Weighted Filter Bank and Regularization Common Spatial Pattern-Based Decoding Algorithm for Brain-Computer Interfaces
In the field of brain–computer interfaces (BCI), the decoding of motor imagery EEG signals is significantly hindered by individual differences in EEG signals, which limits the generalization ability of decoding models. To address this challenge, this study proposes a mutual information weighted filt...
Saved in:
| Published in | Applied sciences Vol. 15; no. 9; p. 5159 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app15095159 |
Cover
| Abstract | In the field of brain–computer interfaces (BCI), the decoding of motor imagery EEG signals is significantly hindered by individual differences in EEG signals, which limits the generalization ability of decoding models. To address this challenge, this study proposes a mutual information weighted filter bank regularized common spatial pattern (WFBRCSP) algorithm. The algorithm divides the signal into multiple frequency bands, adaptively assigns subject weights based on the mutual information maximization criterion, and optimizes the covariance matrix with a regularization strategy, significantly improving the robustness of feature extraction. The results on the public BCI competition datasets BCICIII IVa and BCICIV IIb exhibit that the WFBRCSP outperforms traditional CSP, RCSP, FBCSP, FBRCSP, and OFBRCSP methods in terms of classification accuracy (87.87% and 85.92%). In addition, through the mutual information-weighted and regularized spatial filtering of data from different subjects, WFBRCSP demonstrates excellent real-time performance in cross-subject scenarios, validating its practical value in brain–computer interface systems. This study provides a new approach to addressing the issues of individual differences and noise interference in EEG signals. |
|---|---|
| AbstractList | In the field of brain–computer interfaces (BCI), the decoding of motor imagery EEG signals is significantly hindered by individual differences in EEG signals, which limits the generalization ability of decoding models. To address this challenge, this study proposes a mutual information weighted filter bank regularized common spatial pattern (WFBRCSP) algorithm. The algorithm divides the signal into multiple frequency bands, adaptively assigns subject weights based on the mutual information maximization criterion, and optimizes the covariance matrix with a regularization strategy, significantly improving the robustness of feature extraction. The results on the public BCI competition datasets BCICIII IVa and BCICIV IIb exhibit that the WFBRCSP outperforms traditional CSP, RCSP, FBCSP, FBRCSP, and OFBRCSP methods in terms of classification accuracy (87.87% and 85.92%). In addition, through the mutual information-weighted and regularized spatial filtering of data from different subjects, WFBRCSP demonstrates excellent real-time performance in cross-subject scenarios, validating its practical value in brain–computer interface systems. This study provides a new approach to addressing the issues of individual differences and noise interference in EEG signals. |
| Audience | Academic |
| Author | Zhu, Jiajie Ye, Jincai Huang, Shoulin |
| Author_xml | – sequence: 1 givenname: Jincai surname: Ye fullname: Ye, Jincai – sequence: 2 givenname: Jiajie surname: Zhu fullname: Zhu, Jiajie – sequence: 3 givenname: Shoulin surname: Huang fullname: Huang, Shoulin |
| BookMark | eNp9kl1rFTEQhhepYK298g8seKlbM5v9yuXpqW0PFBQ_8DLM5mOb426yJrtI_fVOPaIVxAQyk-F9HyZMnmZHPniTZc-BnXEu2GucZ6iZqKEWj7LjkrVNwStojx7kT7LTlPaMlgDeATvO1s_GDbeL0fmlGxcT83P0X3L0On9vhnXE6L7j4oLPt2GaKHyY6Ypj_g4XUvviHBN5L4wK2vkh34xDiG65nXIbiBXR-YKc83qP3nk6LSqTnmWPLY7JnP6KJ9mnyzcft9fFzdur3XZzUyguYCkqtIxZY7QRgLxvbW-5MNZ2WNsKS4BWNJ2uCWm5YlpAT3LorLbQaGM1P8l2B64OuJdzdBPGOxnQyZ-FEAeJcXFqNLKpoGvqRtUt45UyfU9kRNSlJXzTArFeHVirn_HuG47jbyAweT8B-WACJH9xkM8xfF1NWuQ-rNHTayUvGYdOlB38UQ1IPThvwxJRTS4puem4aKGueE2qs3-oaGszOUW_wDqq_2V4eTCoGFKKxv631R-nVLMI |
| Cites_doi | 10.1109/EMBC53108.2024.10781886 10.1016/j.eswa.2022.116901 10.1109/BCI57258.2023.10078643 10.1109/TNSRE.2024.3502135 10.1109/TBME.2010.2082540 10.1080/1750984X.2021.1878548 10.1109/EMBC53108.2024.10782523 10.1109/TNSRE.2017.2757519 10.1109/CMSDA58069.2022.00039 10.1088/1741-2552/ad593b 10.1007/s11831-021-09684-6 10.1109/TCDS.2021.3098842 10.1109/ACCESS.2023.3340685 10.1109/TNSRE.2022.3211881 10.1109/TNSRE.2023.3259730 10.3389/fnins.2012.00055 10.1109/EECSI63442.2024.10776334 10.1016/j.neuroimage.2007.01.051 10.1109/ACCESS.2024.3386554 10.1109/COMST.2024.3396847 10.1109/TCDS.2024.3401717 10.1088/1741-2560/9/2/026013 10.1088/1741-2552/ad1f7a 10.1109/TBME.2015.2487738 10.1109/TBME.2010.2082539 10.1038/s41598-024-65910-8 10.23919/JCC.2022.02.004 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app15095159 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_6418656c57034cebb68daaad2ffac671 10.3390/app15095159 A839715435 10_3390_app15095159 |
| GeographicLocations | Taiwan |
| GeographicLocations_xml | – name: Taiwan |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c391t-4af00feede91a3b7fbf39eff8a5f4a2117968d5facf3c0d91b00f18fdf16defd3 |
| IEDL.DBID | DOA |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:53:05 EDT 2025 Tue Aug 19 23:45:36 EDT 2025 Mon Jun 30 08:35:47 EDT 2025 Thu May 22 02:17:26 EDT 2025 Mon Oct 20 16:55:21 EDT 2025 Thu Oct 16 04:42:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-4af00feede91a3b7fbf39eff8a5f4a2117968d5facf3c0d91b00f18fdf16defd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doaj.org/article/6418656c57034cebb68daaad2ffac671 |
| PQID | 3203189281 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6418656c57034cebb68daaad2ffac671 unpaywall_primary_10_3390_app15095159 proquest_journals_3203189281 gale_infotracmisc_A839715435 gale_infotracacademiconefile_A839715435 crossref_primary_10_3390_app15095159 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Karakullukcu (ref_8) 2024; 12 Shyu (ref_18) 2023; 11 ref_11 Tang (ref_21) 2024; 16 ref_10 Parr (ref_5) 2023; 16 Li (ref_9) 2021; 14 Aghaei (ref_27) 2015; 63 Zhang (ref_14) 2022; 19 Lotte (ref_28) 2010; 58 ref_19 Kueper (ref_13) 2024; 14 ref_16 ref_15 Lu (ref_22) 2010; 57 ref_24 Park (ref_20) 2018; 26 Blankertz (ref_25) 2007; 37 Hu (ref_1) 2024; 27 Rao (ref_3) 2024; 32 Aggarwal (ref_23) 2022; 29 ref_2 Chen (ref_12) 2022; 30 ref_26 ref_4 ref_7 Li (ref_17) 2023; 31 ref_6 |
| References_xml | – ident: ref_11 doi: 10.1109/EMBC53108.2024.10781886 – ident: ref_24 doi: 10.1016/j.eswa.2022.116901 – ident: ref_2 doi: 10.1109/BCI57258.2023.10078643 – volume: 32 start-page: 4143 year: 2024 ident: ref_3 article-title: A Wearable Brain-Computer Interface With Fewer EEG Channels for Online Motor Imagery Detection publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2024.3502135 – volume: 57 start-page: 2936 year: 2010 ident: ref_22 article-title: Regularized Common Spatial Pattern With Aggre-gation for EEG Classification in Small-Sample Setting publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082540 – volume: 16 start-page: 396 year: 2023 ident: ref_5 article-title: EEG correlates of verbal and conscious processing of motor control in sport and human movement: A systematic review publication-title: Int. Rev. Sport Exerc. Psychol. doi: 10.1080/1750984X.2021.1878548 – ident: ref_6 doi: 10.1109/EMBC53108.2024.10782523 – volume: 26 start-page: 498 year: 2018 ident: ref_20 article-title: Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2757519 – ident: ref_10 doi: 10.1109/CMSDA58069.2022.00039 – ident: ref_15 doi: 10.1088/1741-2552/ad593b – volume: 29 start-page: 3001 year: 2022 ident: ref_23 article-title: Review of Machine Learning Techniques for EEG Based Brain Computer Interface publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-021-09684-6 – volume: 14 start-page: 833 year: 2021 ident: ref_9 article-title: Can Emotion Be Transferred?—A Review on Transfer Learning for EEG-Based Emotion Recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3098842 – volume: 11 start-page: 139457 year: 2023 ident: ref_18 article-title: Common Spatial Pattern and Riemannian Manifold-Based Real-Time Multiclass Motor Imagery EEG Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3340685 – volume: 30 start-page: 2866 year: 2022 ident: ref_12 article-title: Transfer Learning With Optimal Transportation and Frequency Mixup for EEG-Based Motor Imagery Recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3211881 – volume: 31 start-page: 1743 year: 2023 ident: ref_17 article-title: MDTL: A Novel and Model-Agnostic Transfer Learning Strategy for Cross-Subject Motor Imagery BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3259730 – ident: ref_26 doi: 10.3389/fnins.2012.00055 – ident: ref_7 doi: 10.1109/EECSI63442.2024.10776334 – volume: 37 start-page: 539 year: 2007 ident: ref_25 article-title: The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.01.051 – volume: 12 start-page: 52978 year: 2024 ident: ref_8 article-title: Object Weight Perception in Motor Imagery Using Fourier-Based Synchrosqueezing Transform and Regularized Common Spatial Patterns publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3386554 – volume: 27 start-page: 108 year: 2024 ident: ref_1 article-title: A Survey on Brain-Computer Interface-Inspired Communications: Opportunities and Challenges publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2024.3396847 – volume: 16 start-page: 1997 year: 2024 ident: ref_21 article-title: EEG Decoding Based on Normalized Mutual Information for Motor Imagery Brain–Computer Interfaces publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2024.3401717 – ident: ref_4 doi: 10.1088/1741-2560/9/2/026013 – ident: ref_19 – ident: ref_16 doi: 10.1088/1741-2552/ad1f7a – volume: 63 start-page: 15 year: 2015 ident: ref_27 article-title: Separable Common Spatio-Spectral Patterns for Motor Imagery BCI Systems publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2487738 – volume: 58 start-page: 355 year: 2010 ident: ref_28 article-title: Regularizing Common Spatial Patterns to Improve BCI Designs: Unified Theory and New Algorithms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – volume: 14 start-page: 16690 year: 2024 ident: ref_13 article-title: Avoidance of specific calibration sessions in motor intention recognition for exoskele-ton-supported rehabilitation through transfer learning on EEG data publication-title: Sci. Rep. doi: 10.1038/s41598-024-65910-8 – volume: 19 start-page: 39 year: 2022 ident: ref_14 article-title: Transfer learning algorithm design for feature transfer problem in motor imagery brain-computer interface publication-title: China Commun. doi: 10.23919/JCC.2022.02.004 |
| SSID | ssj0000913810 |
| Score | 2.3265915 |
| Snippet | In the field of brain–computer interfaces (BCI), the decoding of motor imagery EEG signals is significantly hindered by individual differences in EEG signals,... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 5159 |
| SubjectTerms | Accuracy Adaptation Algorithms Brain research brain-computer interface Classification common spatial pattern Datasets Deep learning Electroencephalography Learning strategies motor imagery mutual information regularization Rehabilitation Signal processing Support vector machines transfer-learning |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gH2gNgAERjID0PAQ0ScT-cBoQZWTUhU08TE3iJ_DkRJS5cK8d9z5zqlFdKeIiWW5fjufGef7_cDOHGJrESuy7hQhlOasSST0rHTSqaGa51byuh-npZnl_mnq-JqD6ZDLQxdqxzWRL9Qm7mmM_K3WUrqV6eCv1_8iok1irKrA4WGDNQK5p2HGLsD-ykhY41gvzmdnl9sTl0IBVPwZF2ol-F-n_LEGBPV5NZ3XJNH8P9_nT6Au6tuIf_8lrPZliOaPID7IYJk47XID2HPdkdwsIUreASHwWJv2OsAK_3mIay--lNQa9jkO6XIWSO7H0x2hl14PvplqMhkVDOCDyIrRuVk5x6Bs4sb9HeGfcTtKrk7Np5d4_T0334yDHtZQ0wT8UARwfw5o6PbXo_gcnL65cNZHEgXYp3VvI9z6ZLEoee0NZeZqpxyWW2dE7JwuUwJQa4UpsAuXKYTU3O0W8eFM46XxjqTPYZRN-_sE2AGF3UnrCDMxbxKhURPqFJnKgwiVVnUEZwM890u1tgaLe5JSCztllgiaEgWmyYEiO1fzJfXbbCvtsy5wNBUE6BYrq1SOEgppUkdjrSseASvSJItmW2_lFqG6gMcKQFgtWMMFCsMJ7MiguOdlmhuevfzoAttMPeb9p9yRvByox-3_dTT27t5BvdSIhr2NyuPYdQvV_Y5Rj-9ehFU-i96XgZs priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeoAeCi0gUgraQxFwcJP12yeUAFGFRFUhIsrJ7GtK1OBEiQOCX8-Ms64SkBASJ0v22t7VvL7ZxzcAx9hXWR6bNEi0lbzMmLJJmQCNVqGVxsSOV3TfnaWn4_jtRXLh65wu_bZKSsUnjZMOKckOyM1mPZn0ih6H3t7c4stvfiqJ0DQzq5JS3YSdNCEw3oGd8dn54BOXlGtfXp_Ki6gdLwoTACr4Q1txqKHr_9Mp78KtVTVXP76r6XQj6ozuwOe2v-vNJlcnq1qfmJ-_UTn-x4Duwp5HpGKwVqF9uOGqA9jd4Ck8gH3vAZbiuaepfnEPVh-bWVVnxWjCS-5iqKoroSor3jf17Rf-hKfgMyh04eLHpOzivGH0rIIhxU8rXlP6y-FTDKaXs8Wk_vJVEIwWQ65cEbQlJ0Qzb4m8e-w-jEdvPrw6DXwRh8BEhayDWGG_jxSJXSFVpDPUGBUOMVcJxipkRro0twl9AiPTt4UkP4AyR4sytQ5t9AA61axyD0FYChKYu5w5HOMszBVFVh2izQiUahJ_F45bkZbzNVdHSTkOS77ckHwXhizu6yZMsN3cmC0uS2-vZRrLnKCuYYKy2DitqZNKKRsi9TTNZBeesbKU7AbqhTLKn2agnjKhVjkg4JkRPI2SLhxttSTzNduPW3UrvftYllHIvrYIc_rP02sV_NugDv-x3SO4HXIF42bL5hF06sXKPSZYVesn3nR-AavWHg4 priority: 102 providerName: Unpaywall |
| Title | Weighted Filter Bank and Regularization Common Spatial Pattern-Based Decoding Algorithm for Brain-Computer Interfaces |
| URI | https://www.proquest.com/docview/3203189281 https://www.mdpi.com/2076-3417/15/9/5159/pdf?version=1746539017 https://doaj.org/article/6418656c57034cebb68daaad2ffac671 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLdgPMAeEBugHYxTHoaAh4p-N3m8sh0TEqfTxInxVKVJDNOObrr1hPjvsdPe1NMkeOGpahu1SWzHdhz_DHCEoS5kavIgq23EYcacRcoEaGod28iY1HFE9_MsP12kn86z80GpLz4T1sEDdxP3Pk8jSTaHYaSo1Li6zqXVWtsYUZvcZ4_HoVQDZ8qvwSpi6KouIS8hv57jwWT7KFbfWyrII_XfXY934eG6uda_f-nlcqBwpk_gcW8piknXwz2455p92B3gB-7DXi-ZN-JtDx_97imsv_rdTmfF9IJD4aLUzaXQjRVnvu78qs-8FJwbQhcuSkxMKOYeabMJStJrVhyTW8pqTUyW369WF-2Pn4LMW1FyRYlgUwpC-P1E5FNdz2AxPfny4TToiysEJlFRG6QawxBJQzoV6aQusMZEOUSpM0x1zEhxNNMZfQITE1oVkXxiJNFilFuHNnkOO81V4w5AWFq8UTrJ2IppEUtNGq-O0RZkLNZ5pkZwtJnv6rrD0KjI92CyVAOyjKBkWtw2YeBr_4DYoerZofoXO4zgDVOyYvFsV9roPsuAespAV9WEDMKCzMYkG8HhVksSK7P9esMLVS_WN1US8xqoYkn_eX3LH38b1Iv_MaiX8CjmssP-nOUh7LSrtXtFtlBbj-G-nH4cw4PyZDY_G3shoLvFbD759gd-9A13 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSAMBTYQyvgYOH124cKxbRRStuoqlrRm7veR0AEJySOqv45fhszzjokQuqtJ0u2Za13nruz830Ae8YTSRrK2I1KxanMGJNJSdfIUviKSxlqquie9ePeVfj1Orpegz9tLwwdq2x9YuOo1UjSHvmnwCf1y_yUfx7_dok1iqqrLYWGsNQK6qCBGLONHSf67haXcNOD40OU977vd48uv_RcyzLgyiDjtRsK43kGQ4XOuAjKxJQmyLQxqYhMKHyCTItTFRkhTSA9lXFUVMNTowyPlTYqwO8-go0wCDNc_G3kR_3zi8UuD6FuptybNwYGQeZRXRpzsIzSiJVQ2DAG_B8XtmBzVo3F3a0YDpcCX_cpPLEZK-vMVWwb1nS1A1tLOIY7sG09xJR9sDDWH5_B7Fuz66oV6_6gkjzLRfWTiUqxCz2gw6-2A5RRjwpeiBwZjYGdN4iflZtjfFXsEJfHFF5ZZzhAcdTffzFMs1lOzBZuS0nBmn1NQ6fLnsPVg0z_C1ivRpV-CUxhEDGpTgnjMUz8VGDkLX2jEkxayzjKHNhr57sYz7E8ClwDkViKJbE4kJMsFq8QAHdzYzQZFNaeizjkKabCkgDMQqnLEgcphFC-wZHGCXfgPUmyIDdRT4QUttsBR0qAW0UHE9ME09cgcmB35U00b7n6uNWFwrqXafHPGBzYX-jHfT_16v7PvIPN3uXZaXF63D95DY99IjluTnXuwno9mek3mHnV5Vur3gxuHtqi_gL1oUb0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IFpAGArsoRVwsOr1c31AKCGYlkJVISp6W9b7aCuCExJHVf8av44Zxw6JkHrryZJtWeud5-7sfB_AjgtUJmKd-klpOJUZUzIp7TtdqtBwrWNLFd0vR-n-SfzpNDldgz9dLwwdq-x8YuOozUjTHvleFJL65aHge649FnE8KN6Nf_vEIEWV1o5OY64ih_bqEpdv07cHA5T1bhgWH7693_dbhgFfRzmv_Vi5IHAYJmzOVVRmrnRRbp0TKnGxCgkuLRUmcUq7SAcm56ikjgtnHE-NdSbC796C2xmhuFOXevFxsb9DeJuCB_OWwCjKA6pIY_aVUwKxEgQbroD_I8IG3J1VY3V1qYbDpZBXPID7ba7KenPl2oQ1W23BxhKC4RZstr5hyl63ANZvHsLse7Pfag0rLqgYz_qq-slUZdjXhvl-0vZ-MupOwQvRIqMZsOMG67Py-xhZDRvgwpgCK-sNz3Dy6_NfDBNs1idOC78jo2DNjqajc2WP4ORGJv8xrFejyj4BZjB8OGEFoTvGWSgUxtwydCbDdLVMk9yDnW6-5XiO4iFx9UNikUti8aBPsli8QtDbzY3R5Ey2lizTmAtMgjVBl8XaliUOUillQocjTTPuwSuSpCQHUU-UVm2fA46UoLZkD1PSDBPXKPFge-VNNGy9-rjTBdk6lqn8ZwYe7C7047qfenr9Z17CHbQj-fng6PAZ3AuJ3bg5zrkN6_VkZp9jylWXLxrdZvDjpo3pLx4xRI4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeoAeCi0gUgraQxFwcJP12yeUAFGFRFUhIsrJ7GtK1OBEiQOCX8-Ms64SkBASJ0v22t7VvL7ZxzcAx9hXWR6bNEi0lbzMmLJJmQCNVqGVxsSOV3TfnaWn4_jtRXLh65wu_bZKSsUnjZMOKckOyM1mPZn0ih6H3t7c4stvfiqJ0DQzq5JS3YSdNCEw3oGd8dn54BOXlGtfXp_Ki6gdLwoTACr4Q1txqKHr_9Mp78KtVTVXP76r6XQj6ozuwOe2v-vNJlcnq1qfmJ-_UTn-x4Duwp5HpGKwVqF9uOGqA9jd4Ck8gH3vAZbiuaepfnEPVh-bWVVnxWjCS-5iqKoroSor3jf17Rf-hKfgMyh04eLHpOzivGH0rIIhxU8rXlP6y-FTDKaXs8Wk_vJVEIwWQ65cEbQlJ0Qzb4m8e-w-jEdvPrw6DXwRh8BEhayDWGG_jxSJXSFVpDPUGBUOMVcJxipkRro0twl9AiPTt4UkP4AyR4sytQ5t9AA61axyD0FYChKYu5w5HOMszBVFVh2izQiUahJ_F45bkZbzNVdHSTkOS77ckHwXhizu6yZMsN3cmC0uS2-vZRrLnKCuYYKy2DitqZNKKRsi9TTNZBeesbKU7AbqhTLKn2agnjKhVjkg4JkRPI2SLhxttSTzNduPW3UrvftYllHIvrYIc_rP02sV_NugDv-x3SO4HXIF42bL5hF06sXKPSZYVesn3nR-AavWHg4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+Filter+Bank+and+Regularization+Common+Spatial+Pattern-Based+Decoding+Algorithm+for+Brain-Computer+Interfaces&rft.jtitle=Applied+sciences&rft.au=Jincai+Ye&rft.au=Jiajie+Zhu&rft.au=Shoulin+Huang&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=15&rft.issue=9&rft.spage=5159&rft_id=info:doi/10.3390%2Fapp15095159&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6418656c57034cebb68daaad2ffac671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |