A Computer-Aided Diagnosis System Using Deep Learning for Multiclass Skin Lesion Classification

In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the hu...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2021; no. 1; p. 9619079
Main Authors Arshad, Mehak, Khan, Muhammad Attique, Tariq, Usman, Armghan, Ammar, Alenezi, Fayadh, Younus Javed, Muhammad, Aslam, Shabnam Mohamed, Kadry, Seifedine
Format Journal Article
LanguageEnglish
Published United States Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2021/9619079

Cover

Abstract In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance.
AbstractList In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance.
In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance.In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance.
Audience Academic
Author Arshad, Mehak
Tariq, Usman
Khan, Muhammad Attique
Aslam, Shabnam Mohamed
Kadry, Seifedine
Alenezi, Fayadh
Younus Javed, Muhammad
Armghan, Ammar
AuthorAffiliation 5 Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
3 Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia
2 College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
1 Department of Computer Science, HITEC University Taxila, Taxila, Pakistan
4 Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
AuthorAffiliation_xml – name: 5 Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
– name: 3 Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia
– name: 2 College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
– name: 1 Department of Computer Science, HITEC University Taxila, Taxila, Pakistan
– name: 4 Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
Author_xml – sequence: 1
  givenname: Mehak
  surname: Arshad
  fullname: Arshad, Mehak
  organization: Department of Computer ScienceHITEC University TaxilaTaxilaPakistanhitecuni.edu.pk
– sequence: 2
  givenname: Muhammad Attique
  orcidid: 0000-0001-7058-0715
  surname: Khan
  fullname: Khan, Muhammad Attique
  organization: Department of Computer ScienceHITEC University TaxilaTaxilaPakistanhitecuni.edu.pk
– sequence: 3
  givenname: Usman
  orcidid: 0000-0001-7672-1187
  surname: Tariq
  fullname: Tariq, Usman
  organization: College of Computer Engineering and SciencePrince Sattam Bin Abdulaziz UniversityAl-KharajSaudi Arabiapsau.edu.sa
– sequence: 4
  givenname: Ammar
  surname: Armghan
  fullname: Armghan, Ammar
  organization: Department of Electrical EngineeringJouf UniversitySakaka 75471Saudi Arabiaju.edu.sa
– sequence: 5
  givenname: Fayadh
  orcidid: 0000-0002-4099-1254
  surname: Alenezi
  fullname: Alenezi, Fayadh
  organization: Department of Electrical EngineeringJouf UniversitySakaka 75471Saudi Arabiaju.edu.sa
– sequence: 6
  givenname: Muhammad
  surname: Younus Javed
  fullname: Younus Javed, Muhammad
  organization: Department of Computer ScienceHITEC University TaxilaTaxilaPakistanhitecuni.edu.pk
– sequence: 7
  givenname: Shabnam Mohamed
  orcidid: 0000-0001-9015-7551
  surname: Aslam
  fullname: Aslam, Shabnam Mohamed
  organization: Department of Information TechnologyCollege of Computer and Information SciencesMajmaah UniversityAl-Majmaah 11952Saudi Arabiamu.edu.sa
– sequence: 8
  givenname: Seifedine
  surname: Kadry
  fullname: Kadry, Seifedine
  organization: Faculty of Applied Computing and TechnologyNoroff University CollegeKristiansandNorway
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34912449$$D View this record in MEDLINE/PubMed
BookMark eNqFkctv1DAQhy3Uij7gxhlF4oJEQ_2IHeeCtNqWUmkRB8rZcmxn6-LYqZ1Q7X9fh11aqATIssbj-eah3xyBPR-8AeAVgu8RovQUQ4xOG4YaWDfPwCFivC4prsnew5vRA3CU0g2EtKYQPwcHpGoQrqrmEIhFsQz9MI0mlgurjS7OrFz7kGwqvm7SaPriW7J-XZwZMxQrI6OfvS7E4vPkRqucTJn8bn0OJht8sZx_bGeVHLP7Aux30iXzcmePwdXH86vlp3L15eJyuViVijSoKSsjqaKkxigbThXBUCvNNGJtW3PITFPxPFyrOylJSzBXhractJrJuuaYHINyW3byg9zcSefEEG0v40YgKGadxKyT2OmU-Q9bfpja3mhl_BjlY06QVvwZ8fZarMMPwRnjhM4F3u4KxHA7mTSK3iZlnJPehCkJzBDMGiOGMvrmCXoTpuizGjOFSL6IP1Jr6Yywvgu5r5qLigVr8iGMVpl6_fvcDwP_WmgGTraAiiGlaLr_6YCf4MqOPxeXu1v3t6R326Rr67W8s_9ucQ9F_cxR
CitedBy_id crossref_primary_10_1002_ima_22891
crossref_primary_10_1109_TNSE_2022_3185327
crossref_primary_10_1016_j_bspc_2024_107109
crossref_primary_10_1080_13682199_2023_2187518
crossref_primary_10_3389_fsurg_2022_929110
crossref_primary_10_3390_s22155652
crossref_primary_10_3390_app12115491
crossref_primary_10_1109_ACCESS_2023_3260027
crossref_primary_10_3389_fmed_2022_1005920
crossref_primary_10_3934_mbe_2023861
crossref_primary_10_3390_app14104005
crossref_primary_10_3390_cancers15194694
crossref_primary_10_1177_15330338221124372
crossref_primary_10_1109_ACCESS_2024_3397197
crossref_primary_10_1007_s00500_024_09949_9
crossref_primary_10_3390_s22020434
crossref_primary_10_1109_TMI_2022_3215547
crossref_primary_10_32604_csse_2023_037131
crossref_primary_10_1007_s11227_022_04561_w
crossref_primary_10_32604_cmc_2022_028696
crossref_primary_10_1038_s41598_025_90423_3
crossref_primary_10_32604_cmc_2022_030432
crossref_primary_10_1007_s11082_022_04432_x
crossref_primary_10_1016_j_jestch_2022_101174
crossref_primary_10_1002_ima_22880
crossref_primary_10_1016_j_compbiomed_2022_105939
crossref_primary_10_1016_j_bspc_2022_104186
crossref_primary_10_3390_jpm12060981
crossref_primary_10_3390_s23010426
crossref_primary_10_3390_biomedinformatics4040121
crossref_primary_10_1016_j_compeleceng_2022_108318
crossref_primary_10_1186_s12911_022_01919_1
crossref_primary_10_3390_app112411901
crossref_primary_10_1016_j_compbiomed_2023_106624
crossref_primary_10_1007_s00521_022_07204_6
crossref_primary_10_7717_peerj_cs_1520
crossref_primary_10_3390_computation13030078
crossref_primary_10_1007_s00521_023_09011_z
crossref_primary_10_3390_jimaging10110265
crossref_primary_10_1007_s00521_022_08084_6
crossref_primary_10_3390_s22030799
crossref_primary_10_3390_sym15122213
Cites_doi 10.1109/TIM.2020.3033072
10.1007/s00521-020-04870-2
10.1016/j.ymeth.2021.02.013
10.1007/s11042-020-10056-8
10.1109/ICET48972.2019.8994508
10.1016/j.imu.2019.100202
10.1109/access.2020.3002725
10.3390/cancers13153795
10.1111/exd.14114
10.1007/s10916-019-1413-3
10.1007/s11036-020-01550-2
10.1007/s00521-020-05410-8
10.1109/ICOSEC49089.2020.9215271
10.3390/v12070769
10.1111/jdv.12848
10.1016/j.ijleo.2020.165356
10.1109/access.2020.2975198
10.3390/e22040484
10.1109/TIPTEKNO47231.2019.8972045
10.1007/s11042-020-09388-2
10.1080/15481603.2017.1323377
10.1016/j.compeleceng.2020.106956
10.1016/j.patrec.2020.09.010
10.2174/1573405615666191120110855
10.1007/s11042-020-08852-3
10.1007/978-981-15-3383-9_15
10.1186/s13673-020-00216-y
10.1016/j.neunet.2019.03.013
10.1109/CVPR.2015.7299107
10.1007/s11517-021-02355-5
10.1007/s00259-021-05489-8
10.1109/ATSIP49331.2020.9231544
10.1002/jemt.23275
10.1007/s00521-021-05929-4
10.1007/s00530-020-00728-8
10.1109/ICECCO.2017.8333341
10.1007/s00779-020-01494-0
10.1111/1346-8138.15683
10.1016/j.patrec.2020.12.015
ContentType Journal Article
Copyright Copyright © 2021 Mehak Arshad et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Mehak Arshad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Mehak Arshad et al. 2021
Copyright_xml – notice: Copyright © 2021 Mehak Arshad et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Mehak Arshad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2021 Mehak Arshad et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2021/9619079
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Abd El-Latif, Ahmed A.
Editor_xml – sequence: 1
  givenname: Ahmed A.
  surname: Abd El-Latif
  fullname: Abd El-Latif, Ahmed A.
ExternalDocumentID 10.1155/2021/9619079
PMC8668359
A696963654
34912449
10_1155_2021_9619079
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Majmaah University’s Deanship of Scientific Research under Project
  grantid: 155/46683
– fundername: Majmaah University's Deanship of Scientific Research under Project
  grantid: 155/46683
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
2UF
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
C1A
CITATION
EJD
H13
IHR
IL9
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
UZ4
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
NPM
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
COVID
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c3919-4ea5c537215c585c320dcd6d16bb7806e948dedbdfaa3b328ce5b83bd6a77823
IEDL.DBID M48
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 04:15:16 EDT 2025
Tue Sep 30 16:54:59 EDT 2025
Sun Sep 28 08:35:56 EDT 2025
Mon Oct 06 17:44:06 EDT 2025
Mon Oct 20 22:48:46 EDT 2025
Wed Feb 19 02:27:23 EST 2025
Wed Oct 01 02:22:15 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Sun Jun 02 18:51:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © 2021 Mehak Arshad et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3919-4ea5c537215c585c320dcd6d16bb7806e948dedbdfaa3b328ce5b83bd6a77823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Ahmed A. Abd El-Latif
ORCID 0000-0001-7058-0715
0000-0002-4099-1254
0000-0001-7672-1187
0000-0001-9015-7551
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cin/2021/9619079.pdf
PMID 34912449
PQID 2611361118
PQPubID 237303
ParticipantIDs unpaywall_primary_10_1155_2021_9619079
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8668359
proquest_miscellaneous_2610912161
proquest_journals_2611361118
gale_infotracmisc_A696963654
pubmed_primary_34912449
crossref_primary_10_1155_2021_9619079
crossref_citationtrail_10_1155_2021_9619079
hindawi_primary_10_1155_2021_9619079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
Muhammad K. (e_1_2_8_35_2) 2021
e_1_2_8_1_2
e_1_2_8_3_2
e_1_2_8_5_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_13_2
e_1_2_8_36_2
e_1_2_8_30_2
e_1_2_8_11_2
e_1_2_8_32_2
Majid A. (e_1_2_8_29_2) 2021; 67
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_25_2
e_1_2_8_48_2
Marcelino P. (e_1_2_8_28_2) 2018
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_21_2
e_1_2_8_44_2
Sharma S. (e_1_2_8_27_2) 2017; 6
e_1_2_8_40_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_14_2
e_1_2_8_37_2
Ashraf I. (e_1_2_8_15_2) 2020; 10
Sharif M. (e_1_2_8_34_2) 2021; 11
e_1_2_8_31_2
e_1_2_8_10_2
e_1_2_8_33_2
References_xml – ident: e_1_2_8_22_2
  doi: 10.1109/TIM.2020.3033072
– ident: e_1_2_8_18_2
  doi: 10.1007/s00521-020-04870-2
– ident: e_1_2_8_30_2
  doi: 10.1016/j.ymeth.2021.02.013
– ident: e_1_2_8_36_2
  doi: 10.1007/s11042-020-10056-8
– ident: e_1_2_8_39_2
  doi: 10.1109/ICET48972.2019.8994508
– ident: e_1_2_8_31_2
  doi: 10.1016/j.imu.2019.100202
– volume: 10
  year: 2020
  ident: e_1_2_8_15_2
  article-title: Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists
  publication-title: Diagnostics
– ident: e_1_2_8_38_2
  doi: 10.1109/access.2020.3002725
– ident: e_1_2_8_12_2
  doi: 10.3390/cancers13153795
– volume: 11
  year: 2021
  ident: e_1_2_8_34_2
  article-title: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization
  publication-title: Diagnostics
– ident: e_1_2_8_1_2
  doi: 10.1111/exd.14114
– ident: e_1_2_8_14_2
  doi: 10.1007/s10916-019-1413-3
– ident: e_1_2_8_9_2
  doi: 10.1007/s11036-020-01550-2
– ident: e_1_2_8_19_2
  doi: 10.1007/s00521-020-05410-8
– year: 2018
  ident: e_1_2_8_28_2
  article-title: Transfer learning from pre-trained models
  publication-title: Data Science
– ident: e_1_2_8_2_2
  doi: 10.1109/ICOSEC49089.2020.9215271
– ident: e_1_2_8_13_2
  doi: 10.3390/v12070769
– ident: e_1_2_8_4_2
  doi: 10.1111/jdv.12848
– ident: e_1_2_8_41_2
  doi: 10.1016/j.ijleo.2020.165356
– ident: e_1_2_8_3_2
  doi: 10.1109/access.2020.2975198
– ident: e_1_2_8_43_2
  doi: 10.3390/e22040484
– ident: e_1_2_8_25_2
– ident: e_1_2_8_44_2
  doi: 10.1109/TIPTEKNO47231.2019.8972045
– ident: e_1_2_8_6_2
  doi: 10.1007/s11042-020-09388-2
– ident: e_1_2_8_24_2
  doi: 10.1080/15481603.2017.1323377
– ident: e_1_2_8_48_2
  doi: 10.1016/j.compeleceng.2020.106956
– ident: e_1_2_8_8_2
  doi: 10.1016/j.patrec.2020.09.010
– ident: e_1_2_8_16_2
  doi: 10.2174/1573405615666191120110855
– ident: e_1_2_8_40_2
  doi: 10.1007/s11042-020-08852-3
– volume: 6
  start-page: 310
  year: 2017
  ident: e_1_2_8_27_2
  article-title: Activation functions in neural networks
  publication-title: Data Science
– ident: e_1_2_8_49_2
  doi: 10.1007/978-981-15-3383-9_15
– ident: e_1_2_8_32_2
  doi: 10.1186/s13673-020-00216-y
– ident: e_1_2_8_46_2
  doi: 10.1016/j.neunet.2019.03.013
– ident: e_1_2_8_26_2
  doi: 10.1109/CVPR.2015.7299107
– ident: e_1_2_8_23_2
– year: 2021
  ident: e_1_2_8_35_2
  article-title: Multi-class skin lesion detection and classification via teledermatology
  publication-title: IEEE Journal of Biomedical and Health Informatics
– ident: e_1_2_8_37_2
  doi: 10.1007/s11517-021-02355-5
– ident: e_1_2_8_11_2
  doi: 10.1007/s00259-021-05489-8
– ident: e_1_2_8_42_2
– ident: e_1_2_8_5_2
  doi: 10.1109/ATSIP49331.2020.9231544
– ident: e_1_2_8_17_2
  doi: 10.1002/jemt.23275
– ident: e_1_2_8_47_2
  doi: 10.1007/s00521-021-05929-4
– ident: e_1_2_8_21_2
  doi: 10.1007/s00530-020-00728-8
– ident: e_1_2_8_45_2
  doi: 10.1109/ICECCO.2017.8333341
– ident: e_1_2_8_20_2
  doi: 10.1007/s00779-020-01494-0
– volume: 67
  year: 2021
  ident: e_1_2_8_29_2
  article-title: Multiclass stomach diseases classification using deep learning features optimization
  publication-title: Computers, Materials and Continua
– ident: e_1_2_8_10_2
– ident: e_1_2_8_33_2
  doi: 10.1111/1346-8138.15683
– ident: e_1_2_8_7_2
  doi: 10.1016/j.patrec.2020.12.015
SSID ssj0057502
Score 2.4267418
Snippet In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9619079
SubjectTerms Accuracy
Algorithms
Augmentation
Automation
Brain cancer
Cancer
Classification
Computers
Data mining
Datasets
Deep Learning
Dermatology
Diagnosis, Computer-Assisted
Feature extraction
Feature selection
Health aspects
Humans
Image acquisition
Inspection
Learning algorithms
Lesions
Localization
Machine learning
Medical imaging
Melanoma
Mortality
Neural networks
Neural Networks, Computer
Optimization techniques
Skin
Skin cancer
Skin diseases
Skin lesions
Transfer learning
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVNoCSX0jZf26ZFgSSXYLq2PiwdTdOwFNpDSGBvQpa0zcLGu3SzhPz7zsiy6SZN24MxRrJkezTWG_n5DSHHUuWlU4XLJpKLjAMiyuqhthkTJQQfamJFzBLx7bscXfOvYzFOIknLp5_wYbbD8Dz_pAHoD0u9QTaURObW5WjcvXABcLTUQgn-gmrvHb_90blrM096_768wcj3fvonfPmUJrm1ahb24d7OZr_NQRevyasEHmnVWvsNeRGat2SnaiBwvn2gpzTSOeM6-Q4xFe0yNmTV1AdPz1tW3XRJW5lyGukC9DyEBU0yqz8oYFgaf8p1CKsp5uaCQlxSozF_JjKLojF3ydXFl6vPoyxlU8gc07nOeLDCCQYRH-yUcKwYeuelz2Vdl2oog-YKLqb2E2tZzQrlgqgVq720JcAItkc2m3kTDggtLKDAiQ9BKs1L71UedOFLJgPgCZ7zATnrHrRxSWkcE17MTIw4hDBoFpPMMiAnfe1Fq7DxTL1DtJlBx4PWHLiBM5VEdR8mBXR6nGz5r1Y6Q5vkrUsDUWTOYMvVgBz1xdgBMtCaMF_FOgCtCgDIA7Lfjou-I8Y1wiRovFwbMX0F1PBeL2mmN1HLW0kJGBjOPO3H1l-v_93_3eZ7so2H7VrRIdm8-7kKHwA93dUfo-_8AnsnDoA
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_qFdEXUevHaZUVal8k9JL9yOZBJNqWIniIVOjbstndswdn7rQ9Sv97Zzab2KLWh5CHndtdbmY2v5lMfgOwo3ReOl24bKaEzAQioqyZVDbjssTgQ8-sjF0iPk3V0Vfx8USebMC0_xaGyir7MzEe1H7pKEe-h0g_53jl-t3qR0Zdo-jtat9Cw6bWCv5tpBi7BZsFMWONYPP9wfTzl_5sRmzSVSEqdC0ihu9L4aWkLEC-V2E8MaGyrisPqXRU3z6lIPli_jco-mdF5Z11u7KXF3axuPK4OrwP9xLOZHVnGA9gI7QPYatuMcb-fsl2Waz8jCn1LTA165s7ZPXcB8_2uwK8-RnrGM1ZrCxg-yGsWGJk_cYQ7rL4_a4jBM6ojRcOUvaNxVabVIQU9f4Ijg8Pjj8cZanxQuZ4lVeZCFY6yTE4xJuWjhcT77zyuWqaUk9UqITGzTR-Zi1veKFdkI3mjVe2RMTBH8OoXbbhKbDCImCc-RCUrkTpvc5DVfiSq4DQQ-RiDG_6P9q4REpOvTEWJgYnUhpSi0lqGcPrQXrVkXH8Q26bdGbIR3E2hx7jTK2ICIgriYvuJF3-b5Ze0SY59pn5bYZjeDUM0wJUrNaG5TrKIAorEEuP4UlnF8NCXFSEqHDy8prFDAJE9319pJ2fRtpvrRTCZfzl7mBbN-7_2c37fw53SbpLJ23D6PznOrxAgHXevExe8wtuaB8c
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7ULaIv3qp2tcoItS-S7SaTmUzwKVhLESw-tFBBCHNLu7jNLu4upX3qT_A39pf0zGQSXe_4EJIwJzPJzJnk-4aT7wBschFnWiQ6qnjKohQRUaSGuYwoy5B8iEoynyXi_T7fO0zfHbGjFXjd_gtjnET8RJrZ4MRx0rORf1uHfp1ta2SLSNfj7RyB_zDLB1NT3YBVzhCI92D1cP9D8dFRLI5Txwm_fzvOaBv2zthSFUsfpPBavhka_xXs_Dl68tainsrzMzkef_dp2r0Ln9qHaiJSPg8WczXQFz_oPf7nU9-DOwGykqLxsfuwYusHsFbUSNdPz8kW8UGkfnV-DWRB2jwRV5dfi5Gxhuw00XyjGWnk0YkPUyA71k5JkHc9Joidif8ZWDs4T1xOMCx0S3nE5-10EU3eiR7Cwe7bgzd7UcjiEGmax3mUWsk0o8g0cSeYpsnQaMNNzJXKxJDbPBV4M8pUUlJFE6EtU4Iqw2WG8IU-gl49qe06kEQi-qyMtVzkaWaMiG2emIxyizgmjdM-vGpHstRB4dwl2hiXnukwVrpOLEMn9uFlZz1tlD1-Y7fhnKJ0Ex5r0zj9dFlwpypEOcNGN8OY_a2W1pPKdlxLZK8xxS0WfXjRFbsGXORbbScLb4OQLkFg3ofHjeN1DdE0d_AMK8-WXLIzcNrhyyX16MRriAvOEXvjlVud8_7x_p_8q-FTuO1Om1WqDejNvyzsM8Rtc_U8zM9rdQQ8VQ
  priority: 102
  providerName: Unpaywall
Title A Computer-Aided Diagnosis System Using Deep Learning for Multiclass Skin Lesion Classification
URI https://dx.doi.org/10.1155/2021/9619079
https://www.ncbi.nlm.nih.gov/pubmed/34912449
https://www.proquest.com/docview/2611361118
https://www.proquest.com/docview/2610912161
https://pubmed.ncbi.nlm.nih.gov/PMC8668359
https://downloads.hindawi.com/journals/cin/2021/9619079.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (New)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFD7aRcBeEFBghVEZaewFBZo4vj0glNKVCmnVNK1SeYoS22WVuqxsq0b_PcfORVR08NBEik_iKOe4_j7n5HwAh1yGQstIB1MesyBGRBTkXZUFlAkkH3KaMa8ScTLiw3H8bcImW1CrjVYP8GYjtXN6UuPr-YdfP1efccB_8gOeMcffw48KmUBXqG3YxTlKORGHk7h5n4CYxOXxtDadsQcPaazcNKfW5qbqH_rBhePGd7NNCPTvRMpHy2KRre6y-fyPWWrwBB5X8JIkZTw8hS1bPINWUiC1vlyRI-ITPv1KegvShNSaDkEyM9aQfpl3N7shZSFz4hMKSN_aBakKsf4giHKJ_2xXO-BNnHoXNrpFN-IVNl3ukXf3czgfHJ9_GQaV3kKgqQpVENuMaUaRE-JOMk2jrtGGm5DnuZBdblUs8WZyM80ymtNIastySXPDM4FAg76AneKqsPtAogxx4tRYy6WKhTEytCoygnKLiCMO4za8rx90qqta5E4SY556TsJY6jyUVh5qw7vGelHW4LjH7sD5LHXBglfTOFB0mnBX_4dyhp0eVr7831VqR6d1OKbIM0OKv1C24W3T7DpwOWqFvVp6GwRfEULoNrws46LpqI6wNoi1iGkMXJXv9ZZiduGrfUvOESXjmUdNbP3z_l_d2_lr2HOG5QLSAezcXi_tG4RUt3kHtsVE4FYOvnZgN-n1ewPc945Hp2cdP5Jwezac4LHx6DT5_ht0VSAF
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdJj2wqsUAgXETJsL4za2LFk-cPA0lJQ-TmHoTWNLCs00OIEkkwn_ib_Cb2JXlkPLo5x64ODxQbLkOLur75M_7xKyLWSYaBnpoC9iHsSAiIKineYB4wmQD9nPuasScXIquu_jd2f8bIV8q7-FQVllHRNdoDYjjXvke4D0QwZHKL2C8sgu5sDPJq8PO_Bn7kTRwZvefjfwJQQCzdIwDWKbc80Z0Bw4Sa5Z1DbaCBOKokhkW9g0lsaawvTznBUsktryQrLCiDyBtZPBsK3x5wCLVOHLXF-x4xZZBTMPowZZ3f_QedutQz9An0rkKMBzMe98rbTnHDcZwr0U6EobVWOX1kC_Etw-Rw4-H_wJ6f4u2FybleN8Mc-Hw0ur4cFd8r1-jpUI5mJ3Ni129ddfUkz-Nw_6HrnjcTnNKke6T1Zs-YBsZGU-HX1a0BZ1Sln3CmKDqIzWxTCCbADz0U4lWBxMaJUBnjolBu1YO6Y-g-1HCvSAuu-dNTIWimXPoBF3K6krTYqiLecnD0nvJn78JmmUo9I-JjTKAWD3jbVCpnFijAxtGpmECQtQLQ7jJnlVW47SPok71hIZKkfmOFdoZ8rbWZPsLHuPq-Qlf-m3hUaoMKbBaBoijFaZwMRJTHCYdNsb579GqQ1K-UA4UT-tqUleLptxAhT3lXY0c30AtUbAPZrkUWXoy4lYnCIChcGTKy6w7IDp0a-2lINzlyZdCgH0Aq5sLZ3l2vt_cv39vyBr3d7JsTo-PD16Stbxymorbos0pl9m9hmA02nx3IcEStQNu8sPThqZuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jc9MwFNaUdlgubGUJFBAzbS-Mm9iyZPnAMJ6akFLocCjT3jS2JNMMwQkkmUz4Z_wVfg3vyQstSzn1wMHjg-Qnx3nbJ39-j5BNIf1Iy0B7hQi5F0JG5OW9OPMYjwB8yCLjrkvE2wMxeB--PubHK-Rb8y0M0iobn-gctRlr3CPvQqbvMzh82S1qWsS7tP9i8tnDDlL4prVpp1GpyL5dLgC-TZ_vpfBfbwVB_-Xh7sCrOwx4msV-7IU245ozQEFwklyzoGe0EcYXeR7JnrBxKI01uSmyjOUskNryXLLciCyC0MpA7CWyJkUkwCes7R6lrwZNGIA0qCI8CrBirEHfsO45xw0HvxsDdOkhg-xUPKyjwuUTxOOL4Z-y3t_Jm1fn5SRbLrLR6FRk7N8g35tnWhFiPu7MZ_mO_vpLucn_8qHfJNfrfJ0mlYHdIiu2vE3WkzKbjT8t6TZ1DFr3amKdqIQ2TTK8ZAjCaVoRGYdTWlWGp46hQVNrJ7SubPuBAmyg7jtojUiGYjs0GMRdTOpaliKZy9nPHXJ4Eb_0Llktx6W9T2iQQeJdGGuFjMPIGOnbODARExZSuNAPO-RZo0VK18XdscfISDmQx7lCnVO1znXIVjt7UhU1-cu8DVRIhb4OpGnwPFolAgsqMcFh0c1aUf8lpVEuVTvIqfqpWR3ytB3GBZD0V9rx3M2BbDYATNIh9yqlbxdiYYyZKQiPzphDOwHLpp8dKYcnrny6FAJgB1y53RrOuff_4Pz7f0KugE2oN3sH-w_JNbyw2qHbIKuzL3P7CHLWWf649g6UqAs2jR-7qaKB
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7ULaIv3qp2tcoItS-S7SaTmUzwKVhLESw-tFBBCHNLu7jNLu4upX3qT_A39pf0zGQSXe_4EJIwJzPJzJnk-4aT7wBschFnWiQ6qnjKohQRUaSGuYwoy5B8iEoynyXi_T7fO0zfHbGjFXjd_gtjnET8RJrZ4MRx0rORf1uHfp1ta2SLSNfj7RyB_zDLB1NT3YBVzhCI92D1cP9D8dFRLI5Txwm_fzvOaBv2zthSFUsfpPBavhka_xXs_Dl68tainsrzMzkef_dp2r0Ln9qHaiJSPg8WczXQFz_oPf7nU9-DOwGykqLxsfuwYusHsFbUSNdPz8kW8UGkfnV-DWRB2jwRV5dfi5Gxhuw00XyjGWnk0YkPUyA71k5JkHc9Joidif8ZWDs4T1xOMCx0S3nE5-10EU3eiR7Cwe7bgzd7UcjiEGmax3mUWsk0o8g0cSeYpsnQaMNNzJXKxJDbPBV4M8pUUlJFE6EtU4Iqw2WG8IU-gl49qe06kEQi-qyMtVzkaWaMiG2emIxyizgmjdM-vGpHstRB4dwl2hiXnukwVrpOLEMn9uFlZz1tlD1-Y7fhnKJ0Ex5r0zj9dFlwpypEOcNGN8OY_a2W1pPKdlxLZK8xxS0WfXjRFbsGXORbbScLb4OQLkFg3ofHjeN1DdE0d_AMK8-WXLIzcNrhyyX16MRriAvOEXvjlVud8_7x_p_8q-FTuO1Om1WqDejNvyzsM8Rtc_U8zM9rdQQ8VQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computer-Aided+Diagnosis+System+Using+Deep+Learning+for+Multiclass+Skin+Lesion+Classification&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Arshad%2C+Mehak&rft.au=Khan%2C+Muhammad+Attique&rft.au=Tariq%2C+Usman&rft.au=Armghan%2C+Ammar&rft.date=2021&rft.eissn=1687-5273&rft.volume=2021&rft.spage=9619079&rft_id=info:doi/10.1155%2F2021%2F9619079&rft_id=info%3Apmid%2F34912449&rft.externalDocID=34912449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon