A Computer-Aided Diagnosis System Using Deep Learning for Multiclass Skin Lesion Classification
In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the hu...
        Saved in:
      
    
          | Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 9619079 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Hindawi
    
        2021
     John Wiley & Sons, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1687-5265 1687-5273 1687-5273  | 
| DOI | 10.1155/2021/9619079 | 
Cover
| Abstract | In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance. | 
    
|---|---|
| AbstractList | In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance. In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance.In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance.  | 
    
| Audience | Academic | 
    
| Author | Arshad, Mehak Tariq, Usman Khan, Muhammad Attique Aslam, Shabnam Mohamed Kadry, Seifedine Alenezi, Fayadh Younus Javed, Muhammad Armghan, Ammar  | 
    
| AuthorAffiliation | 5 Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway 3 Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia 2 College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia 1 Department of Computer Science, HITEC University Taxila, Taxila, Pakistan 4 Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia  | 
    
| AuthorAffiliation_xml | – name: 5 Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway – name: 3 Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia – name: 2 College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia – name: 1 Department of Computer Science, HITEC University Taxila, Taxila, Pakistan – name: 4 Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia  | 
    
| Author_xml | – sequence: 1 givenname: Mehak surname: Arshad fullname: Arshad, Mehak organization: Department of Computer ScienceHITEC University TaxilaTaxilaPakistanhitecuni.edu.pk – sequence: 2 givenname: Muhammad Attique orcidid: 0000-0001-7058-0715 surname: Khan fullname: Khan, Muhammad Attique organization: Department of Computer ScienceHITEC University TaxilaTaxilaPakistanhitecuni.edu.pk – sequence: 3 givenname: Usman orcidid: 0000-0001-7672-1187 surname: Tariq fullname: Tariq, Usman organization: College of Computer Engineering and SciencePrince Sattam Bin Abdulaziz UniversityAl-KharajSaudi Arabiapsau.edu.sa – sequence: 4 givenname: Ammar surname: Armghan fullname: Armghan, Ammar organization: Department of Electrical EngineeringJouf UniversitySakaka 75471Saudi Arabiaju.edu.sa – sequence: 5 givenname: Fayadh orcidid: 0000-0002-4099-1254 surname: Alenezi fullname: Alenezi, Fayadh organization: Department of Electrical EngineeringJouf UniversitySakaka 75471Saudi Arabiaju.edu.sa – sequence: 6 givenname: Muhammad surname: Younus Javed fullname: Younus Javed, Muhammad organization: Department of Computer ScienceHITEC University TaxilaTaxilaPakistanhitecuni.edu.pk – sequence: 7 givenname: Shabnam Mohamed orcidid: 0000-0001-9015-7551 surname: Aslam fullname: Aslam, Shabnam Mohamed organization: Department of Information TechnologyCollege of Computer and Information SciencesMajmaah UniversityAl-Majmaah 11952Saudi Arabiamu.edu.sa – sequence: 8 givenname: Seifedine surname: Kadry fullname: Kadry, Seifedine organization: Faculty of Applied Computing and TechnologyNoroff University CollegeKristiansandNorway  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34912449$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkctv1DAQhy3Uij7gxhlF4oJEQ_2IHeeCtNqWUmkRB8rZcmxn6-LYqZ1Q7X9fh11aqATIssbj-eah3xyBPR-8AeAVgu8RovQUQ4xOG4YaWDfPwCFivC4prsnew5vRA3CU0g2EtKYQPwcHpGoQrqrmEIhFsQz9MI0mlgurjS7OrFz7kGwqvm7SaPriW7J-XZwZMxQrI6OfvS7E4vPkRqucTJn8bn0OJht8sZx_bGeVHLP7Aux30iXzcmePwdXH86vlp3L15eJyuViVijSoKSsjqaKkxigbThXBUCvNNGJtW3PITFPxPFyrOylJSzBXhractJrJuuaYHINyW3byg9zcSefEEG0v40YgKGadxKyT2OmU-Q9bfpja3mhl_BjlY06QVvwZ8fZarMMPwRnjhM4F3u4KxHA7mTSK3iZlnJPehCkJzBDMGiOGMvrmCXoTpuizGjOFSL6IP1Jr6Yywvgu5r5qLigVr8iGMVpl6_fvcDwP_WmgGTraAiiGlaLr_6YCf4MqOPxeXu1v3t6R326Rr67W8s_9ucQ9F_cxR | 
    
| CitedBy_id | crossref_primary_10_1002_ima_22891 crossref_primary_10_1109_TNSE_2022_3185327 crossref_primary_10_1016_j_bspc_2024_107109 crossref_primary_10_1080_13682199_2023_2187518 crossref_primary_10_3389_fsurg_2022_929110 crossref_primary_10_3390_s22155652 crossref_primary_10_3390_app12115491 crossref_primary_10_1109_ACCESS_2023_3260027 crossref_primary_10_3389_fmed_2022_1005920 crossref_primary_10_3934_mbe_2023861 crossref_primary_10_3390_app14104005 crossref_primary_10_3390_cancers15194694 crossref_primary_10_1177_15330338221124372 crossref_primary_10_1109_ACCESS_2024_3397197 crossref_primary_10_1007_s00500_024_09949_9 crossref_primary_10_3390_s22020434 crossref_primary_10_1109_TMI_2022_3215547 crossref_primary_10_32604_csse_2023_037131 crossref_primary_10_1007_s11227_022_04561_w crossref_primary_10_32604_cmc_2022_028696 crossref_primary_10_1038_s41598_025_90423_3 crossref_primary_10_32604_cmc_2022_030432 crossref_primary_10_1007_s11082_022_04432_x crossref_primary_10_1016_j_jestch_2022_101174 crossref_primary_10_1002_ima_22880 crossref_primary_10_1016_j_compbiomed_2022_105939 crossref_primary_10_1016_j_bspc_2022_104186 crossref_primary_10_3390_jpm12060981 crossref_primary_10_3390_s23010426 crossref_primary_10_3390_biomedinformatics4040121 crossref_primary_10_1016_j_compeleceng_2022_108318 crossref_primary_10_1186_s12911_022_01919_1 crossref_primary_10_3390_app112411901 crossref_primary_10_1016_j_compbiomed_2023_106624 crossref_primary_10_1007_s00521_022_07204_6 crossref_primary_10_7717_peerj_cs_1520 crossref_primary_10_3390_computation13030078 crossref_primary_10_1007_s00521_023_09011_z crossref_primary_10_3390_jimaging10110265 crossref_primary_10_1007_s00521_022_08084_6 crossref_primary_10_3390_s22030799 crossref_primary_10_3390_sym15122213  | 
    
| Cites_doi | 10.1109/TIM.2020.3033072 10.1007/s00521-020-04870-2 10.1016/j.ymeth.2021.02.013 10.1007/s11042-020-10056-8 10.1109/ICET48972.2019.8994508 10.1016/j.imu.2019.100202 10.1109/access.2020.3002725 10.3390/cancers13153795 10.1111/exd.14114 10.1007/s10916-019-1413-3 10.1007/s11036-020-01550-2 10.1007/s00521-020-05410-8 10.1109/ICOSEC49089.2020.9215271 10.3390/v12070769 10.1111/jdv.12848 10.1016/j.ijleo.2020.165356 10.1109/access.2020.2975198 10.3390/e22040484 10.1109/TIPTEKNO47231.2019.8972045 10.1007/s11042-020-09388-2 10.1080/15481603.2017.1323377 10.1016/j.compeleceng.2020.106956 10.1016/j.patrec.2020.09.010 10.2174/1573405615666191120110855 10.1007/s11042-020-08852-3 10.1007/978-981-15-3383-9_15 10.1186/s13673-020-00216-y 10.1016/j.neunet.2019.03.013 10.1109/CVPR.2015.7299107 10.1007/s11517-021-02355-5 10.1007/s00259-021-05489-8 10.1109/ATSIP49331.2020.9231544 10.1002/jemt.23275 10.1007/s00521-021-05929-4 10.1007/s00530-020-00728-8 10.1109/ICECCO.2017.8333341 10.1007/s00779-020-01494-0 10.1111/1346-8138.15683 10.1016/j.patrec.2020.12.015  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2021 Mehak Arshad et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Mehak Arshad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Mehak Arshad et al. 2021  | 
    
| Copyright_xml | – notice: Copyright © 2021 Mehak Arshad et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Mehak Arshad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Mehak Arshad et al. 2021  | 
    
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1155/2021/9619079 | 
    
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology | 
    
| EISSN | 1687-5273 | 
    
| Editor | Abd El-Latif, Ahmed A. | 
    
| Editor_xml | – sequence: 1 givenname: Ahmed A. surname: Abd El-Latif fullname: Abd El-Latif, Ahmed A.  | 
    
| ExternalDocumentID | 10.1155/2021/9619079 PMC8668359 A696963654 34912449 10_1155_2021_9619079  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GrantInformation_xml | – fundername: Majmaah University’s Deanship of Scientific Research under Project grantid: 155/46683 – fundername: Majmaah University's Deanship of Scientific Research under Project grantid: 155/46683  | 
    
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P 2UF AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY C1A CITATION EJD H13 IHR IL9 OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO UZ4 CGR CNMHZ CUY CVCKV CVF ECM EIF NPM 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK COVID F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3919-4ea5c537215c585c320dcd6d16bb7806e948dedbdfaa3b328ce5b83bd6a77823 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1687-5265 1687-5273  | 
    
| IngestDate | Sun Oct 26 04:15:16 EDT 2025 Tue Sep 30 16:54:59 EDT 2025 Sun Sep 28 08:35:56 EDT 2025 Mon Oct 06 17:44:06 EDT 2025 Mon Oct 20 22:48:46 EDT 2025 Wed Feb 19 02:27:23 EST 2025 Wed Oct 01 02:22:15 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Sun Jun 02 18:51:55 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © 2021 Mehak Arshad et al. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3919-4ea5c537215c585c320dcd6d16bb7806e948dedbdfaa3b328ce5b83bd6a77823 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Ahmed A. Abd El-Latif  | 
    
| ORCID | 0000-0001-7058-0715 0000-0002-4099-1254 0000-0001-7672-1187 0000-0001-9015-7551  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cin/2021/9619079.pdf | 
    
| PMID | 34912449 | 
    
| PQID | 2611361118 | 
    
| PQPubID | 237303 | 
    
| ParticipantIDs | unpaywall_primary_10_1155_2021_9619079 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8668359 proquest_miscellaneous_2610912161 proquest_journals_2611361118 gale_infotracmisc_A696963654 pubmed_primary_34912449 crossref_primary_10_1155_2021_9619079 crossref_citationtrail_10_1155_2021_9619079 hindawi_primary_10_1155_2021_9619079  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-00-00 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – year: 2021 text: 2021-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: New York  | 
    
| PublicationTitle | Computational intelligence and neuroscience | 
    
| PublicationTitleAlternate | Comput Intell Neurosci | 
    
| PublicationYear | 2021 | 
    
| Publisher | Hindawi John Wiley & Sons, Inc  | 
    
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc  | 
    
| References | e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 Muhammad K. (e_1_2_8_35_2) 2021 e_1_2_8_1_2 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_13_2 e_1_2_8_36_2 e_1_2_8_30_2 e_1_2_8_11_2 e_1_2_8_32_2 Majid A. (e_1_2_8_29_2) 2021; 67 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_25_2 e_1_2_8_48_2 Marcelino P. (e_1_2_8_28_2) 2018 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_21_2 e_1_2_8_44_2 Sharma S. (e_1_2_8_27_2) 2017; 6 e_1_2_8_40_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_14_2 e_1_2_8_37_2 Ashraf I. (e_1_2_8_15_2) 2020; 10 Sharif M. (e_1_2_8_34_2) 2021; 11 e_1_2_8_31_2 e_1_2_8_10_2 e_1_2_8_33_2  | 
    
| References_xml | – ident: e_1_2_8_22_2 doi: 10.1109/TIM.2020.3033072 – ident: e_1_2_8_18_2 doi: 10.1007/s00521-020-04870-2 – ident: e_1_2_8_30_2 doi: 10.1016/j.ymeth.2021.02.013 – ident: e_1_2_8_36_2 doi: 10.1007/s11042-020-10056-8 – ident: e_1_2_8_39_2 doi: 10.1109/ICET48972.2019.8994508 – ident: e_1_2_8_31_2 doi: 10.1016/j.imu.2019.100202 – volume: 10 year: 2020 ident: e_1_2_8_15_2 article-title: Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists publication-title: Diagnostics – ident: e_1_2_8_38_2 doi: 10.1109/access.2020.3002725 – ident: e_1_2_8_12_2 doi: 10.3390/cancers13153795 – volume: 11 year: 2021 ident: e_1_2_8_34_2 article-title: Skin lesion segmentation and multiclass classification using deep learning features and improved moth flame optimization publication-title: Diagnostics – ident: e_1_2_8_1_2 doi: 10.1111/exd.14114 – ident: e_1_2_8_14_2 doi: 10.1007/s10916-019-1413-3 – ident: e_1_2_8_9_2 doi: 10.1007/s11036-020-01550-2 – ident: e_1_2_8_19_2 doi: 10.1007/s00521-020-05410-8 – year: 2018 ident: e_1_2_8_28_2 article-title: Transfer learning from pre-trained models publication-title: Data Science – ident: e_1_2_8_2_2 doi: 10.1109/ICOSEC49089.2020.9215271 – ident: e_1_2_8_13_2 doi: 10.3390/v12070769 – ident: e_1_2_8_4_2 doi: 10.1111/jdv.12848 – ident: e_1_2_8_41_2 doi: 10.1016/j.ijleo.2020.165356 – ident: e_1_2_8_3_2 doi: 10.1109/access.2020.2975198 – ident: e_1_2_8_43_2 doi: 10.3390/e22040484 – ident: e_1_2_8_25_2 – ident: e_1_2_8_44_2 doi: 10.1109/TIPTEKNO47231.2019.8972045 – ident: e_1_2_8_6_2 doi: 10.1007/s11042-020-09388-2 – ident: e_1_2_8_24_2 doi: 10.1080/15481603.2017.1323377 – ident: e_1_2_8_48_2 doi: 10.1016/j.compeleceng.2020.106956 – ident: e_1_2_8_8_2 doi: 10.1016/j.patrec.2020.09.010 – ident: e_1_2_8_16_2 doi: 10.2174/1573405615666191120110855 – ident: e_1_2_8_40_2 doi: 10.1007/s11042-020-08852-3 – volume: 6 start-page: 310 year: 2017 ident: e_1_2_8_27_2 article-title: Activation functions in neural networks publication-title: Data Science – ident: e_1_2_8_49_2 doi: 10.1007/978-981-15-3383-9_15 – ident: e_1_2_8_32_2 doi: 10.1186/s13673-020-00216-y – ident: e_1_2_8_46_2 doi: 10.1016/j.neunet.2019.03.013 – ident: e_1_2_8_26_2 doi: 10.1109/CVPR.2015.7299107 – ident: e_1_2_8_23_2 – year: 2021 ident: e_1_2_8_35_2 article-title: Multi-class skin lesion detection and classification via teledermatology publication-title: IEEE Journal of Biomedical and Health Informatics – ident: e_1_2_8_37_2 doi: 10.1007/s11517-021-02355-5 – ident: e_1_2_8_11_2 doi: 10.1007/s00259-021-05489-8 – ident: e_1_2_8_42_2 – ident: e_1_2_8_5_2 doi: 10.1109/ATSIP49331.2020.9231544 – ident: e_1_2_8_17_2 doi: 10.1002/jemt.23275 – ident: e_1_2_8_47_2 doi: 10.1007/s00521-021-05929-4 – ident: e_1_2_8_21_2 doi: 10.1007/s00530-020-00728-8 – ident: e_1_2_8_45_2 doi: 10.1109/ICECCO.2017.8333341 – ident: e_1_2_8_20_2 doi: 10.1007/s00779-020-01494-0 – volume: 67 year: 2021 ident: e_1_2_8_29_2 article-title: Multiclass stomach diseases classification using deep learning features optimization publication-title: Computers, Materials and Continua – ident: e_1_2_8_10_2 – ident: e_1_2_8_33_2 doi: 10.1111/1346-8138.15683 – ident: e_1_2_8_7_2 doi: 10.1016/j.patrec.2020.12.015  | 
    
| SSID | ssj0057502 | 
    
| Score | 2.4267418 | 
    
| Snippet | In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival... | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 9619079 | 
    
| SubjectTerms | Accuracy Algorithms Augmentation Automation Brain cancer Cancer Classification Computers Data mining Datasets Deep Learning Dermatology Diagnosis, Computer-Assisted Feature extraction Feature selection Health aspects Humans Image acquisition Inspection Learning algorithms Lesions Localization Machine learning Medical imaging Melanoma Mortality Neural networks Neural Networks, Computer Optimization techniques Skin Skin cancer Skin diseases Skin lesions Transfer learning  | 
    
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9wwEBVNoCSX0jZf26ZFgSSXYLq2PiwdTdOwFNpDSGBvQpa0zcLGu3SzhPz7zsiy6SZN24MxRrJkezTWG_n5DSHHUuWlU4XLJpKLjAMiyuqhthkTJQQfamJFzBLx7bscXfOvYzFOIknLp5_wYbbD8Dz_pAHoD0u9QTaURObW5WjcvXABcLTUQgn-gmrvHb_90blrM096_768wcj3fvonfPmUJrm1ahb24d7OZr_NQRevyasEHmnVWvsNeRGat2SnaiBwvn2gpzTSOeM6-Q4xFe0yNmTV1AdPz1tW3XRJW5lyGukC9DyEBU0yqz8oYFgaf8p1CKsp5uaCQlxSozF_JjKLojF3ydXFl6vPoyxlU8gc07nOeLDCCQYRH-yUcKwYeuelz2Vdl2oog-YKLqb2E2tZzQrlgqgVq720JcAItkc2m3kTDggtLKDAiQ9BKs1L71UedOFLJgPgCZ7zATnrHrRxSWkcE17MTIw4hDBoFpPMMiAnfe1Fq7DxTL1DtJlBx4PWHLiBM5VEdR8mBXR6nGz5r1Y6Q5vkrUsDUWTOYMvVgBz1xdgBMtCaMF_FOgCtCgDIA7Lfjou-I8Y1wiRovFwbMX0F1PBeL2mmN1HLW0kJGBjOPO3H1l-v_93_3eZ7so2H7VrRIdm8-7kKHwA93dUfo-_8AnsnDoA priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_qFdEXUevHaZUVal8k9JL9yOZBJNqWIniIVOjbstndswdn7rQ9Sv97Zzab2KLWh5CHndtdbmY2v5lMfgOwo3ReOl24bKaEzAQioqyZVDbjssTgQ8-sjF0iPk3V0Vfx8USebMC0_xaGyir7MzEe1H7pKEe-h0g_53jl-t3qR0Zdo-jtat9Cw6bWCv5tpBi7BZsFMWONYPP9wfTzl_5sRmzSVSEqdC0ihu9L4aWkLEC-V2E8MaGyrisPqXRU3z6lIPli_jco-mdF5Z11u7KXF3axuPK4OrwP9xLOZHVnGA9gI7QPYatuMcb-fsl2Waz8jCn1LTA165s7ZPXcB8_2uwK8-RnrGM1ZrCxg-yGsWGJk_cYQ7rL4_a4jBM6ojRcOUvaNxVabVIQU9f4Ijg8Pjj8cZanxQuZ4lVeZCFY6yTE4xJuWjhcT77zyuWqaUk9UqITGzTR-Zi1veKFdkI3mjVe2RMTBH8OoXbbhKbDCImCc-RCUrkTpvc5DVfiSq4DQQ-RiDG_6P9q4REpOvTEWJgYnUhpSi0lqGcPrQXrVkXH8Q26bdGbIR3E2hx7jTK2ICIgriYvuJF3-b5Ze0SY59pn5bYZjeDUM0wJUrNaG5TrKIAorEEuP4UlnF8NCXFSEqHDy8prFDAJE9319pJ2fRtpvrRTCZfzl7mBbN-7_2c37fw53SbpLJ23D6PznOrxAgHXevExe8wtuaB8c priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7ULaIv3qp2tcoItS-S7SaTmUzwKVhLESw-tFBBCHNLu7jNLu4upX3qT_A39pf0zGQSXe_4EJIwJzPJzJnk-4aT7wBschFnWiQ6qnjKohQRUaSGuYwoy5B8iEoynyXi_T7fO0zfHbGjFXjd_gtjnET8RJrZ4MRx0rORf1uHfp1ta2SLSNfj7RyB_zDLB1NT3YBVzhCI92D1cP9D8dFRLI5Txwm_fzvOaBv2zthSFUsfpPBavhka_xXs_Dl68tainsrzMzkef_dp2r0Ln9qHaiJSPg8WczXQFz_oPf7nU9-DOwGykqLxsfuwYusHsFbUSNdPz8kW8UGkfnV-DWRB2jwRV5dfi5Gxhuw00XyjGWnk0YkPUyA71k5JkHc9Joidif8ZWDs4T1xOMCx0S3nE5-10EU3eiR7Cwe7bgzd7UcjiEGmax3mUWsk0o8g0cSeYpsnQaMNNzJXKxJDbPBV4M8pUUlJFE6EtU4Iqw2WG8IU-gl49qe06kEQi-qyMtVzkaWaMiG2emIxyizgmjdM-vGpHstRB4dwl2hiXnukwVrpOLEMn9uFlZz1tlD1-Y7fhnKJ0Ex5r0zj9dFlwpypEOcNGN8OY_a2W1pPKdlxLZK8xxS0WfXjRFbsGXORbbScLb4OQLkFg3ofHjeN1DdE0d_AMK8-WXLIzcNrhyyX16MRriAvOEXvjlVud8_7x_p_8q-FTuO1Om1WqDejNvyzsM8Rtc_U8zM9rdQQ8VQ priority: 102 providerName: Unpaywall  | 
    
| Title | A Computer-Aided Diagnosis System Using Deep Learning for Multiclass Skin Lesion Classification | 
    
| URI | https://dx.doi.org/10.1155/2021/9619079 https://www.ncbi.nlm.nih.gov/pubmed/34912449 https://www.proquest.com/docview/2611361118 https://www.proquest.com/docview/2610912161 https://pubmed.ncbi.nlm.nih.gov/PMC8668359 https://downloads.hindawi.com/journals/cin/2021/9619079.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2021 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central (New) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFD7aRcBeEFBghVEZaewFBZo4vj0glNKVCmnVNK1SeYoS22WVuqxsq0b_PcfORVR08NBEik_iKOe4_j7n5HwAh1yGQstIB1MesyBGRBTkXZUFlAkkH3KaMa8ScTLiw3H8bcImW1CrjVYP8GYjtXN6UuPr-YdfP1efccB_8gOeMcffw48KmUBXqG3YxTlKORGHk7h5n4CYxOXxtDadsQcPaazcNKfW5qbqH_rBhePGd7NNCPTvRMpHy2KRre6y-fyPWWrwBB5X8JIkZTw8hS1bPINWUiC1vlyRI-ITPv1KegvShNSaDkEyM9aQfpl3N7shZSFz4hMKSN_aBakKsf4giHKJ_2xXO-BNnHoXNrpFN-IVNl3ukXf3czgfHJ9_GQaV3kKgqQpVENuMaUaRE-JOMk2jrtGGm5DnuZBdblUs8WZyM80ymtNIastySXPDM4FAg76AneKqsPtAogxx4tRYy6WKhTEytCoygnKLiCMO4za8rx90qqta5E4SY556TsJY6jyUVh5qw7vGelHW4LjH7sD5LHXBglfTOFB0mnBX_4dyhp0eVr7831VqR6d1OKbIM0OKv1C24W3T7DpwOWqFvVp6GwRfEULoNrws46LpqI6wNoi1iGkMXJXv9ZZiduGrfUvOESXjmUdNbP3z_l_d2_lr2HOG5QLSAezcXi_tG4RUt3kHtsVE4FYOvnZgN-n1ewPc945Hp2cdP5Jwezac4LHx6DT5_ht0VSAF | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lc9MwENaUdJj2wqsUAgXETJsL4za2LFk-cPA0lJQ-TmHoTWNLCs00OIEkkwn_ib_Cb2JXlkPLo5x64ODxQbLkOLur75M_7xKyLWSYaBnpoC9iHsSAiIKineYB4wmQD9nPuasScXIquu_jd2f8bIV8q7-FQVllHRNdoDYjjXvke4D0QwZHKL2C8sgu5sDPJq8PO_Bn7kTRwZvefjfwJQQCzdIwDWKbc80Z0Bw4Sa5Z1DbaCBOKokhkW9g0lsaawvTznBUsktryQrLCiDyBtZPBsK3x5wCLVOHLXF-x4xZZBTMPowZZ3f_QedutQz9An0rkKMBzMe98rbTnHDcZwr0U6EobVWOX1kC_Etw-Rw4-H_wJ6f4u2FybleN8Mc-Hw0ur4cFd8r1-jpUI5mJ3Ni129ddfUkz-Nw_6HrnjcTnNKke6T1Zs-YBsZGU-HX1a0BZ1Sln3CmKDqIzWxTCCbADz0U4lWBxMaJUBnjolBu1YO6Y-g-1HCvSAuu-dNTIWimXPoBF3K6krTYqiLecnD0nvJn78JmmUo9I-JjTKAWD3jbVCpnFijAxtGpmECQtQLQ7jJnlVW47SPok71hIZKkfmOFdoZ8rbWZPsLHuPq-Qlf-m3hUaoMKbBaBoijFaZwMRJTHCYdNsb579GqQ1K-UA4UT-tqUleLptxAhT3lXY0c30AtUbAPZrkUWXoy4lYnCIChcGTKy6w7IDp0a-2lINzlyZdCgH0Aq5sLZ3l2vt_cv39vyBr3d7JsTo-PD16Stbxymorbos0pl9m9hmA02nx3IcEStQNu8sPThqZuQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jc9MwFNaUdlgubGUJFBAzbS-Mm9iyZPnAMJ6akFLocCjT3jS2JNMMwQkkmUz4Z_wVfg3vyQstSzn1wMHjg-Qnx3nbJ39-j5BNIf1Iy0B7hQi5F0JG5OW9OPMYjwB8yCLjrkvE2wMxeB--PubHK-Rb8y0M0iobn-gctRlr3CPvQqbvMzh82S1qWsS7tP9i8tnDDlL4prVpp1GpyL5dLgC-TZ_vpfBfbwVB_-Xh7sCrOwx4msV-7IU245ozQEFwklyzoGe0EcYXeR7JnrBxKI01uSmyjOUskNryXLLciCyC0MpA7CWyJkUkwCes7R6lrwZNGIA0qCI8CrBirEHfsO45xw0HvxsDdOkhg-xUPKyjwuUTxOOL4Z-y3t_Jm1fn5SRbLrLR6FRk7N8g35tnWhFiPu7MZ_mO_vpLucn_8qHfJNfrfJ0mlYHdIiu2vE3WkzKbjT8t6TZ1DFr3amKdqIQ2TTK8ZAjCaVoRGYdTWlWGp46hQVNrJ7SubPuBAmyg7jtojUiGYjs0GMRdTOpaliKZy9nPHXJ4Eb_0Llktx6W9T2iQQeJdGGuFjMPIGOnbODARExZSuNAPO-RZo0VK18XdscfISDmQx7lCnVO1znXIVjt7UhU1-cu8DVRIhb4OpGnwPFolAgsqMcFh0c1aUf8lpVEuVTvIqfqpWR3ytB3GBZD0V9rx3M2BbDYATNIh9yqlbxdiYYyZKQiPzphDOwHLpp8dKYcnrny6FAJgB1y53RrOuff_4Pz7f0KugE2oN3sH-w_JNbyw2qHbIKuzL3P7CHLWWf649g6UqAs2jR-7qaKB | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7ULaIv3qp2tcoItS-S7SaTmUzwKVhLESw-tFBBCHNLu7jNLu4upX3qT_A39pf0zGQSXe_4EJIwJzPJzJnk-4aT7wBschFnWiQ6qnjKohQRUaSGuYwoy5B8iEoynyXi_T7fO0zfHbGjFXjd_gtjnET8RJrZ4MRx0rORf1uHfp1ta2SLSNfj7RyB_zDLB1NT3YBVzhCI92D1cP9D8dFRLI5Txwm_fzvOaBv2zthSFUsfpPBavhka_xXs_Dl68tainsrzMzkef_dp2r0Ln9qHaiJSPg8WczXQFz_oPf7nU9-DOwGykqLxsfuwYusHsFbUSNdPz8kW8UGkfnV-DWRB2jwRV5dfi5Gxhuw00XyjGWnk0YkPUyA71k5JkHc9Joidif8ZWDs4T1xOMCx0S3nE5-10EU3eiR7Cwe7bgzd7UcjiEGmax3mUWsk0o8g0cSeYpsnQaMNNzJXKxJDbPBV4M8pUUlJFE6EtU4Iqw2WG8IU-gl49qe06kEQi-qyMtVzkaWaMiG2emIxyizgmjdM-vGpHstRB4dwl2hiXnukwVrpOLEMn9uFlZz1tlD1-Y7fhnKJ0Ex5r0zj9dFlwpypEOcNGN8OY_a2W1pPKdlxLZK8xxS0WfXjRFbsGXORbbScLb4OQLkFg3ofHjeN1DdE0d_AMK8-WXLIzcNrhyyX16MRriAvOEXvjlVud8_7x_p_8q-FTuO1Om1WqDejNvyzsM8Rtc_U8zM9rdQQ8VQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Computer-Aided+Diagnosis+System+Using+Deep+Learning+for+Multiclass+Skin+Lesion+Classification&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Arshad%2C+Mehak&rft.au=Khan%2C+Muhammad+Attique&rft.au=Tariq%2C+Usman&rft.au=Armghan%2C+Ammar&rft.date=2021&rft.eissn=1687-5273&rft.volume=2021&rft.spage=9619079&rft_id=info:doi/10.1155%2F2021%2F9619079&rft_id=info%3Apmid%2F34912449&rft.externalDocID=34912449 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |