor orcidid: 0000-0002-3262-8113 surname: Kuhlenbäumer fullname: Kuhlenbäumer, Gregor – sequence: 4 givenname: Günther surname: Deuschl fullname: Deuschl, Günther – sequence: 5 givenname: Gerhard orcidid: 0000-0002-6128-4831 surname: Schmidt fullname: Schmidt, Gerhard |
BookMark | eNptUU1r3DAQNSWFpmlu_QGCXutkZMmWdAxLPwJJE8jmLGRptGhrW6mkTei_rzZb2hQ6Oszw5s0bNO9tc7TEBZvmPYUzxhSch8VH2gOHjtFXzXEHQrYdl-roRf2mOc15CzWEkFzS48asn2J7V8wGySouj3HalRAXM5FvuEvPqTzF9J34mMhqMjkHH6zZc0j05Do-4oxLIbemFExLJmEh64RzZVco1FZ-17z2Zsp4-jufNPefP61XX9urmy-Xq4ur1jJFS6tAGInd2AF1gipn0TnpzYDeS-6AjsxS5rlXjnEcEaADz3kvOgqSM6DspLk86LpotvohhdmknzqaoJ-BmDbapBLshNoYELxHOtSVfBSdqnuZp046ORrXD1Xrw0HrIcUfO8xFb-Mu1bNkzYAPivZ8kH9ZG1NF9_cvydg5ZKsvhGJ9D0zttc7-w6rP4Rxs9dCHiv8z8PEwYFPMOaH_8xkKem-1fmk1-wUoi5yE |
Cites_doi | 10.1145/3136755.3136817 10.1109/iCBEB.2012.387 10.1145/3544558 10.3389/fnhum.2012.00357 10.24963/ijcai.2021/631 10.1016/0013-4694(78)90106-2 10.1002/mds.870131308 10.1093/biomet/26.4.404 10.1212/WNL.57.8.1497 10.1002/mds.27121 10.3389/fpubh.2017.00307 10.1038/s41598-023-39862-4 10.1515/bmt-2021-0140 10.1212/WNL.0000000000002350 10.1016/j.gltp.2022.04.020 10.1056/NEJMcp1707928 10.1016/S1388-2457(03)00006-3 10.1186/s40537-019-0197-0 10.1002/mds.870131303 10.1167/16.12.326 10.1136/jnnp.55.3.181 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/info15040231 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2078-2489 |
ExternalDocumentID | oai_doaj_org_article_aa0745e167a84b729e2b3f1d8d8bad56 A793550396 10_3390_info15040231 |
GeographicLocations | Germany |
GeographicLocations_xml | – name: Germany |
GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC XH6 PMFND 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c391t-907a8e2b201d719dcedd8fa6eff84d01b3c13f4f9d34ebe0020f4457210843013 |
IEDL.DBID | DOA |
ISSN | 2078-2489 |
IngestDate | Wed Aug 27 01:09:17 EDT 2025 Sat Jul 26 00:15:36 EDT 2025 Tue Jun 17 22:10:39 EDT 2025 Tue Jun 10 21:06:47 EDT 2025 Tue Jul 01 04:24:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c391t-907a8e2b201d719dcedd8fa6eff84d01b3c13f4f9d34ebe0020f4457210843013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-4617-7805 0000-0002-6128-4831 0000-0002-3262-8113 |
OpenAccessLink | https://doaj.org/article/aa0745e167a84b729e2b3f1d8d8bad56 |
PQID | 3046915468 |
PQPubID | 2032384 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aa0745e167a84b729e2b3f1d8d8bad56 proquest_journals_3046915468 gale_infotracmisc_A793550396 gale_infotracacademiconefile_A793550396 crossref_primary_10_3390_info15040231 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Information (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Gunning (ref_32) 2019; 40 (ref_23) 2023; 7 ref_13 ref_12 Bayer (ref_18) 2022; 55 Trevethan (ref_21) 2017; 5 Hughes (ref_29) 1992; 55 ref_16 ref_15 Maharana (ref_24) 2022; 3 Haubenberger (ref_2) 2018; 378 Clopper (ref_22) 1934; 26 Hallett (ref_11) 1998; 13 Deuschl (ref_4) 1998; 13 Fakoor (ref_5) 2013; Volume 28 Hossen (ref_26) 2013; 21 Daneault (ref_10) 2013; 6 Hughes (ref_30) 2001; 57 ref_20 Elble (ref_28) 2003; 114 ref_3 Piepjohn (ref_7) 2022; 67 Elble (ref_25) 1978; 44 Bhatia (ref_1) 2018; 33 ref_27 Wang (ref_14) 2019; 7 Shorten (ref_19) 2019; 6 ref_9 Rizzo (ref_31) 2016; 86 ref_8 Uchitomi (ref_17) 2023; 13 ref_6 |
References_xml | – ident: ref_16 doi: 10.1145/3136755.3136817 – ident: ref_9 – ident: ref_3 – ident: ref_27 doi: 10.1109/iCBEB.2012.387 – volume: 55 start-page: 1 year: 2022 ident: ref_18 article-title: A Survey on Data Augmentation for Text Classification publication-title: ACM Comput. Surv. doi: 10.1145/3544558 – volume: 6 start-page: 357 year: 2013 ident: ref_10 article-title: Using a Smart Phone as a Standalone Platform for Detection and Monitoring of Pathological Tremors publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2012.00357 – ident: ref_20 doi: 10.24963/ijcai.2021/631 – volume: 44 start-page: 72 year: 1978 ident: ref_25 article-title: Mechanistic components of normal hand tremor publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(78)90106-2 – volume: 13 start-page: 43 year: 1998 ident: ref_11 article-title: Overview of Human Tremor Physiology publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.870131308 – volume: 26 start-page: 404 year: 1934 ident: ref_22 article-title: The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial publication-title: Biometrika doi: 10.1093/biomet/26.4.404 – volume: 7 start-page: 26 year: 2023 ident: ref_23 article-title: Confusion Matrix in Three-class Classification Problems: A Step-by-Step Tutorial publication-title: J. Eng. Res. – volume: 57 start-page: 1497 year: 2001 ident: ref_30 article-title: Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease publication-title: Neurology doi: 10.1212/WNL.57.8.1497 – volume: 33 start-page: 75 year: 2018 ident: ref_1 article-title: Consensus Statement on the classification of tremors. from the task force on tremor of the International Parkinson and Movement Disorder Society publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.27121 – volume: 5 start-page: 2296 year: 2017 ident: ref_21 article-title: Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice publication-title: Front. Public Health doi: 10.3389/fpubh.2017.00307 – ident: ref_6 – ident: ref_8 – volume: 13 start-page: 12638 year: 2023 ident: ref_17 article-title: Classification of mild Parkinson’s disease: Data augmentation of time-series gait data obtained via inertial measurement units publication-title: Sci. Rep. doi: 10.1038/s41598-023-39862-4 – volume: 67 start-page: 119 year: 2022 ident: ref_7 article-title: Real-time classification of movement patterns of tremor patients publication-title: Biomed. Tech. Biomed. Eng. doi: 10.1515/bmt-2021-0140 – volume: 21 start-page: 345 year: 2013 ident: ref_26 article-title: A neural network approach for feature extraction and discrimination between Parkinsonian tremor and essential tremor publication-title: Technol. Health Care Off. J. Eur. Soc. Eng. Med. – volume: 7 start-page: 148967 year: 2019 ident: ref_14 article-title: Cellular structure image classification with small targeted training samples publication-title: IEEE Access Pract. Innov. Open Solut. – ident: ref_12 – volume: 86 start-page: 566 year: 2016 ident: ref_31 article-title: Accuracy of clinical diagnosis of Parkinson disease: A systematic review and meta-analysis publication-title: Neurology doi: 10.1212/WNL.0000000000002350 – volume: 3 start-page: 91 year: 2022 ident: ref_24 article-title: A review: Data pre-processing and data augmentation techniques publication-title: Glob. Transit. Proc. doi: 10.1016/j.gltp.2022.04.020 – ident: ref_15 – volume: 378 start-page: 1802 year: 2018 ident: ref_2 article-title: Essential tremor publication-title: N. Engl. J. Med. doi: 10.1056/NEJMcp1707928 – volume: 40 start-page: 44 year: 2019 ident: ref_32 article-title: DARPA’s Explainable Artificial Intelligence (XAI) Program publication-title: AI Mag. – volume: Volume 28 start-page: 3937 year: 2013 ident: ref_5 article-title: Using deep learning to enhance cancer diagnosis and classification publication-title: Proceedings of the International Conference on Machine Learning – volume: 114 start-page: 624 year: 2003 ident: ref_28 article-title: Characteristics of physiologic tremor in young and elderly adults publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(03)00006-3 – volume: 6 start-page: 60 year: 2019 ident: ref_19 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 13 start-page: 2 year: 1998 ident: ref_4 article-title: Consensus statement of the Movement Disorder Society on tremor: Ad Hoc Scientific Committee publication-title: Mov. Disord. Off. J. Mov. Disord. Soc. doi: 10.1002/mds.870131303 – ident: ref_13 doi: 10.1167/16.12.326 – volume: 55 start-page: 181 year: 1992 ident: ref_29 article-title: Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases publication-title: J. Neurol. Neurosurgery Psychiatry doi: 10.1136/jnnp.55.3.181 |
SSID | ssj0000778481 |
Score | 2.2786763 |
Snippet | Accurate tremor classification is crucial for effective patient management and treatment. However, clinical diagnoses are often hindered by misdiagnoses,... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 231 |
SubjectTerms | acceleration Algorithms Artificial intelligence Artificial neural networks Classification convolutional neural network Data augmentation Datasets essential tremor Fourier transforms Machine learning Movement disorders Neural networks Parkinson's disease Patients Physiological aspects physiological tremor Physiology Signal processing spectrogram Spectrograms System theory Tremor (Muscular contraction) tremor classification Tremors |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELZ4LDAgnqJQkAcQk0XSOHE8oYIoCKmIoUhskZ-IJSltgL_PnetCO8AUyXYix-fzfT6fvyPkTKARKDVnRgrFOPeOKe8Ey5U0XAujnUY_5PCxuH_mDy_5S3S4TWNY5XxNDAu1bQz6yC_xBE-CvS_Kq_E7w6xReLoaU2iskvW0B7YWb4oP7n58LIkQyBY_i3fPYHd_iVIDCMSR9WzJEgXC_r-W5WBrBttkK4JE2p9JdYesuHqXbC5QB-4RNfpqGCDFV0dvmvozTiB4Cdk2wiOEd1PApDQkvsSQoCAF2ng6bAJNeEufAr1mPaVvNR1NMOoWi_CO5HSfPA9uRzf3LKZLYCaTactgm6tK19Ng0q1IpTXO2tKrwnlfcpukOjNp5rmXNuMgOgSKnvMctoBJyUHPswOyVje1OyQ0kZYnSlqAZ4CXCq68STRgSZWnWhRSdMj5fOiq8YwVo4LdBA5xtTjEHXKN4_rTBrmsQ0Ezea2ialRKAYzJXVpA92F69CT8Q-ZTW9pSK5sXHXKBUgkfbifKqHhxALqK3FVVXyBHfJJJaNldagmaYpar53KtoqZOq995dfR_9THZ6AGgmUXtdMlaO_lwJwBIWn0aZt03_CHgdQ priority: 102 providerName: ProQuest |
Title | Two-Stage Convolutional Neural Network for Classification of Movement Patterns in Tremor Patients |
URI | https://www.proquest.com/docview/3046915468 https://doaj.org/article/aa0745e167a84b729e2b3f1d8d8bad56 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4LDAgnqI8Kg8gpoikcWJ7LI-CEK0QFIkt8hOxJKgN8Pe5c1LUDoiFyZJjR9Z3tu-75PyZkBOOTkBoFhnJVcSYd5HyjkeZkoZpbrTT-B1yOMpvn9ndS_Yyd9UX5oQ18sANcOdKgZPLXJJzJaBzT7qeTn1ihRVa2SyIbccyngumwh7MOerEN5nuKcT152gvID8M9c4WfFCQ6v9tQw5eZrBJNlp6SPvNsLbIkiu3yfqcaOAOUeOvKgKO-OroZVV-tlMHOqHORihCYjcFNkrDlZeYDBTwp5WnwyoIhNf0IQhrllP6VtLxBPNtsQpPR053yfPgenx5G7UXJUQmlUkdQYCrBOACztzyRFrjrBVe5c57wWyc6NQkqWde2pSB0ZAiesYyCP5iwWCFp3tkpaxKt09oLC2LlbRAzIAp5Ux5E2tgkSpLNM8l75DTGXTFe6OHUUAcgRAX8xB3yAXi-tMGVaxDBdi2aG1b_GXbDjlDq4QX1xNlVHtkAIaKqlVFn6M6fJxKaHm00BLWiFl8PLNr0a7RaYH_hCUwyFwc_MdgD8laDwhPk9VzRFbqyYc7BsJS6y5ZFoObLlntXw3vn6C8uB49PHbDjP0G8njtfA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4IJ5ioYAPVJyiJrETx4cKtaXVlnZXFdpKvQU_Ky5J2Q1U_Dl-GzPepHQPcOspku1Y9njs-WyPvwF4L8kIVEYkVkmdCBF8ooOXSaGVFUZa4w2dQ05n5eRcfL4oLjbg9_AWhtwqhzUxLtSutXRGvkM3eArtfVl9vPqeUNQoul0dQmjoPrSC240UY_3DjhP_6xq3cMvd40843tt5fnQ4P5gkfZSBxHKVdQnuDnXlc4OW0MlMOeudq4IufQiVcGlmuM14EEE5LrDHhK-CEAXunNJK4PTgWO892BR0gDKCzf3D2dmXm1OeVEriq1953HOu0h3SGwRhgnjX1mxhDBnwL8MQrd3RY3jUw1S2t9KrJ7Dhm6fw8BZ54TPQ8-s2Qax66dlB2_zsVRh_Ir6P-IkO5gxRMYuhN8kpKeoBawObtpGovGNnkeCzWbJvDZsvyO-XkuiV5vI5nN-JKF_AqGkb_xJYqpxItXIIEBGxlUIHmxpEs7rIjCyVHMP2ILr6asXLUeN-hkRc3xbxGPZJrjdliE07JrSLy7qfnLXWCKQKn5XYfFTQXGEfeMhc5SqjXVGO4QONSqy4W2ir-6cL2FRiz6r3JLHUp1xhya21kjhX7Xr2MK51v1Ys67-a_er_2e_g_mQ-Pa1Pj2cnr-FBjvBq5UO0BaNu8cO_QXjUmbe9DjL4etdq_wfStSOZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVKkRA9ID7F0gI-UHGyNomdOD4gVFqWltKqh63Um_FnxSVpd0Mr_hq_jhknKd0D3HqK5DhWMn72PDvjN4S8k-gEaiuYU9IwIWJgJgbJSqOcsNLZYHEf8ui42j8VX8_KszXyezwLg2GV45yYJmrfOtwjn-IfPAX-vqqncQiLONmbfby4ZJhBCv-0juk0eogchl_XsHxbfjjYg77eLorZ5_nuPhsyDDDHVd4xWBmaOhQWvKCXufIueF9HU4UYa-Gz3HKX8yii8lzA1yK3ikKUsGrKagFDg0O798h9yWGc4Cn12Zeb_Z1MSlSq72PtOVfZFBED9Eug4tqKF0zJAv7lEpKfmz0mjwaCSnd6RD0ha6F5SjZuyRY-I2Z-3TJgqeeB7rbN1QBeeAiVPtIlhZZT4MM0Jd3EcKSEANpGetQmifKOniRpz2ZJfzR0vsCIXyzC85nL5-T0Tgz5gqw3bRNeEpopLzKjPFBD4GqVMNFlFnisKXMrKyUnZHs0nb7oFTk0rGTQxPq2iSfkE9r1pg7qaKeCdnGuh2GpjQEKVYa8gtcHaBYKvoHH3Ne-tsaX1YS8x15JDXcL48xwaAFeFXWz9I5EffqMK6i5tVITRqlbvT32qx5miaX-i-lX_7_9ljwAsOtvB8eHm-RhAbyqDx7aIuvd4md4Dbyos28SACn5fteI_wPg7SE1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Stage+Convolutional+Neural+Network+for+Classification+of+Movement+Patterns+in+Tremor+Patients&rft.jtitle=Information+%28Basel%29&rft.au=Weede%2C+Patricia&rft.au=Smietana%2C+Piotr+Dariusz&rft.au=Kuhlenb%C3%A4umer%2C+Gregor&rft.au=Deuschl%2C+G%C3%BCnther&rft.date=2024-04-01&rft.pub=MDPI+AG&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=15&rft.issue=4&rft_id=info:doi/10.3390%2Finfo15040231&rft.externalDocID=A793550396 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |