Estimation of speed of sound in dual-layered media using medical ultrasound image deconvolution
The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed...
        Saved in:
      
    
          | Published in | Ultrasonics Vol. 50; no. 7; pp. 716 - 725 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        01.06.2010
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0041-624X 1874-9968 1874-9968  | 
| DOI | 10.1016/j.ultras.2010.02.008 | 
Cover
| Abstract | The speed of sound in soft tissues is usually assumed to be 1540
m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator has been developed for layered media assuming that, for moderate speed differences, the reflection at the interface may be neglected. We have applied our dual-layer algorithm to simulations and
in vitro phantoms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-spread functions having different lower-layer speeds. The best restoration is selected using a correlation metric. The error level (e.g., a mean error of −9
m/s with a standard deviation of 16
m/s) for
in vitro phantoms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed estimation methods where the data acquisition may not be as simple as in our proposed method. | 
    
|---|---|
| AbstractList | The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator has been developed for layered media assuming that, for moderate speed differences, the reflection at the interface may be neglected. We have applied our dual-layer algorithm to simulations and in vitro phantoms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-spread functions having different lower-layer speeds. The best restoration is selected using a correlation metric. The error level (e.g., a mean error of -9 m/s with a standard deviation of 16 m/s) for in vitro phantoms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed estimation methods where the data acquisition may not be as simple as in our proposed method. The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator has been developed for layered media assuming that, for moderate speed differences, the reflection at the interface may be neglected. We have applied our dual-layer algorithm to simulations and in vitro phantoms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-spread functions having different lower-layer speeds. The best restoration is selected using a correlation metric. The error level (e.g., a mean error of −9 m/s with a standard deviation of 16 m/s) for in vitro phantoms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed estimation methods where the data acquisition may not be as simple as in our proposed method. The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator has been developed for layered media assuming that, for moderate speed differences, the reflection at the interface may be neglected. We have applied our dual-layer algorithm to simulations and in vitro phantoms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-spread functions having different lower-layer speeds. The best restoration is selected using a correlation metric. The error level (e.g., a mean error of -9 m/s with a standard deviation of 16 m/s) for in vitro phantoms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed estimation methods where the data acquisition may not be as simple as in our proposed method.The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the mismatch can lead to distortions in the acquired images, and so reduce their clinical value. Previously we reported a new method of sound-speed estimation in the context of image deconvolution. Unlike most other sound-speed estimation methods, this enables the use of unmodified ultrasound machines and a normal scanning pattern. Our approach was validated for largely homogeneous media with single sound speeds. In this article, we demonstrate that sound speeds of dual-layered media can also be estimated through image deconvolution. An ultrasound simulator has been developed for layered media assuming that, for moderate speed differences, the reflection at the interface may be neglected. We have applied our dual-layer algorithm to simulations and in vitro phantoms. The speed of the top layer is estimated by our aforesaid method for homogeneous media. Then, when the layer boundary position is known, a series of deconvolutions are carried out with dual-layered point-spread functions having different lower-layer speeds. The best restoration is selected using a correlation metric. The error level (e.g., a mean error of -9 m/s with a standard deviation of 16 m/s) for in vitro phantoms is found to be not as good as that of our single-speed algorithm, but is comparable to other local speed estimation methods where the data acquisition may not be as simple as in our proposed method.  | 
    
| Author | Gomersall, Henry Gee, Andrew Shin, Ho-Chul Prager, Richard Kingsbury, Nick Treece, Graham  | 
    
| Author_xml | – sequence: 1 givenname: Ho-Chul surname: Shin fullname: Shin, Ho-Chul email: hs338@cam.ac.uk – sequence: 2 givenname: Richard surname: Prager fullname: Prager, Richard – sequence: 3 givenname: Henry surname: Gomersall fullname: Gomersall, Henry – sequence: 4 givenname: Nick surname: Kingsbury fullname: Kingsbury, Nick – sequence: 5 givenname: Graham surname: Treece fullname: Treece, Graham – sequence: 6 givenname: Andrew surname: Gee fullname: Gee, Andrew  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22842450$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20231026$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqFkU9r3DAQxUVJaTZpv0EpvpSevB39sWz1UAghbQKBXFLoTcjyOGjRSlvJDuTbV7vetpBDc9Kg-b1h5r0zchJiQELeU1hToPLzZj37KZm8ZlC-gK0BuldkRbtW1ErJ7oSsAAStJRM_T8lZzhsAKjrK35BTBoxTYHJF9FWe3NZMLoYqjlXeIQ6HIs5hqFyohtn42psnTKWxxcGZas4uPBxqa3y1bLHgW_OA1YA2hsfo5_3Qt-T1aHzGd8f3nPz4dnV_eV3f3n2_uby4rS1XdKoll1ZAOwrRKdmPxnZcYtP2opdCQa_6VrRjIw3tGTS9akCJjqsRqALBqFD8nHxa5u5S_DVjnvTWZYvem4BxzrrlnDUtU7SQH47k3Jcb9C6VtdOT_uNJAT4eAZPLgWMywbr8j2OdYKKBwomFsynmnHD8i1DQ-4j0Ri_m6H1EGpguERXZl2cy66ZDAAV1_iXx10WMxctHh0ln6zDYkkVCO-khuv8P-A0Q7K4V | 
    
| CODEN | ULTRA3 | 
    
| CitedBy_id | crossref_primary_10_1016_j_pacs_2024_100621 crossref_primary_10_1109_TBME_2019_2931195 crossref_primary_10_1121_10_0014034 crossref_primary_10_1016_j_ijimpeng_2012_07_008 crossref_primary_10_1109_TUFFC_2011_1790 crossref_primary_10_1016_j_ndteint_2011_10_006 crossref_primary_10_1088_1742_6596_797_1_012002 crossref_primary_10_1109_TUFFC_2024_3445131 crossref_primary_10_1016_j_ultras_2014_09_003 crossref_primary_10_1063_1_3501046 crossref_primary_10_1007_s11548_012_0690_9 crossref_primary_10_1016_j_ndteint_2015_04_003  | 
    
| Cites_doi | 10.1016/0161-7346(90)90219-N 10.1016/0301-5629(90)90087-S 10.1098/rsta.1999.0447 10.1109/TUFFC.2007.427 10.1109/58.139123 10.1109/58.935702 10.1002/(SICI)1098-1098(1997)8:1<137::AID-IMA15>3.0.CO;2-# 10.1016/j.ultrasmedbio.2010.01.011 10.1002/jcu.1870160204 10.1016/j.ultras.2008.10.005 10.1016/0301-5629(91)90034-T 10.1016/j.ultras.2006.06.061 10.2214/ajr.165.4.7676975 10.1121/1.429422 10.1006/acha.2000.0343 10.1109/TSP.2002.804091 10.1109/TUFFC.2007.278 10.1148/radiology.152.1.6729107 10.1109/TUFFC.2006.1610563  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2010 Elsevier B.V. 2015 INIST-CNRS 2010 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2010 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: 2010 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.ultras.2010.02.008 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1874-9968 | 
    
| EndPage | 725 | 
    
| ExternalDocumentID | 20231026 22842450 10_1016_j_ultras_2010_02_008 S0041624X10000417  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABEFU ABFNM ABJNI ABLJU ABLVK ABMAC ABMZM ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV C45 CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W KOM LCYCR M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SPG SSH SSQ SSZ T5K TAE TEORI UHS WH7 WUQ XPP ZGI ZMT ZXP ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS IQODW CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c391t-636c407f44896bfac836e57b4b6490b9b747f56a1b205b95094839f0190421493 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0041-624X 1874-9968  | 
    
| IngestDate | Thu Oct 02 11:45:15 EDT 2025 Mon Jul 21 06:03:50 EDT 2025 Mon Jul 21 09:17:06 EDT 2025 Wed Oct 01 01:43:30 EDT 2025 Thu Apr 24 23:10:09 EDT 2025 Fri Feb 23 02:36:23 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 7 | 
    
| Keywords | Sound estimation Point-spread function Dual-layered media Non-blind deconvolution Speed of sound Medical ultrasound image Human Correlation Pulse echo method Ultrasound imaging Modeling Point spread function Sound velocity Homogeneous medium Stratified medium Deconvolution Medical imagery Soft tissue Boundary layer  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 2010 Elsevier B.V. All rights reserved.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c391t-636c407f44896bfac836e57b4b6490b9b747f56a1b205b95094839f0190421493 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 20231026 | 
    
| PQID | 733257291 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_733257291 pubmed_primary_20231026 pascalfrancis_primary_22842450 crossref_primary_10_1016_j_ultras_2010_02_008 crossref_citationtrail_10_1016_j_ultras_2010_02_008 elsevier_sciencedirect_doi_10_1016_j_ultras_2010_02_008  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-06-01 | 
    
| PublicationDateYYYYMMDD | 2010-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2010 text: 2010-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam – name: Netherlands  | 
    
| PublicationTitle | Ultrasonics | 
    
| PublicationTitleAlternate | Ultrasonics | 
    
| PublicationYear | 2010 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Ophir, Yazdi (bib5) 1990; 12 Kondo, Takamizawa, Hirama, Okazaki, Iinuma, Takehara (bib4) 1990; 16 Taxt (bib22) 2001; 48 Kingsbury (bib24) 1999; 357 Chenevert, Bylski, Carson, Meyer, Bland, Adler, Schmitt (bib7) 1984; 152 Jensen, Svendsen (bib20) 1992; 39 Sendur, Selesnick (bib26) 2002; 50 Saijo, Filho, Sasaki, Yambe, Tanaka, Hozumi, Kobayashi, Okada (bib6) 2007; 54 Napolitano, Chou, McLaughlin, Ji, Mo, DeBusschere, Steins (bib13) 2006; 44 Ng, Prager, Kingsbury, Treece, Gee (bib15) 2006; 53 Angelsen (bib19) 2000 Wiskin, Borup, Johnson, Berggren, Abbott, Hanover (bib10) 2005 Therrien (bib23) 1992 H.-C. Shin, R. Prager, H. Gomersall, N. Kingsbury, G. Treece, A. Gee, Estimation of speed of sound using deconvolution of medical ultrasound data, Ultrasound in Medicine & Biology, accepted for publication Ng, Prager, Kingsbury, Treece, Gee (bib16) 2007; 54 Kinsler, Frey, Coppens, Sanders (bib18) 1982 Shin, Prager, Ng, Gomersall, Kingsbury, Treece, Gee (bib17) 2009; 49 André, Barker, Sekhon, Wiskin, Borup, Callahan (bib11) 2007 Richter, Heywang-Köbrunner (bib14) 1995; 165 Kingsbury (bib25) 2001; 10 Robinson, Ophir, Wilson, Chen (bib3) 1991; 17 Hayashi, Tamaki, Senda, Yamamoto, Yonekura, Torizuka, Ogawa, Katakuraand, Umemura, Kodama (bib2) 1988; 16 Anderson, McKeag, Trahey (bib1) 2000; 107 Duric, Littrup, Rama, Holsapple (bib9) 2005 Burlew, Madsen, Zagzebski, Banjavic, Sum (bib21) 1980; 134 André, Janée, Martin, Otto, Spivey, Palmer (bib8) 1997; 8 . Kinsler (10.1016/j.ultras.2010.02.008_bib18) 1982 Angelsen (10.1016/j.ultras.2010.02.008_bib19) 2000 Jensen (10.1016/j.ultras.2010.02.008_bib20) 1992; 39 Hayashi (10.1016/j.ultras.2010.02.008_bib2) 1988; 16 Kingsbury (10.1016/j.ultras.2010.02.008_bib24) 1999; 357 Kingsbury (10.1016/j.ultras.2010.02.008_bib25) 2001; 10 Chenevert (10.1016/j.ultras.2010.02.008_bib7) 1984; 152 André (10.1016/j.ultras.2010.02.008_bib11) 2007 Ng (10.1016/j.ultras.2010.02.008_bib15) 2006; 53 Anderson (10.1016/j.ultras.2010.02.008_bib1) 2000; 107 Sendur (10.1016/j.ultras.2010.02.008_bib26) 2002; 50 Ophir (10.1016/j.ultras.2010.02.008_bib5) 1990; 12 Saijo (10.1016/j.ultras.2010.02.008_bib6) 2007; 54 Kondo (10.1016/j.ultras.2010.02.008_bib4) 1990; 16 Robinson (10.1016/j.ultras.2010.02.008_bib3) 1991; 17 Ng (10.1016/j.ultras.2010.02.008_bib16) 2007; 54 Taxt (10.1016/j.ultras.2010.02.008_bib22) 2001; 48 Wiskin (10.1016/j.ultras.2010.02.008_bib10) 2005 Burlew (10.1016/j.ultras.2010.02.008_bib21) 1980; 134 Richter (10.1016/j.ultras.2010.02.008_bib14) 1995; 165 André (10.1016/j.ultras.2010.02.008_bib8) 1997; 8 Therrien (10.1016/j.ultras.2010.02.008_bib23) 1992 Shin (10.1016/j.ultras.2010.02.008_bib17) 2009; 49 Duric (10.1016/j.ultras.2010.02.008_bib9) 2005 Napolitano (10.1016/j.ultras.2010.02.008_bib13) 2006; 44 10.1016/j.ultras.2010.02.008_bib12  | 
    
| References_xml | – volume: 10 start-page: 234 year: 2001 end-page: 253 ident: bib25 article-title: Complex wavelets for shift invariant analysis and filtering of signals publication-title: Applied and Computational Harmonic Analysis – volume: 44 start-page: e43 year: 2006 end-page: e46 ident: bib13 article-title: Sound speed correction in ultrasound imaging publication-title: Ultrasonics – volume: 16 start-page: 87 year: 1988 end-page: 93 ident: bib2 article-title: A new method of measuring in vivo sound speed in the reflection mode publication-title: Journal of Clinical Ultrasound – year: 1992 ident: bib23 article-title: Discrete Random Signals and Statistical Signal Processing – volume: 357 start-page: 2543 year: 1999 end-page: 2560 ident: bib24 article-title: Image processing with complex wavelets publication-title: Philosophical Transactions of The Royal Society of London Series A – volume: 54 start-page: 1571 year: 2007 end-page: 1577 ident: bib6 article-title: Ultrasonic tissue characterization of atherosclerosis by a speed-of-sound microscanning system publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control – volume: 12 start-page: 35 year: 1990 end-page: 46 ident: bib5 article-title: A transaxial compression technique (TACT) for localized pulse-echo estimation of sound speed in biological tissues publication-title: Ultrasonic Imaging – volume: 17 start-page: 633 year: 1991 end-page: 646 ident: bib3 article-title: Pulse-echo ultrasound speed measurements: progress and prospects publication-title: Ultrasound in Medicine & Biology – volume: 53 start-page: 549 year: 2006 end-page: 563 ident: bib15 article-title: Modeling ultrasound imaging as a linear shift-variant system publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control – year: 2000 ident: bib19 publication-title: Ultrasound Imaging: Waves, Signals, and Signal Processing, vol. 1 – volume: 39 start-page: 262 year: 1992 end-page: 267 ident: bib20 article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control – volume: 50 start-page: 2744 year: 2002 end-page: 2756 ident: bib26 article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency publication-title: IEEE Transactions on Signal Processing – volume: 48 start-page: 867 year: 2001 end-page: 871 ident: bib22 article-title: Three-dimensional blind deconvolution of ultrasound images publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control – volume: 165 start-page: 825 year: 1995 end-page: 831 ident: bib14 article-title: Sonographic differentiation of benign from malignant breast lesions: value of indirect measurement of ultrasound velocity publication-title: American Journal of Roentgenology – year: 1982 ident: bib18 article-title: Fundamentals of Acoustics – volume: 134 start-page: 517 year: 1980 end-page: 520 ident: bib21 article-title: A new ultrasound tissue-equivalent material publication-title: Radiation Physics – volume: 49 start-page: 344 year: 2009 end-page: 357 ident: bib17 article-title: Sensitivity to point-spread function parameters in medical ultrasound image deconvolution publication-title: Ultrasonics – start-page: 173 year: 2005 end-page: 181 ident: bib9 article-title: Computerized ultrasound risk evaluation (CURE): first clinical results publication-title: Acoustical Imaging, the 28th International Symposium on Acoustical Imaging – volume: 107 start-page: 3540 year: 2000 end-page: 3548 ident: bib1 article-title: The impact of sound speed errors on medical ultrasound imaging publication-title: Journal of the Acoustical Society of America – volume: 16 start-page: 65 year: 1990 end-page: 72 ident: bib4 article-title: An evaluation of an in vivo local sound speed estimation technique by the crossed beam method publication-title: Ultrasound in Medicine & Biology – volume: 54 start-page: 550 year: 2007 end-page: 568 ident: bib16 article-title: Wavelet restoration of medical pulse-echo ultrasound images in an EM framework publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control – volume: 152 start-page: 155 year: 1984 end-page: 159 ident: bib7 article-title: Ultrasonic computed tomography of the breast publication-title: Radiology – start-page: 73 year: 2007 end-page: 80 ident: bib11 article-title: Pre-clinical experience with full-wave inverse-scattering for breast imaging: sound speed sensitivity publication-title: Acoustical Imaging, the 29th International Symposium on Acoustical Imaging – volume: 8 start-page: 137 year: 1997 end-page: 147 ident: bib8 article-title: High-speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays publication-title: International Journal of Imaging Systems and Technology – start-page: 183 year: 2005 end-page: 193 ident: bib10 article-title: Full-wave, non-linear, inverse scattering: high resolution quantitative breast tissue tomography publication-title: Acoustical Imaging, the 28th International Symposium on Acoustical Imaging – reference: H.-C. Shin, R. Prager, H. Gomersall, N. Kingsbury, G. Treece, A. Gee, Estimation of speed of sound using deconvolution of medical ultrasound data, Ultrasound in Medicine & Biology, accepted for publication, – reference: . – volume: 12 start-page: 35 year: 1990 ident: 10.1016/j.ultras.2010.02.008_bib5 article-title: A transaxial compression technique (TACT) for localized pulse-echo estimation of sound speed in biological tissues publication-title: Ultrasonic Imaging doi: 10.1016/0161-7346(90)90219-N – volume: 16 start-page: 65 issue: 1 year: 1990 ident: 10.1016/j.ultras.2010.02.008_bib4 article-title: An evaluation of an in vivo local sound speed estimation technique by the crossed beam method publication-title: Ultrasound in Medicine & Biology doi: 10.1016/0301-5629(90)90087-S – volume: 357 start-page: 2543 year: 1999 ident: 10.1016/j.ultras.2010.02.008_bib24 article-title: Image processing with complex wavelets publication-title: Philosophical Transactions of The Royal Society of London Series A doi: 10.1098/rsta.1999.0447 – volume: 54 start-page: 1571 issue: 8 year: 2007 ident: 10.1016/j.ultras.2010.02.008_bib6 article-title: Ultrasonic tissue characterization of atherosclerosis by a speed-of-sound microscanning system publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control doi: 10.1109/TUFFC.2007.427 – start-page: 73 year: 2007 ident: 10.1016/j.ultras.2010.02.008_bib11 article-title: Pre-clinical experience with full-wave inverse-scattering for breast imaging: sound speed sensitivity – volume: 39 start-page: 262 year: 1992 ident: 10.1016/j.ultras.2010.02.008_bib20 article-title: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control doi: 10.1109/58.139123 – volume: 48 start-page: 867 issue: 4 year: 2001 ident: 10.1016/j.ultras.2010.02.008_bib22 article-title: Three-dimensional blind deconvolution of ultrasound images publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control doi: 10.1109/58.935702 – volume: 8 start-page: 137 issue: 1 year: 1997 ident: 10.1016/j.ultras.2010.02.008_bib8 article-title: High-speed data acquisition in a diffraction tomography system employing large-scale toroidal arrays publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/(SICI)1098-1098(1997)8:1<137::AID-IMA15>3.0.CO;2-# – ident: 10.1016/j.ultras.2010.02.008_bib12 doi: 10.1016/j.ultrasmedbio.2010.01.011 – start-page: 173 year: 2005 ident: 10.1016/j.ultras.2010.02.008_bib9 article-title: Computerized ultrasound risk evaluation (CURE): first clinical results – volume: 16 start-page: 87 issue: 2 year: 1988 ident: 10.1016/j.ultras.2010.02.008_bib2 article-title: A new method of measuring in vivo sound speed in the reflection mode publication-title: Journal of Clinical Ultrasound doi: 10.1002/jcu.1870160204 – year: 1982 ident: 10.1016/j.ultras.2010.02.008_bib18 – volume: 49 start-page: 344 year: 2009 ident: 10.1016/j.ultras.2010.02.008_bib17 article-title: Sensitivity to point-spread function parameters in medical ultrasound image deconvolution publication-title: Ultrasonics doi: 10.1016/j.ultras.2008.10.005 – volume: 17 start-page: 633 issue: 6 year: 1991 ident: 10.1016/j.ultras.2010.02.008_bib3 article-title: Pulse-echo ultrasound speed measurements: progress and prospects publication-title: Ultrasound in Medicine & Biology doi: 10.1016/0301-5629(91)90034-T – volume: 44 start-page: e43 year: 2006 ident: 10.1016/j.ultras.2010.02.008_bib13 article-title: Sound speed correction in ultrasound imaging publication-title: Ultrasonics doi: 10.1016/j.ultras.2006.06.061 – volume: 165 start-page: 825 issue: 4 year: 1995 ident: 10.1016/j.ultras.2010.02.008_bib14 article-title: Sonographic differentiation of benign from malignant breast lesions: value of indirect measurement of ultrasound velocity publication-title: American Journal of Roentgenology doi: 10.2214/ajr.165.4.7676975 – year: 1992 ident: 10.1016/j.ultras.2010.02.008_bib23 – volume: 107 start-page: 3540 issue: 6 year: 2000 ident: 10.1016/j.ultras.2010.02.008_bib1 article-title: The impact of sound speed errors on medical ultrasound imaging publication-title: Journal of the Acoustical Society of America doi: 10.1121/1.429422 – year: 2000 ident: 10.1016/j.ultras.2010.02.008_bib19 – volume: 10 start-page: 234 year: 2001 ident: 10.1016/j.ultras.2010.02.008_bib25 article-title: Complex wavelets for shift invariant analysis and filtering of signals publication-title: Applied and Computational Harmonic Analysis doi: 10.1006/acha.2000.0343 – volume: 134 start-page: 517 year: 1980 ident: 10.1016/j.ultras.2010.02.008_bib21 article-title: A new ultrasound tissue-equivalent material publication-title: Radiation Physics – volume: 50 start-page: 2744 issue: 11 year: 2002 ident: 10.1016/j.ultras.2010.02.008_bib26 article-title: Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2002.804091 – volume: 54 start-page: 550 issue: 3 year: 2007 ident: 10.1016/j.ultras.2010.02.008_bib16 article-title: Wavelet restoration of medical pulse-echo ultrasound images in an EM framework publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control doi: 10.1109/TUFFC.2007.278 – volume: 152 start-page: 155 year: 1984 ident: 10.1016/j.ultras.2010.02.008_bib7 article-title: Ultrasonic computed tomography of the breast publication-title: Radiology doi: 10.1148/radiology.152.1.6729107 – start-page: 183 year: 2005 ident: 10.1016/j.ultras.2010.02.008_bib10 article-title: Full-wave, non-linear, inverse scattering: high resolution quantitative breast tissue tomography – volume: 53 start-page: 549 issue: 3 year: 2006 ident: 10.1016/j.ultras.2010.02.008_bib15 article-title: Modeling ultrasound imaging as a linear shift-variant system publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control doi: 10.1109/TUFFC.2006.1610563  | 
    
| SSID | ssj0014813 | 
    
| Score | 2.0162382 | 
    
| Snippet | The speed of sound in soft tissues is usually assumed to be 1540
m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the... The speed of sound in soft tissues is usually assumed to be 1540 m/s in medical pulse-echo ultrasound imaging systems. When the true speed is different, the...  | 
    
| SourceID | proquest pubmed pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 716 | 
    
| SubjectTerms | Acoustic signal processing Acoustics Algorithms Biological and medical sciences Computer Simulation Dual-layered media Exact sciences and technology Fundamental areas of phenomenology (including applications) Image Enhancement - methods Image Processing, Computer-Assisted - methods Investigative techniques, diagnostic techniques (general aspects) Medical sciences Medical ultrasound image Miscellaneous. Technology Non-blind deconvolution Phantoms, Imaging Physics Point-spread function Reproducibility of Results Sensitivity and Specificity Sound Sound estimation Speed of sound Ultrasonic investigative techniques Ultrasonography - instrumentation Ultrasonography - methods  | 
    
| Title | Estimation of speed of sound in dual-layered media using medical ultrasound image deconvolution | 
    
| URI | https://dx.doi.org/10.1016/j.ultras.2010.02.008 https://www.ncbi.nlm.nih.gov/pubmed/20231026 https://www.proquest.com/docview/733257291  | 
    
| Volume | 50 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Journal Collection customDbUrl: eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1874-9968 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014813 issn: 0041-624X databaseCode: AKRWK dateStart: 19630101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDYWWUtr0ke1j0aFXNdbDkn0MIWHT0pwa2JuQvHbZsvEu8W6hl_72zFjytjmEQG7CaLCkkeYhzTcD8FlXyorGlMgBm3M9Nw0PxmRcyiAKG0SwisDJ3y_N9Ep_neWzPTgdsDAUVplkf5TpvbROX47Tah6vFwvC-KIxIfWsv6HWwu7DAeqfohjBwcnFt-nl7jFBFyI9NAtOBAOCrg_z2i43N75LMV6UvLO4T0M9X_sO162JBS_ut0h7zXT-El4kk5KdxFG_gr26PYRn_yUaPIQnfaBn1b0Gd4ZnOsIV2aph3Rq1V9-g8kps0TLCZvGl_0M1PFmPK2EUG_-zb-PAWJxK7H6N0ojNyaf-nbbwG7g6P_txOuWpyAKvVCk23ChToVPXoJtWmtD4qlCmzm3QwegyC2VAf6PJjRdBZnkoKd8e2lQNQdC1RPdKvYVRu2rrI2BhLrzwkhIf1xrNqhAyU1beotdUmdyXY1DDwroqZSCnQhhLN4Sa_XJxDo7Y4TLpkB1j4DuqdczA8UB_O_DM3dlJDpXEA5STOyze_U6iDpc6z8bABp47PIX0tOLberXtnFUKZZ8sxRjexb3wj5gy7KGn-_7R4_oAT2PMAt39fITR5mZbf0JTaBMmsP_lr5ikDX8LoxAG2w | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6VIgQIIShQwqP4wNV07fXa8RFVrQK0PbVSbpa92UVBYRN1E6Re-O3M2N5AD1UlbtbK1tqe8Tzsb2YAPqq6NKLVFilgKq5muuVB64JLGcTYBBFMScHJZ-d6cqm-TqvpDhwNsTAEq8yyP8n0KK3zl8O8m4er-ZxifNGYkGoab6iVMPfgvqqkIQ_s0-8tzgPNfZGfmQWn7kP8XAR5bRbrK99nhBel7hzfpp-erHyPu9amche326NRL508g6fZoGSf05yfw07T7cHjf9IM7sGDCPOs-xfgjvFEp2BFtmxZv0LdFRtUXInNO0aRWXzhr6mCJ4tRJYyQ8d9jGyfG0lJS958oi9iMPOpfmYFfwuXJ8cXRhOcSC7wurVhzXeoaXboWnTSrQ-vrcambygQVtLJFsAG9jbbSXgRZVMFStj20qFoKQFcSnavyFex2y655DSzMhBdeUtrjRqFRFUKhbe0N-ky1rrwdQTlsrKtz_nEqg7FwA9Dsh0trcEQOV0iH5BgB345apfwbd_Q3A83cDT5yqCLuGHlwg8Tb30nU4FJVxQjYQHOHZ5AeVnzXLDe9M2WJkk9aMYL9xAt_B1N-PfRz3_z3vD7Aw8nF2ak7_XL-7S08SugFugV6B7vrq03zHo2idTiITP8H1E4How | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+speed+of+sound+in+dual-layered+media+using+medical+ultrasound+image+deconvolution&rft.jtitle=Ultrasonics&rft.au=Shin%2C+Ho-Chul&rft.au=Prager%2C+Richard&rft.au=Gomersall%2C+Henry&rft.au=Kingsbury%2C+Nick&rft.date=2010-06-01&rft.issn=1874-9968&rft.eissn=1874-9968&rft.volume=50&rft.issue=7&rft.spage=716&rft_id=info:doi/10.1016%2Fj.ultras.2010.02.008&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-624X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-624X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-624X&client=summon |