The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation
Mouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors must contend with a fully functional immune system and its destruction of some of the cells (see the Perspective by Ho and Wood). Two groups...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 373; no. 6561; pp. 1327 - 1335 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
17.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abg5784 |
Cover
Abstract | Mouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors must contend with a fully functional immune system and its destruction of some of the cells (see the Perspective by Ho and Wood). Two groups now report studies on mouse models with a fully intact immune system. Martin
et al
. started with preexisting murine tumor cell lines and examined their continued evolution in vivo, whereas Del Poggetto
et al
. examined the development of new pancreatic tumors in the context of inflammation, as is often seen in human patients. In each study, the authors found that the immune system exerted a selective pressure on cells that would give rise to tumors, promoting the survival of those that had lost expression of tumor suppressor genes or activated a specific oncogene. The findings suggest a major role for the immune system in driving tumor evolution across multiple types of cancer. —YN
Immune selection pressure in developing tumors favors inactivation of tumor suppressor genes.
During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system. |
---|---|
AbstractList | Defining tumor cell immune evasionMouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors must contend with a fully functional immune system and its destruction of some of the cells (see the Perspective by Ho and Wood). Two groups now report studies on mouse models with a fully intact immune system. Martin et al. started with preexisting murine tumor cell lines and examined their continued evolution in vivo, whereas Del Poggetto et al. examined the development of new pancreatic tumors in the context of inflammation, as is often seen in human patients. In each study, the authors found that the immune system exerted a selective pressure on cells that would give rise to tumors, promoting the survival of those that had lost expression of tumor suppressor genes or activated a specific oncogene. The findings suggest a major role for the immune system in driving tumor evolution across multiple types of cancer. —YNDuring tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system. Mouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors must contend with a fully functional immune system and its destruction of some of the cells (see the Perspective by Ho and Wood). Two groups now report studies on mouse models with a fully intact immune system. Martin et al . started with preexisting murine tumor cell lines and examined their continued evolution in vivo, whereas Del Poggetto et al . examined the development of new pancreatic tumors in the context of inflammation, as is often seen in human patients. In each study, the authors found that the immune system exerted a selective pressure on cells that would give rise to tumors, promoting the survival of those that had lost expression of tumor suppressor genes or activated a specific oncogene. The findings suggest a major role for the immune system in driving tumor evolution across multiple types of cancer. —YN Immune selection pressure in developing tumors favors inactivation of tumor suppressor genes. During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system. During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system. During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system. |
Author | Cook, Danielle R. Patel, Rupesh S. Li, Mamie Z. Choi, Mei Yuk Liang, Anthony C. Haigis, Kevin M. Martin, Timothy D. Elledge, Stephen J. Patil, Ajinkya |
Author_xml | – sequence: 1 givenname: Timothy D. orcidid: 0000-0002-4870-3624 surname: Martin fullname: Martin, Timothy D. organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – sequence: 2 givenname: Rupesh S. orcidid: 0000-0001-5792-5969 surname: Patel fullname: Patel, Rupesh S. organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – sequence: 3 givenname: Danielle R. surname: Cook fullname: Cook, Danielle R. organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA., Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA – sequence: 4 givenname: Mei Yuk surname: Choi fullname: Choi, Mei Yuk organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – sequence: 5 givenname: Ajinkya orcidid: 0000-0003-1080-1146 surname: Patil fullname: Patil, Ajinkya organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – sequence: 6 givenname: Anthony C. orcidid: 0000-0002-8792-8260 surname: Liang fullname: Liang, Anthony C. organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – sequence: 7 givenname: Mamie Z. orcidid: 0000-0002-7188-1330 surname: Li fullname: Li, Mamie Z. organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA – sequence: 8 givenname: Kevin M. surname: Haigis fullname: Haigis, Kevin M. organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA., Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA – sequence: 9 givenname: Stephen J. orcidid: 0000-0001-7923-6283 surname: Elledge fullname: Elledge, Stephen J. organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34529489$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P3DAQxa2Kqiy0Z26VpV64hB3HcWIfKwSlElIv27M7ccbgVb5qJ0j893jLckHqZTzy_N7T2O-MnYzTSIxdCLgSoqy3yQUaHV1h-6AaXX1gGwFGFaYEecI2ALIuNDTqlJ2ltAfIMyM_sVNZqdJU2mzYn90jcexwXsIT8TAM60g8PaeFBh4SRz7gfoq8i3kc-eR5op7cEqaR-3y_rEOuaZ3nSCnl9oGyPoyYkSc8YJ_ZR499oi_H85z9vr3ZXd8V979-_Lz-fl84acRSSEQhNdUNNl5A51tsGy0VGge-AwFNScZr4UkRlNhWlQSJXqAzGoUTQp6zy1ffOU5_V0qLHUJy1Pc40rQmW6qmqkDVYDL67R26n9Y45u1sWUsNWgtxoL4eqbUdqLNzDAPGZ_v2dxlQr4CLU0qRvHVh-ffmJWLorQB7yMgeM7LHjLJu-073Zv0_xQuhNpf0 |
CitedBy_id | crossref_primary_10_1038_s41568_023_00658_3 crossref_primary_10_1038_s42003_024_06271_w crossref_primary_10_3389_fonc_2022_783079 crossref_primary_10_1016_j_jhep_2022_11_030 crossref_primary_10_3389_fimmu_2023_1286850 crossref_primary_10_1002_ange_202217055 crossref_primary_10_1038_s41571_022_00620_6 crossref_primary_10_3389_fonc_2022_1061789 crossref_primary_10_1371_journal_pgen_1011134 crossref_primary_10_1016_j_dnarep_2023_103531 crossref_primary_10_1038_s41467_024_49450_3 crossref_primary_10_1088_1758_5090_ad6d8c crossref_primary_10_1126_science_abl5376 crossref_primary_10_3389_fimmu_2022_883639 crossref_primary_10_1158_2159_8290_CD_22_1062 crossref_primary_10_1016_j_cell_2021_12_005 crossref_primary_10_1016_j_xcrm_2025_101976 crossref_primary_10_1038_s41467_023_44239_2 crossref_primary_10_1016_j_ccell_2023_09_006 crossref_primary_10_1136_jitc_2022_004717 crossref_primary_10_1515_oncologie_2024_0596 crossref_primary_10_1016_j_molcel_2022_12_013 crossref_primary_10_1007_s00018_021_04124_x crossref_primary_10_3390_cancers14071681 crossref_primary_10_1016_j_semcancer_2022_05_006 crossref_primary_10_1002_jcla_24662 crossref_primary_10_1186_s13073_023_01197_0 crossref_primary_10_1038_s42003_023_05606_3 crossref_primary_10_1016_j_ccell_2024_09_010 crossref_primary_10_3390_ijms252010919 crossref_primary_10_1016_j_cell_2024_01_008 crossref_primary_10_1016_j_eururo_2021_11_006 crossref_primary_10_3389_fimmu_2024_1470368 crossref_primary_10_1038_s41392_024_01938_6 crossref_primary_10_1111_crj_13757 crossref_primary_10_3390_cancers14153678 crossref_primary_10_1126_sciadv_ado7373 crossref_primary_10_18632_oncoscience_590 crossref_primary_10_3389_fphar_2021_806570 crossref_primary_10_2147_JIR_S356841 crossref_primary_10_1126_science_adh8697 crossref_primary_10_3390_cancers16173069 crossref_primary_10_1126_sciimmunol_adh5462 crossref_primary_10_1038_s41598_023_49379_5 crossref_primary_10_1038_s41577_022_00802_4 crossref_primary_10_1063_5_0195244 crossref_primary_10_15252_embr_202255146 crossref_primary_10_1016_j_jff_2023_105638 crossref_primary_10_3390_cancers14235827 crossref_primary_10_1002_iub_2680 crossref_primary_10_3390_ijms231810415 crossref_primary_10_1016_j_celrep_2022_110441 crossref_primary_10_1097_MD_0000000000034996 crossref_primary_10_1182_blood_2024024518 crossref_primary_10_1016_j_compbiomed_2025_109717 crossref_primary_10_1016_j_it_2021_11_009 crossref_primary_10_1016_j_biomaterials_2022_121952 crossref_primary_10_1021_acscentsci_2c00107 crossref_primary_10_1016_j_semcancer_2022_04_003 crossref_primary_10_1080_07391102_2022_2070546 crossref_primary_10_3390_cancers14041028 crossref_primary_10_1038_s41588_023_01557_x crossref_primary_10_1186_s13020_024_01003_y crossref_primary_10_1002_adfm_202403225 crossref_primary_10_1093_bib_bbae551 crossref_primary_10_1038_s41419_022_05211_y crossref_primary_10_1038_s41571_023_00766_x crossref_primary_10_1080_10428194_2022_2056175 crossref_primary_10_1186_s12964_024_01602_0 crossref_primary_10_1002_adfm_202416813 crossref_primary_10_34133_research_0442 crossref_primary_10_1002_mco2_495 crossref_primary_10_3390_ijms23031289 crossref_primary_10_1016_j_envint_2023_108279 crossref_primary_10_1038_s41568_023_00635_w crossref_primary_10_3892_ol_2022_13581 crossref_primary_10_7554_eLife_75345 crossref_primary_10_3390_nu16091395 crossref_primary_10_3389_fonc_2023_1270991 crossref_primary_10_1038_s41467_024_50262_8 crossref_primary_10_1038_s41392_024_01848_7 crossref_primary_10_1158_0008_5472_CAN_21_3534 crossref_primary_10_3389_fphar_2023_1130399 crossref_primary_10_1016_j_oor_2024_100161 crossref_primary_10_1111_febs_17003 crossref_primary_10_1007_s10555_023_10116_z crossref_primary_10_1002_anie_202217055 crossref_primary_10_1126_science_adh5021 crossref_primary_10_1038_s41392_022_00875_6 crossref_primary_10_1038_s41568_021_00416_3 crossref_primary_10_1038_s41587_024_02512_9 crossref_primary_10_1038_s41588_023_01313_1 crossref_primary_10_1038_s41388_023_02844_x crossref_primary_10_3389_fpsyt_2023_1182536 crossref_primary_10_1158_1940_6207_CAPR_23_0087 crossref_primary_10_1360_SSV_2022_0058 crossref_primary_10_1007_s00262_023_03441_3 crossref_primary_10_3390_ijms23052704 crossref_primary_10_1038_s41586_024_08377_x crossref_primary_10_1073_pnas_2120540119 crossref_primary_10_1186_s40164_024_00570_y crossref_primary_10_5306_wjco_v15_i10_1280 |
Cites_doi | 10.1158/2159-8290.CD-15-1346 10.1126/science.aax0902 10.1016/j.celrep.2018.03.131 10.1038/323643a0 10.1016/j.cell.2017.06.010 10.3389/fonc.2020.01195 10.1016/j.celrep.2015.06.024 10.7326/0003-4819-71-4-747 10.1038/332085a0 10.1016/j.cell.2013.10.011 10.1038/s41388-019-0855-x 10.1038/229611a0 10.1016/j.ccell.2017.01.004 10.4049/jimmunol.1701044 10.1038/nature13385 10.1126/science.aan5951 10.1038/s41467-019-10458-9 10.1126/science.1248627 10.1016/j.cell.2014.09.029 10.1126/science.286.5447.2172 10.1038/nrc2916 10.1038/ng0597-64 10.1038/s41467-018-04607-9 10.1126/science.aao1710 10.1016/0092-8674(93)90546-3 10.1016/j.cell.2018.02.037 10.1016/j.cell.2013.03.002 10.1126/science.8493574 10.1038/nmeth.1638 10.1038/nature25015 10.1002/1097-0142(197512)36:6<2441::AID-CNCR2820360627>3.0.CO;2-P 10.1186/1471-2164-15-190 10.1073/pnas.79.11.3637 10.1074/jbc.AC120.014698 10.1038/nature23270 10.1186/s12964-020-00589-8 10.1126/scitranslmed.aax6337 10.1038/297474a0 10.1038/ng.2764 10.1073/pnas.0510254103 10.1126/science.1651562 10.1038/nature13765 10.1038/s41590-019-0312-6 10.1126/science.1219580 10.3389/fimmu.2019.00251 10.1084/jem.169.4.1485 10.1038/s41586-020-1969-6 10.1016/j.cell.2015.05.044 10.1002/humu.20828 10.1016/0092-8674(94)90169-4 10.1073/pnas.1109363108 10.1126/science.2134734 10.1016/j.cell.2015.11.015 10.1038/s41586-020-2099-x 10.1038/onc.2015.442 10.1126/science.1149200 10.1038/s41586-020-2746-2 10.1038/s41388-018-0624-2 10.1158/2326-6066.CIR-17-0675 10.1038/260170a0 10.1038/s41586-019-1186-3 10.1002/ijc.24378 10.1038/nrc3521 10.1126/science.1235122 10.1016/j.celrep.2019.12.028 10.1126/science.aaw3472 10.1038/nrclinonc.2016.217 10.1016/j.cell.2014.12.021 10.1038/s41586-018-0768-9 10.1038/363515a0 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abg5784 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1335 |
ExternalDocumentID | 34529489 10_1126_science_abg5784 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: Cancer Research UK grantid: 27144 – fundername: NCI NIH HHS grantid: U01 CA199252 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c391t-3aa138e67a7f10dfbab7835a9c0fd01072e9f81fe5e02ab44303af1ac98a1c113 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Sat Sep 27 18:39:32 EDT 2025 Fri Jul 25 19:28:40 EDT 2025 Mon Jul 21 06:03:11 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Tue Jul 01 01:35:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6561 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c391t-3aa138e67a7f10dfbab7835a9c0fd01072e9f81fe5e02ab44303af1ac98a1c113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1080-1146 0000-0001-5792-5969 0000-0002-7188-1330 0000-0002-4870-3624 0000-0002-8792-8260 0000-0001-7923-6283 |
PMID | 34529489 |
PQID | 2638088119 |
PQPubID | 1256 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2574405609 proquest_journals_2638088119 pubmed_primary_34529489 crossref_citationtrail_10_1126_science_abg5784 crossref_primary_10_1126_science_abg5784 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-17 2021-Sep-17 20210917 |
PublicationDateYYYYMMDD | 2021-09-17 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science |
References | e_1_3_3_50_2 e_1_3_3_71_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 Aslakson C. J. (e_1_3_3_34_2) 1992; 52 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_70_2 e_1_3_3_17_2 Dexter D. L. (e_1_3_3_33_2) 1978; 38 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 34529483 - Science. 2021 Sep 17;373(6561):1306-1307. doi: 10.1126/science.abl5376. 34611351 - Nat Rev Cancer. 2021 Dec;21(12):743. doi: 10.1038/s41568-021-00416-3. 35027544 - Signal Transduct Target Ther. 2022 Jan 13;7(1):15. doi: 10.1038/s41392-022-00875-6. |
References_xml | – ident: e_1_3_3_61_2 doi: 10.1158/2159-8290.CD-15-1346 – ident: e_1_3_3_29_2 doi: 10.1126/science.aax0902 – ident: e_1_3_3_62_2 doi: 10.1016/j.celrep.2018.03.131 – ident: e_1_3_3_6_2 doi: 10.1038/323643a0 – ident: e_1_3_3_36_2 doi: 10.1016/j.cell.2017.06.010 – ident: e_1_3_3_39_2 doi: 10.3389/fonc.2020.01195 – ident: e_1_3_3_56_2 doi: 10.1016/j.celrep.2015.06.024 – ident: e_1_3_3_7_2 doi: 10.7326/0003-4819-71-4-747 – ident: e_1_3_3_9_2 doi: 10.1038/332085a0 – ident: e_1_3_3_17_2 doi: 10.1016/j.cell.2013.10.011 – ident: e_1_3_3_32_2 doi: 10.1038/s41388-019-0855-x – ident: e_1_3_3_5_2 doi: 10.1038/229611a0 – ident: e_1_3_3_67_2 doi: 10.1016/j.ccell.2017.01.004 – ident: e_1_3_3_31_2 doi: 10.4049/jimmunol.1701044 – ident: e_1_3_3_41_2 doi: 10.1038/nature13385 – ident: e_1_3_3_65_2 doi: 10.1126/science.aan5951 – ident: e_1_3_3_55_2 doi: 10.1038/s41467-019-10458-9 – ident: e_1_3_3_28_2 doi: 10.1126/science.1248627 – ident: e_1_3_3_24_2 doi: 10.1016/j.cell.2014.09.029 – ident: e_1_3_3_73_2 doi: 10.1126/science.286.5447.2172 – ident: e_1_3_3_18_2 doi: 10.1038/nrc2916 – ident: e_1_3_3_8_2 doi: 10.1038/ng0597-64 – ident: e_1_3_3_57_2 doi: 10.1038/s41467-018-04607-9 – ident: e_1_3_3_66_2 doi: 10.1126/science.aao1710 – ident: e_1_3_3_11_2 doi: 10.1016/0092-8674(93)90546-3 – ident: e_1_3_3_25_2 doi: 10.1016/j.cell.2018.02.037 – ident: e_1_3_3_70_2 doi: 10.1016/j.cell.2013.03.002 – ident: e_1_3_3_13_2 doi: 10.1126/science.8493574 – ident: e_1_3_3_26_2 doi: 10.1038/nmeth.1638 – ident: e_1_3_3_58_2 doi: 10.1038/nature25015 – volume: 38 start-page: 3174 year: 1978 ident: e_1_3_3_33_2 article-title: Heterogeneity of tumor cells from a single mouse mammary tumor publication-title: Cancer Res. – ident: e_1_3_3_37_2 doi: 10.1002/1097-0142(197512)36:6<2441::AID-CNCR2820360627>3.0.CO;2-P – ident: e_1_3_3_38_2 doi: 10.1186/1471-2164-15-190 – ident: e_1_3_3_3_2 doi: 10.1073/pnas.79.11.3637 – ident: e_1_3_3_46_2 doi: 10.1074/jbc.AC120.014698 – ident: e_1_3_3_35_2 doi: 10.1038/nature23270 – ident: e_1_3_3_50_2 doi: 10.1186/s12964-020-00589-8 – ident: e_1_3_3_63_2 doi: 10.1126/scitranslmed.aax6337 – ident: e_1_3_3_4_2 doi: 10.1038/297474a0 – ident: e_1_3_3_16_2 doi: 10.1038/ng.2764 – ident: e_1_3_3_48_2 doi: 10.1073/pnas.0510254103 – ident: e_1_3_3_10_2 doi: 10.1126/science.1651562 – ident: e_1_3_3_49_2 doi: 10.1038/nature13765 – ident: e_1_3_3_72_2 doi: 10.1038/s41590-019-0312-6 – ident: e_1_3_3_20_2 doi: 10.1126/science.1219580 – ident: e_1_3_3_44_2 doi: 10.3389/fimmu.2019.00251 – ident: e_1_3_3_53_2 doi: 10.1084/jem.169.4.1485 – ident: e_1_3_3_45_2 doi: 10.1038/s41586-020-1969-6 – ident: e_1_3_3_40_2 doi: 10.1016/j.cell.2015.05.044 – ident: e_1_3_3_42_2 doi: 10.1002/humu.20828 – ident: e_1_3_3_43_2 doi: 10.1016/0092-8674(94)90169-4 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.1109363108 – volume: 52 start-page: 1399 year: 1992 ident: e_1_3_3_34_2 article-title: Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor publication-title: Cancer Res. – ident: e_1_3_3_14_2 doi: 10.1126/science.2134734 – ident: e_1_3_3_23_2 doi: 10.1016/j.cell.2015.11.015 – ident: e_1_3_3_27_2 doi: 10.1038/s41586-020-2099-x – ident: e_1_3_3_51_2 doi: 10.1038/onc.2015.442 – ident: e_1_3_3_19_2 doi: 10.1126/science.1149200 – ident: e_1_3_3_30_2 doi: 10.1038/s41586-020-2746-2 – ident: e_1_3_3_69_2 doi: 10.1038/s41388-018-0624-2 – ident: e_1_3_3_68_2 doi: 10.1158/2326-6066.CIR-17-0675 – ident: e_1_3_3_2_2 doi: 10.1038/260170a0 – ident: e_1_3_3_22_2 doi: 10.1038/s41586-019-1186-3 – ident: e_1_3_3_54_2 doi: 10.1002/ijc.24378 – ident: e_1_3_3_47_2 doi: 10.1038/nrc3521 – ident: e_1_3_3_15_2 doi: 10.1126/science.1235122 – ident: e_1_3_3_60_2 doi: 10.1016/j.celrep.2019.12.028 – ident: e_1_3_3_64_2 doi: 10.1126/science.aaw3472 – ident: e_1_3_3_59_2 doi: 10.1038/nrclinonc.2016.217 – ident: e_1_3_3_71_2 doi: 10.1016/j.cell.2014.12.021 – ident: e_1_3_3_52_2 doi: 10.1038/s41586-018-0768-9 – ident: e_1_3_3_12_2 doi: 10.1038/363515a0 – reference: 35027544 - Signal Transduct Target Ther. 2022 Jan 13;7(1):15. doi: 10.1038/s41392-022-00875-6. – reference: 34529483 - Science. 2021 Sep 17;373(6561):1306-1307. doi: 10.1126/science.abl5376. – reference: 34611351 - Nat Rev Cancer. 2021 Dec;21(12):743. doi: 10.1038/s41568-021-00416-3. |
SSID | ssj0009593 |
Score | 2.6474054 |
Snippet | Mouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors... During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or... Defining tumor cell immune evasionMouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1327 |
SubjectTerms | Adaptive systems Animal models Animals Antigen presentation Antigen processing Antigens Cancer Carcinogenesis Cell culture Cell Line, Tumor Chemokine CCL2 - metabolism Clonal selection CRISPR CRISPR-Cas Systems Evolution Female Gene expression Gene Silencing Genes Genes, Tumor Suppressor GTP-Binding Protein alpha Subunits, G12-G13 - genetics GTP-Binding Protein alpha Subunits, G12-G13 - metabolism Humans Immune checkpoint Immune Evasion - genetics Immune system Inactivation Mammary Neoplasms, Experimental - genetics Mammary Neoplasms, Experimental - immunology Mammary Neoplasms, Experimental - pathology Mice Mice, Inbred BALB C Mice, Inbred C57BL Mice, SCID Mutation Neoplasm Transplantation Neoplasms, Experimental - genetics Neoplasms, Experimental - immunology Neoplasms, Experimental - pathology Pancreatic cancer Selection, Genetic Tumor cell lines Tumor Microenvironment Tumor suppressor genes Tumorigenesis Tumors |
Title | The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34529489 https://www.proquest.com/docview/2638088119 https://www.proquest.com/docview/2574405609 |
Volume | 373 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBtfhYGMxMNQlSqOnQ8_dmXVhMZAqJXKU7ATZytsTdU0SPBf8B9zjp0PUCcNXqIotevI98v5zv7dHUKvlWJhAlrQ4T5TDksyTQKgzGE8yLS9QaWq2BbnwemcvVv4i17vV4e1VG7lKPm5M67kf6QKz0CuOkr2HyTb_Ck8gHuQL1xBwnC9tYxFKtYV_WepIz2UTc2s65SL4bX4mm-G6UZzL7RVWFRFbxpyYXkN16JcV1xYuIVxdAoRHerwvRWYtVxrJQAWaXPK05FtQ1ccG1JBzTGw3TobDm3iAouTlnT8EQzfakv6U7lWxWW7LTsBV6ANiL9SLc1xcplXfIT3ajn8XH7rbmJ4RDMuTMym1buuLhnpuUbXqR3PrLKmpvCJRSUYo6SjfcGzDncvC51Clmok5AXoKdaugPWp__mHeDo_O4tnJ4vZHbTnhWCO9dHe-Pjt8fTvTM7N29l8UZ1IrHqAP02dG_yXyo6ZPUD3rQOCxwZN-6inVgforilJ-uMA7VuBFfjIZiR_8xB9AaDhGmjYAA0boOFlgQWugIYN0HCe4QZoGGCBK6DhFmhYAw13gfYIzacns8mpY0tzOAnlZOtQIQiNVBCKMCNumkkh9Rai4ImbpeDih57iWUQy5SvXE5IxsJRERkTCI0ESQuhj1F_lK_UUYcIEi1zuBWngM-HKyOeSK49In6qIimCARvUsxonNW6_Lp1zFlf_qBbGd9thO-wAdNR3WJmXLzU0Pa7HE9rsuYg-WJFh7CeED9Kr5GbSuPkoTK5WX0MbXiTXBW4A2T4w4m7Go5jKwiD-7Re_n6F77ORyi_nZTqhdg5W7lS4u73-RUrcw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+adaptive+immune+system+is+a+major+driver+of+selection+for+tumor+suppressor+gene+inactivation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Martin%2C+Timothy+D&rft.au=Patel%2C+Rupesh+S&rft.au=Cook%2C+Danielle+R&rft.au=Choi%2C+Mei+Yuk&rft.date=2021-09-17&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=373&rft.issue=6561&rft.spage=1327&rft_id=info:doi/10.1126%2Fscience.abg5784&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |