Revolutionizing Cardiac Risk Assessment: AI-Powered Patient Segmentation Using Advanced Machine Learning Techniques
Cardiovascular diseases stand as the leading cause of mortality worldwide, underscoring the urgent need for effective tools that enable early detection and monitoring of at-risk patients. This study combines Artificial Intelligence (AI) techniques—specifically the k-means clustering algorithm—alongs...
Saved in:
| Published in | Machine learning and knowledge extraction Vol. 7; no. 2; p. 46 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2504-4990 2504-4990 |
| DOI | 10.3390/make7020046 |
Cover
| Abstract | Cardiovascular diseases stand as the leading cause of mortality worldwide, underscoring the urgent need for effective tools that enable early detection and monitoring of at-risk patients. This study combines Artificial Intelligence (AI) techniques—specifically the k-means clustering algorithm—alongside dimensionality reduction methods like Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) to identify patient groups with varying levels of heart attack risk. We used a publicly available clinical dataset with 1319 patient records, which included variables such as age, gender, blood pressure, glucose levels, CK-MB Creatine Kinase MB (KCM), and troponin levels. We normalized and prepared the data, then we employed PCA and UMAP to reduce dimensionality and facilitate visualization. Using the k-means algorithm, we segmented the patients into distinct groups based on their clinical features. Our analysis revealed two distinct patient groups. Group 2 exhibited significantly higher levels of troponin (mean 0.4761 ng/mL), KCM (18.65 ng/mL), and glucose (mean 148.19 mg/dL) and was predominantly composed of men (97%). These factors indicate an increased risk of cardiac events compared to Group 1, which had lower levels of these biomarkers and a slightly higher average age. Interestingly, no significant differences in blood pressure were observed between the groups. This study demonstrates the effectiveness of combining Machine Learning (ML) techniques with dimensionality reduction methods to enhance risk stratification accuracy in cardiology. By enabling more targeted interventions for high-risk patients, our unsupervised segmentation approach focuses on intrinsic data patterns rather than predefined diagnostic labels, serves as a powerful complement to traditional risk assessment tools. |
|---|---|
| AbstractList | Cardiovascular diseases stand as the leading cause of mortality worldwide, underscoring the urgent need for effective tools that enable early detection and monitoring of at-risk patients. This study combines Artificial Intelligence (AI) techniques—specifically the k-means clustering algorithm—alongside dimensionality reduction methods like Principal Component Analysis (PCA) and Uniform Manifold Approximation and Projection (UMAP) to identify patient groups with varying levels of heart attack risk. We used a publicly available clinical dataset with 1319 patient records, which included variables such as age, gender, blood pressure, glucose levels, CK-MB Creatine Kinase MB (KCM), and troponin levels. We normalized and prepared the data, then we employed PCA and UMAP to reduce dimensionality and facilitate visualization. Using the k-means algorithm, we segmented the patients into distinct groups based on their clinical features. Our analysis revealed two distinct patient groups. Group 2 exhibited significantly higher levels of troponin (mean 0.4761 ng/mL), KCM (18.65 ng/mL), and glucose (mean 148.19 mg/dL) and was predominantly composed of men (97%). These factors indicate an increased risk of cardiac events compared to Group 1, which had lower levels of these biomarkers and a slightly higher average age. Interestingly, no significant differences in blood pressure were observed between the groups. This study demonstrates the effectiveness of combining Machine Learning (ML) techniques with dimensionality reduction methods to enhance risk stratification accuracy in cardiology. By enabling more targeted interventions for high-risk patients, our unsupervised segmentation approach focuses on intrinsic data patterns rather than predefined diagnostic labels, serves as a powerful complement to traditional risk assessment tools. |
| Audience | Academic |
| Author | Galaviz-Mosqueda, Alejandro Villarreal-Reyes, Salvador Gonzalez-Franco, Joan D. Rivera-Rodriguez, Raul Lozano-Rizk, Jose E. Gonzalez-Trejo, Jose E. Ibarra-Flores, Edgar A. Lozoya-Arandia, Jorge Licea-Navarro, Alexei-Fedorovish |
| Author_xml | – sequence: 1 givenname: Joan D. orcidid: 0000-0003-0770-6869 surname: Gonzalez-Franco fullname: Gonzalez-Franco, Joan D. – sequence: 2 givenname: Alejandro surname: Galaviz-Mosqueda fullname: Galaviz-Mosqueda, Alejandro – sequence: 3 givenname: Salvador orcidid: 0000-0002-7219-361X surname: Villarreal-Reyes fullname: Villarreal-Reyes, Salvador – sequence: 4 givenname: Jose E. orcidid: 0000-0002-6154-5712 surname: Lozano-Rizk fullname: Lozano-Rizk, Jose E. – sequence: 5 givenname: Raul orcidid: 0000-0002-1968-8525 surname: Rivera-Rodriguez fullname: Rivera-Rodriguez, Raul – sequence: 6 givenname: Jose E. orcidid: 0000-0003-2018-1833 surname: Gonzalez-Trejo fullname: Gonzalez-Trejo, Jose E. – sequence: 7 givenname: Alexei-Fedorovish orcidid: 0000-0003-4022-7405 surname: Licea-Navarro fullname: Licea-Navarro, Alexei-Fedorovish – sequence: 8 givenname: Jorge surname: Lozoya-Arandia fullname: Lozoya-Arandia, Jorge – sequence: 9 givenname: Edgar A. surname: Ibarra-Flores fullname: Ibarra-Flores, Edgar A. |
| BookMark | eNp9kl1rFDEUhgepYK298g8MeKlT8zX58G5Zqi6sWOp6Hc5kkm22M8mazLbUX2_GFa0gkouE8z7vyzmHPK9OQgy2ql5idEGpQm9HuLUCEYQYf1KdkhaxhimFTh69n1XnOe8QQkQohhE7rfK1vYvDYfIx-O8-bOslpN6Dqa99vq0XOducRxumd_Vi1VzFe5tsX1_B5Eut_mK3swazu_6aZ_uiv4NgCvMJzI0Ptl5bSGFWNtbcBP_tYPOL6qmDIdvzX_dZtXl_uVl-bNafP6yWi3VjqMJTIzi3wjpLJO8JBax6JVsshOSdoK7rZCeloaJXCDNQHbRFxNBz1nYd4ZKeVatjbB9hp_fJj5AedASvfxZi2mpIkzeD1YQIgVqOMDjHDHcgOHaGIpBtxyxBJevNMesQ9vBwD8PwOxAjPa9fP1p_wV8d8X2K88ST3sVDCmVYTQmhijCJ2j_UFkoPPrg4JTCjz0YvJGslZZjgQl38gyqnt6M35Qs4X-p_GV4fDSbFnJN1_231Bwvtr8c |
| Cites_doi | 10.1016/S0140-6736(20)31824-9 10.1007/s00018-021-03794-x 10.1038/nbt.4314 10.1038/s41591-018-0316-z 10.1161/CIRCULATIONAHA.105.169404 10.1161/CIRCULATIONAHA.120.049298 10.1016/j.ins.2022.11.139 10.1152/physrev.00021.2015 10.1056/NEJMoa012512 10.1001/jama.2015.3595 10.1007/s40745-015-0040-1 10.1016/j.ajpc.2020.100118 10.1038/ng.3886 10.1136/bmj.g7873 10.1016/j.knosys.2016.06.031 10.3390/fi15100335 10.1056/NEJMoa1911303 10.1098/rsta.2015.0202 10.1186/s12872-020-01620-z 10.1213/ANE.0000000000002864 10.1186/s13073-019-0705-z 10.1007/s10710-017-9314-z 10.1373/clinchem.2016.255109 10.2337/cd21-as01 10.1093/eurheartj/ehad191 10.1371/journal.pone.0029578 10.2337/diabetes.54.6.1615 10.21105/joss.00861 10.1161/CIR.0000000000000617 10.1016/j.patcog.2012.07.021 10.1093/ehjdh/ztae080 10.1038/s41591-018-0300-7 10.1161/JAHA.121.021976 10.3132/dvdr.2006.019 10.1186/s12874-024-02422-z 10.1093/eurheartj/ehac758 10.1016/S0140-6736(18)32822-8 10.1002/9780470977811 10.1051/itmconf/20257401005 10.1002/wics.101 10.1016/j.jacc.2017.11.006 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/make7020046 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2504-4990 |
| ExternalDocumentID | oai_doaj_org_article_227705601aff4c6fa761fc30a85b4e20 10.3390/make7020046 A845834121 10_3390_make7020046 |
| GeographicLocations | Mexico |
| GeographicLocations_xml | – name: Mexico |
| GroupedDBID | AADQD AAFWJ AAYXX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ICD ITC K7- MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c391t-766e7efe286d23a19d98517786b73fbb8b88c37d9014a9ba55171ad645bb2683 |
| IEDL.DBID | UNPAY |
| ISSN | 2504-4990 |
| IngestDate | Fri Oct 03 12:43:33 EDT 2025 Tue Aug 19 23:48:50 EDT 2025 Fri Jul 25 09:14:40 EDT 2025 Mon Oct 20 22:41:29 EDT 2025 Tue Jul 08 03:51:17 EDT 2025 Thu Oct 16 04:38:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-766e7efe286d23a19d98517786b73fbb8b88c37d9014a9ba55171ad645bb2683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2018-1833 0000-0002-1968-8525 0000-0002-7219-361X 0000-0003-4022-7405 0000-0003-0770-6869 0000-0002-6154-5712 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2504-4990/7/2/46/pdf?version=1747907633 |
| PQID | 3223924805 |
| PQPubID | 5046881 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_227705601aff4c6fa761fc30a85b4e20 unpaywall_primary_10_3390_make7020046 proquest_journals_3223924805 gale_infotracmisc_A845834121 gale_infotracacademiconefile_A845834121 crossref_primary_10_3390_make7020046 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Machine learning and knowledge extraction |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Schober (ref_24) 2018; 126 Topol (ref_5) 2019; 25 Allen (ref_47) 2021; 143 Jetty (ref_10) 2025; 74 ref_11 Gill (ref_31) 2023; 44 Abdi (ref_16) 2010; 2 Shah (ref_13) 2015; 350 Chen (ref_2) 2022; 2022 Lozano (ref_6) 2017; 117 ref_17 Xu (ref_20) 2015; 2 Segar (ref_29) 2020; 4 Heaton (ref_3) 2018; 19 Whelton (ref_25) 2018; 71 McInnes (ref_28) 2018; 3 McMurray (ref_46) 2019; 381 Becht (ref_19) 2019; 37 Kumar (ref_44) 2021; 78 Arbelaitz (ref_23) 2013; 46 Swinburn (ref_40) 2019; 393 Grundy (ref_43) 2005; 112 Ikotun (ref_21) 2023; 622 ref_27 ref_26 Zannad (ref_45) 2020; 396 Apple (ref_12) 2017; 63 Ashley (ref_36) 2015; 313 Thygesen (ref_37) 2018; 138 Ayushi (ref_14) 2020; 9 Brownlee (ref_41) 2005; 54 ref_35 ref_34 Daccord (ref_38) 2017; 49 Esteva (ref_4) 2019; 25 ref_39 Cunningham (ref_15) 2015; 16 Knowler (ref_42) 2002; 346 Shomorony (ref_9) 2020; 12 Gale (ref_18) 2006; 3 Bholowalia (ref_22) 2014; 105 Flores (ref_33) 2021; 10 Rossello (ref_48) 2023; 44 ref_1 Saba (ref_30) 2024; 83 Liu (ref_49) 2025; 6 Kararigas (ref_32) 2017; 97 Jolliffe (ref_7) 2016; 374 ref_8 |
| References_xml | – volume: 396 start-page: 819 year: 2020 ident: ref_45 article-title: SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials publication-title: Lancet doi: 10.1016/S0140-6736(20)31824-9 – volume: 9 start-page: 2449 year: 2020 ident: ref_14 article-title: Heart Disease Prediction Integrating UMAP and XGBoost publication-title: Int. J. Recent Technol. Eng. – volume: 78 start-page: 4467 year: 2021 ident: ref_44 article-title: Histone acetylation dynamics regulating plant development and stress responses publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-021-03794-x – volume: 37 start-page: 38 year: 2019 ident: ref_19 article-title: Dimensionality reduction for visualizing single-cell data using UMAP publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4314 – volume: 25 start-page: 24 year: 2019 ident: ref_4 article-title: A guide to deep learning in healthcare publication-title: Nat. Med. doi: 10.1038/s41591-018-0316-z – volume: 112 start-page: 2735 year: 2005 ident: ref_43 article-title: Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.169404 – volume: 143 start-page: 1659 year: 2021 ident: ref_47 article-title: Diagnostic Performance of High-Sensitivity Cardiac Troponin T Strategies and Clinical Variables in a Multisite US Cohort publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.049298 – ident: ref_1 – volume: 16 start-page: 2859 year: 2015 ident: ref_15 article-title: Linear Dimensionality Reduction: Survey, Insights, and Generalizations publication-title: J. Ma-Chine Learn. Research – volume: 622 start-page: 178 year: 2023 ident: ref_21 article-title: K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.11.139 – volume: 97 start-page: 1 year: 2017 ident: ref_32 article-title: Mechanistic Pathways of Sex Differences in Cardiovascular Disease publication-title: Physiol. Rev. doi: 10.1152/physrev.00021.2015 – ident: ref_8 – ident: ref_27 – volume: 346 start-page: 393 year: 2002 ident: ref_42 article-title: Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa012512 – volume: 313 start-page: 2119 year: 2015 ident: ref_36 article-title: The Precision Medicine Initiative publication-title: JAMA doi: 10.1001/jama.2015.3595 – volume: 2 start-page: 165 year: 2015 ident: ref_20 article-title: A Comprehensive Survey of Clustering Algorithms publication-title: Ann. Data Sci. doi: 10.1007/s40745-015-0040-1 – volume: 4 start-page: 100118 year: 2020 ident: ref_29 article-title: County-level phenomapping to identify disparities in cardiovascular outcomes: An unsupervised clustering analysis publication-title: Am. J. Prev. Cardiol. doi: 10.1016/j.ajpc.2020.100118 – volume: 49 start-page: 1099 year: 2017 ident: ref_38 article-title: High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development publication-title: Nat. Genet. doi: 10.1038/ng.3886 – volume: 350 start-page: g7873 year: 2015 ident: ref_13 article-title: High sensitivity cardiac troponin and the under-diagnosis of myocardial infarction in women: Prospective cohort study publication-title: BMJ doi: 10.1136/bmj.g7873 – volume: 117 start-page: 56 year: 2017 ident: ref_6 article-title: An efficient approximation to the K-means clustering for massive data publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2016.06.031 – ident: ref_17 doi: 10.3390/fi15100335 – volume: 381 start-page: 1995 year: 2019 ident: ref_46 article-title: Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1911303 – volume: 374 start-page: 20150202 year: 2016 ident: ref_7 article-title: Principal component analysis: A review and recent developments publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2015.0202 – ident: ref_34 doi: 10.1186/s12872-020-01620-z – volume: 126 start-page: 1763 year: 2018 ident: ref_24 article-title: Correlation Coefficients: Appropriate Use and Interpretation publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000002864 – volume: 12 start-page: 7 year: 2020 ident: ref_9 article-title: An unsupervised learning approach to identify novel signatures of health and disease from multimodal data publication-title: Genome Med. doi: 10.1186/s13073-019-0705-z – volume: 19 start-page: 305 year: 2018 ident: ref_3 article-title: Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning publication-title: Genet. Program. Evolvable Mach. doi: 10.1007/s10710-017-9314-z – volume: 105 start-page: 17 year: 2014 ident: ref_22 article-title: EBK-Means: A Clustering Technique Based on Elbow Method and K-Means in WSN publication-title: Int. J. Comput. Appl. – volume: 63 start-page: 73 year: 2017 ident: ref_12 article-title: Cardiac Troponin Assays: Guide to Understanding Analytical Characteristics and Their Impact on Clinical Care publication-title: Clin. Chem. doi: 10.1373/clinchem.2016.255109 – ident: ref_39 doi: 10.2337/cd21-as01 – volume: 44 start-page: 3720 year: 2023 ident: ref_48 article-title: 2023 ESC Guidelines for the management of acute coronary syndromes publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehad191 – ident: ref_35 doi: 10.1371/journal.pone.0029578 – volume: 54 start-page: 1615 year: 2005 ident: ref_41 article-title: The Pathobiology of Diabetic Complications publication-title: Diabetes doi: 10.2337/diabetes.54.6.1615 – volume: 3 start-page: 861 year: 2018 ident: ref_28 article-title: UMAP: Uniform Manifold Approximation and Projection publication-title: J. Open Source Softw. doi: 10.21105/joss.00861 – volume: 138 start-page: e618 year: 2018 ident: ref_37 article-title: Fourth Universal Definition of Myocardial Infarction (2018) publication-title: Circulation doi: 10.1161/CIR.0000000000000617 – volume: 46 start-page: 243 year: 2013 ident: ref_23 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.07.021 – volume: 6 start-page: 7 year: 2025 ident: ref_49 article-title: Machine learning based prediction models for cardiovascular disease risk using electronic health records data: Systematic review and meta-analysis publication-title: Eur. Heart J. Digit. Health doi: 10.1093/ehjdh/ztae080 – volume: 2022 start-page: 1348795 year: 2022 ident: ref_2 article-title: Rhodiola rosea: A Therapeutic Candidate on Cardiovascular Diseases publication-title: Oxidative Med. Cell Longev. – volume: 83 start-page: 574 year: 2024 ident: ref_30 article-title: Redefining Cardiovascular Risk Assessment as a Spectrum publication-title: Circ. – volume: 25 start-page: 44 year: 2019 ident: ref_5 article-title: High-performance medicine: The convergence of human and artificial intelligence publication-title: Nat. Med. doi: 10.1038/s41591-018-0300-7 – volume: 10 start-page: e021976 year: 2021 ident: ref_33 article-title: Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.121.021976 – volume: 3 start-page: 80 year: 2006 ident: ref_18 article-title: The association between hyperglycaemia and elevated troponin levels on mortality in acute coronary syndromes publication-title: Diabetes Vasc. Dis. Res. doi: 10.3132/dvdr.2006.019 – ident: ref_11 doi: 10.1186/s12874-024-02422-z – volume: 44 start-page: 713 year: 2023 ident: ref_31 article-title: Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehac758 – volume: 393 start-page: 791 year: 2019 ident: ref_40 article-title: The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report publication-title: Lancet doi: 10.1016/S0140-6736(18)32822-8 – ident: ref_26 doi: 10.1002/9780470977811 – volume: 74 start-page: 01005 year: 2025 ident: ref_10 article-title: Unsupervised Learning for Heart Disease Prediction: Clustering-Based Approach publication-title: ITM Web Conf. doi: 10.1051/itmconf/20257401005 – volume: 2 start-page: 433 year: 2010 ident: ref_16 article-title: Principal component analysis publication-title: WIREs Comput. Stat. doi: 10.1002/wics.101 – volume: 71 start-page: e127 year: 2018 ident: ref_25 article-title: ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.11.006 |
| SSID | ssj0002794104 |
| Score | 2.2956257 |
| Snippet | Cardiovascular diseases stand as the leading cause of mortality worldwide, underscoring the urgent need for effective tools that enable early detection and... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 46 |
| SubjectTerms | Algorithms Artificial intelligence Biomarkers Blood pressure Cardiology Cardiovascular disease Cardiovascular diseases Cluster analysis Clustering Comparative analysis Computer-aided medical diagnosis Creatine Creatine kinase Dextrose Diagnosis dimensionality reduction Effectiveness Glucose Health aspects Heart attack heart attacks k-means clustering Kinases Machine learning Medical records Methods Mexico Mortality patient segmentation Principal components analysis Risk assessment Risk factors Segmentation troponin Vector quantization Visualization |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYmLtsOaIihhRXkA2iniMR2_GO3gIYAianqisTNsh0bMdpQtWUI_npsx61aIY0L1yQH-31-9vvi974HwEEVl4Y1OVWO5wQz4l3K0dw0TaEptty4mCD7m55dkYvr6nql1VfICevkgTvDHSHEWBFog3KOGOqU593O4ELxShOLIlsvuFghU3_jdZognmh0BXnY8_qjsbqzrIh8cO0Iikr9r_fjz-DjQztRT49qNFo5cE6_gM0UKcK6G-EW-GDbbTAb2H9psdw--1MHnkSEDRzczu5gvZTZ_Anr87wfOqDZBvY77VT4x96MU6lRC2OuAKxTCgC8jEmVFia91Rs4XIi7zr6C4emv4clZnvom5AaLcp4zSi2zziJOG4RVKRrh46ogFKcZdlpzzbnBrAk3qEpo5YMmVqqGkkprRDneARvtfWu_AWidcYwKXobyWeqDFY-rKEyBRYMqI3AGDhaWlJNOHUN6VhEMLlcMnoHjYOXlJ0HSOj7wQMsEtHwL6Az8CBjJ4HjzqTIq1Q_4kQYJK1nzcAVMSlRmoLf2pXcYs_56gbJMDjuTfl_zkSLhRZWBwyXy_5vU7ntM6jv4hEJD4fhbpwc25tMHu-ejnLnejwv6BXsf-Mc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6N7gF4QCBAZBvID0M8RUvsxHaQEMqmTQOJqipF2pvln9W0LS1tNwR_PbbrlFVIe02iKLn7zndn330HcFhHaFidU-l4XhFWeZNyNNfGFIoSy7WLBbJDev6j-npRX-zAsO-FCWWV_ZoYF2oz02GP_MgDz7vyihf15_nPPEyNCqer_QgNmUYrmE-RYuwR7OLAjDWA3ePT4Wi82XXBHn4-AVk36hGf7x_dyCvLipgnbrmmyOD__zr9FB7fdnP5-5e8vr7niM6ew7MUQaJ2rfIXsGO7l7Ac27sEoss_3huhk6h5jcaXyyvUbug3P6L2Sz4Kk9GsQaM1pyr6bqc3qQWpQ7GGALWpNAB9i8WWFiUe1ima9KSvy1cwOTudnJznaZ5CrklTrnJGqWXWWcypwUSWjWl8vBUI5BQjTimuONeEmXCyKhslvSRZKQ2taqUw5eQ1DLpZZ98Ask47RhtehrZa6oMYr--m0AVpDK51QzI47CUp5mvWDOGzjSBwcU_gGRwHKW8eCVTX8cJsMRXJcgTGjBUhb5TOVZo6yWjpNCkkr1VlcZHBh6AjEQxytZBapr4C_6WB2kq0PBwNVx4OGRxsPekNSW_f7rUskiEvxT_YZfB-o_mHfmrv4dfswxMcRgjHjZwDGKwWt_atj2tW6l0C61_ukfck priority: 102 providerName: ProQuest |
| Title | Revolutionizing Cardiac Risk Assessment: AI-Powered Patient Segmentation Using Advanced Machine Learning Techniques |
| URI | https://www.proquest.com/docview/3223924805 https://www.mdpi.com/2504-4990/7/2/46/pdf?version=1747907633 https://doaj.org/article/227705601aff4c6fa761fc30a85b4e20 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2504-4990 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2504-4990 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2504-4990 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794104 issn: 2504-4990 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH_a2gNw4EOAKIzKhyFOWT6c2A5CQtnUMpBWVaWTxgFFtmNXVbeu6scQO_C3YztOtYKEEJccEkey9T78e_Z7vwdwmDnVUDIgXLMgxTQ1JqVJIKsqEgQrJrVLkB2Q0_P080V2sQfvm1oYm1ZpQvGpc9KWXiswkDwKaZiEKQkXlf5w48-RDJSmJrIjGO9Dm2QGibegfT4YFl9tP7nmz7okD5vIPrziM0UjFxHubEKOq_9Pj_wA7m3mC_7jO7-8vLPl9B_Bt2aydabJ7GizFkfy9jcex_9dzWN46LEoKmrleQJ7av4UViN149Vxemv2NXTidEii0XQ1Q8WWyPMdKj4FQ9tjTVVoWLOzoi9qcuWLmebIZSOgwicZoDOXtqmQZ3SdoHFDH7t6BuN-b3xyGvjODIHEebwOKCGKKq0SRqoE8zivcoPcLBWdoFgLwQRjEtPK3tHyXHADy2jMK5JmQiSE4efQml_P1QtASktNSc5iW6BLDBwympNHMsJ5lWQyxx04bCRVLmr-jdLELVag5R2BduDYSnE7xJJmuxfXy0npbbBMEkojG4FyrVNJNKck1hJHnGUiVUnUgbdWB0pr2usll9xXKJiZWpKssmD2kjmNk7gDBzsjjUnK3c-NFpXeJaxK4zkNFk1ZlHXgzVaz_raol_847hXcT2xXYnc2dACt9XKjXhuotBZd2Gf9j11oH_cGw1HXHTiY59nPXtfbyi9rJRJc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbG9jB4QCBAZAzwwyaeoiV24h9IE-rGppZtVVWKtDfLduxq2paWpmMa_xv_G7brlFVIe9trYlnJ3Xc-n333HQA7ZYCG0SmRlqUFpoUzKUtSXVWZItgwbUOCbJ90fxTfzsvzNfCnrYXxaZXtmhgW6mqi_Rn5ngOec-UFy8ov05-p7xrlb1fbFhoytlao9gPFWCzsODF3ty6Ea_Z7X52-dxE6PhoddtPYZSDVmOfzlBJiqLEGMVIhLHNecd-vnjKiKLZKMcWYxrTy942SK-nmp7msSFEqhQjDbtonYKPABXex38bBUX8wXB7yIId2F-8s6gIx5tnetbw0NAth6YonDA0D_ncLz8DmTT2Vd7fy6uqe3zt-AZ7HDSvsLBD2EqyZ-hVohuZXxOzFb-f84GEAmobDi-YSdpZsn59hp5cOfCM2U8HBgsIVfjfj61jxVMOQsgA7MRMBnoXcTgMj7esYjlqO2eY1GD2GYN-A9XpSm7cAGqstJZzlvoqXuD2TgxfPdIZ5hUrNcQJ2WkmK6YKkQ7jgxgtc3BN4Ag68lJdDPLN2eDCZjUU0VIEQpZkPU6W1hSZWUpJbjTPJSlUYlCXgk9eR8PY_n0ktYxmD-1LPpCU6zN9EFznKE7C9MtLZrV593WpZxHWjEf9QnoDdpeYf-qmth6f5CDa7o7NTcdrrn7wDT5HvXhzOkLbB-nx2Y967LdVcfYjAhUA8sqn8BY5bMqk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NIfHjAYEALWyAHzbxFDWxE9tBQihslJXBVI0i7c2yHbuatqVd2zGN_4z_DttJyiqkve01sazk7jufz777DmA7D9AwOqbS8jgjLHMmZWmsqypRlBiubUiQPaT7P7Ovx_nxGvzpamF8WmW3JoaFuppof0bec8BzrjzjSd6zbVrEcK__cXoR-w5S_qa1a6fRQOTAXF-58G3-YbDndL2Dcf_zaHc_bjsMxJoU6SJmlBpmrMGcVpjItKgK36uecaoYsUpxxbkmrPJ3jbJQ0m0vWCormuVKYcqJm_Ye3GeexN0Xqfe_LI93sMO5i3SaikBCiqR3Lk8NS0JAuuIDQ6uA_x3CY3h4WU_l9ZU8O7vh8fpP4Um7VUVlg61nsGbq5zA_Mr9atJ78dm4P7QaIaXR0Mj9F5ZLn8z0qB_HQt2AzFRo25K3ohxmft7VONQrJCqhscxDQ95DVaVBL-DpGo45ddv4CRnch1pewXk9qswHIWG0ZLXjq63ep2y05YBWJTkhR4VwXJILtTpJi2tBzCBfWeIGLGwKP4JOX8nKI59QODyazsWhNVGDMWOIDVGltpqmVjKZWk0TyXGUGJxG88zoS3vIXM6llW8DgvtRzaImS-zvoLMVpBFsrI53F6tXXnZZFu2LMxT98R7Cz1PxtP_Xq9mnewgNnIOLb4PBgEx5h37Y4HB5twfpidmleu73UQr0JqEUg7thK_gIn9DBD |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9QwFH_M2wf1w1RUVjclHyZ-6q5N2iQVQepwTMFxzBvMD1KSNDmO27rjrjdxf71Jmh47BRG_tikk5Pdefi997_cADnIPDa1iKgyPM8Iya1KGxqquE0mJ5sr4BNlTenKefb7IL7bgXV8L49IqbSg-9U7ayWvFlpInQzbEw4wO57V5fxPukSyVZjayo4Tcg22aWyY-gO3z01H5zfWT67_sSvKIjeyHV2KmWeIjwo1DyGv1_-mRH8L9VTMXP3-Iy8s7R87xI_jeT7bLNJkdrlp5qG5_03H839U8hp3ARVHZgecJbOnmKSzP9E2A4_TWnmvoyGNIobPpcobKtZDnW1R-ikeux5qu0ahTZ0Vf9eQqFDM1yGcjoDIkGaAvPm1To6DoOkHjXj52-QzGxx_HRydx6MwQK1Kkbcwo1UwbjTmtMRFpUReWuTkpOsmIkZJLzhVhtftHKwopLC1jqahplkuJKSfPYdBcN3oXkDbKMFrw1BXoUkuHLHKKRCWkqHGuChLBQb9T1bzT36hs3OI2tLqzoRF8cLu4HuJEs_2D68WkCjZYYcxY4iJQYUymqBGMpkaRRPBcZhonEbxxGKicabcLoUSoULAzdSJZVcndT-YsxWkE-xsjrUmqzdc9iqrgEpaV9ZyWi2Y8ySN4vUbW3xb14h_H7cED7LoS-7uhfRi0i5V-aalSK18Fi_gF1XcNtg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+Cardiac+Risk+Assessment%3A+AI-Powered+Patient+Segmentation+Using+Advanced+Machine+Learning+Techniques&rft.jtitle=Machine+learning+and+knowledge+extraction&rft.au=Gonzalez-Franco%2C+Joan+D&rft.au=Galaviz-Mosqueda%2C+Alejandro&rft.au=Villarreal-Reyes%2C+Salvador&rft.au=Lozano-Rizk%2C+Jose+E&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.issn=2504-4990&rft.eissn=2504-4990&rft.volume=7&rft.issue=2&rft_id=info:doi/10.3390%2Fmake7020046&rft.externalDocID=A845834121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-4990&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-4990&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-4990&client=summon |