Enhancing machining process efficiency through genetic algorithm-driven optimization: a user interface creation

Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried out. Utilizing an orthogonal array design with three-level three-factor input parameters, the study assesses material removal rates (MRR) and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal on interactive design and manufacturing Vol. 19; no. 5; pp. 3825 - 3837
Main Authors Abraham, Maria Jackson, Neelakandan, Baskar, Mustafa, Umar, Ganesan, Balaji, Gopalan, Kirthika
Format Journal Article
LanguageEnglish
Published Paris Springer Paris 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1955-2513
1955-2505
DOI10.1007/s12008-024-02023-6

Cover

Abstract Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried out. Utilizing an orthogonal array design with three-level three-factor input parameters, the study assesses material removal rates (MRR) and surface finish quality. A regression model is developed using Taguchi design techniques and ANOVA for MRR with 0.059 P-value and for Surface roughness with 0.062 P-value validates the regression and the significant parameters. Further optimization is conducted using genetic algorithms. The optimization data are validated using scanning electron microscope (SEM) images for MRR and surface roughness individually. Leveraging the capabilities of MATLAB and LabVIEW, a user-friendly interface is designed and validated using the class function Object () [native code] node and core wrapper design of the Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The objective is to create a software tool that enhances machining processes, addressing the needs of various industries. This research aims to develop a mathematical model incorporating statistical techniques to predict machining processes tailored to specific machine-material combinations. Graphical Abstract Article highlights A framework for user interface to predict the best machining conditions for chosen outputs by the combination of machines and material is created. The experimental machining data were converted into regression equations and then into .m files using MATLAB. Based on the existing knowledge, a suitable method for optimizing (Genetic Algorithm) the machining process is chosen and the results obtained in a user friendly interface.
AbstractList Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried out. Utilizing an orthogonal array design with three-level three-factor input parameters, the study assesses material removal rates (MRR) and surface finish quality. A regression model is developed using Taguchi design techniques and ANOVA for MRR with 0.059 P-value and for Surface roughness with 0.062 P-value validates the regression and the significant parameters. Further optimization is conducted using genetic algorithms. The optimization data are validated using scanning electron microscope (SEM) images for MRR and surface roughness individually. Leveraging the capabilities of MATLAB and LabVIEW, a user-friendly interface is designed and validated using the class function Object () [native code] node and core wrapper design of the Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The objective is to create a software tool that enhances machining processes, addressing the needs of various industries. This research aims to develop a mathematical model incorporating statistical techniques to predict machining processes tailored to specific machine-material combinations.Article highlightsA framework for user interface to predict the best machining conditions for chosen outputs by the combination of machines and material is created.The experimental machining data were converted into regression equations and then into .m files using MATLAB.Based on the existing knowledge, a suitable method for optimizing (Genetic Algorithm) the machining process is chosen and the results obtained in a user friendly interface.
Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried out. Utilizing an orthogonal array design with three-level three-factor input parameters, the study assesses material removal rates (MRR) and surface finish quality. A regression model is developed using Taguchi design techniques and ANOVA for MRR with 0.059 P-value and for Surface roughness with 0.062 P-value validates the regression and the significant parameters. Further optimization is conducted using genetic algorithms. The optimization data are validated using scanning electron microscope (SEM) images for MRR and surface roughness individually. Leveraging the capabilities of MATLAB and LabVIEW, a user-friendly interface is designed and validated using the class function Object () [native code] node and core wrapper design of the Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The objective is to create a software tool that enhances machining processes, addressing the needs of various industries. This research aims to develop a mathematical model incorporating statistical techniques to predict machining processes tailored to specific machine-material combinations. Graphical Abstract Article highlights A framework for user interface to predict the best machining conditions for chosen outputs by the combination of machines and material is created. The experimental machining data were converted into regression equations and then into .m files using MATLAB. Based on the existing knowledge, a suitable method for optimizing (Genetic Algorithm) the machining process is chosen and the results obtained in a user friendly interface.
Author Neelakandan, Baskar
Abraham, Maria Jackson
Ganesan, Balaji
Gopalan, Kirthika
Mustafa, Umar
Author_xml – sequence: 1
  givenname: Maria Jackson
  orcidid: 0000-0002-2584-8345
  surname: Abraham
  fullname: Abraham, Maria Jackson
  email: amjack1991@gmail.com
  organization: Department of Mechanical Engineering, SRM TRP Engineering College
– sequence: 2
  givenname: Baskar
  surname: Neelakandan
  fullname: Neelakandan, Baskar
  organization: Department of Mechanical Engineering, Saranathan College of Engineering
– sequence: 3
  givenname: Umar
  surname: Mustafa
  fullname: Mustafa, Umar
  organization: Department of Mechanical Engineering, SRM TRP Engineering College
– sequence: 4
  givenname: Balaji
  surname: Ganesan
  fullname: Ganesan, Balaji
  organization: Department of Mechanical Engineering, SRM TRP Engineering College
– sequence: 5
  givenname: Kirthika
  surname: Gopalan
  fullname: Gopalan, Kirthika
  organization: Automation and Control, RPTU Kaiserslautern
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz6tJttlkvUmpH1DwoueQZie7KW1Sk1Sov95tKwoeehhmYOaZmfcdoYEPHhC6puSWEiLuEmWEyIKwSR-ElUV1hoa05rxgnPDBb03LCzRKaUlIJYkkQxRmvtPeON_itTad8_tqE4OBlDBY64wDb3Y4dzFs2w634CE7g_WqDdHlbl000X2Cx2GT3dp96eyCv8cabxNE7HyGaLUBbCIcWpfo3OpVgqufPEbvj7O36XMxf316mT7MC1PWNBes0Vo2Za-nqrigZlEZkAzspJG14aICtqiFtULzCeHWMM0WsrGSsEbUogZRjtHNcW-v5WMLKatl2Ebfn1QllVIIwWvZT7HjlIkhpQhWbaJb67hTlKi9seporOofUQdjVdVD8h9kXD6Iy1G71Wm0PKKpv-NbiH9fnaC-AVvnkXM
CitedBy_id crossref_primary_10_1007_s40033_025_00882_1
Cites_doi 10.1007/s10845-010-0380-9
10.1016/0169-2607(95)01630-c
10.1016/j.mtcomm.2024.108521
10.1007/s10845-023-02268-0
10.1007/s12008-024-01787-1
10.30855/gmbd.0705005
10.1016/j.ifacol.2016.07.138
10.1080/00051144.2020.1814601
10.3390/met13020437
10.1080/02286203.2024.2320613
10.1007/s12206-019-1030-6
10.1016/j.jmapro.2024.03.016
10.1007/s40436-023-00451-3
10.1016/j.proeng.2017.04.122
10.3390/lubricants11030101
10.1177/01445987231217134
10.1016/j.matpr.2018.06.177
10.3390/ma16124408
10.1080/10426914.2014.96147
10.1109/ETFA.2009.5347260
10.1016/j.ijmecsci.2018.12.041
10.1007/s00170-024-13079-9
10.1007/s12206-018-0936-8
10.1016/j.rineng.2023.101141
10.1007/s12206-018-0641-7
10.15282/ijame.2.2010.7.0015
10.1080/00207549208948198
10.1007/s00170-024-13078-w
10.1080/09511920802287138
10.1080/10426914.2015.1117623
10.1016/j.procir.2021.11.179
10.1007/s40436-023-00445-1
10.1007/s12206-019-1145-9
10.1016/j.matpr.2019.06.627
10.1007/s40436-022-00423-z
10.1016/j.ijlmm.2020.12.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. May 2025
DBID AAYXX
CITATION
DOI 10.1007/s12008-024-02023-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1955-2505
EndPage 3837
ExternalDocumentID 10_1007_s12008_024_02023_6
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9P
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PT4
PTHSS
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAYXX
CITATION
PUEGO
ID FETCH-LOGICAL-c391t-2daa8d302466571cb6ce82ef4d89c576e2b97ff7a5405fc2a2b8df802d7979e73
IEDL.DBID AGYKE
ISSN 1955-2513
IngestDate Sun Jul 13 04:31:17 EDT 2025
Wed Oct 01 06:35:00 EDT 2025
Thu Apr 24 23:02:49 EDT 2025
Mon Jul 21 06:08:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Productivity
Predictive modeling
Surface roughness
Genetic algorithm
LabVIEW
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-2daa8d302466571cb6ce82ef4d89c576e2b97ff7a5405fc2a2b8df802d7979e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2584-8345
PQID 3188777598
PQPubID 2044253
PageCount 13
ParticipantIDs proquest_journals_3188777598
crossref_primary_10_1007_s12008_024_02023_6
crossref_citationtrail_10_1007_s12008_024_02023_6
springer_journals_10_1007_s12008_024_02023_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
– name: Heidelberg
PublicationTitle International journal on interactive design and manufacturing
PublicationTitleAbbrev Int J Interact Des Manuf
PublicationYear 2025
Publisher Springer Paris
Springer Nature B.V
Publisher_xml – name: Springer Paris
– name: Springer Nature B.V
References ÜA Emine Şap (2023_CR33) 2024; 38
B Samanta (2023_CR15) 2009; 22
2023_CR20
M Yiğit (2023_CR17) 2015; 30
LH Xu (2023_CR25) 2023
X Lu (2023_CR2) 2019; 33
K Bousnina (2023_CR38) 2024; 42
Luo Huofa & Hashem Imani Marrani (2023_CR13) 2020; 61
MV Vardhan (2023_CR10) 2018; 5
S Kumar (2023_CR32) 2010; 2
2023_CR5
V Vishnu (2023_CR16) 2021; 104
LQ Yang (2023_CR27) 2023; 11
YC Shin (2023_CR1) 1992; 30
M Derouiche (2023_CR19) 2016
B Thilo Grove (2023_CR3) 2018; 32
Y Oh (2023_CR12) 2019; 33
2023_CR8
2023_CR28
İ Asiltürk (2023_CR37) 2023; 13
MKN Khairusshima (2023_CR7) 2017; 184
A Deka (2023_CR21) 2024
2023_CR24
B Mutlu (2023_CR34) 2022; 8
F Ridwan (2023_CR22) 2012; 23
2023_CR31
2023_CR30
H Demirpolat (2023_CR36) 2023; 16
QA Yin (2023_CR26) 2023; 11
J-W Ma (2023_CR4) 2016; 31
OO Lofinmakin (2023_CR11) 2024
Mustafa (2023_CR29) 2024; 117
S Wagner (2023_CR23) 2023
2023_CR18
R Binali (2023_CR35) 2023; 11
2023_CR39
2023_CR14
EE Goldberg (2023_CR9) 1989
X Lu (2023_CR6) 2018; 32
References_xml – ident: 2023_CR20
– volume: 23
  start-page: 423
  year: 2012
  ident: 2023_CR22
  publication-title: J. Intell. Manufcaturing
  doi: 10.1007/s10845-010-0380-9
– ident: 2023_CR18
  doi: 10.1016/0169-2607(95)01630-c
– volume: 38
  start-page: 2352
  year: 2024
  ident: 2023_CR33
  publication-title: Mater. Today Commun. Volume
  doi: 10.1016/j.mtcomm.2024.108521
– year: 2023
  ident: 2023_CR23
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-023-02268-0
– volume-title: Genetic Algorithm in Searching, Optimization, and Machine Learning
  year: 1989
  ident: 2023_CR9
– ident: 2023_CR31
  doi: 10.1007/s12008-024-01787-1
– volume: 8
  start-page: 215
  issue: 2
  year: 2022
  ident: 2023_CR34
  publication-title: Gazi J. Eng. Sci.
  doi: 10.30855/gmbd.0705005
– year: 2016
  ident: 2023_CR19
  doi: 10.1016/j.ifacol.2016.07.138
– volume: 61
  start-page: 670
  issue: 4
  year: 2020
  ident: 2023_CR13
  publication-title: Automatika
  doi: 10.1080/00051144.2020.1814601
– volume: 13
  start-page: 437
  year: 2023
  ident: 2023_CR37
  publication-title: Metals
  doi: 10.3390/met13020437
– ident: 2023_CR39
  doi: 10.1080/02286203.2024.2320613
– volume: 33
  start-page: 5369
  year: 2019
  ident: 2023_CR2
  publication-title: J. Mech. Sci. Technol. (JMST)
  doi: 10.1007/s12206-019-1030-6
– volume: 117
  start-page: 329
  year: 2024
  ident: 2023_CR29
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2024.03.016
– year: 2023
  ident: 2023_CR25
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-023-00451-3
– volume: 184
  start-page: 518
  year: 2017
  ident: 2023_CR7
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.04.122
– volume: 11
  start-page: 101
  year: 2023
  ident: 2023_CR35
  publication-title: Lubricants
  doi: 10.3390/lubricants11030101
– volume: 42
  start-page: 727
  issue: 2
  year: 2024
  ident: 2023_CR38
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/01445987231217134
– volume: 5
  start-page: 18376
  issue: 9
  year: 2018
  ident: 2023_CR10
  publication-title: Mater. Today: Proc.
  doi: 10.1016/j.matpr.2018.06.177
– volume: 16
  start-page: 4408
  year: 2023
  ident: 2023_CR36
  publication-title: Materials
  doi: 10.3390/ma16124408
– volume: 30
  start-page: 425
  issue: 4
  year: 2015
  ident: 2023_CR17
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2014.96147
– ident: 2023_CR24
  doi: 10.1109/ETFA.2009.5347260
– ident: 2023_CR14
  doi: 10.1016/j.ijmecsci.2018.12.041
– year: 2024
  ident: 2023_CR11
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-024-13079-9
– volume: 32
  start-page: 4883
  issue: 10
  year: 2018
  ident: 2023_CR3
  publication-title: J. Mech. Sci. Technol. (JMST)
  doi: 10.1007/s12206-018-0936-8
– ident: 2023_CR30
  doi: 10.1016/j.rineng.2023.101141
– ident: 2023_CR8
– volume: 32
  start-page: 3379
  year: 2018
  ident: 2023_CR6
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-0641-7
– volume: 2
  start-page: 181
  year: 2010
  ident: 2023_CR32
  publication-title: Int. J. Automot. Mech. Eng.
  doi: 10.15282/ijame.2.2010.7.0015
– volume: 30
  start-page: 2907
  year: 1992
  ident: 2023_CR1
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207549208948198
– year: 2024
  ident: 2023_CR21
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-024-13078-w
– volume: 22
  start-page: 257
  issue: 3
  year: 2009
  ident: 2023_CR15
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/09511920802287138
– volume: 31
  start-page: 1692
  issue: 13
  year: 2016
  ident: 2023_CR4
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2015.1117623
– volume: 104
  start-page: 1065
  year: 2021
  ident: 2023_CR16
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.11.179
– volume: 11
  start-page: 378
  year: 2023
  ident: 2023_CR26
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-023-00445-1
– volume: 33
  start-page: 6009
  year: 2019
  ident: 2023_CR12
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-019-1145-9
– ident: 2023_CR5
  doi: 10.1016/j.matpr.2019.06.627
– volume: 11
  start-page: 181
  year: 2023
  ident: 2023_CR27
  publication-title: Adv. Manuf.
  doi: 10.1007/s40436-022-00423-z
– ident: 2023_CR28
  doi: 10.1016/j.ijlmm.2020.12.005
SSID ssj0068080
Score 2.3309066
Snippet Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3825
SubjectTerms Algorithms
Alloys
Aluminum
CAE) and Design
Composite materials
Computer-Aided Engineering (CAD
Digital twins
Efficiency
Electronics and Microelectronics
Energy consumption
Engineering
Engineering Design
Friction stir welding
Genetic algorithms
Industrial Design
Instrumentation
Investigations
Machining
Manufacturing
Matlab
Mechanical Engineering
Neural networks
Optimization
Optimization techniques
Original Article
Orthogonal arrays
Parameters
Process planning
Product quality
Productivity
Regression models
Software
Statistical analysis
Surface finish
Surface roughness
Taguchi methods
User interface
Variance analysis
Title Enhancing machining process efficiency through genetic algorithm-driven optimization: a user interface creation
URI https://link.springer.com/article/10.1007/s12008-024-02023-6
https://www.proquest.com/docview/3188777598
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: AFBBN
  dateStart: 20070401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1955-2505
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0068080
  issn: 1955-2513
  databaseCode: U2A
  dateStart: 20070425
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPTg24gi2YM3XQPblu16AwMSjZwk0VOzr4IRCoFy8de7225FiZp4aNKk2822M52Z7sz3DcCFz7jilCrMtcexT7WHQ-V5mDeo5L4MqSftPuRjv9kb-PfPwbMDhS2KavciJZlZ6hXYLU_VE98cxtPg5iaUM76tEpRbdy8PncIC224SGRCSBQE2_ttzYJmfZ_nukFZR5lpiNPM33V0YFCvNy0zerpepuJbvaySO_32UPdhxAShq5RqzDxs6OYDtL7SEhzDtJCNLw5EM0SSrtbRnsxxRgHTGOWEBm8j1-EFGBy0UEvHxcDp_TUcTrObWiKKpsUcTB_S8QRzZHRFkCSrmMZcaFQHrEQy6nafbHnaNGbD0WCPFRHFuJGrWb_M2DSmaUodEx74KmTQ_MJoIRuOYchsOxpJwIkIVh3WiKKNMU-8YSsk00SeAGBOWu1yYsSZY4MJED7TOqS-MoihK6hVoFNKJpGMtt80zxtGKbznvpEn8KHuZUbMCl5_3zHLOjj9HVwuhR-77XUTG0lmixICFFbgqZLi6_Ptsp_8bfgZbxDYUziooq1BK50t9bqKcVNSMUnfb7X7NKXcNNgek9QFxQvU5
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86H9QH8ROnU_PgmwbWpG0a34ZsTN32tMHeSpqkm7C1Y6v_v7l-WBUVfCgUmgZ6l9xdc_f7HUK3rpBacq6JNEwSlxtGAs0YkQ5X0lUBZwrOIYcjvz9xn6fetASFbapq9yolmVvqGuxWpOqpay_raYi_jXaAwAoY8ye0U9lf6CWRwyCF5xHrvVkJlfl5jq_uqI4xv6VFc2_TO0QHZZiIO4Vej9CWSY7R_ifywBOUdpM5kGUkM7zMKyLhblXU_WOTM0MArBKXnXiwXSkAWMRyMUvXr9l8SfQaTB1OrdVYlnDMBywxnFtgoJFYx1IZXIWVp2jS644f-6Rsn0AUE05GqJbSyt1-LGRXHBX5ygTUxK4OhLK_GYZGgscxlxC0xYpKGgU6DtpUc8GF4ewMNZI0MecICxEBw3hkx1qXLiPr43lbcjey6tSctpvIqaQYqpJbHFpcLMKaFbnod0ndMJd86DfR3cc7q4JZ48_RrUo5YbnLNqG1R0Bn6Imgie4rhdWPf5_t4n_Db9BufzwchIOn0csl2qPQAjiveWyhRrZ-M1c2Lsmi63wZvgOS99jN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MTp1Dz4psEtTZvGt6Eb82v44GBvJU3STdjaUev_b64fdooKPhQKvQaaS-6uufv9DqFzJqSWnGsijSMJ48YhvnYcIjtcSaZ87ig4h3waeoMRux-74yUUf17tXqUkC0wDsDTF2dVCR1c18K1I21NmL-t1iLeK1hgQJdgVPaLdyhZDX4kcEilcl1hP7pSwmZ_H-Oqa6njzW4o09zz9bbRVhoy4W-h4B62YeBdtLhEJ7qGkF0-BOCOe4HleHQl3iwIDgE3OEgEQS1x25cF21QB4EcvZJElfs-mc6BTMHk6sBZmX0MxrLDGcYWCglEgjqQyuQsx9NOr3Xm4GpGylQJQjOhmhWkqrA_uxkGnpqNBTxqcmYtoXyv5yGBoKHkVcQgAXKSpp6OvIb1PNBReGOweoESexOURYiBDYxkMra927DK2_523JWWhVqzltN1GnmsVAlTzj0O5iFtQMyUXvS8qCfOYDr4kuPt9ZFCwbf0q3KuUE5Y57C6xtAmpDV_hNdFkprH78-2hH_xM_Q-vPt_3g8W74cIw2KHQDzssfW6iRpe_mxIYoWXiar8IPN4fdCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+machining+process+efficiency+through+genetic+algorithm-driven+optimization%3A+a+user+interface+creation&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=19&rft.issue=5&rft.spage=3825&rft.epage=3837&rft_id=info:doi/10.1007%2Fs12008-024-02023-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon