Improved prairie dog optimization algorithm by dwarf mongoose optimization algorithm for optimization problems

Recently, optimization problems have been revised in many domains, and they need powerful search methods to address them. In this paper, a novel hybrid optimization algorithm is proposed to solve various benchmark functions, which is called IPDOA. The proposed method is based on enhancing the search...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 11; pp. 32613 - 32653
Main Authors Abualigah, Laith, Oliva, Diego, Jia, Heming, Gul, Faiza, Khodadadi, Nima, Hussien, Abdelazim G, Shinwan, Mohammad Al, Ezugwu, Absalom E., Abuhaija, Belal, Zitar, Raed Abu
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN1573-7721
1380-7501
1573-7721
DOI10.1007/s11042-023-16890-w

Cover

Abstract Recently, optimization problems have been revised in many domains, and they need powerful search methods to address them. In this paper, a novel hybrid optimization algorithm is proposed to solve various benchmark functions, which is called IPDOA. The proposed method is based on enhancing the search process of the Prairie Dog Optimization Algorithm (PDOA) by using the primary updating mechanism of the Dwarf Mongoose Optimization Algorithm (DMOA). The main aim of the proposed IPDOA is to avoid the main weaknesses of the original methods; these weaknesses are poor convergence ability, the imbalance between the search process, and premature convergence. Experiments are conducted on 23 standard benchmark functions, and the results are compared with similar methods from the literature. The results are recorded in terms of the best, worst, and average fitness function, showing that the proposed method is more vital to deal with various problems than other methods.
AbstractList Recently, optimization problems have been revised in many domains, and they need powerful search methods to address them. In this paper, a novel hybrid optimization algorithm is proposed to solve various benchmark functions, which is called IPDOA. The proposed method is based on enhancing the search process of the Prairie Dog Optimization Algorithm (PDOA) by using the primary updating mechanism of the Dwarf Mongoose Optimization Algorithm (DMOA). The main aim of the proposed IPDOA is to avoid the main weaknesses of the original methods; these weaknesses are poor convergence ability, the imbalance between the search process, and premature convergence. Experiments are conducted on 23 standard benchmark functions, and the results are compared with similar methods from the literature. The results are recorded in terms of the best, worst, and average fitness function, showing that the proposed method is more vital to deal with various problems than other methods.
Author Hussien, Abdelazim G
Ezugwu, Absalom E.
Abuhaija, Belal
Shinwan, Mohammad Al
Abualigah, Laith
Khodadadi, Nima
Zitar, Raed Abu
Gul, Faiza
Oliva, Diego
Jia, Heming
Author_xml – sequence: 1
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
  email: aligah.2020@gmail.com
  organization: Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al al-Bayt University, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Department of Electrical and Computer Engineering, Lebanese American University, MEU Research Unit, Middle East University, Applied Science Research Center, Applied Science Private University, School of Computer Sciences, Universiti Sains Malaysia, School of Engineering and Technology, Sunway University Malaysia
– sequence: 2
  givenname: Diego
  surname: Oliva
  fullname: Oliva, Diego
  organization: Depto. de Innovación Basada en la Información y el Conocimiento, Universidad de Guadalajara, CUCEI
– sequence: 3
  givenname: Heming
  surname: Jia
  fullname: Jia, Heming
  organization: School of Information Engineering, Sanming University
– sequence: 4
  givenname: Faiza
  surname: Gul
  fullname: Gul, Faiza
  organization: Department of Electrical Engineering, Aerospace and Avionics, Campus Kamra, Air University
– sequence: 5
  givenname: Nima
  surname: Khodadadi
  fullname: Khodadadi, Nima
  organization: Department of Civil and Environmental Engineering, Florida International University
– sequence: 6
  givenname: Abdelazim G
  surname: Hussien
  fullname: Hussien, Abdelazim G
  organization: Department of Computer and Information Science, Linköping University, Faculty of Science, Fayoum University
– sequence: 7
  givenname: Mohammad Al
  surname: Shinwan
  fullname: Shinwan, Mohammad Al
  organization: Faculty of Information Technology, Applied Science Private University
– sequence: 8
  givenname: Absalom E.
  surname: Ezugwu
  fullname: Ezugwu, Absalom E.
  organization: Unit for Data Science and Computing, North-West University
– sequence: 9
  givenname: Belal
  surname: Abuhaija
  fullname: Abuhaija, Belal
  email: babuhaij@kean.edu
  organization: Department of Computer Science, Wenzhou-Kean University
– sequence: 10
  givenname: Raed Abu
  surname: Zitar
  fullname: Zitar, Raed Abu
  organization: Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi
BackLink https://hal.science/hal-04217676$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-198502$$DView record from Swedish Publication Index
BookMark eNp9kUtPxCAUhYnRREf9A66auHJR5VJaynIyPsZkEjfqlkBLK6YtFTpOxl8vM9X4SHQFge_ce889E7Tb2U4jdAL4HDBmFx4AUxJjksSQ5RzHqx10AClLYsYI7H6776OJ988YQ5YSeoC627Z39lWXUe-kcUZHpa0j2w-mNW9yMLaLZFNbZ4anNlLrqFxJV0Wt7Wprvf4LrKz7-RV6qEa3_gjtVbLx-vjjPEQP11f3s3m8uLu5nU0XcZFwGGKQBaGM0FTmSmMqeZ5BXgDPmcIs48DKXJW8oKWSOuGKJhpnhKgq0SXNoCLJIYrHun6l-6USvTOtdGthpRGX5nEqrKtFY5Yi1Ezxhj8b-SfZ_IDn04XYvIXtAstY9gqBPR3ZYOplqf0gnu3SdcGOIDwlwCmQDZWPVOGs905XojDDdhlDWHQjAItNcmJMToQZxDY5sQpS8kv6OdG_ouTDcYC7Wruvqf5RvQOqOLAt
CitedBy_id crossref_primary_10_3390_f15101783
crossref_primary_10_1038_s41598_024_76545_0
crossref_primary_10_1007_s12530_024_09584_7
crossref_primary_10_1016_j_jnca_2024_104042
crossref_primary_10_1007_s00521_024_09879_5
crossref_primary_10_1007_s10586_024_04674_2
crossref_primary_10_1007_s40435_024_01434_3
crossref_primary_10_1109_ACCESS_2023_3346533
crossref_primary_10_1016_j_dajour_2025_100551
crossref_primary_10_1109_ACCESS_2023_3346045
crossref_primary_10_32604_cmc_2024_052804
crossref_primary_10_1007_s11518_024_5635_7
crossref_primary_10_1007_s41870_024_02211_3
crossref_primary_10_1007_s10586_024_04816_6
crossref_primary_10_1038_s41598_024_77120_3
Cites_doi 10.3390/electronics11121919
10.1109/ACCESS.2020.3013332
10.3390/a13120345
10.1016/j.cma.2022.114570
10.1016/j.swevo.2015.05.002
10.1007/s13042-021-01326-4
10.1126/science.220.4598.671
10.1016/j.eswa.2022.118272
10.1016/j.eswa.2021.116158
10.1016/j.asoc.2015.03.003
10.1016/j.eswa.2022.116895
10.1515/mt-2020-0076
10.3390/electronics10232975
10.1109/ACCESS.2021.3085529
10.3390/math10132351
10.1007/978-3-031-02462-7_11
10.1155/2021/7231126
10.4018/jsir.2010010101
10.1007/s00521-015-1870-7
10.3390/math10081311
10.1080/0305215X.2019.1624740
10.1007/s10489-021-02980-5
10.1016/j.asoc.2019.106018
10.1016/j.asoc.2021.107389
10.1007/s10489-020-01947-2
10.1016/j.asoc.2015.09.007
10.1109/WiDS-PSU54548.2022.00020
10.1109/INTELCIS.2017.8260031
10.1109/ACCESS.2020.3024108
10.1007/978-981-10-8863-6_9
10.1016/j.jksuci.2020.12.013
10.1007/s10462-020-09909-3
10.3390/math10101696
10.1016/j.ins.2009.03.004
10.1016/j.eswa.2013.05.041
10.1007/s00521-013-1367-1
10.1007/s00366-021-01542-0
10.1007/978-3-642-30504-7_8
10.1007/s12652-021-02892-9
10.1016/j.eswa.2018.06.023
10.1007/s00366-020-01034-7
10.1038/scientificamerican0792-66
10.1007/s00521-022-07530-9
10.1007/s11276-021-02866-x
10.1016/j.future.2019.07.015
10.1109/ACCESS.2020.2990338
10.1109/INTELCIS.2017.8260072
10.1080/0952813X.2020.1737246
10.1016/j.cma.2020.113609
10.1016/j.advengsoft.2013.12.007
10.1007/s10489-017-1019-8
10.1016/j.cie.2021.107250
10.3390/math8101821
10.3390/math9182230
10.1016/j.compstruct.2021.114287
10.1016/j.advengsoft.2015.01.010
10.1016/j.advengsoft.2005.04.005
10.1016/j.jocs.2017.07.018
10.1109/ICNN.1995.488968
10.1016/j.knosys.2022.108320
10.1007/s00521-019-04629-4
10.1109/TEVC.2008.919004
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
ADTPV
AOWAS
DG8
DOI 10.1007/s11042-023-16890-w
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)



Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Physics
EISSN 1573-7721
EndPage 32653
ExternalDocumentID oai_DiVA_org_liu_198502
oai:HAL:hal-04217676v1
10_1007_s11042_023_16890_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
Q9U
1XC
ADHKG
AGQPQ
ADTPV
AOWAS
DG8
ID FETCH-LOGICAL-c391t-1ac247245a8be04a98618c1987b076917d8bd9c4dbae39b43e0622bf3ed461f23
IEDL.DBID U2A
ISSN 1573-7721
1380-7501
IngestDate Tue Sep 09 23:44:08 EDT 2025
Tue Oct 14 20:32:37 EDT 2025
Sat Aug 23 13:57:48 EDT 2025
Wed Oct 01 04:51:36 EDT 2025
Thu Apr 24 23:13:25 EDT 2025
Fri Feb 21 02:41:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Benchmark functions
Prairie dog optimization algorithm
Optimization problems
Dwarf mongoose optimization algorithm
Meta-heuristics
Language English
License Copyright: http://hal.archives-ouvertes.fr/licences/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c391t-1ac247245a8be04a98618c1987b076917d8bd9c4dbae39b43e0622bf3ed461f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2203-4549
PQID 2952194121
PQPubID 54626
PageCount 41
ParticipantIDs swepub_primary_oai_DiVA_org_liu_198502
hal_primary_oai_HAL_hal_04217676v1
proquest_journals_2952194121
crossref_citationtrail_10_1007_s11042_023_16890_w
crossref_primary_10_1007_s11042_023_16890_w
springer_journals_10_1007_s11042_023_16890_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References ZhangXZhaoKNiuYImproved harris hawks optimization based on adaptive cooperative foraging and dispersed foraging strategiesIEEE Access20208160297160314
WangSHussienAGJiaHAbualigahLZhengREnhanced remora optimization algorithm for solving constrained engineering optimization problemsMathematics2022101016961:CAS:528:DC%2BB38XisFGku77I
LynnNSuganthanPNHeterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitationSwarm Evol Comput2015241124
MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput & Applic2016272495513
WuGPedryczWSuganthanPNMallipeddiRA variable reduction strategy for evolutionary algorithms handling equality constraintsAppl Soft Comput201537774786
PremkumarMJangirPKumarBSSowmyaRAlhelouHHAbualigahLYildizARMirjaliliSA new arithmetic optimization algorithm for solving real-world multiobjective cec-2021 constrained optimization problems: diversity analysis and validationsIEEE Access202198426384295
Nadimi-ShahrakiMHZamaniHDmde: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimizationExpert Syst Appl2022198
MirjaliliSThe ant lion optimizerAdv Eng Softw2015838098
Morales-CastanedaBZaldivarDCuevasERodriguezANavarroMAPopulation management in metaheuristic algorithms: Could less be more?Appl Soft Comput2021107
Fathi H, AlSalman H, Gumaei A, Manhrawy II, Hussien AG, El-Kafrawy P (2021) An efficient cancer classification model using microarray and high-dimensional data. Comput Intell Neurosci
AssiriASHussienAGAminMAnt lion optimization: variants, hybrids, and applicationsIEEE Access202087774677764
Hussien AG, Heidari AA, Ye X, Liang G, Chen H, Pan Z (2022) Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method. Engineering with Computers 1–45
AbualigahLShehabMAlshinwanMAlaboolHSalp swarm algorithm: a comprehensive surveyNeural Comput & Applic202032151119511215
ZhengRHussienAGJiaH-MAbualigahLWangSWuDAn improved wild horse optimizer for solving optimization problemsMathematics20221081311
HollandJHGenetic algorithmsSci Am1992267166731992SciAm.267A..66H
GürsesDBureeratSSaitSMYıldızARComparison of the arithmetic optimization algorithm, the slime mold optimization algorithm, the marine predators algorithm, the salp swarm algorithm for real-world engineering applicationsMater Test20216354484522021MTest..63..448G
KhatirSTiachachtSLe ThanhCGhandourahEMirjaliliSWahabMAAn improved artificial neural network using arithmetic optimization algorithm for damage assessment in fgm composite platesCompos Struct20212731:CAS:528:DC%2BB38Xht1Kjsr4%3D
Nadimi-ShahrakiMHTaghianSMirjaliliSAbualigahLAbd ElazizMOlivaDEwoa-opf: effective whale optimization algorithm to solve optimal power flow problemElectronics202110232975
Price KV (2013) Differential evolution. In: Handbook of optimization, Springer, pp 187–214
MirjaliliSMirjaliliSMLewisAGrey wolf optimizer. Adv Eng Softw2014694661
HussienAGAn enhanced opposition-based salp swarm algorithm for global optimization and engineering problemsJ Ambient Intell Human Comput2022131129150
Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH (2022) Prairie dog optimization algorithm. Neural Comput & Applic 1–49
Hussien AG, Hassanien AE, Houssein EH (2017) Swarming behaviour of salps algorithm for predicting chemical compound activities. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), IEEE, pp 315–320
Singh S, Singh H, Mittal N, Hussien AG , Sroubek F (2022) A feature level image fusion for night-vision context enhancement using arithmetic optimization algorithm based image segmentation. Expert Syst Appl 118272
AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (rsa): A nature-inspired meta-heuristic optimizerExpert Syst Appl2022191
Abualigah L, Elaziz MA, Sumari P, Khasawneh AM, Alshinwan M, Mirjalili S, Shehab M, Abuaddous HY, Gandomi AH (2022) Black hole algorithm: A comprehensive survey. Appl Intell 1–24
HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: A novel physics-based algorithmFutur Gener Comput Syst2019101646667
ErolOKEksinIA new optimization method: big bang-big crunchAdv Eng Softw2006372106111
Hussien AG, Hassanien AE, Houssein EH, Bhattacharyya S, Amin M (2019) S-shaped binary whale optimization algorithm for feature selection. In: Recent trends in signal and image processing, Springer, pp 79–87
Hussien AG, Oliva D, Houssein EH, Juan AA, Yu X (2020) Binary whale optimization algorithm for dimensionality reduction. Mathematics 8(10):1821
AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng20213762021CMAME.376k3609A4199299
Deeb H, Sarangi A, Mishra D, Sarangi SK (2023) Improved black hole optimization algorithm for data clustering. Journal of King Saud University-Computer and Information Sciences
AbualigahLMKhaderATHanandehESA new feature selection method to improve the document clustering using particle swarm optimization algorithmJ Comput Sci201825456466
SimonDBiogeography-based optimizationIEEE Trans Evol Comput2008126702713
RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf Sci20091791322322248
HussienAGAminMWangMLiangGAlsanadAGumaeiAChenHCrow search algorithm: theory, recent advances, and applicationsIEEE Access20208173548173565
HussienAGHassanienAEHousseinEHAminMAzarATNew binary whale optimization algorithm for discrete optimization problemsEng Optim20205269459594095556
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, Vol 4. IEEE, pp 1942–1948
ZamaniHNadimi-ShahrakiMHTaghianSBanaie-DezfouliMEnhancement of bernstain-search differential evolution algorithm to solve constrained engineering problemsInt J Comput Sci Eng20209386396
Hussien AG, Abualigah L, Abu Zitar R, Hashim FA, Amin M, Saber A, Almotairi KH, Gandomi AH (2022) Recent advances in harris hawks optimization: A comparative study and applications. Electronics 11(12):1919
YangX-SDebSCuckoo search: recent advances and applicationsNeural Comput & Applic2014241169174
HussienAGAminMAbd El AzizMA comprehensive review of moth-flame optimisation: variants, hybrids, and applicationsJ Exp Theor Artif Intell2020324705725
AgushakaJOEzugwuAEAbualigahLDwarf mongoose optimization algorithmComput Methods Appl Mech Eng20223912022CMAME.391k4570A4372742
CuevasECienfuegosMZaldívarDPérez-CisnerosMA swarm optimization algorithm inspired in the behavior of the social-spiderExpert Syst Appl2013401663746384
KambojVKNandiABhadoriaASehgalSAn intensify harris hawks optimizer for numerical and engineering optimization problemsAppl Soft Comput202089
PassinoKMBacterial foraging optimizationInt J Swarm Intell Res (IJSIR)2010111162980722
Al-ShourbajiIKacharePHAlshathriSDuraibiSElnaimBAbd ElazizMAn efficient parallel reptile search algorithm and snake optimizer approach for feature selectionMathematics202210132351
HashimFAHussienAGSnake optimizer: A novel meta-heuristic optimization algorithmKnowl-Based Syst2022242
AbualigahLDiabatAAdvances in sine cosine algorithm: a comprehensive surveyArtif Intell Rev202154425672608
Mostafa RR, Hussien AG, Khan MA, Kadry S, Hashim FA (2022) Enhanced coot optimization algorithm for dimensionality reduction. In: 2022 Fifth international conference of women in data science at prince sultan university (WiDS PSU), IEEE, pp 43–48
AbualigahLYousriDAbd ElazizMEweesAAAl-QanessMAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng2021157
Soerensen JS, Johannesen L, Grove USL, Lundhus K, Couderc J-P, Graff C (2010) A comparison of iir and wavelet filtering for noise reduction of the ecg. In: 2010 computing in cardiology, IEEE, pp 489–492
Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: 2017 Eighth international conference on intelligent computing and information systems (ICICIS), IEEE, pp 166–172
Abualigah L, Gandomi AH, Elaziz MA, Hussien AG, Khasawneh AM, Alshinwan M, Houssein EH (2020) Nature-inspired optimization algorithms for text document clustering—a comprehensive analysis. Algorithms 13(12):345
OtairMIbrahimOTAbualigahLAltalhiMSumariPAn enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networksWirel Netw2022282721744
KirkpatrickSGelattCDJrVecchiMPOptimization by simulated annealingScience198322045986716801983Sci...220..671K7024851:STN:280:DC%2BC3cvktFWjtw%3D%3D17813860
Fan Q, Chen Z, Li Z, Xia Z, Lin Y (2020) An efficient refracted salp swarm algorithm and its application in structural parameter identification. Engineering with Computers 1–15
LiaoYZhaoWWangLImproved manta ray foraging optimization for parameters identification of magnetorheological dampersMathematics20219182230
Navarro MA, Ramos-Michel A, Gaspar A, Oliva D, Hinojosa S, Mousavirad SJ, Pérez-Cisneros M (2022) Improving the convergence and diversity in differential evolution through a stock market criterion. In: International conference on the applications of evolutionary computation (Part of EvoStar), Springer, pp 157–172
AbualigahLElazizMAHussienAGAlsalibiBJalaliSMJGandomiAHLightning search algorithm: a comprehensive surveyAppl Intell202151423532376
HussienAGAminMA self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selectionInt J Mach Learn Cyber2022132309336
MirjaliliSZMirjaliliSSaremiSFarisHAljarahIGrasshopper optimization algorithm for multi-objective optimization problemsAppl Intell2018484805820
UymazSATezelGYelEArtificial algae algorithm (aaa) for nonlinear global optimizationAppl Soft Comput201531153171
EweesAAAbd ElazizMHousseinEHImproved grasshopper optimization algorithm using opposition-based learningExpert Syst Appl20181121
L Abualigah (16890_CR33) 2021; 376
B Morales-Castaneda (16890_CR10) 2021; 107
KM Passino (16890_CR39) 2010; 1
16890_CR45
16890_CR40
R Zheng (16890_CR30) 2022; 10
AG Hussien (16890_CR12) 2022; 13
JH Holland (16890_CR38) 1992; 267
16890_CR50
L Abualigah (16890_CR31) 2021; 51
L Abualigah (16890_CR60) 2020; 32
16890_CR13
16890_CR14
S Khatir (16890_CR52) 2021; 273
16890_CR55
MH Nadimi-Shahraki (16890_CR61) 2021; 10
16890_CR56
VK Kamboj (16890_CR58) 2020; 89
JO Agushaka (16890_CR49) 2022; 391
AG Hussien (16890_CR3) 2020; 52
H Zamani (16890_CR21) 2020; 9
16890_CR19
16890_CR18
Y Liao (16890_CR2) 2021; 9
16890_CR15
16890_CR16
FA Hashim (16890_CR28) 2022; 242
L Abualigah (16890_CR34) 2021; 157
I Al-Shourbaji (16890_CR54) 2022; 10
MH Nadimi-Shahraki (16890_CR9) 2022; 198
L Abualigah (16890_CR36) 2022; 191
SZ Mirjalili (16890_CR25) 2018; 48
N Lynn (16890_CR11) 2015; 24
S Kirkpatrick (16890_CR43) 1983; 220
16890_CR24
S Mirjalili (16890_CR27) 2015; 83
16890_CR22
S Mirjalili (16890_CR37) 2014; 69
16890_CR20
E Rashedi (16890_CR46) 2009; 179
X-S Yang (16890_CR23) 2014; 24
G Wu (16890_CR6) 2015; 37
AA Ewees (16890_CR59) 2018; 112
AS Assiri (16890_CR17) 2020; 8
AG Hussien (16890_CR32) 2020; 8
AG Hussien (16890_CR35) 2020; 32
X Zhang (16890_CR57) 2020; 8
M Otair (16890_CR63) 2022; 28
FA Hashim (16890_CR48) 2019; 101
E Cuevas (16890_CR26) 2013; 40
S Wang (16890_CR29) 2022; 10
SA Uymaz (16890_CR41) 2015; 31
AG Hussien (16890_CR4) 2022; 13
16890_CR1
D Gürses (16890_CR51) 2021; 63
M Premkumar (16890_CR53) 2021; 9
D Simon (16890_CR42) 2008; 12
16890_CR7
16890_CR5
S Mirjalili (16890_CR47) 2016; 27
L Abualigah (16890_CR62) 2021; 54
LM Abualigah (16890_CR64) 2018; 25
16890_CR8
OK Erol (16890_CR44) 2006; 37
References_xml – reference: HussienAGAminMA self-adaptive harris hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selectionInt J Mach Learn Cyber2022132309336
– reference: Hussien AG, Hassanien AE, Houssein EH (2017) Swarming behaviour of salps algorithm for predicting chemical compound activities. In: 2017 eighth international conference on intelligent computing and information systems (ICICIS), IEEE, pp 315–320
– reference: WangSHussienAGJiaHAbualigahLZhengREnhanced remora optimization algorithm for solving constrained engineering optimization problemsMathematics2022101016961:CAS:528:DC%2BB38XisFGku77I
– reference: KambojVKNandiABhadoriaASehgalSAn intensify harris hawks optimizer for numerical and engineering optimization problemsAppl Soft Comput202089
– reference: PremkumarMJangirPKumarBSSowmyaRAlhelouHHAbualigahLYildizARMirjaliliSA new arithmetic optimization algorithm for solving real-world multiobjective cec-2021 constrained optimization problems: diversity analysis and validationsIEEE Access202198426384295
– reference: AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng20213762021CMAME.376k3609A4199299
– reference: SimonDBiogeography-based optimizationIEEE Trans Evol Comput2008126702713
– reference: HussienAGAn enhanced opposition-based salp swarm algorithm for global optimization and engineering problemsJ Ambient Intell Human Comput2022131129150
– reference: MirjaliliSZMirjaliliSSaremiSFarisHAljarahIGrasshopper optimization algorithm for multi-objective optimization problemsAppl Intell2018484805820
– reference: OtairMIbrahimOTAbualigahLAltalhiMSumariPAn enhanced grey wolf optimizer based particle swarm optimizer for intrusion detection system in wireless sensor networksWirel Netw2022282721744
– reference: Abualigah L, Gandomi AH, Elaziz MA, Hussien AG, Khasawneh AM, Alshinwan M, Houssein EH (2020) Nature-inspired optimization algorithms for text document clustering—a comprehensive analysis. Algorithms 13(12):345
– reference: KirkpatrickSGelattCDJrVecchiMPOptimization by simulated annealingScience198322045986716801983Sci...220..671K7024851:STN:280:DC%2BC3cvktFWjtw%3D%3D17813860
– reference: HussienAGAminMAbd El AzizMA comprehensive review of moth-flame optimisation: variants, hybrids, and applicationsJ Exp Theor Artif Intell2020324705725
– reference: AbualigahLShehabMAlshinwanMAlaboolHSalp swarm algorithm: a comprehensive surveyNeural Comput & Applic202032151119511215
– reference: LiaoYZhaoWWangLImproved manta ray foraging optimization for parameters identification of magnetorheological dampersMathematics20219182230
– reference: AbualigahLElazizMAHussienAGAlsalibiBJalaliSMJGandomiAHLightning search algorithm: a comprehensive surveyAppl Intell202151423532376
– reference: UymazSATezelGYelEArtificial algae algorithm (aaa) for nonlinear global optimizationAppl Soft Comput201531153171
– reference: Nadimi-ShahrakiMHZamaniHDmde: Diversity-maintained multi-trial vector differential evolution algorithm for non-decomposition large-scale global optimizationExpert Syst Appl2022198
– reference: Deeb H, Sarangi A, Mishra D, Sarangi SK (2023) Improved black hole optimization algorithm for data clustering. Journal of King Saud University-Computer and Information Sciences
– reference: Fathi H, AlSalman H, Gumaei A, Manhrawy II, Hussien AG, El-Kafrawy P (2021) An efficient cancer classification model using microarray and high-dimensional data. Comput Intell Neurosci
– reference: AbualigahLDiabatAAdvances in sine cosine algorithm: a comprehensive surveyArtif Intell Rev202154425672608
– reference: AssiriASHussienAGAminMAnt lion optimization: variants, hybrids, and applicationsIEEE Access202087774677764
– reference: Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH (2022) Prairie dog optimization algorithm. Neural Comput & Applic 1–49
– reference: Hussien AG, Oliva D, Houssein EH, Juan AA, Yu X (2020) Binary whale optimization algorithm for dimensionality reduction. Mathematics 8(10):1821
– reference: Fan Q, Chen Z, Li Z, Xia Z, Lin Y (2020) An efficient refracted salp swarm algorithm and its application in structural parameter identification. Engineering with Computers 1–15
– reference: HashimFAHussienAGSnake optimizer: A novel meta-heuristic optimization algorithmKnowl-Based Syst2022242
– reference: AbualigahLMKhaderATHanandehESA new feature selection method to improve the document clustering using particle swarm optimization algorithmJ Comput Sci201825456466
– reference: Abualigah L, Elaziz MA, Sumari P, Khasawneh AM, Alshinwan M, Mirjalili S, Shehab M, Abuaddous HY, Gandomi AH (2022) Black hole algorithm: A comprehensive survey. Appl Intell 1–24
– reference: Hussien AG, Houssein EH, Hassanien AE (2017) A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In: 2017 Eighth international conference on intelligent computing and information systems (ICICIS), IEEE, pp 166–172
– reference: Navarro MA, Ramos-Michel A, Gaspar A, Oliva D, Hinojosa S, Mousavirad SJ, Pérez-Cisneros M (2022) Improving the convergence and diversity in differential evolution through a stock market criterion. In: International conference on the applications of evolutionary computation (Part of EvoStar), Springer, pp 157–172
– reference: RashediENezamabadi-PourHSaryazdiSGsa: a gravitational search algorithmInf Sci20091791322322248
– reference: ErolOKEksinIA new optimization method: big bang-big crunchAdv Eng Softw2006372106111
– reference: HashimFAHousseinEHMabroukMSAl-AtabanyWMirjaliliSHenry gas solubility optimization: A novel physics-based algorithmFutur Gener Comput Syst2019101646667
– reference: Hussien AG, Abualigah L, Abu Zitar R, Hashim FA, Amin M, Saber A, Almotairi KH, Gandomi AH (2022) Recent advances in harris hawks optimization: A comparative study and applications. Electronics 11(12):1919
– reference: Mostafa RR, Hussien AG, Khan MA, Kadry S, Hashim FA (2022) Enhanced coot optimization algorithm for dimensionality reduction. In: 2022 Fifth international conference of women in data science at prince sultan university (WiDS PSU), IEEE, pp 43–48
– reference: KhatirSTiachachtSLe ThanhCGhandourahEMirjaliliSWahabMAAn improved artificial neural network using arithmetic optimization algorithm for damage assessment in fgm composite platesCompos Struct20212731:CAS:528:DC%2BB38Xht1Kjsr4%3D
– reference: Soerensen JS, Johannesen L, Grove USL, Lundhus K, Couderc J-P, Graff C (2010) A comparison of iir and wavelet filtering for noise reduction of the ecg. In: 2010 computing in cardiology, IEEE, pp 489–492
– reference: Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, Vol 4. IEEE, pp 1942–1948
– reference: MirjaliliSMirjaliliSMHatamlouAMulti-verse optimizer: a nature-inspired algorithm for global optimizationNeural Comput & Applic2016272495513
– reference: HollandJHGenetic algorithmsSci Am1992267166731992SciAm.267A..66H
– reference: Singh S, Singh H, Mittal N, Hussien AG , Sroubek F (2022) A feature level image fusion for night-vision context enhancement using arithmetic optimization algorithm based image segmentation. Expert Syst Appl 118272
– reference: PassinoKMBacterial foraging optimizationInt J Swarm Intell Res (IJSIR)2010111162980722
– reference: CuevasECienfuegosMZaldívarDPérez-CisnerosMA swarm optimization algorithm inspired in the behavior of the social-spiderExpert Syst Appl2013401663746384
– reference: Price KV (2013) Differential evolution. In: Handbook of optimization, Springer, pp 187–214
– reference: MirjaliliSMirjaliliSMLewisAGrey wolf optimizer. Adv Eng Softw2014694661
– reference: ZhangXZhaoKNiuYImproved harris hawks optimization based on adaptive cooperative foraging and dispersed foraging strategiesIEEE Access20208160297160314
– reference: ZamaniHNadimi-ShahrakiMHTaghianSBanaie-DezfouliMEnhancement of bernstain-search differential evolution algorithm to solve constrained engineering problemsInt J Comput Sci Eng20209386396
– reference: YangX-SDebSCuckoo search: recent advances and applicationsNeural Comput & Applic2014241169174
– reference: Hussien AG, Heidari AA, Ye X, Liang G, Chen H, Pan Z (2022) Boosting whale optimization with evolution strategy and gaussian random walks: an image segmentation method. Engineering with Computers 1–45
– reference: MirjaliliSThe ant lion optimizerAdv Eng Softw2015838098
– reference: AbualigahLYousriDAbd ElazizMEweesAAAl-QanessMAGandomiAHAquila optimizer: a novel meta-heuristic optimization algorithmComput Ind Eng2021157
– reference: Hussien AG, Hassanien AE, Houssein EH, Bhattacharyya S, Amin M (2019) S-shaped binary whale optimization algorithm for feature selection. In: Recent trends in signal and image processing, Springer, pp 79–87
– reference: EweesAAAbd ElazizMHousseinEHImproved grasshopper optimization algorithm using opposition-based learningExpert Syst Appl2018112156172
– reference: Nadimi-ShahrakiMHTaghianSMirjaliliSAbualigahLAbd ElazizMOlivaDEwoa-opf: effective whale optimization algorithm to solve optimal power flow problemElectronics202110232975
– reference: ZhengRHussienAGJiaH-MAbualigahLWangSWuDAn improved wild horse optimizer for solving optimization problemsMathematics20221081311
– reference: GürsesDBureeratSSaitSMYıldızARComparison of the arithmetic optimization algorithm, the slime mold optimization algorithm, the marine predators algorithm, the salp swarm algorithm for real-world engineering applicationsMater Test20216354484522021MTest..63..448G
– reference: HussienAGAminMWangMLiangGAlsanadAGumaeiAChenHCrow search algorithm: theory, recent advances, and applicationsIEEE Access20208173548173565
– reference: WuGPedryczWSuganthanPNMallipeddiRA variable reduction strategy for evolutionary algorithms handling equality constraintsAppl Soft Comput201537774786
– reference: Morales-CastanedaBZaldivarDCuevasERodriguezANavarroMAPopulation management in metaheuristic algorithms: Could less be more?Appl Soft Comput2021107
– reference: AgushakaJOEzugwuAEAbualigahLDwarf mongoose optimization algorithmComput Methods Appl Mech Eng20223912022CMAME.391k4570A4372742
– reference: LynnNSuganthanPNHeterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitationSwarm Evol Comput2015241124
– reference: AbualigahLAbd ElazizMSumariPGeemZWGandomiAHReptile search algorithm (rsa): A nature-inspired meta-heuristic optimizerExpert Syst Appl2022191
– reference: HussienAGHassanienAEHousseinEHAminMAzarATNew binary whale optimization algorithm for discrete optimization problemsEng Optim20205269459594095556
– reference: Al-ShourbajiIKacharePHAlshathriSDuraibiSElnaimBAbd ElazizMAn efficient parallel reptile search algorithm and snake optimizer approach for feature selectionMathematics202210132351
– ident: 16890_CR15
  doi: 10.3390/electronics11121919
– volume: 8
  start-page: 160297
  year: 2020
  ident: 16890_CR57
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3013332
– ident: 16890_CR8
  doi: 10.3390/a13120345
– volume: 391
  year: 2022
  ident: 16890_CR49
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114570
– volume: 24
  start-page: 11
  year: 2015
  ident: 16890_CR11
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2015.05.002
– volume: 13
  start-page: 309
  issue: 2
  year: 2022
  ident: 16890_CR12
  publication-title: Int J Mach Learn Cyber
  doi: 10.1007/s13042-021-01326-4
– volume: 9
  start-page: 386
  year: 2020
  ident: 16890_CR21
  publication-title: Int J Comput Sci Eng
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 16890_CR43
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: 16890_CR18
  doi: 10.1016/j.eswa.2022.118272
– volume: 191
  year: 2022
  ident: 16890_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116158
– volume: 31
  start-page: 153
  year: 2015
  ident: 16890_CR41
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.03.003
– volume: 198
  year: 2022
  ident: 16890_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116895
– volume: 63
  start-page: 448
  issue: 5
  year: 2021
  ident: 16890_CR51
  publication-title: Mater Test
  doi: 10.1515/mt-2020-0076
– volume: 10
  start-page: 2975
  issue: 23
  year: 2021
  ident: 16890_CR61
  publication-title: Electronics
  doi: 10.3390/electronics10232975
– volume: 9
  start-page: 84263
  year: 2021
  ident: 16890_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3085529
– volume: 10
  start-page: 2351
  issue: 13
  year: 2022
  ident: 16890_CR54
  publication-title: Mathematics
  doi: 10.3390/math10132351
– ident: 16890_CR14
  doi: 10.1007/978-3-031-02462-7_11
– ident: 16890_CR13
  doi: 10.1155/2021/7231126
– volume: 1
  start-page: 1
  issue: 1
  year: 2010
  ident: 16890_CR39
  publication-title: Int J Swarm Intell Res (IJSIR)
  doi: 10.4018/jsir.2010010101
– volume: 27
  start-page: 495
  issue: 2
  year: 2016
  ident: 16890_CR47
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-1870-7
– volume: 10
  start-page: 1311
  issue: 8
  year: 2022
  ident: 16890_CR30
  publication-title: Mathematics
  doi: 10.3390/math10081311
– volume: 52
  start-page: 945
  issue: 6
  year: 2020
  ident: 16890_CR3
  publication-title: Eng Optim
  doi: 10.1080/0305215X.2019.1624740
– ident: 16890_CR45
  doi: 10.1007/s10489-021-02980-5
– volume: 89
  year: 2020
  ident: 16890_CR58
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.106018
– volume: 107
  year: 2021
  ident: 16890_CR10
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107389
– volume: 51
  start-page: 2353
  issue: 4
  year: 2021
  ident: 16890_CR31
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01947-2
– volume: 37
  start-page: 774
  year: 2015
  ident: 16890_CR6
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.09.007
– ident: 16890_CR7
  doi: 10.1109/WiDS-PSU54548.2022.00020
– ident: 16890_CR20
  doi: 10.1109/INTELCIS.2017.8260031
– volume: 8
  start-page: 173548
  year: 2020
  ident: 16890_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3024108
– ident: 16890_CR5
  doi: 10.1007/978-981-10-8863-6_9
– ident: 16890_CR1
– ident: 16890_CR55
  doi: 10.1016/j.jksuci.2020.12.013
– volume: 54
  start-page: 2567
  issue: 4
  year: 2021
  ident: 16890_CR62
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-020-09909-3
– volume: 10
  start-page: 1696
  issue: 10
  year: 2022
  ident: 16890_CR29
  publication-title: Mathematics
  doi: 10.3390/math10101696
– volume: 179
  start-page: 2232
  issue: 13
  year: 2009
  ident: 16890_CR46
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2009.03.004
– volume: 40
  start-page: 6374
  issue: 16
  year: 2013
  ident: 16890_CR26
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2013.05.041
– volume: 24
  start-page: 169
  issue: 1
  year: 2014
  ident: 16890_CR23
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-013-1367-1
– ident: 16890_CR24
  doi: 10.1007/s00366-021-01542-0
– ident: 16890_CR40
  doi: 10.1007/978-3-642-30504-7_8
– volume: 13
  start-page: 129
  issue: 1
  year: 2022
  ident: 16890_CR4
  publication-title: J Ambient Intell Human Comput
  doi: 10.1007/s12652-021-02892-9
– volume: 112
  start-page: 156
  year: 2018
  ident: 16890_CR59
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.06.023
– ident: 16890_CR56
  doi: 10.1007/s00366-020-01034-7
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 16890_CR38
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– ident: 16890_CR50
  doi: 10.1007/s00521-022-07530-9
– volume: 28
  start-page: 721
  issue: 2
  year: 2022
  ident: 16890_CR63
  publication-title: Wirel Netw
  doi: 10.1007/s11276-021-02866-x
– volume: 101
  start-page: 646
  year: 2019
  ident: 16890_CR48
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.07.015
– volume: 8
  start-page: 77746
  year: 2020
  ident: 16890_CR17
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2990338
– ident: 16890_CR19
  doi: 10.1109/INTELCIS.2017.8260072
– volume: 32
  start-page: 705
  issue: 4
  year: 2020
  ident: 16890_CR35
  publication-title: J Exp Theor Artif Intell
  doi: 10.1080/0952813X.2020.1737246
– volume: 376
  year: 2021
  ident: 16890_CR33
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– volume: 69
  start-page: 46
  year: 2014
  ident: 16890_CR37
  publication-title: Grey wolf optimizer. Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 48
  start-page: 805
  issue: 4
  year: 2018
  ident: 16890_CR25
  publication-title: Appl Intell
  doi: 10.1007/s10489-017-1019-8
– volume: 157
  year: 2021
  ident: 16890_CR34
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107250
– ident: 16890_CR16
  doi: 10.3390/math8101821
– volume: 9
  start-page: 2230
  issue: 18
  year: 2021
  ident: 16890_CR2
  publication-title: Mathematics
  doi: 10.3390/math9182230
– volume: 273
  year: 2021
  ident: 16890_CR52
  publication-title: Compos Struct
  doi: 10.1016/j.compstruct.2021.114287
– volume: 83
  start-page: 80
  year: 2015
  ident: 16890_CR27
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2015.01.010
– volume: 37
  start-page: 106
  issue: 2
  year: 2006
  ident: 16890_CR44
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.04.005
– volume: 25
  start-page: 456
  year: 2018
  ident: 16890_CR64
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2017.07.018
– ident: 16890_CR22
  doi: 10.1109/ICNN.1995.488968
– volume: 242
  year: 2022
  ident: 16890_CR28
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2022.108320
– volume: 32
  start-page: 11195
  issue: 15
  year: 2020
  ident: 16890_CR60
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-019-04629-4
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 16890_CR42
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.919004
SSID ssj0016524
Score 2.4450383
Snippet Recently, optimization problems have been revised in many domains, and they need powerful search methods to address them. In this paper, a novel hybrid...
SourceID swepub
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 32613
SubjectTerms Algorithms
Benchmarks
Computer Communication Networks
Computer Science
Convergence
Data Structures and Information Theory
Evolution
Mathematical functions
Methods
Multimedia
Multimedia Information Systems
Optimization
Optimization algorithms
Optimization techniques
Parameter identification
Physics
Prairie dogs
Search methods
Search process
Snakes
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5tnZDggUFhojCQhRAvYGE7jpM8oKnApgpBhRBDe7Ps2O0qdU1pOyb-PefEaVck-hpfZMl39p19d98H8Kr0IXfjciqTAKqdWEuNlJJmNsN4ghmX1tQJX4dqcC4_X6QXezBse2FCWWV7JtYHtavK8Eb-ThToaArJBT-Z_6KBNSpkV1sKDROpFdz7GmJsHw5EQMbqwMGH0-G37-u8gkojzW3OKPpKHttommY6HlpV0IdRrvKC0ZstV7V_GQolb0Wh68TpPyCjtWM6ewD3Y0RJ-o0JPIQ9P-vCYcvWQOLm7cK9W9CDXbhTl36Wy0cwa94VvCPzhZngzZm4akwqPEquYo8mMdMxLsXq8orYPySwPI9I4CiqqqX_nyDGwttDkblm-RjOz05_fBzQyMJAy6TgK8pNKWQmZGpy65k0Ra54Xoa3Cssyhbc9l1tXlNJZ45PCysQzJYQdJd5JxUciOYLOrJr5J0Aw1CxzJlEanSLes6xyzqjMFEyYbJSkPeDtgusyQpQHpoyp3oArByVpVJKulaRvevBm_c-8AejYKf0S9bgWDNjag_4XHb6hJM9Upn7zHhy3atZxRy_1xv568LZV_WZ415SvG_PYmvXT5GdfV4uxnk6uNS5mysTT3dM-g7sCA6qm_u0YOqvFtX-OAdHKvohW_hf59gce
  priority: 102
  providerName: ProQuest
Title Improved prairie dog optimization algorithm by dwarf mongoose optimization algorithm for optimization problems
URI https://link.springer.com/article/10.1007/s11042-023-16890-w
https://www.proquest.com/docview/2952194121
https://hal.science/hal-04217676
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-198502
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6t8LI9DMY2rfyorAnxskWKHcdJHrPRUm0DoWmd2JNlx26pVBrUFhD_PefEaSnakPYUyT7Hks_2ffb5vgM4LKzz3Zg04JEj1Y60DhTnPEh0gngiVCauUiecnon-gH-7iC98UNi8ee3euCSrnXoV7EZdKAnamICKNAuDuxZsxo7OC2fxgOVL34GIGffhMX9vt2aCWpfuAeQjdLl0iD4hD60MTm8bXnukSPJatW_ghZ3uwFaThYH4RbkDrx5RCr6FaX1LYA25nqkxnoOJKUekxI3hykdcEjUZlbPx4vKK6HvicjYPics4VJZz-y9BRLbrVT4PzfwdDHrdX1_7gc-pEBRRRhcBVQXjCeOxSrUNucpSQdPC3TzoMBF4djOpNlnBjVY2yjSPbCgY08PIGi7okEXvYWNaTu0HIAgcizTkKI0mDk9NWhijRKKykKlkGMVtoM0wy8ITjru8FxO5okp2qpGoGlmpRt614dOyzXVNt_Gs9EfU3lLQMWX38x_SlaEkTUQibmkb9hvlSr8-55JlCFsyThlWf24Uvqp-rsujelKs9Xo8_p3LcjaSk_GNxMGMQ7b7f__dg5cM4VL9um0fNhazG3uAcGehO9BKeycd2MxP_nzv4vdL9-z8Z6ea8w86Ev0_
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVgg48AggAgUsBFzAYu31vg4VCrRVStMIobbqzdhrJ42UZkOSEvXP8dsY73qTBoncel3PypJndh7rme8DeJtbd3djUipCB6odak2VEIImOsF8IlAmKqkTjrpx-0R8O4vONuBPPQvj2iprn1g6alPk7h_5J55hoMkE4-zz-Bd1rFHudrWm0FCeWsHslBBjfrDj0F7NsYSb7hzsor7fcb6_d_y1TT3LAM3DjM0oUzkXCReRSrUNhMrSmKW5q8U11vhYzZhUmywXRisbZlqENog5173QGhGzngM-wBCwJUKRYfG39WWv-_3H4h4jjjytbhpQjM3Mj-1Uw3vMjcZgzKQsTrOAzldC461z15h5LetdXNT-A2paBsL9h3DfZ7CkVZncI9iwowY8qNkhiHcWDbh3DeqwAbfLVtN8-hhG1X8Ma8h4ogZYqRNT9EmBruvCz4QSNezj0c_OL4i-Io5VukccJ1JRTO3_BDH3Xl3yTDnTJ3ByI_p4CpujYmSfAcHUNk8DgdIYhLGu07ExKk5UFnCV9MKoCaw-cJl7SHTHzDGUSzBnpySJSpKlkuS8CR8W74wrQJC10m9QjwtBh-XdbnWke4aSLImT-DdrwnatZuk9yFQu7b0JH2vVL5fXbfm-Mo-VXXcHpy1ZTPpyOLiUeJhRwJ-v3_Y13GkfH3Vk56B7-ALuckzmqt67bdicTS7tS0zGZvqVt3gCP2_6I_sLJvtDgg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIlA58AigBgpYCLiA1bXX-zogFBFCSkvFgaLejL120khpNmRTov41fh3jXW_SIJFbr7uzsuQZz2M9830Ar3Lr7m5MSkXoQLVDrakSQtBEJ5hPBMpEFXXC1-O4fyK-nEanW_CnmYVxbZWNT6wctSly9498n2cYaDLBONsf-LaIb93eh-kv6hik3E1rQ6dRm8ihvVxg-Va-P-iirl9z3vv0_WOfeoYBmocZm1Omci4SLiKVahsIlaUxS3NXh2us77GSMak2WS6MVjbMtAhtEHOuB6E1ImYDB3qA7v9m4lDc3ZR67_PyBiOOPKFuGlCMyswP7NRje8wNxWC0pCxOs4Au1oLijTPXknkl311e0f4DZ1qFwN59uOtzV9Kpje0BbNlJC-41vBDEu4kW3LkCctiCW1WTaV4-hEn9B8MaMp2pEdboxBRDUqDTOvfToESNh7jR87Nzoi-J45MeEMeGVBSl_Z8gZt3rrzxHTvkITq5FG49he1JM7C4QTGrzNBAojeEXKzodG6PiRGUBV8kgjNrAmg2XuQdDd5wcY7mCcXZKkqgkWSlJLtrwdvnNtIYC2Sj9EvW4FHQo3v3OkXTPUJIlcRL_Zm3Ya9Qsve8o5crS2_CuUf3q9aYl39TmsbZqd_SjI4vZUI5HFxI3Mwr4k83LvoDbeLTk0cHx4VPY4ZjF1U13e7A9n13YZ5iFzfXzytwJ_Lzu8_UXQ_tBHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+prairie+dog+optimization+algorithm+by+dwarf+mongoose+optimization+algorithm+for+optimization+problems&rft.jtitle=Multimedia+tools+and+applications&rft.au=Abualigah%2C+Laith&rft.au=Oliva%2C+Diego&rft.au=Jia%2C+Heming&rft.au=Gul%2C+Faiza&rft.date=2024-03-01&rft.issn=1380-7501&rft.volume=83&rft.issue=11&rft.spage=32613&rft_id=info:doi/10.1007%2Fs11042-023-16890-w&rft.externalDocID=oai_DiVA_org_liu_198502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-7721&client=summon