An electron transfer path connects subunits of a mycobacterial respiratory supercomplex

Respiratory complexes are massive, membrane-embedded scaffolds that position redox cofactors so as to permit electron transfer coupled to the movement of protons across a membrane. Gong et al. used cryo–electron microscopy to determine a structure of a stable assembly of mycobacterial complex III–IV...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 362; no. 6418
Main Authors Gong, Hongri, Li, Jun, Xu, Ao, Tang, Yanting, Ji, Wenxin, Gao, Ruogu, Wang, Shuhui, Yu, Lu, Tian, Changlin, Li, Jingwen, Yen, Hsin-Yung, Man Lam, Sin, Shui, Guanghou, Yang, Xiuna, Sun, Yuna, Li, Xuemei, Jia, Minze, Yang, Cheng, Jiang, Biao, Lou, Zhiyong, Robinson, Carol V., Wong, Luet-Lok, Guddat, Luke W., Sun, Fei, Wang, Quan, Rao, Zihe
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 30.11.2018
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.aat8923

Cover

Abstract Respiratory complexes are massive, membrane-embedded scaffolds that position redox cofactors so as to permit electron transfer coupled to the movement of protons across a membrane. Gong et al. used cryo–electron microscopy to determine a structure of a stable assembly of mycobacterial complex III–IV, in which a complex III dimer is sandwiched between two complex IV monomers. A potential direct electron transfer path stretches from the quinone oxidizing centers in complex III to the oxygen reduction centers in complex IV. A loosely associated superoxide dismutase may play a role in detoxifying superoxide produced from uncoupled oxygen reduction. Science , this issue p. eaat8923 A mycobacterial respiratory supercomplex forgoes soluble electron carriers and associates with superoxide dismutase. We report a 3.5-angstrom-resolution cryo–electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
AbstractList An electron bridge in place of a ferryRespiratory complexes are massive, membrane-embedded scaffolds that position redox cofactors so as to permit electron transfer coupled to the movement of protons across a membrane. Gong et al. used cryo–electron microscopy to determine a structure of a stable assembly of mycobacterial complex III–IV, in which a complex III dimer is sandwiched between two complex IV monomers. A potential direct electron transfer path stretches from the quinone oxidizing centers in complex III to the oxygen reduction centers in complex IV. A loosely associated superoxide dismutase may play a role in detoxifying superoxide produced from uncoupled oxygen reduction.Science, this issue p. eaat8923INTRODUCTIONCellular respiration is a core feature in the metabolism of many organisms that allows for the generation of a proton gradient across a membrane. During respiration, electrons are transferred from electron donors to oxygen through an electron transport chain. The energy created allows protons to be pumped across a membrane (cellular or mitochondrial). In electron transport chains, quinones and cytochrome c are two of the electron carriers that shuttle electrons to and from large macromolecular structures that are embedded in the membrane. The components that allow respiratory chains to function in the mitochondria are well characterized, but the situation is less clear and more varied in prokaryotic systems. A soluble cytochrome c pathway for electron transfer similar to that in mitochondria is commonly found in Gram-negative bacteria. Gram-positive bacteria such as Mycobacteria are devoid of a soluble cytochrome c but instead possess cytochrome c proteins that are anchored onto the membrane or have a fused cytochrome c domain to mediate electron transfer between two of the major complexes, which are referred to as CIII and CIV.Structures of eukaryotic respiratory supercomplexes have been reported, but cytochrome c is not visible in any of these structures. Thus, a complete pathway for electron flow has not yet been visualized. CIII–CIV supercomplexes have been isolated from Mycobacterium smegmatis, Corynebacterium glutamicum, and Mycobacterium tuberculosis and shown to couple quinol oxidation to oxygen reduction without an external electron shuttle, suggesting that the flow of electrons is internalized in this type of complex. The determination of the structure of this complex reveals a path for electron transfer between the subunits of these supercomplexes.RATIONALEThe structural information provided here is required to understand the molecular details of electron transport in Mycobacteria. We have selected the supercomplex CIII–CIV from M. smegmatis because it is highly similar to the CIII–CIV complex from the human pathogen M. tuberculosis. This complex was amenable to expression and purification and analysis by means of cryo–electron microscopy (cryo-EM).RESULTSWe have determined a cryo-EM structure of a respiratory supercomplex isolated from M. smegmatis. The structure allows the complete visualization of 20 subunits that associate to form the complex. Central to the supercomplex is a CIII dimer that is flanked on either side by individual CIV subunits. Fused c-type cytochrome domains bridge and mediate electron transfer from CIII to CIV. The structure also reveals three previously unidentified associated subunits that contribute to the stability of the supercomplex and the presence of superoxide dismutase (SOD), which may be responsible for the detoxification of superoxide formed by CIII.CONCLUSIONThis study of a respiratory supercomplex in Mycobacteria reveals cofactors positioned at distances that permit electron tunneling, enabling direct intrasupercomplex electron transfer from menaquinol to oxygen without the need for a separate cytochrome c electron shuttle. The presence of a bound SOD to the respiratory supercomplex suggests a mechanism of mycobacterial resistance against exogenous and endogenous oxidative stress in macrophages and host immune responses. The structure of the quinone binding sites provides a framework for rational structure-based M. tuberculosis drug discovery. A binding site can be proposed for the candidate antimycobacterial drug Q203, which acts by inhibiting the activity of this supercomplex.We report a 3.5-angstrom-resolution cryo–electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
We report a 3.5-angstrom-resolution cryo-electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.We report a 3.5-angstrom-resolution cryo-electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
Respiratory complexes are massive, membrane-embedded scaffolds that position redox cofactors so as to permit electron transfer coupled to the movement of protons across a membrane. Gong et al. used cryo–electron microscopy to determine a structure of a stable assembly of mycobacterial complex III–IV, in which a complex III dimer is sandwiched between two complex IV monomers. A potential direct electron transfer path stretches from the quinone oxidizing centers in complex III to the oxygen reduction centers in complex IV. A loosely associated superoxide dismutase may play a role in detoxifying superoxide produced from uncoupled oxygen reduction. Science , this issue p. eaat8923 A mycobacterial respiratory supercomplex forgoes soluble electron carriers and associates with superoxide dismutase. We report a 3.5-angstrom-resolution cryo–electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
We report a 3.5-angstrom-resolution cryo-electron microscopy structure of a respiratory supercomplex isolated from It comprises a complex III dimer flanked on either side by individual complex IV subunits. Complex III and IV associate so that electrons can be transferred from quinol in complex III to the oxygen reduction center in complex IV by way of a bridging cytochrome subunit. We observed a superoxide dismutase-like subunit at the periplasmic face, which may be responsible for detoxification of superoxide formed by complex III. The structure reveals features of an established drug target and provides a foundation for the development of treatments for human tuberculosis.
Author Shui, Guanghou
Wong, Luet-Lok
Sun, Yuna
Gao, Ruogu
Lou, Zhiyong
Wang, Quan
Yang, Xiuna
Yen, Hsin-Yung
Rao, Zihe
Wang, Shuhui
Robinson, Carol V.
Li, Xuemei
Yang, Cheng
Jiang, Biao
Gong, Hongri
Sun, Fei
Tang, Yanting
Guddat, Luke W.
Li, Jun
Xu, Ao
Ji, Wenxin
Li, Jingwen
Tian, Changlin
Man Lam, Sin
Yu, Lu
Jia, Minze
Author_xml – sequence: 1
  givenname: Hongri
  orcidid: 0000-0002-2596-7635
  surname: Gong
  fullname: Gong, Hongri
  organization: State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0003-3165-3699
  surname: Li
  fullname: Li, Jun
  organization: Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China., CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
– sequence: 3
  givenname: Ao
  orcidid: 0000-0002-6153-1644
  surname: Xu
  fullname: Xu, Ao
  organization: State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China., National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
– sequence: 4
  givenname: Yanting
  orcidid: 0000-0002-8656-3220
  surname: Tang
  fullname: Tang, Yanting
  organization: State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
– sequence: 5
  givenname: Wenxin
  orcidid: 0000-0002-3671-1301
  surname: Ji
  fullname: Ji, Wenxin
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Ruogu
  surname: Gao
  fullname: Gao, Ruogu
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing, China
– sequence: 7
  givenname: Shuhui
  orcidid: 0000-0002-7198-5754
  surname: Wang
  fullname: Wang, Shuhui
  organization: Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China., CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
– sequence: 8
  givenname: Lu
  orcidid: 0000-0003-4852-0008
  surname: Yu
  fullname: Yu, Lu
  organization: High Magnetic Field Laboratory, CAS, Hefei 230031, China
– sequence: 9
  givenname: Changlin
  surname: Tian
  fullname: Tian, Changlin
  organization: High Magnetic Field Laboratory, CAS, Hefei 230031, China., Hefei National Laboratory of Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
– sequence: 10
  givenname: Jingwen
  surname: Li
  fullname: Li, Jingwen
  organization: Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK
– sequence: 11
  givenname: Hsin-Yung
  surname: Yen
  fullname: Yen, Hsin-Yung
  organization: Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK., OMass Technologies, Begbroke Science Park, Woodstock Rd, Yarnton, Kidlington OX5 1PF, UK
– sequence: 12
  givenname: Sin
  surname: Man Lam
  fullname: Man Lam, Sin
  organization: State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
– sequence: 13
  givenname: Guanghou
  surname: Shui
  fullname: Shui, Guanghou
  organization: State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China
– sequence: 14
  givenname: Xiuna
  surname: Yang
  fullname: Yang, Xiuna
  organization: Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China., CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China
– sequence: 15
  givenname: Yuna
  surname: Sun
  fullname: Sun, Yuna
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
– sequence: 16
  givenname: Xuemei
  surname: Li
  fullname: Li, Xuemei
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
– sequence: 17
  givenname: Minze
  surname: Jia
  fullname: Jia, Minze
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
– sequence: 18
  givenname: Cheng
  orcidid: 0000-0001-9431-290X
  surname: Yang
  fullname: Yang, Cheng
  organization: State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China
– sequence: 19
  givenname: Biao
  surname: Jiang
  fullname: Jiang, Biao
  organization: Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
– sequence: 20
  givenname: Zhiyong
  surname: Lou
  fullname: Lou, Zhiyong
  organization: Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
– sequence: 21
  givenname: Carol V.
  orcidid: 0000-0001-7829-5505
  surname: Robinson
  fullname: Robinson, Carol V.
  organization: Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Rd, Oxford, OX1 3QZ, UK
– sequence: 22
  givenname: Luet-Lok
  orcidid: 0000-0003-4875-1092
  surname: Wong
  fullname: Wong, Luet-Lok
  organization: Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
– sequence: 23
  givenname: Luke W.
  surname: Guddat
  fullname: Guddat, Luke W.
  organization: School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072 Queensland, Australia
– sequence: 24
  givenname: Fei
  orcidid: 0000-0002-0351-5144
  surname: Sun
  fullname: Sun, Fei
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China., University of Chinese Academy of Sciences, Beijing, China
– sequence: 25
  givenname: Quan
  orcidid: 0000-0001-5148-5210
  surname: Wang
  fullname: Wang, Quan
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China
– sequence: 26
  givenname: Zihe
  orcidid: 0000-0001-9866-2384
  surname: Rao
  fullname: Rao, Zihe
  organization: State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin 300353, China., Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China., CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China., National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, CAS, Beijing 100101, China., Laboratory of Structural Biology, Tsinghua University, Beijing 100084, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30361386$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFr3DAQhUXYkuxue-6tGHrJxVnJsizruCxJGgjk0tKjGGtHVMGWXEmG7r-vSnYvgZ5m4H1vGN7bkJUPHgn5zOgdY023S8ahN3gHkHvV8CuyZlSJWjWUr8iaUt7VPZXihmxSeqW0aIpfkxteBMb7bk1-7n2FI5ocg69yBJ8sxmqG_KsywfsipCotw-JdWYKtoJpOJgxgMkYHYxUxzS5CDvFUuBmjCdM84p-P5IOFMeGn89ySHw_33w_f6ueXx6fD_rk2XLFcN4weOwEISg1Hw8ocqGF9w1XHO3NsQErLgMpOsmGQ0FMhhW3BSmpbaVvDt-T27e4cw-8FU9aTSwbHETyGJemmpKSo7FtR0K_v0NewRF--K5Sgoi0cK9SXM7UMEx71HN0E8aQvkRVAvAEmhpQiWm1chuyCL_G5UTOq_1Wjz9XoczXFt3vnu5z-n-MvI82U7w
CitedBy_id crossref_primary_10_1038_s41467_021_24924_w
crossref_primary_10_3390_app10072339
crossref_primary_10_1080_07391102_2019_1688196
crossref_primary_10_1016_j_hlife_2024_03_003
crossref_primary_10_2142_biophysico_bppb_v18_020
crossref_primary_10_1021_acs_jmedchem_5c00049
crossref_primary_10_1021_acs_est_3c05870
crossref_primary_10_1111_mmi_14701
crossref_primary_10_1016_j_drudis_2020_02_003
crossref_primary_10_7554_eLife_62047
crossref_primary_10_1002_anie_202002546
crossref_primary_10_1038_s41422_019_0208_x
crossref_primary_10_1128_JB_00104_19
crossref_primary_10_1002_ange_202302595
crossref_primary_10_1073_pnas_2214949120
crossref_primary_10_1039_D3MD00019B
crossref_primary_10_1073_pnas_2022308118
crossref_primary_10_1021_acs_jmedchem_2c00227
crossref_primary_10_1007_s11030_021_10335_y
crossref_primary_10_1038_s41467_024_49628_9
crossref_primary_10_1021_acsinfecdis_9b00408
crossref_primary_10_1002_anie_202016785
crossref_primary_10_1016_j_jmgm_2022_108347
crossref_primary_10_1016_j_bbabio_2019_148116
crossref_primary_10_1021_acs_chemrev_0c00712
crossref_primary_10_1016_j_jbc_2023_104761
crossref_primary_10_1242_jeb_223776
crossref_primary_10_3389_fcimb_2020_589318
crossref_primary_10_1016_j_apsb_2025_01_022
crossref_primary_10_1073_pnas_2021157118
crossref_primary_10_1002_anie_201911554
crossref_primary_10_1021_acs_chemrev_1c00140
crossref_primary_10_1002_ajoc_202400704
crossref_primary_10_3390_ijms21228521
crossref_primary_10_15252_emmm_202013207
crossref_primary_10_3389_fmicb_2021_683260
crossref_primary_10_1002_cmdc_202400303
crossref_primary_10_1128_mBio_01088_21
crossref_primary_10_1002_smll_202411265
crossref_primary_10_1073_pnas_2025658118
crossref_primary_10_15252_embr_202357092
crossref_primary_10_1002_ange_201911554
crossref_primary_10_3389_fchem_2022_860398
crossref_primary_10_1042_BST20190963
crossref_primary_10_1111_1758_2229_12781
crossref_primary_10_1073_pnas_2307093120
crossref_primary_10_1126_sciadv_aaz5757
crossref_primary_10_1016_j_jcis_2021_04_072
crossref_primary_10_1002_ange_202002546
crossref_primary_10_1134_S0006297921010028
crossref_primary_10_1080_13543784_2022_2030309
crossref_primary_10_1016_j_ijms_2022_116968
crossref_primary_10_1073_pnas_2423761122
crossref_primary_10_3389_fmicb_2024_1347466
crossref_primary_10_1016_j_bbabio_2021_148433
crossref_primary_10_1007_s00232_021_00179_w
crossref_primary_10_1016_j_jbc_2023_105483
crossref_primary_10_1038_s41467_024_52475_3
crossref_primary_10_1039_D3CS00537B
crossref_primary_10_1002_ange_202016785
crossref_primary_10_1371_journal_pone_0231965
crossref_primary_10_1038_s41589_025_01836_0
crossref_primary_10_1016_j_str_2021_11_008
crossref_primary_10_2174_1874467214666210928152512
crossref_primary_10_1073_pnas_2412780121
crossref_primary_10_1089_mdr_2020_0239
crossref_primary_10_1002_2211_5463_13086
crossref_primary_10_1016_j_pbiomolbio_2020_02_001
crossref_primary_10_1038_s41467_022_28179_x
crossref_primary_10_1073_pnas_1907183116
crossref_primary_10_1016_j_ijbiomac_2022_05_124
crossref_primary_10_1016_j_cclet_2020_04_007
crossref_primary_10_1021_acsinfecdis_9b00322
crossref_primary_10_1016_j_celrep_2021_110154
crossref_primary_10_1038_s41467_020_18011_9
crossref_primary_10_1007_s13238_019_00681_x
crossref_primary_10_1016_j_bbabio_2020_148308
crossref_primary_10_1093_procel_pwad022
crossref_primary_10_31857_S0320972521010024
crossref_primary_10_3390_biomedicines9121763
crossref_primary_10_3390_ijms23137321
crossref_primary_10_1016_j_pbiomolbio_2023_04_009
crossref_primary_10_1016_j_bbabio_2019_06_005
crossref_primary_10_1186_s12866_020_01940_2
crossref_primary_10_1038_s41467_024_46018_z
crossref_primary_10_1002_anie_202302595
crossref_primary_10_2174_1570179420666230316094435
crossref_primary_10_1073_pnas_2403421121
crossref_primary_10_1021_acs_nanolett_4c05560
crossref_primary_10_1038_s41579_020_00486_4
crossref_primary_10_1080_08927022_2022_2068800
crossref_primary_10_3389_fcimb_2022_980844
crossref_primary_10_3390_ph13090227
crossref_primary_10_1080_17460441_2023_2224553
crossref_primary_10_1002_med_22100
crossref_primary_10_1038_s41594_019_0184_3
crossref_primary_10_5817_CSF2021_5_164
crossref_primary_10_1007_s00253_019_09848_2
crossref_primary_10_1038_s41467_021_21051_4
crossref_primary_10_1128_aac_01531_22
crossref_primary_10_7554_eLife_69418
crossref_primary_10_1016_j_isci_2021_103573
crossref_primary_10_34133_2019_6717104
crossref_primary_10_1016_j_bbabio_2022_148585
crossref_primary_10_2174_1568026620666200903163921
crossref_primary_10_1021_acs_nanolett_1c02828
crossref_primary_10_1016_j_lfs_2024_122778
crossref_primary_10_1080_07391102_2023_2294833
crossref_primary_10_1038_s42003_024_06562_2
crossref_primary_10_1080_17460441_2020_1696771
crossref_primary_10_7554_eLife_71959
crossref_primary_10_1002_chem_202100700
crossref_primary_10_1016_j_chemphyslip_2019_03_007
crossref_primary_10_1107_S2053230X2300523X
crossref_primary_10_1002_med_21779
crossref_primary_10_1038_s41586_024_07605_8
Cites_doi 10.1038/nmeth.2472
10.1016/j.mib.2014.06.008
10.1016/S0021-9258(18)63504-5
10.1007/s002030100262
10.1093/emboj/19.8.1766
10.1038/355796a0
10.1111/acel.12144
10.1016/j.bbabio.2011.09.020
10.1016/j.ultramic.2013.06.004
10.1016/j.jsb.2015.11.003
10.1038/nmeth.4193
10.1073/pnas.77.1.147
10.1038/cdd.2011.105
10.1038/376660a0
10.1016/j.freeradbiomed.2010.02.020
10.1126/science.280.5370.1723
10.1038/33612
10.1073/pnas.94.20.10547
10.1016/S0076-6879(08)04405-4
10.1007/BF00249037
10.1016/j.jsb.2014.11.010
10.1016/j.cell.2005.05.025
10.1042/bj3590017
10.1093/glycob/cwn102
10.1093/bioinformatics/16.4.404
10.1074/jbc.M404699200
10.1016/j.cmet.2017.03.009
10.1074/jbc.M114.624312
10.7554/eLife.18722
10.1042/bj1910421
10.1002/pmic.200800017
10.1128/JB.188.8.2761-2773.2006
10.1128/genomeA.00092-14
10.1016/j.jmb.2011.11.010
10.1038/nprot.2006.62
10.1038/nmeth.2727
10.1016/j.jsb.2012.09.006
10.1038/s41598-018-20989-8
10.1038/nprot.2015.053
10.1038/nature11871
10.1194/jlr.M044826
10.1038/s41586-018-0061-y
10.1016/S0022-2836(02)00619-8
10.1093/nar/gkw357
10.1038/ncomms5029
10.1111/j.1432-1033.1991.tb15732.x
10.1126/science.1079605
10.1074/jbc.M112.367888
10.1038/nm.3262
10.1016/j.jmb.2003.07.013
10.1016/j.jsb.2006.05.009
10.1107/S0907444909052925
10.1002/jcc.20084
10.1038/nsmb.3460
10.1126/science.277.5322.60
10.1038/nature19774
10.1096/fj.02-0729fje
10.1126/science.281.5373.64
10.1016/B978-0-12-394423-8.00006-8
10.1128/IAI.69.8.4980-4987.2001
10.1038/nature13686
10.1038/srep34098
10.1038/31159
10.1016/S0021-9258(18)89576-X
10.1126/science.1190899
10.1099/mic.0.28723-0
10.1073/pnas.1720702115
10.1016/j.jsb.2005.07.007
10.1038/nmeth.3213
10.1016/S0014-5793(00)01082-6
10.1016/j.bbabio.2016.07.009
10.1099/mic.0.022889-0
10.1042/BST0361022
10.1038/nature19095
10.1016/j.bbabio.2015.11.001
10.1126/science.1123061
10.1007/978-81-322-2035-0_2
10.1016/0076-6879(57)04060-4
10.1016/0005-2728(82)90101-3
10.1016/S0005-2728(00)00205-X
10.1002/emmm.201100185
10.1007/s10863-012-9454-z
10.1016/j.cels.2017.10.017
10.1074/jbc.274.37.26179
10.1074/jbc.M116.744391
10.1074/jbc.273.9.5132
10.1038/191144a0
10.1016/j.bbabio.2009.04.003
10.1021/bi00230a019
10.1126/science.272.5265.1136
10.1107/S0907444910007493
10.15252/embj.201695021
ContentType Journal Article
Copyright Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aat8923
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 30361386
10_1126_science_aat8923
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
C51
CITATION
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
0B8
CGR
CUY
CVF
ECM
EIF
ESX
GX1
IGG
NPM
OK1
PKN
RHF
UIG
VQA
YCJ
YIF
YIN
ZKG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c391t-210d65aea99bdc1ea9b0c18239636cd2a77f1a07671bb7a80575f4af70f47f4c3
ISSN 0036-8075
1095-9203
IngestDate Sat Sep 27 19:41:11 EDT 2025
Fri Jul 25 10:39:18 EDT 2025
Wed Feb 19 02:35:22 EST 2025
Tue Jul 01 01:51:23 EDT 2025
Thu Apr 24 23:09:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6418
Language English
License Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c391t-210d65aea99bdc1ea9b0c18239636cd2a77f1a07671bb7a80575f4af70f47f4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6153-1644
0000-0001-9866-2384
0000-0001-9431-290X
0000-0002-8656-3220
0000-0001-7829-5505
0000-0003-3165-3699
0000-0002-3671-1301
0000-0002-7198-5754
0000-0003-4875-1092
0000-0002-2596-7635
0000-0003-4852-0008
0000-0001-5148-5210
0000-0002-0351-5144
PMID 30361386
PQID 2150549071
PQPubID 1256
ParticipantIDs proquest_miscellaneous_2126907845
proquest_journals_2150549071
pubmed_primary_30361386
crossref_citationtrail_10_1126_science_aat8923
crossref_primary_10_1126_science_aat8923
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-30
20181130
PublicationDateYYYYMMDD 2018-11-30
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-30
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2018
Publisher The American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
Felsenstein J. (e_1_3_2_93_2) 1989; 5
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_94_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_91_2
e_1_3_2_72_2
e_1_3_2_70_2
References_xml – ident: e_1_3_2_74_2
  doi: 10.1038/nmeth.2472
– ident: e_1_3_2_53_2
  doi: 10.1016/j.mib.2014.06.008
– ident: e_1_3_2_67_2
  doi: 10.1016/S0021-9258(18)63504-5
– ident: e_1_3_2_32_2
  doi: 10.1007/s002030100262
– ident: e_1_3_2_47_2
  doi: 10.1093/emboj/19.8.1766
– ident: e_1_3_2_50_2
  doi: 10.1038/355796a0
– ident: e_1_3_2_58_2
  doi: 10.1111/acel.12144
– ident: e_1_3_2_38_2
  doi: 10.1016/j.bbabio.2011.09.020
– ident: e_1_3_2_77_2
  doi: 10.1016/j.ultramic.2013.06.004
– ident: e_1_3_2_76_2
  doi: 10.1016/j.jsb.2015.11.003
– ident: e_1_3_2_75_2
  doi: 10.1038/nmeth.4193
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.77.1.147
– ident: e_1_3_2_65_2
  doi: 10.1038/cdd.2011.105
– ident: e_1_3_2_23_2
  doi: 10.1038/376660a0
– ident: e_1_3_2_56_2
  doi: 10.1016/j.freeradbiomed.2010.02.020
– ident: e_1_3_2_25_2
  doi: 10.1126/science.280.5370.1723
– ident: e_1_3_2_22_2
  doi: 10.1038/33612
– ident: e_1_3_2_48_2
  doi: 10.1073/pnas.94.20.10547
– ident: e_1_3_2_49_2
  doi: 10.1016/S0076-6879(08)04405-4
– ident: e_1_3_2_34_2
  doi: 10.1007/BF00249037
– ident: e_1_3_2_70_2
  doi: 10.1016/j.jsb.2014.11.010
– ident: e_1_3_2_19_2
  doi: 10.1016/j.cell.2005.05.025
– ident: e_1_3_2_36_2
  doi: 10.1042/bj3590017
– ident: e_1_3_2_89_2
  doi: 10.1093/glycob/cwn102
– ident: e_1_3_2_80_2
  doi: 10.1093/bioinformatics/16.4.404
– ident: e_1_3_2_37_2
  doi: 10.1074/jbc.M404699200
– volume: 5
  start-page: 164
  year: 1989
  ident: e_1_3_2_93_2
  article-title: PHYLIP—Phylogeny Inference Package (Version 3.2)
  publication-title: Cladistics
– ident: e_1_3_2_29_2
  doi: 10.1016/j.cmet.2017.03.009
– ident: e_1_3_2_33_2
  doi: 10.1074/jbc.M114.624312
– ident: e_1_3_2_73_2
  doi: 10.7554/eLife.18722
– ident: e_1_3_2_52_2
  doi: 10.1042/bj1910421
– ident: e_1_3_2_61_2
  doi: 10.1002/pmic.200800017
– ident: e_1_3_2_35_2
  doi: 10.1128/JB.188.8.2761-2773.2006
– ident: e_1_3_2_59_2
  doi: 10.1128/genomeA.00092-14
– ident: e_1_3_2_71_2
  doi: 10.1016/j.jmb.2011.11.010
– ident: e_1_3_2_60_2
  doi: 10.1038/nprot.2006.62
– ident: e_1_3_2_79_2
  doi: 10.1038/nmeth.2727
– ident: e_1_3_2_72_2
  doi: 10.1016/j.jsb.2012.09.006
– ident: e_1_3_2_43_2
  doi: 10.1038/s41598-018-20989-8
– ident: e_1_3_2_81_2
  doi: 10.1038/nprot.2015.053
– ident: e_1_3_2_15_2
  doi: 10.1038/nature11871
– ident: e_1_3_2_63_2
  doi: 10.1194/jlr.M044826
– ident: e_1_3_2_12_2
  doi: 10.1038/s41586-018-0061-y
– ident: e_1_3_2_39_2
  doi: 10.1016/S0022-2836(02)00619-8
– ident: e_1_3_2_92_2
  doi: 10.1093/nar/gkw357
– ident: e_1_3_2_41_2
  doi: 10.1038/ncomms5029
– ident: e_1_3_2_7_2
  doi: 10.1111/j.1432-1033.1991.tb15732.x
– ident: e_1_3_2_18_2
  doi: 10.1126/science.1079605
– ident: e_1_3_2_27_2
  doi: 10.1074/jbc.M112.367888
– ident: e_1_3_2_42_2
  doi: 10.1038/nm.3262
– ident: e_1_3_2_78_2
  doi: 10.1016/j.jmb.2003.07.013
– ident: e_1_3_2_69_2
  doi: 10.1016/j.jsb.2006.05.009
– ident: e_1_3_2_83_2
  doi: 10.1107/S0907444909052925
– ident: e_1_3_2_85_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_2_28_2
  doi: 10.1038/nsmb.3460
– ident: e_1_3_2_20_2
  doi: 10.1126/science.277.5322.60
– ident: e_1_3_2_26_2
  doi: 10.1038/nature19774
– ident: e_1_3_2_54_2
  doi: 10.1096/fj.02-0729fje
– ident: e_1_3_2_21_2
  doi: 10.1126/science.281.5373.64
– ident: e_1_3_2_40_2
  doi: 10.1016/B978-0-12-394423-8.00006-8
– ident: e_1_3_2_57_2
  doi: 10.1128/IAI.69.8.4980-4987.2001
– ident: e_1_3_2_16_2
  doi: 10.1038/nature13686
– ident: e_1_3_2_66_2
  doi: 10.1038/srep34098
– ident: e_1_3_2_9_2
  doi: 10.1038/31159
– ident: e_1_3_2_4_2
  doi: 10.1016/S0021-9258(18)89576-X
– ident: e_1_3_2_44_2
  doi: 10.1126/science.1190899
– ident: e_1_3_2_10_2
  doi: 10.1099/mic.0.28723-0
– ident: e_1_3_2_31_2
  doi: 10.1073/pnas.1720702115
– ident: e_1_3_2_68_2
  doi: 10.1016/j.jsb.2005.07.007
– ident: e_1_3_2_84_2
  doi: 10.1038/nmeth.3213
– ident: e_1_3_2_55_2
  doi: 10.1016/S0014-5793(00)01082-6
– ident: e_1_3_2_11_2
  doi: 10.1016/j.bbabio.2016.07.009
– ident: e_1_3_2_95_2
  doi: 10.1099/mic.0.022889-0
– ident: e_1_3_2_14_2
  doi: 10.1042/BST0361022
– ident: e_1_3_2_17_2
  doi: 10.1038/nature19095
– ident: e_1_3_2_3_2
  doi: 10.1016/j.bbabio.2015.11.001
– ident: e_1_3_2_94_2
  doi: 10.1126/science.1123061
– ident: e_1_3_2_51_2
  doi: 10.1007/978-81-322-2035-0_2
– ident: e_1_3_2_86_2
– ident: e_1_3_2_88_2
  doi: 10.1016/0076-6879(57)04060-4
– ident: e_1_3_2_87_2
  doi: 10.1016/0005-2728(82)90101-3
– ident: e_1_3_2_8_2
  doi: 10.1016/S0005-2728(00)00205-X
– ident: e_1_3_2_64_2
  doi: 10.1002/emmm.201100185
– ident: e_1_3_2_62_2
  doi: 10.1007/s10863-012-9454-z
– ident: e_1_3_2_30_2
  doi: 10.1016/j.cels.2017.10.017
– ident: e_1_3_2_6_2
  doi: 10.1074/jbc.274.37.26179
– ident: e_1_3_2_90_2
  doi: 10.1074/jbc.M116.744391
– ident: e_1_3_2_45_2
  doi: 10.1074/jbc.273.9.5132
– ident: e_1_3_2_2_2
  doi: 10.1038/191144a0
– ident: e_1_3_2_91_2
  doi: 10.1016/j.bbabio.2009.04.003
– ident: e_1_3_2_13_2
  doi: 10.1021/bi00230a019
– ident: e_1_3_2_24_2
  doi: 10.1126/science.272.5265.1136
– ident: e_1_3_2_82_2
  doi: 10.1107/S0907444910007493
– ident: e_1_3_2_46_2
  doi: 10.15252/embj.201695021
SSID ssj0009593
Score 2.6016371
Snippet Respiratory complexes are massive, membrane-embedded scaffolds that position redox cofactors so as to permit electron transfer coupled to the movement of...
We report a 3.5-angstrom-resolution cryo-electron microscopy structure of a respiratory supercomplex isolated from It comprises a complex III dimer flanked on...
An electron bridge in place of a ferryRespiratory complexes are massive, membrane-embedded scaffolds that position redox cofactors so as to permit electron...
We report a 3.5-angstrom-resolution cryo-electron microscopy structure of a respiratory supercomplex isolated from Mycobacterium smegmatis. It comprises a...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
SubjectTerms Actinobacteria - enzymology
Bacteria
Bacterial Proteins - chemistry
Binding sites
Cofactors
Corynebacterium glutamicum
Cryoelectron Microscopy
Cytochrome
Cytochrome c
Cytochromes
Detoxification
Dimers
Domains
Drug discovery
Electron microscopy
Electron transfer
Electron Transport
Electron transport chain
Electron Transport Complex III - chemistry
Electron Transport Complex IV - chemistry
Electron tunneling
Gram-negative bacteria
Gram-positive bacteria
Hydroquinone
Immune response
Macromolecules
Macrophages
Membranes
Metabolism
Microscopy
Mitochondria
Molecular structure
Monomers
Mycobacterium smegmatis
Mycobacterium smegmatis - enzymology
Mycobacterium tuberculosis
Oxidation resistance
Oxidation-Reduction
Oxidative Phosphorylation
Oxidative stress
Oxygen
Oxygen - metabolism
Protein Multimerization
Proteins
Protons
Quinones
Reduction
Respiration
Spacecraft components
Superoxide dismutase
Superoxide Dismutase - chemistry
Transmission electron microscopy
Tuberculosis
Title An electron transfer path connects subunits of a mycobacterial respiratory supercomplex
URI https://www.ncbi.nlm.nih.gov/pubmed/30361386
https://www.proquest.com/docview/2150549071
https://www.proquest.com/docview/2126907845
Volume 362
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1095-9203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009593
  issn: 0036-8075
  databaseCode: ABDBF
  dateStart: 19900105
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagE2gviI1bYSAj8TA0pUqc1I4fM2BUSPC0ifIUOYktVdrSqk0kxq_n-Ja6QCXgJaliJ6n8fT4-xzkXhN4ACVIB61qU1bKJMpEkEU9pHGWqSSSTU66Ujnf-_IXOrrJP8-l86xJkoku6alL_-GNcyf-gCtcAVx0l-w_IDg-FC_Ab8IUjIAzHv8K4aM98GRtd6wE0ULnWmVKNM3lr_DQ2fdW3C-uwIc5ubmuYvyY_s0nov_3MvulXcm38y-X3UGH1cx8U0eHjTgDp4KVYWF8C71rgbgv2GT46398ZnNeLwQ9oYUNDBorOeyOtltsdBXvbN2FKWoSbFEnukyPqNcYK1ljXhCRxGkrelJKAYjSzkvh3oR6UoZQTIbqc2xjlAOLVjcFYL8hJ-mtybbtcu6a76IAwSskIHRTn788vdlI0u-RPQViVf98huu-fsKvC7LFLjH5y-RA9cIYFLixLjtAd2R6je7bU6O0xOnKIbPCpyzT-9hH6WrTYEwh7AmFNIOwJhD2B8FJhgXcIhAMC4ZBAj9HVxYfLd7PIVdqI6pQnXQR2f0OnQgrOq6ZO4FzFNVieKYhnWjdEMKYSETPKkqpiItdKvsqEYrHKmMrq9AkatctWPkM4Jg1LCaccemZNBeuDAgtfcsFIDqridIwmfvDK2qWh19VQrktjjhJauoEv3cCP0elww8pmYNnf9cSjUbppuinhnWCWcFClx-j10AxCVH8ZE61c9roP0btEeQZ_76lFcXiXR_353pYX6HDL-RM06ta9fAmqale9chz7Cd1JmTk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+electron+transfer+path+connects+subunits+of+a+mycobacterial+respiratory+supercomplex&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Gong%2C+Hongri&rft.au=Li%2C+Jun&rft.au=Xu%2C+Ao&rft.au=Tang%2C+Yanting&rft.date=2018-11-30&rft.eissn=1095-9203&rft.volume=362&rft.issue=6418&rft_id=info:doi/10.1126%2Fscience.aat8923&rft_id=info%3Apmid%2F30361386&rft.externalDocID=30361386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon