The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation

Mouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors must contend with a fully functional immune system and its destruction of some of the cells (see the Perspective by Ho and Wood). Two groups...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 373; no. 6561; pp. 1327 - 1335
Main Authors Martin, Timothy D., Patel, Rupesh S., Cook, Danielle R., Choi, Mei Yuk, Patil, Ajinkya, Liang, Anthony C., Li, Mamie Z., Haigis, Kevin M., Elledge, Stephen J.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 17.09.2021
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.abg5784

Cover

Abstract Mouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors must contend with a fully functional immune system and its destruction of some of the cells (see the Perspective by Ho and Wood). Two groups now report studies on mouse models with a fully intact immune system. Martin et al . started with preexisting murine tumor cell lines and examined their continued evolution in vivo, whereas Del Poggetto et al . examined the development of new pancreatic tumors in the context of inflammation, as is often seen in human patients. In each study, the authors found that the immune system exerted a selective pressure on cells that would give rise to tumors, promoting the survival of those that had lost expression of tumor suppressor genes or activated a specific oncogene. The findings suggest a major role for the immune system in driving tumor evolution across multiple types of cancer. —YN Immune selection pressure in developing tumors favors inactivation of tumor suppressor genes. During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.
AbstractList Defining tumor cell immune evasionMouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors must contend with a fully functional immune system and its destruction of some of the cells (see the Perspective by Ho and Wood). Two groups now report studies on mouse models with a fully intact immune system. Martin et al. started with preexisting murine tumor cell lines and examined their continued evolution in vivo, whereas Del Poggetto et al. examined the development of new pancreatic tumors in the context of inflammation, as is often seen in human patients. In each study, the authors found that the immune system exerted a selective pressure on cells that would give rise to tumors, promoting the survival of those that had lost expression of tumor suppressor genes or activated a specific oncogene. The findings suggest a major role for the immune system in driving tumor evolution across multiple types of cancer. —YNDuring tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.
Mouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors must contend with a fully functional immune system and its destruction of some of the cells (see the Perspective by Ho and Wood). Two groups now report studies on mouse models with a fully intact immune system. Martin et al . started with preexisting murine tumor cell lines and examined their continued evolution in vivo, whereas Del Poggetto et al . examined the development of new pancreatic tumors in the context of inflammation, as is often seen in human patients. In each study, the authors found that the immune system exerted a selective pressure on cells that would give rise to tumors, promoting the survival of those that had lost expression of tumor suppressor genes or activated a specific oncogene. The findings suggest a major role for the immune system in driving tumor evolution across multiple types of cancer. —YN Immune selection pressure in developing tumors favors inactivation of tumor suppressor genes. During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.
During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.
During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or up-regulating inhibitory immune checkpoint genes. We performed in vivo CRISPR screens in syngeneic mouse tumor models to examine requirements for tumorigenesis both with and without adaptive immune selective pressure. In each tumor type tested, we found a marked enrichment for the loss of tumor suppressor genes (TSGs) in the presence of an adaptive immune system relative to immunocompromised mice. Nearly one-third of TSGs showed preferential enrichment, often in a cancer- and tissue-specific manner. These results suggest that clonal selection of recurrent mutations found in cancer is driven largely by the tumor’s requirement to avoid the adaptive immune system.
Author Cook, Danielle R.
Patel, Rupesh S.
Li, Mamie Z.
Choi, Mei Yuk
Liang, Anthony C.
Haigis, Kevin M.
Martin, Timothy D.
Elledge, Stephen J.
Patil, Ajinkya
Author_xml – sequence: 1
  givenname: Timothy D.
  orcidid: 0000-0002-4870-3624
  surname: Martin
  fullname: Martin, Timothy D.
  organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– sequence: 2
  givenname: Rupesh S.
  orcidid: 0000-0001-5792-5969
  surname: Patel
  fullname: Patel, Rupesh S.
  organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– sequence: 3
  givenname: Danielle R.
  surname: Cook
  fullname: Cook, Danielle R.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA., Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
– sequence: 4
  givenname: Mei Yuk
  surname: Choi
  fullname: Choi, Mei Yuk
  organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– sequence: 5
  givenname: Ajinkya
  orcidid: 0000-0003-1080-1146
  surname: Patil
  fullname: Patil, Ajinkya
  organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– sequence: 6
  givenname: Anthony C.
  orcidid: 0000-0002-8792-8260
  surname: Liang
  fullname: Liang, Anthony C.
  organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– sequence: 7
  givenname: Mamie Z.
  orcidid: 0000-0002-7188-1330
  surname: Li
  fullname: Li, Mamie Z.
  organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
– sequence: 8
  givenname: Kevin M.
  surname: Haigis
  fullname: Haigis, Kevin M.
  organization: Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA., Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
– sequence: 9
  givenname: Stephen J.
  orcidid: 0000-0001-7923-6283
  surname: Elledge
  fullname: Elledge, Stephen J.
  organization: Division of Genetics, Brigham and Women’s Hospital, Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34529489$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P3DAQxa2Kqiy0Z26VpV64hB3HcWIfKwSlElIv27M7ccbgVb5qJ0j893jLckHqZTzy_N7T2O-MnYzTSIxdCLgSoqy3yQUaHV1h-6AaXX1gGwFGFaYEecI2ALIuNDTqlJ2ltAfIMyM_sVNZqdJU2mzYn90jcexwXsIT8TAM60g8PaeFBh4SRz7gfoq8i3kc-eR5op7cEqaR-3y_rEOuaZ3nSCnl9oGyPoyYkSc8YJ_ZR499oi_H85z9vr3ZXd8V979-_Lz-fl84acRSSEQhNdUNNl5A51tsGy0VGge-AwFNScZr4UkRlNhWlQSJXqAzGoUTQp6zy1ffOU5_V0qLHUJy1Pc40rQmW6qmqkDVYDL67R26n9Y45u1sWUsNWgtxoL4eqbUdqLNzDAPGZ_v2dxlQr4CLU0qRvHVh-ffmJWLorQB7yMgeM7LHjLJu-073Zv0_xQuhNpf0
CitedBy_id crossref_primary_10_1038_s41568_023_00658_3
crossref_primary_10_1038_s42003_024_06271_w
crossref_primary_10_3389_fonc_2022_783079
crossref_primary_10_1016_j_jhep_2022_11_030
crossref_primary_10_3389_fimmu_2023_1286850
crossref_primary_10_1002_ange_202217055
crossref_primary_10_1038_s41571_022_00620_6
crossref_primary_10_3389_fonc_2022_1061789
crossref_primary_10_1371_journal_pgen_1011134
crossref_primary_10_1016_j_dnarep_2023_103531
crossref_primary_10_1038_s41467_024_49450_3
crossref_primary_10_1088_1758_5090_ad6d8c
crossref_primary_10_1126_science_abl5376
crossref_primary_10_3389_fimmu_2022_883639
crossref_primary_10_1158_2159_8290_CD_22_1062
crossref_primary_10_1016_j_cell_2021_12_005
crossref_primary_10_1016_j_xcrm_2025_101976
crossref_primary_10_1038_s41467_023_44239_2
crossref_primary_10_1016_j_ccell_2023_09_006
crossref_primary_10_1136_jitc_2022_004717
crossref_primary_10_1515_oncologie_2024_0596
crossref_primary_10_1016_j_molcel_2022_12_013
crossref_primary_10_1007_s00018_021_04124_x
crossref_primary_10_3390_cancers14071681
crossref_primary_10_1016_j_semcancer_2022_05_006
crossref_primary_10_1002_jcla_24662
crossref_primary_10_1186_s13073_023_01197_0
crossref_primary_10_1038_s42003_023_05606_3
crossref_primary_10_1016_j_ccell_2024_09_010
crossref_primary_10_3390_ijms252010919
crossref_primary_10_1016_j_cell_2024_01_008
crossref_primary_10_1016_j_eururo_2021_11_006
crossref_primary_10_3389_fimmu_2024_1470368
crossref_primary_10_1038_s41392_024_01938_6
crossref_primary_10_1111_crj_13757
crossref_primary_10_3390_cancers14153678
crossref_primary_10_1126_sciadv_ado7373
crossref_primary_10_18632_oncoscience_590
crossref_primary_10_3389_fphar_2021_806570
crossref_primary_10_2147_JIR_S356841
crossref_primary_10_1126_science_adh8697
crossref_primary_10_3390_cancers16173069
crossref_primary_10_1126_sciimmunol_adh5462
crossref_primary_10_1038_s41598_023_49379_5
crossref_primary_10_1038_s41577_022_00802_4
crossref_primary_10_1063_5_0195244
crossref_primary_10_15252_embr_202255146
crossref_primary_10_1016_j_jff_2023_105638
crossref_primary_10_3390_cancers14235827
crossref_primary_10_1002_iub_2680
crossref_primary_10_3390_ijms231810415
crossref_primary_10_1016_j_celrep_2022_110441
crossref_primary_10_1097_MD_0000000000034996
crossref_primary_10_1182_blood_2024024518
crossref_primary_10_1016_j_compbiomed_2025_109717
crossref_primary_10_1016_j_it_2021_11_009
crossref_primary_10_1016_j_biomaterials_2022_121952
crossref_primary_10_1021_acscentsci_2c00107
crossref_primary_10_1016_j_semcancer_2022_04_003
crossref_primary_10_1080_07391102_2022_2070546
crossref_primary_10_3390_cancers14041028
crossref_primary_10_1038_s41588_023_01557_x
crossref_primary_10_1186_s13020_024_01003_y
crossref_primary_10_1002_adfm_202403225
crossref_primary_10_1093_bib_bbae551
crossref_primary_10_1038_s41419_022_05211_y
crossref_primary_10_1038_s41571_023_00766_x
crossref_primary_10_1080_10428194_2022_2056175
crossref_primary_10_1186_s12964_024_01602_0
crossref_primary_10_1002_adfm_202416813
crossref_primary_10_34133_research_0442
crossref_primary_10_1002_mco2_495
crossref_primary_10_3390_ijms23031289
crossref_primary_10_1016_j_envint_2023_108279
crossref_primary_10_1038_s41568_023_00635_w
crossref_primary_10_3892_ol_2022_13581
crossref_primary_10_7554_eLife_75345
crossref_primary_10_3390_nu16091395
crossref_primary_10_3389_fonc_2023_1270991
crossref_primary_10_1038_s41467_024_50262_8
crossref_primary_10_1038_s41392_024_01848_7
crossref_primary_10_1158_0008_5472_CAN_21_3534
crossref_primary_10_3389_fphar_2023_1130399
crossref_primary_10_1016_j_oor_2024_100161
crossref_primary_10_1111_febs_17003
crossref_primary_10_1007_s10555_023_10116_z
crossref_primary_10_1002_anie_202217055
crossref_primary_10_1126_science_adh5021
crossref_primary_10_1038_s41392_022_00875_6
crossref_primary_10_1038_s41568_021_00416_3
crossref_primary_10_1038_s41587_024_02512_9
crossref_primary_10_1038_s41588_023_01313_1
crossref_primary_10_1038_s41388_023_02844_x
crossref_primary_10_3389_fpsyt_2023_1182536
crossref_primary_10_1158_1940_6207_CAPR_23_0087
crossref_primary_10_1360_SSV_2022_0058
crossref_primary_10_1007_s00262_023_03441_3
crossref_primary_10_3390_ijms23052704
crossref_primary_10_1038_s41586_024_08377_x
crossref_primary_10_1073_pnas_2120540119
crossref_primary_10_1186_s40164_024_00570_y
crossref_primary_10_5306_wjco_v15_i10_1280
Cites_doi 10.1158/2159-8290.CD-15-1346
10.1126/science.aax0902
10.1016/j.celrep.2018.03.131
10.1038/323643a0
10.1016/j.cell.2017.06.010
10.3389/fonc.2020.01195
10.1016/j.celrep.2015.06.024
10.7326/0003-4819-71-4-747
10.1038/332085a0
10.1016/j.cell.2013.10.011
10.1038/s41388-019-0855-x
10.1038/229611a0
10.1016/j.ccell.2017.01.004
10.4049/jimmunol.1701044
10.1038/nature13385
10.1126/science.aan5951
10.1038/s41467-019-10458-9
10.1126/science.1248627
10.1016/j.cell.2014.09.029
10.1126/science.286.5447.2172
10.1038/nrc2916
10.1038/ng0597-64
10.1038/s41467-018-04607-9
10.1126/science.aao1710
10.1016/0092-8674(93)90546-3
10.1016/j.cell.2018.02.037
10.1016/j.cell.2013.03.002
10.1126/science.8493574
10.1038/nmeth.1638
10.1038/nature25015
10.1002/1097-0142(197512)36:6<2441::AID-CNCR2820360627>3.0.CO;2-P
10.1186/1471-2164-15-190
10.1073/pnas.79.11.3637
10.1074/jbc.AC120.014698
10.1038/nature23270
10.1186/s12964-020-00589-8
10.1126/scitranslmed.aax6337
10.1038/297474a0
10.1038/ng.2764
10.1073/pnas.0510254103
10.1126/science.1651562
10.1038/nature13765
10.1038/s41590-019-0312-6
10.1126/science.1219580
10.3389/fimmu.2019.00251
10.1084/jem.169.4.1485
10.1038/s41586-020-1969-6
10.1016/j.cell.2015.05.044
10.1002/humu.20828
10.1016/0092-8674(94)90169-4
10.1073/pnas.1109363108
10.1126/science.2134734
10.1016/j.cell.2015.11.015
10.1038/s41586-020-2099-x
10.1038/onc.2015.442
10.1126/science.1149200
10.1038/s41586-020-2746-2
10.1038/s41388-018-0624-2
10.1158/2326-6066.CIR-17-0675
10.1038/260170a0
10.1038/s41586-019-1186-3
10.1002/ijc.24378
10.1038/nrc3521
10.1126/science.1235122
10.1016/j.celrep.2019.12.028
10.1126/science.aaw3472
10.1038/nrclinonc.2016.217
10.1016/j.cell.2014.12.021
10.1038/s41586-018-0768-9
10.1038/363515a0
ContentType Journal Article
Copyright Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abg5784
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1335
ExternalDocumentID 34529489
10_1126_science_abg5784
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: Cancer Research UK
  grantid: 27144
– fundername: NCI NIH HHS
  grantid: U01 CA199252
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-3aa138e67a7f10dfbab7835a9c0fd01072e9f81fe5e02ab44303af1ac98a1c113
ISSN 0036-8075
1095-9203
IngestDate Sat Sep 27 18:39:32 EDT 2025
Fri Jul 25 19:28:40 EDT 2025
Mon Jul 21 06:03:11 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Tue Jul 01 01:35:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6561
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-3aa138e67a7f10dfbab7835a9c0fd01072e9f81fe5e02ab44303af1ac98a1c113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1080-1146
0000-0001-5792-5969
0000-0002-7188-1330
0000-0002-4870-3624
0000-0002-8792-8260
0000-0001-7923-6283
PMID 34529489
PQID 2638088119
PQPubID 1256
PageCount 9
ParticipantIDs proquest_miscellaneous_2574405609
proquest_journals_2638088119
pubmed_primary_34529489
crossref_citationtrail_10_1126_science_abg5784
crossref_primary_10_1126_science_abg5784
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-17
2021-Sep-17
20210917
PublicationDateYYYYMMDD 2021-09-17
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2021
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_3_50_2
e_1_3_3_71_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
Aslakson C. J. (e_1_3_3_34_2) 1992; 52
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
e_1_3_3_17_2
Dexter D. L. (e_1_3_3_33_2) 1978; 38
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
34529483 - Science. 2021 Sep 17;373(6561):1306-1307. doi: 10.1126/science.abl5376.
34611351 - Nat Rev Cancer. 2021 Dec;21(12):743. doi: 10.1038/s41568-021-00416-3.
35027544 - Signal Transduct Target Ther. 2022 Jan 13;7(1):15. doi: 10.1038/s41392-022-00875-6.
References_xml – ident: e_1_3_3_61_2
  doi: 10.1158/2159-8290.CD-15-1346
– ident: e_1_3_3_29_2
  doi: 10.1126/science.aax0902
– ident: e_1_3_3_62_2
  doi: 10.1016/j.celrep.2018.03.131
– ident: e_1_3_3_6_2
  doi: 10.1038/323643a0
– ident: e_1_3_3_36_2
  doi: 10.1016/j.cell.2017.06.010
– ident: e_1_3_3_39_2
  doi: 10.3389/fonc.2020.01195
– ident: e_1_3_3_56_2
  doi: 10.1016/j.celrep.2015.06.024
– ident: e_1_3_3_7_2
  doi: 10.7326/0003-4819-71-4-747
– ident: e_1_3_3_9_2
  doi: 10.1038/332085a0
– ident: e_1_3_3_17_2
  doi: 10.1016/j.cell.2013.10.011
– ident: e_1_3_3_32_2
  doi: 10.1038/s41388-019-0855-x
– ident: e_1_3_3_5_2
  doi: 10.1038/229611a0
– ident: e_1_3_3_67_2
  doi: 10.1016/j.ccell.2017.01.004
– ident: e_1_3_3_31_2
  doi: 10.4049/jimmunol.1701044
– ident: e_1_3_3_41_2
  doi: 10.1038/nature13385
– ident: e_1_3_3_65_2
  doi: 10.1126/science.aan5951
– ident: e_1_3_3_55_2
  doi: 10.1038/s41467-019-10458-9
– ident: e_1_3_3_28_2
  doi: 10.1126/science.1248627
– ident: e_1_3_3_24_2
  doi: 10.1016/j.cell.2014.09.029
– ident: e_1_3_3_73_2
  doi: 10.1126/science.286.5447.2172
– ident: e_1_3_3_18_2
  doi: 10.1038/nrc2916
– ident: e_1_3_3_8_2
  doi: 10.1038/ng0597-64
– ident: e_1_3_3_57_2
  doi: 10.1038/s41467-018-04607-9
– ident: e_1_3_3_66_2
  doi: 10.1126/science.aao1710
– ident: e_1_3_3_11_2
  doi: 10.1016/0092-8674(93)90546-3
– ident: e_1_3_3_25_2
  doi: 10.1016/j.cell.2018.02.037
– ident: e_1_3_3_70_2
  doi: 10.1016/j.cell.2013.03.002
– ident: e_1_3_3_13_2
  doi: 10.1126/science.8493574
– ident: e_1_3_3_26_2
  doi: 10.1038/nmeth.1638
– ident: e_1_3_3_58_2
  doi: 10.1038/nature25015
– volume: 38
  start-page: 3174
  year: 1978
  ident: e_1_3_3_33_2
  article-title: Heterogeneity of tumor cells from a single mouse mammary tumor
  publication-title: Cancer Res.
– ident: e_1_3_3_37_2
  doi: 10.1002/1097-0142(197512)36:6<2441::AID-CNCR2820360627>3.0.CO;2-P
– ident: e_1_3_3_38_2
  doi: 10.1186/1471-2164-15-190
– ident: e_1_3_3_3_2
  doi: 10.1073/pnas.79.11.3637
– ident: e_1_3_3_46_2
  doi: 10.1074/jbc.AC120.014698
– ident: e_1_3_3_35_2
  doi: 10.1038/nature23270
– ident: e_1_3_3_50_2
  doi: 10.1186/s12964-020-00589-8
– ident: e_1_3_3_63_2
  doi: 10.1126/scitranslmed.aax6337
– ident: e_1_3_3_4_2
  doi: 10.1038/297474a0
– ident: e_1_3_3_16_2
  doi: 10.1038/ng.2764
– ident: e_1_3_3_48_2
  doi: 10.1073/pnas.0510254103
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1651562
– ident: e_1_3_3_49_2
  doi: 10.1038/nature13765
– ident: e_1_3_3_72_2
  doi: 10.1038/s41590-019-0312-6
– ident: e_1_3_3_20_2
  doi: 10.1126/science.1219580
– ident: e_1_3_3_44_2
  doi: 10.3389/fimmu.2019.00251
– ident: e_1_3_3_53_2
  doi: 10.1084/jem.169.4.1485
– ident: e_1_3_3_45_2
  doi: 10.1038/s41586-020-1969-6
– ident: e_1_3_3_40_2
  doi: 10.1016/j.cell.2015.05.044
– ident: e_1_3_3_42_2
  doi: 10.1002/humu.20828
– ident: e_1_3_3_43_2
  doi: 10.1016/0092-8674(94)90169-4
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1109363108
– volume: 52
  start-page: 1399
  year: 1992
  ident: e_1_3_3_34_2
  article-title: Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor
  publication-title: Cancer Res.
– ident: e_1_3_3_14_2
  doi: 10.1126/science.2134734
– ident: e_1_3_3_23_2
  doi: 10.1016/j.cell.2015.11.015
– ident: e_1_3_3_27_2
  doi: 10.1038/s41586-020-2099-x
– ident: e_1_3_3_51_2
  doi: 10.1038/onc.2015.442
– ident: e_1_3_3_19_2
  doi: 10.1126/science.1149200
– ident: e_1_3_3_30_2
  doi: 10.1038/s41586-020-2746-2
– ident: e_1_3_3_69_2
  doi: 10.1038/s41388-018-0624-2
– ident: e_1_3_3_68_2
  doi: 10.1158/2326-6066.CIR-17-0675
– ident: e_1_3_3_2_2
  doi: 10.1038/260170a0
– ident: e_1_3_3_22_2
  doi: 10.1038/s41586-019-1186-3
– ident: e_1_3_3_54_2
  doi: 10.1002/ijc.24378
– ident: e_1_3_3_47_2
  doi: 10.1038/nrc3521
– ident: e_1_3_3_15_2
  doi: 10.1126/science.1235122
– ident: e_1_3_3_60_2
  doi: 10.1016/j.celrep.2019.12.028
– ident: e_1_3_3_64_2
  doi: 10.1126/science.aaw3472
– ident: e_1_3_3_59_2
  doi: 10.1038/nrclinonc.2016.217
– ident: e_1_3_3_71_2
  doi: 10.1016/j.cell.2014.12.021
– ident: e_1_3_3_52_2
  doi: 10.1038/s41586-018-0768-9
– ident: e_1_3_3_12_2
  doi: 10.1038/363515a0
– reference: 35027544 - Signal Transduct Target Ther. 2022 Jan 13;7(1):15. doi: 10.1038/s41392-022-00875-6.
– reference: 34529483 - Science. 2021 Sep 17;373(6561):1306-1307. doi: 10.1126/science.abl5376.
– reference: 34611351 - Nat Rev Cancer. 2021 Dec;21(12):743. doi: 10.1038/s41568-021-00416-3.
SSID ssj0009593
Score 2.6474054
Snippet Mouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By contrast, naturally evolving tumors...
During tumorigenesis, tumors must evolve to evade the immune system and do so by disrupting the genes involved in antigen processing and presentation or...
Defining tumor cell immune evasionMouse models used to study cancer often lack a full immune system, allowing implantation of human tumors into the mice. By...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1327
SubjectTerms Adaptive systems
Animal models
Animals
Antigen presentation
Antigen processing
Antigens
Cancer
Carcinogenesis
Cell culture
Cell Line, Tumor
Chemokine CCL2 - metabolism
Clonal selection
CRISPR
CRISPR-Cas Systems
Evolution
Female
Gene expression
Gene Silencing
Genes
Genes, Tumor Suppressor
GTP-Binding Protein alpha Subunits, G12-G13 - genetics
GTP-Binding Protein alpha Subunits, G12-G13 - metabolism
Humans
Immune checkpoint
Immune Evasion - genetics
Immune system
Inactivation
Mammary Neoplasms, Experimental - genetics
Mammary Neoplasms, Experimental - immunology
Mammary Neoplasms, Experimental - pathology
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Mice, SCID
Mutation
Neoplasm Transplantation
Neoplasms, Experimental - genetics
Neoplasms, Experimental - immunology
Neoplasms, Experimental - pathology
Pancreatic cancer
Selection, Genetic
Tumor cell lines
Tumor Microenvironment
Tumor suppressor genes
Tumorigenesis
Tumors
Title The adaptive immune system is a major driver of selection for tumor suppressor gene inactivation
URI https://www.ncbi.nlm.nih.gov/pubmed/34529489
https://www.proquest.com/docview/2638088119
https://www.proquest.com/docview/2574405609
Volume 373
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBtfhYGMxMNQlSqOnQ8_dmXVhMZAqJXKU7ATZytsTdU0SPBf8B9zjp0PUCcNXqIotevI98v5zv7dHUKvlWJhAlrQ4T5TDksyTQKgzGE8yLS9QaWq2BbnwemcvVv4i17vV4e1VG7lKPm5M67kf6QKz0CuOkr2HyTb_Ck8gHuQL1xBwnC9tYxFKtYV_WepIz2UTc2s65SL4bX4mm-G6UZzL7RVWFRFbxpyYXkN16JcV1xYuIVxdAoRHerwvRWYtVxrJQAWaXPK05FtQ1ccG1JBzTGw3TobDm3iAouTlnT8EQzfakv6U7lWxWW7LTsBV6ANiL9SLc1xcplXfIT3ajn8XH7rbmJ4RDMuTMym1buuLhnpuUbXqR3PrLKmpvCJRSUYo6SjfcGzDncvC51Clmok5AXoKdaugPWp__mHeDo_O4tnJ4vZHbTnhWCO9dHe-Pjt8fTvTM7N29l8UZ1IrHqAP02dG_yXyo6ZPUD3rQOCxwZN-6inVgforilJ-uMA7VuBFfjIZiR_8xB9AaDhGmjYAA0boOFlgQWugIYN0HCe4QZoGGCBK6DhFmhYAw13gfYIzacns8mpY0tzOAnlZOtQIQiNVBCKMCNumkkh9Rai4ImbpeDih57iWUQy5SvXE5IxsJRERkTCI0ESQuhj1F_lK_UUYcIEi1zuBWngM-HKyOeSK49In6qIimCARvUsxonNW6_Lp1zFlf_qBbGd9thO-wAdNR3WJmXLzU0Pa7HE9rsuYg-WJFh7CeED9Kr5GbSuPkoTK5WX0MbXiTXBW4A2T4w4m7Go5jKwiD-7Re_n6F77ORyi_nZTqhdg5W7lS4u73-RUrcw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+adaptive+immune+system+is+a+major+driver+of+selection+for+tumor+suppressor+gene+inactivation&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Martin%2C+Timothy+D&rft.au=Patel%2C+Rupesh+S&rft.au=Cook%2C+Danielle+R&rft.au=Choi%2C+Mei+Yuk&rft.date=2021-09-17&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=373&rft.issue=6561&rft.spage=1327&rft_id=info:doi/10.1126%2Fscience.abg5784&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon