Revolutionizing Cardiac Risk Assessment: AI-Powered Patient Segmentation Using Advanced Machine Learning Techniques

Cardiovascular diseases stand as the leading cause of mortality worldwide, underscoring the urgent need for effective tools that enable early detection and monitoring of at-risk patients. This study combines Artificial Intelligence (AI) techniques—specifically the k-means clustering algorithm—alongs...

Full description

Saved in:
Bibliographic Details
Published inMachine learning and knowledge extraction Vol. 7; no. 2; p. 46
Main Authors Gonzalez-Franco, Joan D., Galaviz-Mosqueda, Alejandro, Villarreal-Reyes, Salvador, Lozano-Rizk, Jose E., Rivera-Rodriguez, Raul, Gonzalez-Trejo, Jose E., Licea-Navarro, Alexei-Fedorovish, Lozoya-Arandia, Jorge, Ibarra-Flores, Edgar A.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2025
Subjects
Online AccessGet full text
ISSN2504-4990
2504-4990
DOI10.3390/make7020046

Cover

Abstract Cardiovascular diseases stand as the leading cause of mortality worldwide, underscoring the urgent need for effective tools that enable early detection and monitoring of at-risk patients. This study combines Artificial Intelligence (AI) techniques—specifically the k-means clustering algorithm—alongside dimensionality reduction methods like Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) to identify patient groups with varying levels of heart attack risk. We used a publicly available clinical dataset with 1319 patient records, which included variables such as age, gender, blood pressure, glucose levels, CK-MB Creatine Kinase MB (KCM), and troponin levels. We normalized and prepared the data, then we employed PCA and UMAP to reduce dimensionality and facilitate visualization. Using the k-means algorithm, we segmented the patients into distinct groups based on their clinical features. Our analysis revealed two distinct patient groups. Group 2 exhibited significantly higher levels of troponin (mean 0.4761 ng/mL), KCM (18.65 ng/mL), and glucose (mean 148.19 mg/dL) and was predominantly composed of men (97%). These factors indicate an increased risk of cardiac events compared to Group 1, which had lower levels of these biomarkers and a slightly higher average age. Interestingly, no significant differences in blood pressure were observed between the groups. This study demonstrates the effectiveness of combining Machine Learning (ML) techniques with dimensionality reduction methods to enhance risk stratification accuracy in cardiology. By enabling more targeted interventions for high-risk patients, our unsupervised segmentation approach focuses on intrinsic data patterns rather than predefined diagnostic labels, serves as a powerful complement to traditional risk assessment tools.
AbstractList Cardiovascular diseases stand as the leading cause of mortality worldwide, underscoring the urgent need for effective tools that enable early detection and monitoring of at-risk patients. This study combines Artificial Intelligence (AI) techniques—specifically the k-means clustering algorithm—alongside dimensionality reduction methods like Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) to identify patient groups with varying levels of heart attack risk. We used a publicly available clinical dataset with 1319 patient records, which included variables such as age, gender, blood pressure, glucose levels, CK-MB Creatine Kinase MB (KCM), and troponin levels. We normalized and prepared the data, then we employed PCA and UMAP to reduce dimensionality and facilitate visualization. Using the k-means algorithm, we segmented the patients into distinct groups based on their clinical features. Our analysis revealed two distinct patient groups. Group 2 exhibited significantly higher levels of troponin (mean 0.4761 ng/mL), KCM (18.65 ng/mL), and glucose (mean 148.19 mg/dL) and was predominantly composed of men (97%). These factors indicate an increased risk of cardiac events compared to Group 1, which had lower levels of these biomarkers and a slightly higher average age. Interestingly, no significant differences in blood pressure were observed between the groups. This study demonstrates the effectiveness of combining Machine Learning (ML) techniques with dimensionality reduction methods to enhance risk stratification accuracy in cardiology. By enabling more targeted interventions for high-risk patients, our unsupervised segmentation approach focuses on intrinsic data patterns rather than predefined diagnostic labels, serves as a powerful complement to traditional risk assessment tools.
Audience Academic
Author Galaviz-Mosqueda, Alejandro
Villarreal-Reyes, Salvador
Gonzalez-Franco, Joan D.
Rivera-Rodriguez, Raul
Lozano-Rizk, Jose E.
Gonzalez-Trejo, Jose E.
Ibarra-Flores, Edgar A.
Lozoya-Arandia, Jorge
Licea-Navarro, Alexei-Fedorovish
Author_xml – sequence: 1
  givenname: Joan D.
  orcidid: 0000-0003-0770-6869
  surname: Gonzalez-Franco
  fullname: Gonzalez-Franco, Joan D.
– sequence: 2
  givenname: Alejandro
  surname: Galaviz-Mosqueda
  fullname: Galaviz-Mosqueda, Alejandro
– sequence: 3
  givenname: Salvador
  orcidid: 0000-0002-7219-361X
  surname: Villarreal-Reyes
  fullname: Villarreal-Reyes, Salvador
– sequence: 4
  givenname: Jose E.
  orcidid: 0000-0002-6154-5712
  surname: Lozano-Rizk
  fullname: Lozano-Rizk, Jose E.
– sequence: 5
  givenname: Raul
  orcidid: 0000-0002-1968-8525
  surname: Rivera-Rodriguez
  fullname: Rivera-Rodriguez, Raul
– sequence: 6
  givenname: Jose E.
  orcidid: 0000-0003-2018-1833
  surname: Gonzalez-Trejo
  fullname: Gonzalez-Trejo, Jose E.
– sequence: 7
  givenname: Alexei-Fedorovish
  orcidid: 0000-0003-4022-7405
  surname: Licea-Navarro
  fullname: Licea-Navarro, Alexei-Fedorovish
– sequence: 8
  givenname: Jorge
  surname: Lozoya-Arandia
  fullname: Lozoya-Arandia, Jorge
– sequence: 9
  givenname: Edgar A.
  surname: Ibarra-Flores
  fullname: Ibarra-Flores, Edgar A.
BookMark eNp9kl1rFDEUhgepYK298g8MeKlT8zX58G5Zqi6sWOp6Hc5kkm22M8mazLbUX2_GFa0gkouE8z7vyzmHPK9OQgy2ql5idEGpQm9HuLUCEYQYf1KdkhaxhimFTh69n1XnOe8QQkQohhE7rfK1vYvDYfIx-O8-bOslpN6Dqa99vq0XOducRxumd_Vi1VzFe5tsX1_B5Eut_mK3swazu_6aZ_uiv4NgCvMJzI0Ptl5bSGFWNtbcBP_tYPOL6qmDIdvzX_dZtXl_uVl-bNafP6yWi3VjqMJTIzi3wjpLJO8JBax6JVsshOSdoK7rZCeloaJXCDNQHbRFxNBz1nYd4ZKeVatjbB9hp_fJj5AedASvfxZi2mpIkzeD1YQIgVqOMDjHDHcgOHaGIpBtxyxBJevNMesQ9vBwD8PwOxAjPa9fP1p_wV8d8X2K88ST3sVDCmVYTQmhijCJ2j_UFkoPPrg4JTCjz0YvJGslZZjgQl38gyqnt6M35Qs4X-p_GV4fDSbFnJN1_231Bwvtr8c
Cites_doi 10.1016/S0140-6736(20)31824-9
10.1007/s00018-021-03794-x
10.1038/nbt.4314
10.1038/s41591-018-0316-z
10.1161/CIRCULATIONAHA.105.169404
10.1161/CIRCULATIONAHA.120.049298
10.1016/j.ins.2022.11.139
10.1152/physrev.00021.2015
10.1056/NEJMoa012512
10.1001/jama.2015.3595
10.1007/s40745-015-0040-1
10.1016/j.ajpc.2020.100118
10.1038/ng.3886
10.1136/bmj.g7873
10.1016/j.knosys.2016.06.031
10.3390/fi15100335
10.1056/NEJMoa1911303
10.1098/rsta.2015.0202
10.1186/s12872-020-01620-z
10.1213/ANE.0000000000002864
10.1186/s13073-019-0705-z
10.1007/s10710-017-9314-z
10.1373/clinchem.2016.255109
10.2337/cd21-as01
10.1093/eurheartj/ehad191
10.1371/journal.pone.0029578
10.2337/diabetes.54.6.1615
10.21105/joss.00861
10.1161/CIR.0000000000000617
10.1016/j.patcog.2012.07.021
10.1093/ehjdh/ztae080
10.1038/s41591-018-0300-7
10.1161/JAHA.121.021976
10.3132/dvdr.2006.019
10.1186/s12874-024-02422-z
10.1093/eurheartj/ehac758
10.1016/S0140-6736(18)32822-8
10.1002/9780470977811
10.1051/itmconf/20257401005
10.1002/wics.101
10.1016/j.jacc.2017.11.006
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/make7020046
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-4990
ExternalDocumentID oai_doaj_org_article_227705601aff4c6fa761fc30a85b4e20
10.3390/make7020046
A845834121
10_3390_make7020046
GeographicLocations Mexico
GeographicLocations_xml – name: Mexico
GroupedDBID AADQD
AAFWJ
AAYXX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
K7-
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c391t-766e7efe286d23a19d98517786b73fbb8b88c37d9014a9ba55171ad645bb2683
IEDL.DBID UNPAY
ISSN 2504-4990
IngestDate Fri Oct 03 12:43:33 EDT 2025
Tue Aug 19 23:48:50 EDT 2025
Fri Jul 25 09:14:40 EDT 2025
Mon Oct 20 22:41:29 EDT 2025
Tue Jul 08 03:51:17 EDT 2025
Thu Oct 16 04:38:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-766e7efe286d23a19d98517786b73fbb8b88c37d9014a9ba55171ad645bb2683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2018-1833
0000-0002-1968-8525
0000-0002-7219-361X
0000-0003-4022-7405
0000-0003-0770-6869
0000-0002-6154-5712
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2504-4990/7/2/46/pdf?version=1747907633
PQID 3223924805
PQPubID 5046881
ParticipantIDs doaj_primary_oai_doaj_org_article_227705601aff4c6fa761fc30a85b4e20
unpaywall_primary_10_3390_make7020046
proquest_journals_3223924805
gale_infotracmisc_A845834121
gale_infotracacademiconefile_A845834121
crossref_primary_10_3390_make7020046
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Machine learning and knowledge extraction
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Schober (ref_24) 2018; 126
Topol (ref_5) 2019; 25
Allen (ref_47) 2021; 143
Jetty (ref_10) 2025; 74
ref_11
Gill (ref_31) 2023; 44
Abdi (ref_16) 2010; 2
Shah (ref_13) 2015; 350
Chen (ref_2) 2022; 2022
Lozano (ref_6) 2017; 117
ref_17
Xu (ref_20) 2015; 2
Segar (ref_29) 2020; 4
Heaton (ref_3) 2018; 19
Whelton (ref_25) 2018; 71
McInnes (ref_28) 2018; 3
McMurray (ref_46) 2019; 381
Becht (ref_19) 2019; 37
Kumar (ref_44) 2021; 78
Arbelaitz (ref_23) 2013; 46
Swinburn (ref_40) 2019; 393
Grundy (ref_43) 2005; 112
Ikotun (ref_21) 2023; 622
ref_27
ref_26
Zannad (ref_45) 2020; 396
Apple (ref_12) 2017; 63
Ashley (ref_36) 2015; 313
Thygesen (ref_37) 2018; 138
Ayushi (ref_14) 2020; 9
Brownlee (ref_41) 2005; 54
ref_35
ref_34
Daccord (ref_38) 2017; 49
Esteva (ref_4) 2019; 25
ref_39
Cunningham (ref_15) 2015; 16
Knowler (ref_42) 2002; 346
Shomorony (ref_9) 2020; 12
Gale (ref_18) 2006; 3
Bholowalia (ref_22) 2014; 105
Flores (ref_33) 2021; 10
Rossello (ref_48) 2023; 44
ref_1
Saba (ref_30) 2024; 83
Liu (ref_49) 2025; 6
Kararigas (ref_32) 2017; 97
Jolliffe (ref_7) 2016; 374
ref_8
References_xml – volume: 396
  start-page: 819
  year: 2020
  ident: ref_45
  article-title: SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31824-9
– volume: 9
  start-page: 2449
  year: 2020
  ident: ref_14
  article-title: Heart Disease Prediction Integrating UMAP and XGBoost
  publication-title: Int. J. Recent Technol. Eng.
– volume: 78
  start-page: 4467
  year: 2021
  ident: ref_44
  article-title: Histone acetylation dynamics regulating plant development and stress responses
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-021-03794-x
– volume: 37
  start-page: 38
  year: 2019
  ident: ref_19
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4314
– volume: 25
  start-page: 24
  year: 2019
  ident: ref_4
  article-title: A guide to deep learning in healthcare
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0316-z
– volume: 112
  start-page: 2735
  year: 2005
  ident: ref_43
  article-title: Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.169404
– volume: 143
  start-page: 1659
  year: 2021
  ident: ref_47
  article-title: Diagnostic Performance of High-Sensitivity Cardiac Troponin T Strategies and Clinical Variables in a Multisite US Cohort
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.049298
– ident: ref_1
– volume: 16
  start-page: 2859
  year: 2015
  ident: ref_15
  article-title: Linear Dimensionality Reduction: Survey, Insights, and Generalizations
  publication-title: J. Ma-Chine Learn. Research
– volume: 622
  start-page: 178
  year: 2023
  ident: ref_21
  article-title: K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.139
– volume: 97
  start-page: 1
  year: 2017
  ident: ref_32
  article-title: Mechanistic Pathways of Sex Differences in Cardiovascular Disease
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00021.2015
– ident: ref_8
– ident: ref_27
– volume: 346
  start-page: 393
  year: 2002
  ident: ref_42
  article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa012512
– volume: 313
  start-page: 2119
  year: 2015
  ident: ref_36
  article-title: The Precision Medicine Initiative
  publication-title: JAMA
  doi: 10.1001/jama.2015.3595
– volume: 2
  start-page: 165
  year: 2015
  ident: ref_20
  article-title: A Comprehensive Survey of Clustering Algorithms
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-015-0040-1
– volume: 4
  start-page: 100118
  year: 2020
  ident: ref_29
  article-title: County-level phenomapping to identify disparities in cardiovascular outcomes: An unsupervised clustering analysis
  publication-title: Am. J. Prev. Cardiol.
  doi: 10.1016/j.ajpc.2020.100118
– volume: 49
  start-page: 1099
  year: 2017
  ident: ref_38
  article-title: High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3886
– volume: 350
  start-page: g7873
  year: 2015
  ident: ref_13
  article-title: High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: Prospective cohort study
  publication-title: BMJ
  doi: 10.1136/bmj.g7873
– volume: 117
  start-page: 56
  year: 2017
  ident: ref_6
  article-title: An efficient approximation to the K-means clustering for massive data
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2016.06.031
– ident: ref_17
  doi: 10.3390/fi15100335
– volume: 381
  start-page: 1995
  year: 2019
  ident: ref_46
  article-title: Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1911303
– volume: 374
  start-page: 20150202
  year: 2016
  ident: ref_7
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2015.0202
– ident: ref_34
  doi: 10.1186/s12872-020-01620-z
– volume: 126
  start-page: 1763
  year: 2018
  ident: ref_24
  article-title: Correlation Coefficients: Appropriate Use and Interpretation
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000002864
– volume: 12
  start-page: 7
  year: 2020
  ident: ref_9
  article-title: An unsupervised learning approach to identify novel signatures of health and disease from multimodal data
  publication-title: Genome Med.
  doi: 10.1186/s13073-019-0705-z
– volume: 19
  start-page: 305
  year: 2018
  ident: ref_3
  article-title: Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning
  publication-title: Genet. Program. Evolvable Mach.
  doi: 10.1007/s10710-017-9314-z
– volume: 105
  start-page: 17
  year: 2014
  ident: ref_22
  article-title: EBK-Means: A Clustering Technique Based on Elbow Method and K-Means in WSN
  publication-title: Int. J. Comput. Appl.
– volume: 63
  start-page: 73
  year: 2017
  ident: ref_12
  article-title: Cardiac Troponin Assays: Guide to Understanding Analytical Characteristics and Their Impact on Clinical Care
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2016.255109
– ident: ref_39
  doi: 10.2337/cd21-as01
– volume: 44
  start-page: 3720
  year: 2023
  ident: ref_48
  article-title: 2023 ESC Guidelines for the management of acute coronary syndromes
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehad191
– ident: ref_35
  doi: 10.1371/journal.pone.0029578
– volume: 54
  start-page: 1615
  year: 2005
  ident: ref_41
  article-title: The Pathobiology of Diabetic Complications
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.6.1615
– volume: 3
  start-page: 861
  year: 2018
  ident: ref_28
  article-title: UMAP: Uniform Manifold Approximation and Projection
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00861
– volume: 138
  start-page: e618
  year: 2018
  ident: ref_37
  article-title: Fourth Universal Definition of Myocardial Infarction (2018)
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000617
– volume: 46
  start-page: 243
  year: 2013
  ident: ref_23
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.07.021
– volume: 6
  start-page: 7
  year: 2025
  ident: ref_49
  article-title: Machine learning based prediction models for cardiovascular disease risk using electronic health records data: Systematic review and meta-analysis
  publication-title: Eur. Heart J. Digit. Health
  doi: 10.1093/ehjdh/ztae080
– volume: 2022
  start-page: 1348795
  year: 2022
  ident: ref_2
  article-title: Rhodiola rosea: A Therapeutic Candidate on Cardiovascular Diseases
  publication-title: Oxidative Med. Cell Longev.
– volume: 83
  start-page: 574
  year: 2024
  ident: ref_30
  article-title: Redefining Cardiovascular Risk Assessment as a Spectrum
  publication-title: Circ.
– volume: 25
  start-page: 44
  year: 2019
  ident: ref_5
  article-title: High-performance medicine: The convergence of human and artificial intelligence
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0300-7
– volume: 10
  start-page: e021976
  year: 2021
  ident: ref_33
  article-title: Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.121.021976
– volume: 3
  start-page: 80
  year: 2006
  ident: ref_18
  article-title: The association between hyperglycaemia and elevated troponin levels on mortality in acute coronary syndromes
  publication-title: Diabetes Vasc. Dis. Res.
  doi: 10.3132/dvdr.2006.019
– ident: ref_11
  doi: 10.1186/s12874-024-02422-z
– volume: 44
  start-page: 713
  year: 2023
  ident: ref_31
  article-title: Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehac758
– volume: 393
  start-page: 791
  year: 2019
  ident: ref_40
  article-title: The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32822-8
– ident: ref_26
  doi: 10.1002/9780470977811
– volume: 74
  start-page: 01005
  year: 2025
  ident: ref_10
  article-title: Unsupervised Learning for Heart Disease Prediction: Clustering-Based Approach
  publication-title: ITM Web Conf.
  doi: 10.1051/itmconf/20257401005
– volume: 2
  start-page: 433
  year: 2010
  ident: ref_16
  article-title: Principal component analysis
  publication-title: WIREs Comput. Stat.
  doi: 10.1002/wics.101
– volume: 71
  start-page: e127
  year: 2018
  ident: ref_25
  article-title: ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.11.006
SSID ssj0002794104
Score 2.2956257
Snippet Cardiovascular diseases stand as the leading cause of mortality worldwide, underscoring the urgent need for effective tools that enable early detection and...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 46
SubjectTerms Algorithms
Artificial intelligence
Biomarkers
Blood pressure
Cardiology
Cardiovascular disease
Cardiovascular diseases
Cluster analysis
Clustering
Comparative analysis
Computer-aided medical diagnosis
Creatine
Creatine kinase
Dextrose
Diagnosis
dimensionality reduction
Effectiveness
Glucose
Health aspects
Heart attack
heart attacks
k-means clustering
Kinases
Machine learning
Medical records
Methods
Mexico
Mortality
patient segmentation
Principal components analysis
Risk assessment
Risk factors
Segmentation
troponin
Vector quantization
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmLtsOaIihhRXkA2iniMR2_GO3gIYAianqisTNsh0bMdpQtWUI_npsx61aIY0L1yQH-31-9vvi974HwEEVl4Y1OVWO5wQz4l3K0dw0TaEptty4mCD7m55dkYvr6nql1VfICevkgTvDHSHEWBFog3KOGOqU593O4ELxShOLIlsvuFghU3_jdZognmh0BXnY8_qjsbqzrIh8cO0Iikr9r_fjz-DjQztRT49qNFo5cE6_gM0UKcK6G-EW-GDbbTAb2H9psdw--1MHnkSEDRzczu5gvZTZ_Anr87wfOqDZBvY77VT4x96MU6lRC2OuAKxTCgC8jEmVFia91Rs4XIi7zr6C4emv4clZnvom5AaLcp4zSi2zziJOG4RVKRrh46ogFKcZdlpzzbnBrAk3qEpo5YMmVqqGkkprRDneARvtfWu_AWidcYwKXobyWeqDFY-rKEyBRYMqI3AGDhaWlJNOHUN6VhEMLlcMnoHjYOXlJ0HSOj7wQMsEtHwL6Az8CBjJ4HjzqTIq1Q_4kQYJK1nzcAVMSlRmoLf2pXcYs_56gbJMDjuTfl_zkSLhRZWBwyXy_5vU7ntM6jv4hEJD4fhbpwc25tMHu-ejnLnejwv6BXsf-Mc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6N7gF4QCBAZBvID0M8RUvsxHaQEMqmTQOJqipF2pvln9W0LS1tNwR_PbbrlFVIe02iKLn7zndn330HcFhHaFidU-l4XhFWeZNyNNfGFIoSy7WLBbJDev6j-npRX-zAsO-FCWWV_ZoYF2oz02GP_MgDz7vyihf15_nPPEyNCqer_QgNmUYrmE-RYuwR7OLAjDWA3ePT4Wi82XXBHn4-AVk36hGf7x_dyCvLipgnbrmmyOD__zr9FB7fdnP5-5e8vr7niM6ew7MUQaJ2rfIXsGO7l7Ac27sEoss_3huhk6h5jcaXyyvUbug3P6L2Sz4Kk9GsQaM1pyr6bqc3qQWpQ7GGALWpNAB9i8WWFiUe1ima9KSvy1cwOTudnJznaZ5CrklTrnJGqWXWWcypwUSWjWl8vBUI5BQjTimuONeEmXCyKhslvSRZKQ2taqUw5eQ1DLpZZ98Ask47RhtehrZa6oMYr--m0AVpDK51QzI47CUp5mvWDOGzjSBwcU_gGRwHKW8eCVTX8cJsMRXJcgTGjBUhb5TOVZo6yWjpNCkkr1VlcZHBh6AjEQxytZBapr4C_6WB2kq0PBwNVx4OGRxsPekNSW_f7rUskiEvxT_YZfB-o_mHfmrv4dfswxMcRgjHjZwDGKwWt_atj2tW6l0C61_ukfck
  priority: 102
  providerName: ProQuest
Title Revolutionizing Cardiac Risk Assessment: AI-Powered Patient Segmentation Using Advanced Machine Learning Techniques
URI https://www.proquest.com/docview/3223924805
https://www.mdpi.com/2504-4990/7/2/46/pdf?version=1747907633
https://doaj.org/article/227705601aff4c6fa761fc30a85b4e20
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2504-4990
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794104
  issn: 2504-4990
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_a2gNw4EOAKIzKhyFOWT6c2A5CQtnUMpBWVaWTxgFFtmNXVbeu6scQO_C3YztOtYKEEJccEkey9T78e_Z7vwdwmDnVUDIgXLMgxTQ1JqVJIKsqEgQrJrVLkB2Q0_P080V2sQfvm1oYm1ZpQvGpc9KWXiswkDwKaZiEKQkXlf5w48-RDJSmJrIjGO9Dm2QGibegfT4YFl9tP7nmz7okD5vIPrziM0UjFxHubEKOq_9Pj_wA7m3mC_7jO7-8vLPl9B_Bt2aydabJ7GizFkfy9jcex_9dzWN46LEoKmrleQJ7av4UViN149Vxemv2NXTidEii0XQ1Q8WWyPMdKj4FQ9tjTVVoWLOzoi9qcuWLmebIZSOgwicZoDOXtqmQZ3SdoHFDH7t6BuN-b3xyGvjODIHEebwOKCGKKq0SRqoE8zivcoPcLBWdoFgLwQRjEtPK3tHyXHADy2jMK5JmQiSE4efQml_P1QtASktNSc5iW6BLDBwympNHMsJ5lWQyxx04bCRVLmr-jdLELVag5R2BduDYSnE7xJJmuxfXy0npbbBMEkojG4FyrVNJNKck1hJHnGUiVUnUgbdWB0pr2usll9xXKJiZWpKssmD2kjmNk7gDBzsjjUnK3c-NFpXeJaxK4zkNFk1ZlHXgzVaz_raol_847hXcT2xXYnc2dACt9XKjXhuotBZd2Gf9j11oH_cGw1HXHTiY59nPXtfbyi9rJRJc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG9jB4QCBAZAzwwyaeoiV24h9IE-rGppZtVVWKtDfLduxq2paWpmMa_xv_G7brlFVIe9trYlnJ3Xc-n333HQA7ZYCG0SmRlqUFpoUzKUtSXVWZItgwbUOCbJ90fxTfzsvzNfCnrYXxaZXtmhgW6mqi_Rn5ngOec-UFy8ov05-p7xrlb1fbFhoytlao9gPFWCzsODF3ty6Ea_Z7X52-dxE6PhoddtPYZSDVmOfzlBJiqLEGMVIhLHNecd-vnjKiKLZKMcWYxrTy942SK-nmp7msSFEqhQjDbtonYKPABXex38bBUX8wXB7yIId2F-8s6gIx5tnetbw0NAth6YonDA0D_ncLz8DmTT2Vd7fy6uqe3zt-AZ7HDSvsLBD2EqyZ-hVohuZXxOzFb-f84GEAmobDi-YSdpZsn59hp5cOfCM2U8HBgsIVfjfj61jxVMOQsgA7MRMBnoXcTgMj7esYjlqO2eY1GD2GYN-A9XpSm7cAGqstJZzlvoqXuD2TgxfPdIZ5hUrNcQJ2WkmK6YKkQ7jgxgtc3BN4Ag68lJdDPLN2eDCZjUU0VIEQpZkPU6W1hSZWUpJbjTPJSlUYlCXgk9eR8PY_n0ktYxmD-1LPpCU6zN9EFznKE7C9MtLZrV593WpZxHWjEf9QnoDdpeYf-qmth6f5CDa7o7NTcdrrn7wDT5HvXhzOkLbB-nx2Y967LdVcfYjAhUA8sqn8BY5bMqk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIfHjAYEALWyAHzbxFDWxE9tBQihslJXBVI0i7c2yHbuatqVd2zGN_4z_DttJyiqkve01sazk7jufz777DmA7D9AwOqbS8jgjLHMmZWmsqypRlBiubUiQPaT7P7Ovx_nxGvzpamF8WmW3JoaFuppof0bec8BzrjzjSd6zbVrEcK__cXoR-w5S_qa1a6fRQOTAXF-58G3-YbDndL2Dcf_zaHc_bjsMxJoU6SJmlBpmrMGcVpjItKgK36uecaoYsUpxxbkmrPJ3jbJQ0m0vWCormuVKYcqJm_Ye3GeexN0Xqfe_LI93sMO5i3SaikBCiqR3Lk8NS0JAuuIDQ6uA_x3CY3h4WU_l9ZU8O7vh8fpP4Um7VUVlg61nsGbq5zA_Mr9atJ78dm4P7QaIaXR0Mj9F5ZLn8z0qB_HQt2AzFRo25K3ohxmft7VONQrJCqhscxDQ95DVaVBL-DpGo45ddv4CRnch1pewXk9qswHIWG0ZLXjq63ep2y05YBWJTkhR4VwXJILtTpJi2tBzCBfWeIGLGwKP4JOX8nKI59QODyazsWhNVGDMWOIDVGltpqmVjKZWk0TyXGUGJxG88zoS3vIXM6llW8DgvtRzaImS-zvoLMVpBFsrI53F6tXXnZZFu2LMxT98R7Cz1PxtP_Xq9mnewgNnIOLb4PBgEx5h37Y4HB5twfpidmleu73UQr0JqEUg7thK_gIn9DBD
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9QwFH_M2wf1w1RUVjclHyZ-6q5N2iQVQepwTMFxzBvMD1KSNDmO27rjrjdxf71Jmh47BRG_tikk5Pdefi997_cADnIPDa1iKgyPM8Iya1KGxqquE0mJ5sr4BNlTenKefb7IL7bgXV8L49IqbSg-9U7ayWvFlpInQzbEw4wO57V5fxPukSyVZjayo4Tcg22aWyY-gO3z01H5zfWT67_sSvKIjeyHV2KmWeIjwo1DyGv1_-mRH8L9VTMXP3-Iy8s7R87xI_jeT7bLNJkdrlp5qG5_03H839U8hp3ARVHZgecJbOnmKSzP9E2A4_TWnmvoyGNIobPpcobKtZDnW1R-ikeux5qu0ahTZ0Vf9eQqFDM1yGcjoDIkGaAvPm1To6DoOkHjXj52-QzGxx_HRydx6MwQK1Kkbcwo1UwbjTmtMRFpUReWuTkpOsmIkZJLzhVhtftHKwopLC1jqahplkuJKSfPYdBcN3oXkDbKMFrw1BXoUkuHLHKKRCWkqHGuChLBQb9T1bzT36hs3OI2tLqzoRF8cLu4HuJEs_2D68WkCjZYYcxY4iJQYUymqBGMpkaRRPBcZhonEbxxGKicabcLoUSoULAzdSJZVcndT-YsxWkE-xsjrUmqzdc9iqrgEpaV9ZyWi2Y8ySN4vUbW3xb14h_H7cED7LoS-7uhfRi0i5V-aalSK18Fi_gF1XcNtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+Cardiac+Risk+Assessment%3A+AI-Powered+Patient+Segmentation+Using+Advanced+Machine+Learning+Techniques&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Gonzalez-Franco%2C+Joan+D&rft.au=Galaviz-Mosqueda%2C+Alejandro&rft.au=Villarreal-Reyes%2C+Salvador&rft.au=Lozano-Rizk%2C+Jose+E&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=7&rft.issue=2&rft_id=info:doi/10.3390%2Fmake7020046&rft.externalDocID=A845834121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon