Enhancing machining process efficiency through genetic algorithm-driven optimization: a user interface creation
Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried out. Utilizing an orthogonal array design with three-level three-factor input parameters, the study assesses material removal rates (MRR) and...
Saved in:
| Published in | International journal on interactive design and manufacturing Vol. 19; no. 5; pp. 3825 - 3837 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Paris
Springer Paris
01.05.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1955-2513 1955-2505 |
| DOI | 10.1007/s12008-024-02023-6 |
Cover
| Abstract | Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried out. Utilizing an orthogonal array design with three-level three-factor input parameters, the study assesses material removal rates (MRR) and surface finish quality. A regression model is developed using Taguchi design techniques and ANOVA for MRR with 0.059 P-value and for Surface roughness with 0.062 P-value validates the regression and the significant parameters. Further optimization is conducted using genetic algorithms. The optimization data are validated using scanning electron microscope (SEM) images for MRR and surface roughness individually. Leveraging the capabilities of MATLAB and LabVIEW, a user-friendly interface is designed and validated using the class function Object () [native code] node and core wrapper design of the Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The objective is to create a software tool that enhances machining processes, addressing the needs of various industries. This research aims to develop a mathematical model incorporating statistical techniques to predict machining processes tailored to specific machine-material combinations.
Graphical Abstract
Article highlights
A framework for user interface to predict the best machining conditions for chosen outputs by the combination of machines and material is created.
The experimental machining data were converted into regression equations and then into .m files using MATLAB.
Based on the existing knowledge, a suitable method for optimizing (Genetic Algorithm) the machining process is chosen and the results obtained in a user friendly interface. |
|---|---|
| AbstractList | Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried out. Utilizing an orthogonal array design with three-level three-factor input parameters, the study assesses material removal rates (MRR) and surface finish quality. A regression model is developed using Taguchi design techniques and ANOVA for MRR with 0.059 P-value and for Surface roughness with 0.062 P-value validates the regression and the significant parameters. Further optimization is conducted using genetic algorithms. The optimization data are validated using scanning electron microscope (SEM) images for MRR and surface roughness individually. Leveraging the capabilities of MATLAB and LabVIEW, a user-friendly interface is designed and validated using the class function Object () [native code] node and core wrapper design of the Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The objective is to create a software tool that enhances machining processes, addressing the needs of various industries. This research aims to develop a mathematical model incorporating statistical techniques to predict machining processes tailored to specific machine-material combinations.Article highlightsA framework for user interface to predict the best machining conditions for chosen outputs by the combination of machines and material is created.The experimental machining data were converted into regression equations and then into .m files using MATLAB.Based on the existing knowledge, a suitable method for optimizing (Genetic Algorithm) the machining process is chosen and the results obtained in a user friendly interface. Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried out. Utilizing an orthogonal array design with three-level three-factor input parameters, the study assesses material removal rates (MRR) and surface finish quality. A regression model is developed using Taguchi design techniques and ANOVA for MRR with 0.059 P-value and for Surface roughness with 0.062 P-value validates the regression and the significant parameters. Further optimization is conducted using genetic algorithms. The optimization data are validated using scanning electron microscope (SEM) images for MRR and surface roughness individually. Leveraging the capabilities of MATLAB and LabVIEW, a user-friendly interface is designed and validated using the class function Object () [native code] node and core wrapper design of the Laboratory Virtual Instrument Engineering Workbench (LabVIEW). The objective is to create a software tool that enhances machining processes, addressing the needs of various industries. This research aims to develop a mathematical model incorporating statistical techniques to predict machining processes tailored to specific machine-material combinations. Graphical Abstract Article highlights A framework for user interface to predict the best machining conditions for chosen outputs by the combination of machines and material is created. The experimental machining data were converted into regression equations and then into .m files using MATLAB. Based on the existing knowledge, a suitable method for optimizing (Genetic Algorithm) the machining process is chosen and the results obtained in a user friendly interface. |
| Author | Neelakandan, Baskar Abraham, Maria Jackson Ganesan, Balaji Gopalan, Kirthika Mustafa, Umar |
| Author_xml | – sequence: 1 givenname: Maria Jackson orcidid: 0000-0002-2584-8345 surname: Abraham fullname: Abraham, Maria Jackson email: amjack1991@gmail.com organization: Department of Mechanical Engineering, SRM TRP Engineering College – sequence: 2 givenname: Baskar surname: Neelakandan fullname: Neelakandan, Baskar organization: Department of Mechanical Engineering, Saranathan College of Engineering – sequence: 3 givenname: Umar surname: Mustafa fullname: Mustafa, Umar organization: Department of Mechanical Engineering, SRM TRP Engineering College – sequence: 4 givenname: Balaji surname: Ganesan fullname: Ganesan, Balaji organization: Department of Mechanical Engineering, SRM TRP Engineering College – sequence: 5 givenname: Kirthika surname: Gopalan fullname: Gopalan, Kirthika organization: Automation and Control, RPTU Kaiserslautern |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz6tJttlkvUmpH1DwoueQZie7KW1Sk1Sov95tKwoeehhmYOaZmfcdoYEPHhC6puSWEiLuEmWEyIKwSR-ElUV1hoa05rxgnPDBb03LCzRKaUlIJYkkQxRmvtPeON_itTad8_tqE4OBlDBY64wDb3Y4dzFs2w634CE7g_WqDdHlbl000X2Cx2GT3dp96eyCv8cabxNE7HyGaLUBbCIcWpfo3OpVgqufPEbvj7O36XMxf316mT7MC1PWNBes0Vo2Za-nqrigZlEZkAzspJG14aICtqiFtULzCeHWMM0WsrGSsEbUogZRjtHNcW-v5WMLKatl2Ebfn1QllVIIwWvZT7HjlIkhpQhWbaJb67hTlKi9seporOofUQdjVdVD8h9kXD6Iy1G71Wm0PKKpv-NbiH9fnaC-AVvnkXM |
| CitedBy_id | crossref_primary_10_1007_s40033_025_00882_1 |
| Cites_doi | 10.1007/s10845-010-0380-9 10.1016/0169-2607(95)01630-c 10.1016/j.mtcomm.2024.108521 10.1007/s10845-023-02268-0 10.1007/s12008-024-01787-1 10.30855/gmbd.0705005 10.1016/j.ifacol.2016.07.138 10.1080/00051144.2020.1814601 10.3390/met13020437 10.1080/02286203.2024.2320613 10.1007/s12206-019-1030-6 10.1016/j.jmapro.2024.03.016 10.1007/s40436-023-00451-3 10.1016/j.proeng.2017.04.122 10.3390/lubricants11030101 10.1177/01445987231217134 10.1016/j.matpr.2018.06.177 10.3390/ma16124408 10.1080/10426914.2014.96147 10.1109/ETFA.2009.5347260 10.1016/j.ijmecsci.2018.12.041 10.1007/s00170-024-13079-9 10.1007/s12206-018-0936-8 10.1016/j.rineng.2023.101141 10.1007/s12206-018-0641-7 10.15282/ijame.2.2010.7.0015 10.1080/00207549208948198 10.1007/s00170-024-13078-w 10.1080/09511920802287138 10.1080/10426914.2015.1117623 10.1016/j.procir.2021.11.179 10.1007/s40436-023-00445-1 10.1007/s12206-019-1145-9 10.1016/j.matpr.2019.06.627 10.1007/s40436-022-00423-z 10.1016/j.ijlmm.2020.12.005 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. May 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. May 2025 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12008-024-02023-6 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1955-2505 |
| EndPage | 3837 |
| ExternalDocumentID | 10_1007_s12008_024_02023_6 |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 1N0 203 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9P PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PT4 PTHSS QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ~A9 AAYXX CITATION PUEGO |
| ID | FETCH-LOGICAL-c391t-2daa8d302466571cb6ce82ef4d89c576e2b97ff7a5405fc2a2b8df802d7979e73 |
| IEDL.DBID | AGYKE |
| ISSN | 1955-2513 |
| IngestDate | Sun Jul 13 04:31:17 EDT 2025 Wed Oct 01 06:35:00 EDT 2025 Thu Apr 24 23:02:49 EDT 2025 Mon Jul 21 06:08:01 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Productivity Predictive modeling Surface roughness Genetic algorithm LabVIEW |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c391t-2daa8d302466571cb6ce82ef4d89c576e2b97ff7a5405fc2a2b8df802d7979e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2584-8345 |
| PQID | 3188777598 |
| PQPubID | 2044253 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_3188777598 crossref_primary_10_1007_s12008_024_02023_6 crossref_citationtrail_10_1007_s12008_024_02023_6 springer_journals_10_1007_s12008_024_02023_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Paris |
| PublicationPlace_xml | – name: Paris – name: Heidelberg |
| PublicationTitle | International journal on interactive design and manufacturing |
| PublicationTitleAbbrev | Int J Interact Des Manuf |
| PublicationYear | 2025 |
| Publisher | Springer Paris Springer Nature B.V |
| Publisher_xml | – name: Springer Paris – name: Springer Nature B.V |
| References | ÜA Emine Şap (2023_CR33) 2024; 38 B Samanta (2023_CR15) 2009; 22 2023_CR20 M Yiğit (2023_CR17) 2015; 30 LH Xu (2023_CR25) 2023 X Lu (2023_CR2) 2019; 33 K Bousnina (2023_CR38) 2024; 42 Luo Huofa & Hashem Imani Marrani (2023_CR13) 2020; 61 MV Vardhan (2023_CR10) 2018; 5 S Kumar (2023_CR32) 2010; 2 2023_CR5 V Vishnu (2023_CR16) 2021; 104 LQ Yang (2023_CR27) 2023; 11 YC Shin (2023_CR1) 1992; 30 M Derouiche (2023_CR19) 2016 B Thilo Grove (2023_CR3) 2018; 32 Y Oh (2023_CR12) 2019; 33 2023_CR8 2023_CR28 İ Asiltürk (2023_CR37) 2023; 13 MKN Khairusshima (2023_CR7) 2017; 184 A Deka (2023_CR21) 2024 2023_CR24 B Mutlu (2023_CR34) 2022; 8 F Ridwan (2023_CR22) 2012; 23 2023_CR31 2023_CR30 H Demirpolat (2023_CR36) 2023; 16 QA Yin (2023_CR26) 2023; 11 J-W Ma (2023_CR4) 2016; 31 OO Lofinmakin (2023_CR11) 2024 Mustafa (2023_CR29) 2024; 117 S Wagner (2023_CR23) 2023 2023_CR18 R Binali (2023_CR35) 2023; 11 2023_CR39 2023_CR14 EE Goldberg (2023_CR9) 1989 X Lu (2023_CR6) 2018; 32 |
| References_xml | – ident: 2023_CR20 – volume: 23 start-page: 423 year: 2012 ident: 2023_CR22 publication-title: J. Intell. Manufcaturing doi: 10.1007/s10845-010-0380-9 – ident: 2023_CR18 doi: 10.1016/0169-2607(95)01630-c – volume: 38 start-page: 2352 year: 2024 ident: 2023_CR33 publication-title: Mater. Today Commun. Volume doi: 10.1016/j.mtcomm.2024.108521 – year: 2023 ident: 2023_CR23 publication-title: J. Intell. Manuf. doi: 10.1007/s10845-023-02268-0 – volume-title: Genetic Algorithm in Searching, Optimization, and Machine Learning year: 1989 ident: 2023_CR9 – ident: 2023_CR31 doi: 10.1007/s12008-024-01787-1 – volume: 8 start-page: 215 issue: 2 year: 2022 ident: 2023_CR34 publication-title: Gazi J. Eng. Sci. doi: 10.30855/gmbd.0705005 – year: 2016 ident: 2023_CR19 doi: 10.1016/j.ifacol.2016.07.138 – volume: 61 start-page: 670 issue: 4 year: 2020 ident: 2023_CR13 publication-title: Automatika doi: 10.1080/00051144.2020.1814601 – volume: 13 start-page: 437 year: 2023 ident: 2023_CR37 publication-title: Metals doi: 10.3390/met13020437 – ident: 2023_CR39 doi: 10.1080/02286203.2024.2320613 – volume: 33 start-page: 5369 year: 2019 ident: 2023_CR2 publication-title: J. Mech. Sci. Technol. (JMST) doi: 10.1007/s12206-019-1030-6 – volume: 117 start-page: 329 year: 2024 ident: 2023_CR29 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2024.03.016 – year: 2023 ident: 2023_CR25 publication-title: Adv. Manuf. doi: 10.1007/s40436-023-00451-3 – volume: 184 start-page: 518 year: 2017 ident: 2023_CR7 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.04.122 – volume: 11 start-page: 101 year: 2023 ident: 2023_CR35 publication-title: Lubricants doi: 10.3390/lubricants11030101 – volume: 42 start-page: 727 issue: 2 year: 2024 ident: 2023_CR38 publication-title: Energy Explor. Exploit. doi: 10.1177/01445987231217134 – volume: 5 start-page: 18376 issue: 9 year: 2018 ident: 2023_CR10 publication-title: Mater. Today: Proc. doi: 10.1016/j.matpr.2018.06.177 – volume: 16 start-page: 4408 year: 2023 ident: 2023_CR36 publication-title: Materials doi: 10.3390/ma16124408 – volume: 30 start-page: 425 issue: 4 year: 2015 ident: 2023_CR17 publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2014.96147 – ident: 2023_CR24 doi: 10.1109/ETFA.2009.5347260 – ident: 2023_CR14 doi: 10.1016/j.ijmecsci.2018.12.041 – year: 2024 ident: 2023_CR11 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-024-13079-9 – volume: 32 start-page: 4883 issue: 10 year: 2018 ident: 2023_CR3 publication-title: J. Mech. Sci. Technol. (JMST) doi: 10.1007/s12206-018-0936-8 – ident: 2023_CR30 doi: 10.1016/j.rineng.2023.101141 – ident: 2023_CR8 – volume: 32 start-page: 3379 year: 2018 ident: 2023_CR6 publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-018-0641-7 – volume: 2 start-page: 181 year: 2010 ident: 2023_CR32 publication-title: Int. J. Automot. Mech. Eng. doi: 10.15282/ijame.2.2010.7.0015 – volume: 30 start-page: 2907 year: 1992 ident: 2023_CR1 publication-title: Int. J. Prod. Res. doi: 10.1080/00207549208948198 – year: 2024 ident: 2023_CR21 publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-024-13078-w – volume: 22 start-page: 257 issue: 3 year: 2009 ident: 2023_CR15 publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/09511920802287138 – volume: 31 start-page: 1692 issue: 13 year: 2016 ident: 2023_CR4 publication-title: Mater. Manuf. Processes doi: 10.1080/10426914.2015.1117623 – volume: 104 start-page: 1065 year: 2021 ident: 2023_CR16 publication-title: Procedia CIRP doi: 10.1016/j.procir.2021.11.179 – volume: 11 start-page: 378 year: 2023 ident: 2023_CR26 publication-title: Adv. Manuf. doi: 10.1007/s40436-023-00445-1 – volume: 33 start-page: 6009 year: 2019 ident: 2023_CR12 publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-019-1145-9 – ident: 2023_CR5 doi: 10.1016/j.matpr.2019.06.627 – volume: 11 start-page: 181 year: 2023 ident: 2023_CR27 publication-title: Adv. Manuf. doi: 10.1007/s40436-022-00423-z – ident: 2023_CR28 doi: 10.1016/j.ijlmm.2020.12.005 |
| SSID | ssj0068080 |
| Score | 2.3309066 |
| Snippet | Investigation of the optimization of machining processes for oil-hardened nitric steel material, aiming to understand the productivity and quality is carried... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3825 |
| SubjectTerms | Algorithms Alloys Aluminum CAE) and Design Composite materials Computer-Aided Engineering (CAD Digital twins Efficiency Electronics and Microelectronics Energy consumption Engineering Engineering Design Friction stir welding Genetic algorithms Industrial Design Instrumentation Investigations Machining Manufacturing Matlab Mechanical Engineering Neural networks Optimization Optimization techniques Original Article Orthogonal arrays Parameters Process planning Product quality Productivity Regression models Software Statistical analysis Surface finish Surface roughness Taguchi methods User interface Variance analysis |
| Title | Enhancing machining process efficiency through genetic algorithm-driven optimization: a user interface creation |
| URI | https://link.springer.com/article/10.1007/s12008-024-02023-6 https://www.proquest.com/docview/3188777598 |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: AFBBN dateStart: 20070401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1955-2505 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068080 issn: 1955-2513 databaseCode: U2A dateStart: 20070425 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oXPTg24gi2YM3XQPblu16AwMSjZwk0VOzr4IRCoFy8de7225FiZp4aNKk2822M52Z7sz3DcCFz7jilCrMtcexT7WHQ-V5mDeo5L4MqSftPuRjv9kb-PfPwbMDhS2KavciJZlZ6hXYLU_VE98cxtPg5iaUM76tEpRbdy8PncIC224SGRCSBQE2_ttzYJmfZ_nukFZR5lpiNPM33V0YFCvNy0zerpepuJbvaySO_32UPdhxAShq5RqzDxs6OYDtL7SEhzDtJCNLw5EM0SSrtbRnsxxRgHTGOWEBm8j1-EFGBy0UEvHxcDp_TUcTrObWiKKpsUcTB_S8QRzZHRFkCSrmMZcaFQHrEQy6nafbHnaNGbD0WCPFRHFuJGrWb_M2DSmaUodEx74KmTQ_MJoIRuOYchsOxpJwIkIVh3WiKKNMU-8YSsk00SeAGBOWu1yYsSZY4MJED7TOqS-MoihK6hVoFNKJpGMtt80zxtGKbznvpEn8KHuZUbMCl5_3zHLOjj9HVwuhR-77XUTG0lmixICFFbgqZLi6_Ptsp_8bfgZbxDYUziooq1BK50t9bqKcVNSMUnfb7X7NKXcNNgek9QFxQvU5 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86H9QH8ROnU_PgmwbWpG0a34ZsTN32tMHeSpqkm7C1Y6v_v7l-WBUVfCgUmgZ6l9xdc_f7HUK3rpBacq6JNEwSlxtGAs0YkQ5X0lUBZwrOIYcjvz9xn6fetASFbapq9yolmVvqGuxWpOqpay_raYi_jXaAwAoY8ye0U9lf6CWRwyCF5xHrvVkJlfl5jq_uqI4xv6VFc2_TO0QHZZiIO4Vej9CWSY7R_ifywBOUdpM5kGUkM7zMKyLhblXU_WOTM0MArBKXnXiwXSkAWMRyMUvXr9l8SfQaTB1OrdVYlnDMBywxnFtgoJFYx1IZXIWVp2jS644f-6Rsn0AUE05GqJbSyt1-LGRXHBX5ygTUxK4OhLK_GYZGgscxlxC0xYpKGgU6DtpUc8GF4ewMNZI0MecICxEBw3hkx1qXLiPr43lbcjey6tSctpvIqaQYqpJbHFpcLMKaFbnod0ndMJd86DfR3cc7q4JZ48_RrUo5YbnLNqG1R0Bn6Imgie4rhdWPf5_t4n_Db9BufzwchIOn0csl2qPQAjiveWyhRrZ-M1c2Lsmi63wZvgOS99jN |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MTp1Dz4psEtTZvGt6Eb82v44GBvJU3STdjaUev_b64fdooKPhQKvQaaS-6uufv9DqFzJqSWnGsijSMJ48YhvnYcIjtcSaZ87ig4h3waeoMRux-74yUUf17tXqUkC0wDsDTF2dVCR1c18K1I21NmL-t1iLeK1hgQJdgVPaLdyhZDX4kcEilcl1hP7pSwmZ_H-Oqa6njzW4o09zz9bbRVhoy4W-h4B62YeBdtLhEJ7qGkF0-BOCOe4HleHQl3iwIDgE3OEgEQS1x25cF21QB4EcvZJElfs-mc6BTMHk6sBZmX0MxrLDGcYWCglEgjqQyuQsx9NOr3Xm4GpGylQJQjOhmhWkqrA_uxkGnpqNBTxqcmYtoXyv5yGBoKHkVcQgAXKSpp6OvIb1PNBReGOweoESexOURYiBDYxkMra927DK2_523JWWhVqzltN1GnmsVAlTzj0O5iFtQMyUXvS8qCfOYDr4kuPt9ZFCwbf0q3KuUE5Y57C6xtAmpDV_hNdFkprH78-2hH_xM_Q-vPt_3g8W74cIw2KHQDzssfW6iRpe_mxIYoWXiar8IPN4fdCQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+machining+process+efficiency+through+genetic+algorithm-driven+optimization%3A+a+user+interface+creation&rft.jtitle=International+journal+on+interactive+design+and+manufacturing&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1955-2513&rft.eissn=1955-2505&rft.volume=19&rft.issue=5&rft.spage=3825&rft.epage=3837&rft_id=info:doi/10.1007%2Fs12008-024-02023-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1955-2513&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1955-2513&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1955-2513&client=summon |