Realtime gray-box algorithm configuration using cost-sensitive classification

A solver’s runtime and the quality of the solutions it generates are strongly influenced by its parameter settings. Finding good parameter configurations is a formidable challenge, even for fixed problem instance distributions. However, when the instance distribution can change over time, a once eff...

Full description

Saved in:
Bibliographic Details
Published inAnnals of mathematics and artificial intelligence Vol. 93; no. 1; pp. 109 - 130
Main Authors Weiss, Dimitri, Tierney, Kevin
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.02.2025
Subjects
Online AccessGet full text
ISSN1012-2443
1573-7470
1573-7470
DOI10.1007/s10472-023-09890-x

Cover

Abstract A solver’s runtime and the quality of the solutions it generates are strongly influenced by its parameter settings. Finding good parameter configurations is a formidable challenge, even for fixed problem instance distributions. However, when the instance distribution can change over time, a once effective configuration may no longer provide adequate performance. Realtime algorithm configuration (RAC) offers assistance in finding high-quality configurations for such distributions by automatically adjusting the configurations it recommends based on instances seen so far. Existing RAC methods treat the solver as a black box, meaning the solver is given a configuration as input, and it outputs either a solution or runtime as an objective function for the configurator. However, analyzing intermediate output from the solver can enable configurators to avoid wasting time on poorly performing configurations. We propose a gray-box approach that utilizes intermediate output during evaluation and implement it within the RAC method Contextual Preselection with Plackett-Luce (CPPL blue). We apply cost-sensitive machine learning with pairwise comparisons to determine whether ongoing evaluations can be terminated to free resources. We compare our approach to a black-box equivalent on several experimental settings and show that our approach reduces the total solving time in several scenarios and improves solution quality in an additional scenario.
AbstractList A solver’s runtime and the quality of the solutions it generates are strongly influenced by its parameter settings. Finding good parameter configurations is a formidable challenge, even for fixed problem instance distributions. However, when the instance distribution can change over time, a once effective configuration may no longer provide adequate performance. Realtime algorithm configuration (RAC) offers assistance in finding high-quality configurations for such distributions by automatically adjusting the configurations it recommends based on instances seen so far. Existing RAC methods treat the solver as a black box, meaning the solver is given a configuration as input, and it outputs either a solution or runtime as an objective function for the configurator. However, analyzing intermediate output from the solver can enable configurators to avoid wasting time on poorly performing configurations. We propose a gray-box approach that utilizes intermediate output during evaluation and implement it within the RAC method Contextual Preselection with Plackett-Luce (CPPL blue). We apply cost-sensitive machine learning with pairwise comparisons to determine whether ongoing evaluations can be terminated to free resources. We compare our approach to a black-box equivalent on several experimental settings and show that our approach reduces the total solving time in several scenarios and improves solution quality in an additional scenario.
Author Tierney, Kevin
Weiss, Dimitri
Author_xml – sequence: 1
  givenname: Dimitri
  orcidid: 0000-0002-9039-3869
  surname: Weiss
  fullname: Weiss, Dimitri
– sequence: 2
  givenname: Kevin
  surname: Tierney
  fullname: Tierney, Kevin
BookMark eNqNkMtOwzAQRS1UJNrCD7CKxNowfiR2lqjiJRUhIVhbjusEV6lTbAfavyc0rFggVjMa3Ttz58zQxHfeInRO4JIAiKtIgAuKgTIMpSwB747QlOSCYcEFTIYeCMWUc3aCZjGuAaAsZDFFj89Wt8ltbNYEvcdVt8t023TBpbdNZjpfu6YPOrnOZ310vhlmMeFofXTJfdjMtDpGVztz0Jyi41q30Z791Dl6vb15Wdzj5dPdw-J6iQ0rScJcCCopX4lCmlyTFeEVrzUxBZW6ApNLYUpmh_jUghZE1rxiUAIruMlJKQSbIzbu7f1W7z9126ptcBsd9oqA-iaiRiJqIKIORNRucF2Mrm3o3nsbk1p3ffBDUMWIpJRwmvNBJUeVCV2MwdbKuHT4LgXt2r8P0F_Wf6T6At1KhKM
CitedBy_id crossref_primary_10_1007_s13198_024_02650_y
Cites_doi 10.1007/s10472-020-09726-y
10.1613/jair.2861
10.1145/3377930.3390211
10.1613/jair.1.13676
10.1007/978-3-642-33558-7_11
10.1609/aaai.v31i1.11133
10.1007/978-3-642-33460-312
10.1016/j.eswa.2015.04.042
10.1007/978-3-030-53552-0_22
10.1016/j.asoc.2018.09.034
10.1287/opre.1120.1048
10.1007/978-3-642-25566-3_40
10.1007/978-3-319-09584-44
10.1287/opre.1050.0243
10.1007/978-3-642-04244-7_14
10.1016/j.orp.2016.09.002
10.1109/T-VT.1973.23553
10.1007/978-3-031-24866-5_13
10.1007/978-3-030-66515-9
10.1109/WSC52266.2021.9715343
10.1007/978-3-030-80223-3_2
10.1609/icaps.v31i1.16008
10.1016/j.ejor.2016.08.012
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Feb 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Feb 2025
DBID AAYXX
CITATION
JQ2
ADTOC
UNPAY
DOI 10.1007/s10472-023-09890-x
DatabaseName CrossRef
ProQuest Computer Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1573-7470
EndPage 130
ExternalDocumentID 10.1007/s10472-023-09890-x
10_1007_s10472_023_09890_x
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
PUEGO
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
~EX
JQ2
ADTOC
UNPAY
ID FETCH-LOGICAL-c391t-4772824d768c5a1d14b4fa1c628ab0c587c93e1572e0a718f4b3090364c519773
IEDL.DBID UNPAY
ISSN 1012-2443
1573-7470
IngestDate Wed Oct 01 16:28:12 EDT 2025
Sun Jul 13 05:15:08 EDT 2025
Thu Apr 24 22:51:18 EDT 2025
Wed Oct 01 06:37:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-4772824d768c5a1d14b4fa1c628ab0c587c93e1572e0a718f4b3090364c519773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9039-3869
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s10472-023-09890-x.pdf
PQID 3182214254
PQPubID 2043872
PageCount 22
ParticipantIDs unpaywall_primary_10_1007_s10472_023_09890_x
proquest_journals_3182214254
crossref_citationtrail_10_1007_s10472_023_09890_x
crossref_primary_10_1007_s10472_023_09890_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Annals of mathematics and artificial intelligence
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References MT Lindauer (9890_CR4) 2022; 23
9890_CR5
C Ansótegui (9890_CR6) 2022; 90
9890_CR7
9890_CR1
9890_CR2
9890_CR3
9890_CR41
9890_CR21
AC Bahnsen (9890_CR40) 2015; 42
VA Tatsis (9890_CR17) 2019; 74
9890_CR26
9890_CR27
9890_CR28
9890_CR22
9890_CR23
9890_CR24
9890_CR25
T Vidal (9890_CR39) 2012; 60
A Tsymbal (9890_CR12) 2004
E Schede (9890_CR19) 2022; 75
LG Anderson (9890_CR29) 1973; 22
9890_CR30
9890_CR31
9890_CR10
9890_CR32
9890_CR8
9890_CR9
9890_CR15
9890_CR37
9890_CR16
9890_CR38
9890_CR18
9890_CR11
9890_CR33
9890_CR34
9890_CR13
9890_CR35
9890_CR14
B Adenso-Díaz (9890_CR20) 2006; 54
9890_CR36
References_xml – volume: 90
  start-page: 1
  year: 2022
  ident: 9890_CR6
  publication-title: Ann. Math. Artif. Intell.
  doi: 10.1007/s10472-020-09726-y
– ident: 9890_CR1
  doi: 10.1613/jair.2861
– ident: 9890_CR22
  doi: 10.1145/3377930.3390211
– volume: 75
  start-page: 425
  year: 2022
  ident: 9890_CR19
  publication-title: J Artif. Intell. Res.
  doi: 10.1613/jair.1.13676
– ident: 9890_CR37
  doi: 10.1007/978-3-642-33558-7_11
– ident: 9890_CR27
  doi: 10.1609/aaai.v31i1.11133
– ident: 9890_CR30
– ident: 9890_CR33
– ident: 9890_CR23
  doi: 10.1007/978-3-642-33460-312
– volume-title: The problem of concept drift: Definitions and related work
  year: 2004
  ident: 9890_CR12
– ident: 9890_CR31
– volume: 42
  start-page: 6609
  issue: 19
  year: 2015
  ident: 9890_CR40
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.04.042
– ident: 9890_CR35
– ident: 9890_CR10
  doi: 10.1007/978-3-030-53552-0_22
– volume: 74
  start-page: 368
  year: 2019
  ident: 9890_CR17
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.09.034
– ident: 9890_CR25
– volume: 60
  start-page: 611
  year: 2012
  ident: 9890_CR39
  publication-title: Oper. Res.
  doi: 10.1287/opre.1120.1048
– ident: 9890_CR3
  doi: 10.1007/978-3-642-25566-3_40
– ident: 9890_CR11
  doi: 10.1007/978-3-319-09584-44
– ident: 9890_CR21
– volume: 54
  start-page: 99
  year: 2006
  ident: 9890_CR20
  publication-title: Oper. Res.
  doi: 10.1287/opre.1050.0243
– ident: 9890_CR2
  doi: 10.1007/978-3-642-04244-7_14
– ident: 9890_CR8
  doi: 10.1016/j.orp.2016.09.002
– ident: 9890_CR38
– ident: 9890_CR13
– ident: 9890_CR5
– volume: 22
  start-page: 210
  issue: 4
  year: 1973
  ident: 9890_CR29
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/T-VT.1973.23553
– ident: 9890_CR18
  doi: 10.1007/978-3-031-24866-5_13
– ident: 9890_CR9
– ident: 9890_CR34
– ident: 9890_CR14
  doi: 10.1007/978-3-030-66515-9
– ident: 9890_CR15
  doi: 10.1109/WSC52266.2021.9715343
– ident: 9890_CR28
– ident: 9890_CR36
– ident: 9890_CR26
– ident: 9890_CR7
  doi: 10.1007/978-3-030-80223-3_2
– ident: 9890_CR16
  doi: 10.1609/icaps.v31i1.16008
– ident: 9890_CR24
– ident: 9890_CR32
  doi: 10.1016/j.ejor.2016.08.012
– ident: 9890_CR41
– volume: 23
  start-page: 54
  year: 2022
  ident: 9890_CR4
  publication-title: J. Mach. Learn. Res.
SSID ssj0009686
Score 2.3877432
Snippet A solver’s runtime and the quality of the solutions it generates are strongly influenced by its parameter settings. Finding good parameter configurations is a...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 109
SubjectTerms Algorithms
Artificial intelligence
Automation
Black boxes
Business metrics
Configuration management
Machine learning
Mathematics
Optimization
Parameters
Real time
Solvers
Tournaments & championships
Title Realtime gray-box algorithm configuration using cost-sensitive classification
URI https://www.proquest.com/docview/3182214254
https://link.springer.com/content/pdf/10.1007/s10472-023-09890-x.pdf
UnpaywallVersion publishedVersion
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: AFBBN
  dateStart: 19900301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7470
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009686
  issn: 1012-2443
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFD5ReFAfRFEj3rIH37S4dt26PeKFGBOIMZLo09J2GxJxEBgR_fW2uwAaYzS-bm3TtWc9X9vvfAfg2HaoZ3LmoIi7FqJ2wJFgDCMWWW7kSSJwepjTajvXHXrzYD8swWURC5Oy3YsrySymQas0xcnZMIjOFgLfKCNI-Rtkeq5nomldvV6GsmMrRF6Ccqd923hMLzoxQcqDpTx7m1lIoWczj535vqHP_mkOOlcm8ZC_vfJ-f8H_NCsQFj3PaCfP9Uki6vL9i6jjfz9tA9ZzgGo0MovahKUwrkKlSP5g5GtBFdZaM8HX8Ra07jSPrPcSGt0Rf0NiMDV4vzsY9ZKnF0N1IOp1J5mtGZpp31XPxgkaa_a8Xm8NqUG8Zi2lZbah07y6v7hGeaYGJC0PJ4gqjO4SGqi9i7Q5DjAVNOJYOsTlwpS2y6RnhWoCSKgMA7sRFZY-IHKo1IGzzNqBUjyIw10wHBwRR3IacKk2L0IoSyKMY1N4MpAeDWuAi_nxZS5jrrNp9P25ALMeQV-NoJ-OoD-twcmszjAT8fix9EEx7X7-Q499tfQRrU5n0xqczkzhF63t_a34PqwSnWE45YUfQCkZTcJDBXsScQTlRvP8vH2UW_cHpAf64w
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7M7UF98DIV540--KaZTZo27aOoYwgTEQfzqSRpO4ddN7YOp7_epJd5QUTxtU1CmpzmfEm-8x2AY9uhnsmZgyLuWojaAUeCMYxYZLmRJ4nA2WFO58Zpd-l1z-5V4LKMhcnY7uWVZB7ToFWakvRsHERnHwLfKCNI-Rtkeq5nonlTvV6CmmMrRF6FWvfm9vwhu-jEBCkPlvHsbWYhhZ7NInbm-4Y--6d30Lk8S8b85ZnH8Qf_01qHsOx5Tjt5as5S0ZSvX0Qd__tpG7BWAFTjPLeoTaiESR3Wy-QPRrEW1GG1sxB8nW5B507zyAbD0OhP-AsSo7nB4_5oMkgfh4bqQDToz3JbMzTTvq-eTVM01ex5vd4aUoN4zVrKymxDt3V1f9FGRaYGJC0Pp4gqjO4SGqi9i7Q5DjAVNOJYOsTlwpS2y6RnhWoCSKgMA7sRFZY-IHKo1IGzzNqBajJKwl0wHBwRR3IacKk2L0IoSyKMY1N4MpAeDRuAy_nxZSFjrrNpxP67ALMeQV-NoJ-NoD9vwMmizjgX8fix9EE57X7xQ099tfQRrU5n0wacLkzhF63t_a34PqwQnWE444UfQDWdzMJDBXtScVRY9RvU9Pln
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realtime+gray-box+algorithm+configuration+using+cost-sensitive+classification&rft.jtitle=Annals+of+mathematics+and+artificial+intelligence&rft.au=Weiss%2C+Dimitri&rft.au=Tierney%2C+Kevin&rft.date=2025-02-01&rft.issn=1012-2443&rft.eissn=1573-7470&rft.volume=93&rft.issue=1&rft.spage=109&rft.epage=130&rft_id=info:doi/10.1007%2Fs10472-023-09890-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10472_023_09890_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1012-2443&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1012-2443&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1012-2443&client=summon