Pulmonary hypertension and the right ventricle in hypoxia

New Findings •  What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high‐altitude right heart failure. •  What adv...

Full description

Saved in:
Bibliographic Details
Published inExperimental physiology Vol. 98; no. 8; pp. 1247 - 1256
Main Authors Naeije, Robert, Dedobbeleer, Chantal
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2013
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN0958-0670
1469-445X
1469-445X
DOI10.1113/expphysiol.2012.069112

Cover

Abstract New Findings •  What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high‐altitude right heart failure. •  What advances does it highlight? Non‐invasive field studies have shown that hypoxic pulmonary hypertension limits exercise capacity in relationship to increased pulmonary artery pressures in high‐altitude newcomers. This is compensated for by increased lung diffusing capacity, decreased ventilator response and polycythaemia in high‐altitude inhabitants. There is recently reported echocardiographic evidence of altered right ventricular function at high altitudes at rest. These data need to be confirmed with measurements during exercise. Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure–flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10–25% of the hypoxia‐induced decrease in maximal oxygen uptake has been reported with intake‐specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established.
AbstractList New Findings •  What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high‐altitude right heart failure. •  What advances does it highlight? Non‐invasive field studies have shown that hypoxic pulmonary hypertension limits exercise capacity in relationship to increased pulmonary artery pressures in high‐altitude newcomers. This is compensated for by increased lung diffusing capacity, decreased ventilator response and polycythaemia in high‐altitude inhabitants. There is recently reported echocardiographic evidence of altered right ventricular function at high altitudes at rest. These data need to be confirmed with measurements during exercise. Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure–flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10–25% of the hypoxia‐induced decrease in maximal oxygen uptake has been reported with intake‐specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established.
Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure-flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10-25% of the hypoxia-induced decrease in maximal oxygen uptake has been reported with intake-specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established.
New Findings * What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high-altitude right heart failure. * What advances does it highlight? Non-invasive field studies have shown that hypoxic pulmonary hypertension limits exercise capacity in relationship to increased pulmonary artery pressures in high-altitude newcomers. This is compensated for by increased lung diffusing capacity, decreased ventilator response and polycythaemia in high-altitude inhabitants. There is recently reported echocardiographic evidence of altered right ventricular function at high altitudes at rest. These data need to be confirmed with measurements during exercise. Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure-flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10-25% of the hypoxia-induced decrease in maximal oxygen uptake has been reported with intake-specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established.
Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure-flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10-25% of the hypoxia-induced decrease in maximal oxygen uptake has been reported with intake-specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established.Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure-flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10-25% of the hypoxia-induced decrease in maximal oxygen uptake has been reported with intake-specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established.
What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high‐altitude right heart failure. What advances does it highlight? Non‐invasive field studies have shown that hypoxic pulmonary hypertension limits exercise capacity in relationship to increased pulmonary artery pressures in high‐altitude newcomers. This is compensated for by increased lung diffusing capacity, decreased ventilator response and polycythaemia in high‐altitude inhabitants. There is recently reported echocardiographic evidence of altered right ventricular function at high altitudes at rest. These data need to be confirmed with measurements during exercise. Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure–flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10–25% of the hypoxia‐induced decrease in maximal oxygen uptake has been reported with intake‐specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro . However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established.
Author Dedobbeleer, Chantal
Naeije, Robert
Author_xml – sequence: 1
  givenname: Robert
  surname: Naeije
  fullname: Naeije, Robert
– sequence: 2
  givenname: Chantal
  surname: Dedobbeleer
  fullname: Dedobbeleer, Chantal
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23625956$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKxDAUhoMoOl5eQQpu3HTMSdpMgm5EvIGgCwV3IZOeOpFOWpNWnbc34yiCG12dzfed279N1n3rkZB9oGMA4Ef43nWzRXRtM2YU2JgKBcDWyAgKofKiKB_XyYiqUuZUTOgW2Y7xmVLgVBabZItxwUpVihFRd0Mzb70Ji2y26DD06FNTnxlfZf0Ms-CeZn32ir4PzjaYOb_k2ndndslGbZqIe191hzxcnN-fXeU3t5fXZ6c3ueUKVM5qDqgKUcjKCgALspoC59SUXBrJLCsnvDQFFUJwgROcMmC2rKZ1JamoJ5zvkMNV3y60LwPGXs9dtNg0xmM7RA0FgGCSfaIHv9Dndgg-bZcoKlg6XtBE7X9Rw3SOle6Cm6f79fdTEnCyAmxoYwxYa-t606e39MG4RgPVywz0TwZ6mYFeZZB08Uv_nvCneLwS31yDi39a-vzuCphU_ANAW6BD
CitedBy_id crossref_primary_10_33549_physiolres_932861
crossref_primary_10_1155_2017_8381653
crossref_primary_10_1113_JP275278
crossref_primary_10_3389_fphar_2020_607384
crossref_primary_10_1111_crj_12924
crossref_primary_10_2174_011573403X308818241030051249
crossref_primary_10_1113_JP284622
crossref_primary_10_1113_JP284943
crossref_primary_10_4187_respcare_06544
crossref_primary_10_1016_j_abb_2022_109294
crossref_primary_10_1007_s11684_018_0634_z
crossref_primary_10_14814_phy2_12674
crossref_primary_10_1113_EP088657
crossref_primary_10_1007_s00421_020_04435_0
crossref_primary_10_1016_j_cbpa_2014_10_009
crossref_primary_10_3390_ijms21176421
crossref_primary_10_1089_ham_2015_0114
crossref_primary_10_1016_j_resp_2020_103534
crossref_primary_10_3389_fgene_2022_810157
crossref_primary_10_1183_13993003_01753_2015
crossref_primary_10_1016_j_echo_2020_12_003
crossref_primary_10_1016_j_lfs_2015_11_020
crossref_primary_10_1152_ajpheart_00146_2018
crossref_primary_10_1111_mec_12836
crossref_primary_10_3389_fphys_2018_00248
crossref_primary_10_1016_j_mvr_2020_104129
crossref_primary_10_1113_JP281724
crossref_primary_10_3389_fphys_2021_650696
crossref_primary_10_1016_j_jep_2018_01_010
crossref_primary_10_1089_ham_2017_0113
crossref_primary_10_1113_expphysiol_2012_068940
crossref_primary_10_1113_JP284550
crossref_primary_10_1152_ajpheart_00458_2016
crossref_primary_10_61186_jrds_21_4_302
crossref_primary_10_1097_MCP_0000000000001092
crossref_primary_10_1152_japplphysiol_00153_2019
crossref_primary_10_1111_apha_12749
crossref_primary_10_1016_j_cophys_2019_06_008
crossref_primary_10_1016_j_mehy_2020_110411
crossref_primary_10_3389_fphys_2021_786954
crossref_primary_10_1007_s00424_018_2127_y
crossref_primary_10_1172_JCI85715
crossref_primary_10_1152_physiol_00007_2015
crossref_primary_10_1002_ame2_12191
crossref_primary_10_1016_j_rmr_2017_01_013
crossref_primary_10_1152_japplphysiol_01075_2020
crossref_primary_10_1093_eurjpc_zwaa020
crossref_primary_10_1093_eurjpc_zwac166
crossref_primary_10_2478_prilozi_2021_0003
crossref_primary_10_1155_2018_9504158
crossref_primary_10_1155_2020_1478291
crossref_primary_10_1113_EP087027
crossref_primary_10_1177_2045894020934625
crossref_primary_10_3389_fcvm_2021_744393
crossref_primary_10_1016_j_omtn_2019_12_027
crossref_primary_10_1016_j_ijcard_2013_07_129
crossref_primary_10_1038_s41467_025_57707_8
crossref_primary_10_1007_s00421_020_04319_3
crossref_primary_10_1093_cvr_cvv243
crossref_primary_10_3233_CH_190671
crossref_primary_10_3892_ijmm_2018_3740
crossref_primary_10_1097_MD_0000000000021133
crossref_primary_10_3390_ijerph19084558
crossref_primary_10_1007_s10554_015_0614_1
crossref_primary_10_1161_JAHA_120_018327
crossref_primary_10_1186_s13741_024_00388_6
crossref_primary_10_1089_ham_2015_0066
crossref_primary_10_1016_j_jelectrocard_2020_05_008
Cites_doi 10.1152/jappl.1976.41.4.449
10.1136/hrt.33.5.647
10.1089/ham.2011.1060
10.1378/chest.11-2845
10.1089/ham.2006.7.125
10.1161/CIRCULATIONAHA.106.624544
10.1139/H08-009
10.1152/ajpheart.1997.273.3.H1126
10.1164/ajrccm.161.1.9902096
10.1164/rccm.201211-2090CI
10.1152/jappl.1967.23.6.849
10.1016/j.amjcard.2009.02.006
10.1152/ajpheart.00332.2005
10.1152/jappl.1956.9.3.328
10.1152/japplphysiol.00205.2005
10.1152/ajpregu.00444.2012
10.1152/ajpheart.00053.2012
10.1152/jappl.1987.63.2.531
10.1152/jappl.1976.41.3.356
10.1152/jappl.1993.74.1.312
10.1183/09031936.00024410
10.1161/CIRCULATIONAHA.106.650796
10.1161/CIRCULATIONAHA.106.650994
10.1113/jphysiol.2012.234310
10.1152/jappl.1986.61.1.260
10.1152/ajpheart.2000.279.4.H2013
10.1016/S0735-1097(99)00055-8
10.1016/0002-9149(87)91000-9
10.1152/ajplegacy.1947.150.2.315
10.1089/ham.2012.1124
10.1152/ajplung.00162.2004
10.1164/rccm.201207-1323CI
10.1152/physrev.00041.2010
10.1016/0002-9343(71)90181-1
10.1152/jappl.1992.73.3.987
10.1089/ham.2012.1073
10.1034/j.1600-0838.2000.010003123.x
10.1378/chest.12-0071
10.1161/01.CIR.33.2.249
10.1152/japplphysiol.00457.2010
10.1016/j.jacc.2007.10.041
10.1161/01.CIR.103.16.2078
10.1016/0002-9343(62)90288-7
10.1016/j.pcad.2010.03.004
10.1378/chest.08-1094
10.1161/01.RES.80.5.699
10.1016/0140-6736(90)90348-9
10.1111/j.1748-1716.1946.tb00389.x
10.1111/j.1748-1716.1963.tb02572.x
10.1002/path.1711550213
10.1161/01.CIR.28.5.915
10.1089/ham.2005.6.147
10.1378/chest.09-1355
10.1113/jphysiol.1933.sp003009
10.1002/cphy.c100091
10.1152/ajpheart.00518.2003
ContentType Journal Article
Copyright 2013 The Authors. Experimental Physiology © 2013 The Physiological Society
Copyright_xml – notice: 2013 The Authors. Experimental Physiology © 2013 The Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TS
K9.
7X8
DOI 10.1113/expphysiol.2012.069112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1469-445X
EndPage 1256
ExternalDocumentID 3024959181
23625956
10_1113_expphysiol_2012_069112
EPH1289
Genre article
Journal Article
Review
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
18M
1OB
1OC
24P
29G
2WC
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAFWJ
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABGDZ
ABITZ
ABPVW
ABUWG
ABVKB
ABXGK
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACMXC
ACPOU
ACPRK
ACQPF
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFZJQ
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AVUZU
AZBYB
AZVAB
BAFTC
BAWUL
BBNVY
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
C1A
C45
CAG
CCPQU
CHEAL
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
EX3
F00
F01
F04
F5P
FIJ
FUBAC
G-S
G.N
GODZA
GROUPED_DOAJ
GX1
H.X
H13
HCIFZ
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
L98
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MVM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
NQS
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PGMZT
PQQKQ
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RPM
RX1
SAMSI
SUPJJ
SV3
TEORI
TLM
TR2
UB1
V8K
W8F
W8V
W99
WBKPD
WIH
WIJ
WIK
WIN
WNSPC
WOHZO
WOQ
WOW
WQJ
WRC
WXI
WXSBR
WYISQ
X7M
XG1
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
7TS
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
AFPKN
ID FETCH-LOGICAL-c3919-2f31e94648dc611c18db1330a538a82c25735a4066636e7eb212c5dbfd806f733
IEDL.DBID DR2
ISSN 0958-0670
1469-445X
IngestDate Sat Sep 27 21:34:39 EDT 2025
Sat Sep 06 07:31:05 EDT 2025
Thu Apr 03 07:09:36 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Tue Jul 01 02:03:56 EDT 2025
Wed Jan 22 16:45:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3919-2f31e94648dc611c18db1330a538a82c25735a4066636e7eb212c5dbfd806f733
Notes Hypoxic pulmonary hypertension: mechanisms of pulmonary vascular change and their effect on the right ventricle
Symposium Report from the symposium
at IUPS in Birmingham on 22 July 2013.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 23625956
PQID 1406208460
PQPubID 37290
PageCount 10
ParticipantIDs proquest_miscellaneous_1411628273
proquest_journals_1406208460
pubmed_primary_23625956
crossref_citationtrail_10_1113_expphysiol_2012_069112
crossref_primary_10_1113_expphysiol_2012_069112
wiley_primary_10_1113_expphysiol_2012_069112_EPH1289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Oxford
PublicationTitle Experimental physiology
PublicationTitleAlternate Exp Physiol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References 1997; 80
2004; 286
2010; 109
1967; 23
1997; 273
2008; 33
2011; 12
1962; 32
2001; 103
1933; 78
2013; 14
1990; 335
1971; 50
1989; 266
2000; 10
1993; 74
2000; 161
1983
1989
1976; 41
2012; 142
2012; 186
2010; 36
2000; 279
1962; 19
2013; 304
2000; 72
2006; 7
2013; 187
2012; 302
2008; 51
1966; 33
1963; 28
1992; 73
1963; 57
2012; 590
2007; 115
1971; 33
2012; 92
2012; 2
2007; 116
1986; 61
1987; 63
1987; 60
2005; 288
2005; 289
2010; 137
1963; 2
1999; 33
1956; 9
2005; 6
1988; 155
1947; 150
2008; 135
2013
2005; 99
2009; 103
2010; 52
1946; 12
e_1_2_2_4_1
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
Naeye RL (e_1_2_2_42_1) 1962; 19
e_1_2_2_2_1
e_1_2_2_41_1
e_1_2_2_62_1
e_1_2_2_43_1
e_1_2_2_64_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_60_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_30_1
e_1_2_2_19_1
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_55_1
Tucker CE (e_1_2_2_56_1) 1976; 41
e_1_2_2_15_1
e_1_2_2_36_1
e_1_2_2_57_1
Penaloza D (e_1_2_2_48_1) 1963; 2
e_1_2_2_25_1
e_1_2_2_5_1
Heath D (e_1_2_2_20_1) 1989
e_1_2_2_23_1
e_1_2_2_7_1
e_1_2_2_21_1
e_1_2_2_3_1
Vogel JHK (e_1_2_2_59_1) 1962; 19
e_1_2_2_40_1
e_1_2_2_63_1
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_61_1
Grover RF (e_1_2_2_18_1) 1983
Pei SX (e_1_2_2_45_1) 1989; 266
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
e_1_2_2_39_1
e_1_2_2_10_1
Beall CM (e_1_2_2_11_1) 2000; 72
Rotta Canepa AA (e_1_2_2_51_1) 1956; 9
Lockhart A (e_1_2_2_31_1) 1976; 41
e_1_2_2_52_1
e_1_2_2_54_1
e_1_2_2_33_1
e_1_2_2_16_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_50_1
References_xml – volume: 41
  start-page: 356
  year: 1976
  end-page: 361
  article-title: Depressed myocardial function in the goat at high altitude
  publication-title: J Appl Physiol
– volume: 74
  start-page: 312
  year: 1993
  end-page: 318
  article-title: Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m
  publication-title: J Appl Physiol
– volume: 2
  start-page: 283
  year: 1963
  end-page: 98
  article-title: The heart in chronic hypoxia
  publication-title: Biochem Clin
– volume: 115
  start-page: e308
  year: 2007
  end-page: e309
  article-title: Images in cardiovascular medicine. High‐altitude‐induced right‐heart failure
  publication-title: Circulation
– volume: 10
  start-page: 119
  year: 2000
  end-page: 123
  article-title: Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance
  publication-title: Scand J Med Sci Sports
– volume: 50
  start-page: 728
  year: 1971
  end-page: 743
  article-title: Chronic cor pulmonale due to loss of acclimatization (chronic mountain sickness)
  publication-title: Am J Med
– volume: 186
  start-page: 1229
  year: 2012
  end-page: 1237
  article-title: Concise clinical review: high altitude medicine
  publication-title: Am J Respir Crit Care Med
– volume: 36
  start-page: 1049
  year: 2010
  end-page: 1055
  article-title: Pulmonary artery pressure limits exercise capacity at high altitudes
  publication-title: Eur Respir J
– volume: 115
  start-page: 1132
  year: 2007
  end-page: 1146
  article-title: The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness
  publication-title: Circulation
– volume: 155
  start-page: 161
  year: 1988
  end-page: 170
  article-title: Subacute infantile mountain sickness
  publication-title: J Pathol
– volume: 57
  start-page: 26
  year: 1963
  end-page: 50
  article-title: Circulatory studies in well trained athletes at rest and during heavy exercise, with special reference to stroke volume and the influence of body position
  publication-title: Acta Physiol Scand
– volume: 137
  start-page: 288
  year: 2010
  end-page: 292
  article-title: Exaggerated pulmonary hypertension during mild exercise in chronic mountain sickness
  publication-title: Chest
– volume: 41
  start-page: 449
  year: 1976
  end-page: 456
  article-title: Pressure‐ flow‐volume relationships in pulmonary circulation of normal highlanders
  publication-title: J Appl Physiol
– volume: 80
  start-page: 699
  year: 1997
  end-page: 707
  article-title: Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia
  publication-title: Circ Res
– volume: 14
  start-page: 19
  year: 2013
  end-page: 26
  article-title: Pulmonary vascular reserve and exercise capacity, at sea level and at high altitude
  publication-title: High Alt Med Biol
– volume: 60
  start-page: 137
  year: 1987
  end-page: 142
  article-title: Enhanced left ventricular systolic performance at high altitude during Operation Everest II
  publication-title: Am J Cardiol
– volume: 33
  start-page: 647
  year: 1971
  end-page: 657
  article-title: Bradycardia, increased cardiac output and reversal of pulmonary hypertension in altitude natives living at sea level
  publication-title: Br Heart J
– volume: 2
  start-page: 711
  year: 2012
  end-page: 741
  article-title: Pulmonary circulation at exercise
  publication-title: Compr Physiol
– volume: 12
  start-page: 301
  year: 1946
  end-page: 320
  article-title: Observations on the pulmonary arterial blood pressure in the cat
  publication-title: Acta Physiol Scand
– volume: 279
  start-page: H2013
  year: 2000
  end-page: 6
  article-title: Echocardiographic and invasive measurements of pulmonary artery pressure correlate closely at high altitude
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 273
  start-page: H1126
  year: 1997
  end-page: 34
  article-title: Time course of the human pulmonary vascular response to 8 hours of isocapnic hypoxia
  publication-title: Am J Physiol
– volume: 72
  start-page: 201
  year: 2000
  end-page: 228
  article-title: Tibetan and Andean patterns of adaptation to high altitude hypoxia
  publication-title: Hum Biol
– volume: 51
  start-page: 750
  year: 2008
  end-page: 757
  article-title: Interventricular mechanical asynchrony in pulmonary arterial hypertension: left‐to‐right delay in peak shortening is related to right ventricular overload and left ventricular underfilling
  publication-title: J Am Coll Cardiol
– volume: 73
  start-page: 987
  year: 1992
  end-page: 994
  article-title: A simple distensible model for interpreting pulmonary vascular pressure‐flow curves
  publication-title: J Appl Physiol
– year: 2013
  article-title: Pulmonary hypertension and chronic mountain sickness
  publication-title: High Alt Med Biol
– volume: 19
  start-page: 302
  year: 1962
  end-page: 309
  article-title: Hypoxemia, effects on pulmonary vascular bed
  publication-title: Med Thoracalis
– volume: 142
  start-page: 1158
  year: 2012
  end-page: 1165
  article-title: Exercise stress echocardiography of the pulmonary circulation: limits of normal and gender differences
  publication-title: Chest
– volume: 33
  start-page: 1662
  year: 1999
  end-page: 1666
  article-title: Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension
  publication-title: J Am Coll Cardiol
– volume: 52
  start-page: 456
  year: 2010
  end-page: 466
  article-title: Physiological adaptation of the cardiovascular system to high altitude
  publication-title: Progr Cardiovasc Dis
– volume: 12
  start-page: 309
  year: 2011
  end-page: 312
  article-title: Pro: hypoxic pulmonary vasoconstriction is a limiting factor for exercise capacity at high altitude
  publication-title: High Alt Med Biol
– volume: 302
  start-page: H2646
  year: 2012
  end-page: H2653
  article-title: Pulmonary artery pressure and cardiac function in children and adolescents after rapid ascent to 3,450 m
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 266
  start-page: 555
  year: 1989
  end-page: 574
  article-title: Chronic mountain sickness in Tibet
  publication-title: Q J Med
– volume: 33
  start-page: 249
  year: 1966
  end-page: 262
  article-title: Pulmonary pressure, cardiac output, and arterial oxygen saturation during exercise at high altitude and at sea level
  publication-title: Circulation
– volume: 109
  start-page: 1307
  year: 2010
  end-page: 1317
  article-title: Pulmonary transit of agitated contrast is associated with enhanced pulmonary vascular reserve and right ventricular function at exercise
  publication-title: J Appl Physiol
– volume: 590
  start-page: 4279
  year: 2012
  end-page: 4288
  article-title: Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals
  publication-title: J Physiol
– volume: 187
  start-page: 576
  year: 2013
  end-page: 583
  article-title: Exercise‐induced pulmonary hypertension: physiological basis and methodological concerns
  publication-title: Am J Respir Crit Care Med
– volume: 28
  start-page: 915
  year: 1963
  end-page: 925
  article-title: The terminal portion of the pulmonary arterial tree in people native to high altitude
  publication-title: Circulation
– volume: 103
  start-page: 1605
  year: 2009
  end-page: 1609
  article-title: Echocardiographic and tissue Doppler imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders
  publication-title: Am J Cardiol
– volume: 92
  start-page: 367
  year: 2012
  end-page: 520
  article-title: Hypoxic pulmonary vasoconstriction
  publication-title: Physiol Rev
– volume: 150
  start-page: 315
  year: 1947
  end-page: 320
  article-title: The influence of short periods of induced acute anoxia upon pulmonary artery pressures in man
  publication-title: Am J Physiol
– volume: 78
  start-page: 339
  year: 1933
  end-page: 369
  article-title: The apparent viscosity of blood flowing in the isolated hindlimb of the dog, and its variation with corpuscular concentration
  publication-title: J Physiol
– volume: 23
  start-page: 849
  year: 1967
  end-page: 858
  article-title: Reduction of stroke volume during exercise in man following ascent to 3100 m altitude
  publication-title: J Appl Physiol
– volume: 116
  start-page: 2191
  year: 2007
  end-page: 2202
  article-title: Effect of altitude on the heart and the lungs
  publication-title: Circulation
– volume: 135
  start-page: 499
  year: 2008
  end-page: 504
  article-title: Pulmonary pressure and cardiac function in chronic mountain sickness patients
  publication-title: Chest
– volume: 289
  start-page: H1391
  year: 2005
  end-page: H1398
  article-title: Right and left ventricular adaptation to hypoxia: a tissue Doppler imaging study
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 103
  start-page: 2078
  year: 2001
  end-page: 2083
  article-title: High altitude pulmonary edema is initially caused by an increased capillary pressure
  publication-title: Circulation
– volume: 19
  start-page: 461
  year: 1962
  end-page: 477
  article-title: Pulmonary hypertension on exertion in normal man living at 10,150 feet (Leadville, Colorado)
  publication-title: Med Thorac
– start-page: 103
  year: 1983
  end-page: 136
– volume: 7
  start-page: 125
  year: 2006
  end-page: 137
  article-title: Respiratory control in residents at high altitude: physiology and pathophysiology
  publication-title: High Alt Med Biol
– volume: 304
  start-page: R171
  year: 2013
  end-page: R176
  article-title: Role of the fragility of the pulmonary blood‐gas barrier in the evolution of the pulmonary circulation
  publication-title: Am J Physiol Regul Integr Comp Physiol
– volume: 33
  start-page: 582
  year: 2008
  end-page: 592
  article-title: Do high‐altitude natives have an enhanced exercise performance at high altitude
  publication-title: Appl Physiol Nutr Metab
– volume: 61
  start-page: 260
  year: 1986
  end-page: 270
  article-title: Pulmonary gas exchange in humans at sea level and simulated altitude
  publication-title: J Appl Physiol
– start-page: 186
  year: 1989
  end-page: 195
– volume: 32
  start-page: 171
  year: 1962
  end-page: 183
  article-title: Brisket disease
  publication-title: Am J Med
– volume: 161
  start-page: 264
  year: 2000
  end-page: 270
  article-title: Operation Everest III (Comex ’97): modifications of cardiac function secondary to altitude‐induced hypoxia
  publication-title: Am J Respir Crit Care Med
– volume: 335
  start-page: 561
  year: 1990
  end-page: 565
  article-title: Adult subacute mountain sickness: a syndrome of congestive heart failure in man at very high altitude
  publication-title: Lancet
– volume: 9
  start-page: 328
  year: 1956
  end-page: 336
  article-title: Pulmonary circulation at sea level and at high altitude
  publication-title: J Appl Physiol
– volume: 286
  start-page: H856
  year: 2004
  end-page: H862
  article-title: Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude
  publication-title: Am J Physiol Heart Circ Physiol
– volume: 142
  start-page: 877
  year: 2012
  end-page: 884
  article-title: Exercise pathophysiology in patients with chronic mountain sickness
  publication-title: Chest
– volume: 99
  start-page: 1796
  year: 2005
  end-page: 1801
  article-title: Nitric oxide and cardiopulmonary hemodynamics in Tibetan highlanders
  publication-title: J Appl Physiol
– volume: 6
  start-page: 147
  year: 2005
  end-page: 157
  article-title: Consensus statement on chronic and subacute high altitude diseases
  publication-title: High Alt Med Biol
– volume: 288
  start-page: L419
  year: 2005
  end-page: L425
  article-title: Distensibility of the normal human lung circulation during exercise
  publication-title: Am J Physiol Lung Cell Mol Physiol
– volume: 63
  start-page: 531
  year: 1987
  end-page: 539
  article-title: Operation Everest II: preservation of cardiac function at extreme altitude
  publication-title: J Appl Physiol
– volume: 41
  start-page: 449
  year: 1976
  ident: e_1_2_2_31_1
  article-title: Pressure‐ flow‐volume relationships in pulmonary circulation of normal highlanders
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1976.41.4.449
– ident: e_1_2_2_52_1
  doi: 10.1136/hrt.33.5.647
– ident: e_1_2_2_37_1
  doi: 10.1089/ham.2011.1060
– ident: e_1_2_2_17_1
  doi: 10.1378/chest.11-2845
– volume: 2
  start-page: 283
  year: 1963
  ident: e_1_2_2_48_1
  article-title: The heart in chronic hypoxia
  publication-title: Biochem Clin
– ident: e_1_2_2_29_1
  doi: 10.1089/ham.2006.7.125
– ident: e_1_2_2_46_1
  doi: 10.1161/CIRCULATIONAHA.106.624544
– ident: e_1_2_2_15_1
  doi: 10.1139/H08-009
– ident: e_1_2_2_16_1
  doi: 10.1152/ajpheart.1997.273.3.H1126
– ident: e_1_2_2_14_1
  doi: 10.1164/ajrccm.161.1.9902096
– ident: e_1_2_2_41_1
  doi: 10.1164/rccm.201211-2090CI
– ident: e_1_2_2_2_1
  doi: 10.1152/jappl.1967.23.6.849
– ident: e_1_2_2_23_1
  doi: 10.1016/j.amjcard.2009.02.006
– ident: e_1_2_2_25_1
  doi: 10.1152/ajpheart.00332.2005
– volume: 19
  start-page: 461
  year: 1962
  ident: e_1_2_2_59_1
  article-title: Pulmonary hypertension on exertion in normal man living at 10,150 feet (Leadville, Colorado)
  publication-title: Med Thorac
– volume: 9
  start-page: 328
  year: 1956
  ident: e_1_2_2_51_1
  article-title: Pulmonary circulation at sea level and at high altitude
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1956.9.3.328
– ident: e_1_2_2_22_1
  doi: 10.1152/japplphysiol.00205.2005
– ident: e_1_2_2_63_1
  doi: 10.1152/ajpregu.00444.2012
– ident: e_1_2_2_5_1
  doi: 10.1152/ajpheart.00053.2012
– ident: e_1_2_2_49_1
  doi: 10.1152/jappl.1987.63.2.531
– volume: 41
  start-page: 356
  year: 1976
  ident: e_1_2_2_56_1
  article-title: Depressed myocardial function in the goat at high altitude
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1976.41.3.356
– ident: e_1_2_2_19_1
  doi: 10.1152/jappl.1993.74.1.312
– ident: e_1_2_2_39_1
  doi: 10.1183/09031936.00024410
– ident: e_1_2_2_10_1
  doi: 10.1161/CIRCULATIONAHA.106.650796
– ident: e_1_2_2_24_1
  doi: 10.1161/CIRCULATIONAHA.106.650994
– ident: e_1_2_2_27_1
  doi: 10.1113/jphysiol.2012.234310
– ident: e_1_2_2_61_1
  doi: 10.1152/jappl.1986.61.1.260
– ident: e_1_2_2_3_1
  doi: 10.1152/ajpheart.2000.279.4.H2013
– volume: 72
  start-page: 201
  year: 2000
  ident: e_1_2_2_11_1
  article-title: Tibetan and Andean patterns of adaptation to high altitude hypoxia
  publication-title: Hum Biol
– ident: e_1_2_2_13_1
  doi: 10.1016/S0735-1097(99)00055-8
– ident: e_1_2_2_58_1
  doi: 10.1016/0002-9149(87)91000-9
– ident: e_1_2_2_35_1
  doi: 10.1152/ajplegacy.1947.150.2.315
– ident: e_1_2_2_40_1
  doi: 10.1089/ham.2012.1124
– ident: e_1_2_2_50_1
  doi: 10.1152/ajplung.00162.2004
– ident: e_1_2_2_62_1
  doi: 10.1164/rccm.201207-1323CI
– ident: e_1_2_2_55_1
  doi: 10.1152/physrev.00041.2010
– ident: e_1_2_2_47_1
  doi: 10.1016/0002-9343(71)90181-1
– ident: e_1_2_2_30_1
  doi: 10.1152/jappl.1992.73.3.987
– ident: e_1_2_2_44_1
  doi: 10.1089/ham.2012.1073
– ident: e_1_2_2_43_1
  doi: 10.1034/j.1600-0838.2000.010003123.x
– ident: e_1_2_2_7_1
  doi: 10.1378/chest.12-0071
– ident: e_1_2_2_9_1
  doi: 10.1161/01.CIR.33.2.249
– volume: 19
  start-page: 302
  year: 1962
  ident: e_1_2_2_42_1
  article-title: Hypoxemia, effects on pulmonary vascular bed
  publication-title: Med Thoracalis
– ident: e_1_2_2_26_1
  doi: 10.1152/japplphysiol.00457.2010
– volume: 266
  start-page: 555
  year: 1989
  ident: e_1_2_2_45_1
  article-title: Chronic mountain sickness in Tibet
  publication-title: Q J Med
– ident: e_1_2_2_34_1
  doi: 10.1016/j.jacc.2007.10.041
– start-page: 186
  volume-title: High‐Altitude Medicine and Pathology
  year: 1989
  ident: e_1_2_2_20_1
– ident: e_1_2_2_32_1
  doi: 10.1161/01.CIR.103.16.2078
– ident: e_1_2_2_21_1
  doi: 10.1016/0002-9343(62)90288-7
– ident: e_1_2_2_36_1
  doi: 10.1016/j.pcad.2010.03.004
– ident: e_1_2_2_33_1
  doi: 10.1378/chest.08-1094
– ident: e_1_2_2_57_1
  doi: 10.1161/01.RES.80.5.699
– ident: e_1_2_2_6_1
  doi: 10.1016/0140-6736(90)90348-9
– ident: e_1_2_2_60_1
  doi: 10.1111/j.1748-1716.1946.tb00389.x
– ident: e_1_2_2_12_1
  doi: 10.1111/j.1748-1716.1963.tb02572.x
– ident: e_1_2_2_54_1
  doi: 10.1002/path.1711550213
– ident: e_1_2_2_8_1
  doi: 10.1161/01.CIR.28.5.915
– ident: e_1_2_2_28_1
  doi: 10.1089/ham.2005.6.147
– ident: e_1_2_2_53_1
  doi: 10.1378/chest.09-1355
– ident: e_1_2_2_64_1
  doi: 10.1113/jphysiol.1933.sp003009
– ident: e_1_2_2_38_1
  doi: 10.1002/cphy.c100091
– ident: e_1_2_2_4_1
  doi: 10.1152/ajpheart.00518.2003
– start-page: 103
  volume-title: Handbook of Physiology, section 2, The Cardiovascular System, volume III, Peripheral Circulation and Organ Blood Flow
  year: 1983
  ident: e_1_2_2_18_1
SSID ssj0013084
Score 2.3329968
SecondaryResourceType review_article
Snippet New Findings •  What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent...
What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the...
Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic...
New Findings * What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1247
SubjectTerms Altitude Sickness - physiopathology
Animals
Heart Ventricles - physiopathology
Humans
Hypertension, Pulmonary - physiopathology
Hypoxia - physiopathology
Ventricular Function, Right - physiology
Title Pulmonary hypertension and the right ventricle in hypoxia
URI https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fexpphysiol.2012.069112
https://www.ncbi.nlm.nih.gov/pubmed/23625956
https://www.proquest.com/docview/1406208460
https://www.proquest.com/docview/1411628273
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VnrgApTxCS2UkxC1t_IjXPla01RYEWiEq9RY5tgOrlqRadqW2v74zTnarAlIR4pJLMnbseXg-ezwD8NY4yuKGHDDajnIVAtpBIW1ex-Clt7rRhu47f_qsxyfqw2l5ugbj5V2YPj_EasONNCPZa1JwVw9VSDglG4iXFwn8d3SAQDt6GvWWjDGXmpLoH3wRt8cJRSo9jO6EyeliynBVGBva-3Mzd1ep31zPu55sWoqOHsN0OYg-AuVsdzGvd_31L_kd_8con8CjwV9l-72AbcBabJ_C5n6LWP3HFXvHJj1Z9-1qE-xkcY5SjZ2x7whvZyk4vmuZawNDP5OljQBGAZYzaoxNW_quu5y6Z3BydPj1_TgfSjPkXlpuc9FIHq3SygSvOffchBrRbuHQfjojPBoCWTpF4EjqOEL4zoUvQ90EU-hmJOVzWG-7Nr4EhvY1qMJEJb1RNQIcVzYSQTtvlNaithmUS1ZUfshbTuUzzqsev8jqdo4qmqOqn6MM9lZ0F33mjnsptpecrgZN_onQqNACxUcXGbxZvUYdpIMV18ZuQd9wrhG7jmQGL3oJWXUpJCHMUmegEp__8l-qw8kYXQf76t_ItuChSHU7KFJxG9bns0V8jd7TvN6BB0JN8Hlw_HEnackNww0Vaw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED3oR39ZnBPFWbJo0mxwXUdYne3BFvJQ2SVXQVlYX9N8709YVUVA8N6_OZB5fkpkB2NUZZXFDDmhlOqF0DvVgLEyYe2eFNapQmuKdzy9UbyBPrpPrNqUQxcI0-SHGB24kGbW-JgGnA-lWyinbgH99qtF_RTcIdKSnUHBRG08laFZxs091rwY3g88rhaguP4wuhQ4pOKUNF8ax9n8e6aul-uZ-fvVma3N0NAezrR_Jug3j52HClwuw2C0RQz--sT3Wb2aqbt8WwfRHD7jb8FfZHcLOYf1ovSpZVjqG_h-rATqjh49DGozdl9Suer3PlmBwdHh50AvbkgmhFYabMC4E90YqqZ1VnFuuXY4oNMpQr2U6tiigIskkgRahfAdhNY9t4vLC6UgVHSGWYbKsSr8KDPWek5H2UlgtcwQeWVIIBNO8kErFuQkg-SBPatt84lTW4iFtcIVIP8maElnThqwB7I_7PTUZNX7tsfFB_bSVsGeELJGKkaUqCmBn_Bllgy48stJXI2rDuUJM2REBrDRcG08ZC0J-iQpA1mz841rSw34PTbpZ-1-3bZjuXZ6fpWfHF6frMBPXtTXoNeEGTL4MR34TPZyXfKvdu-8H9PR5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKlW9ICi0pGxbV0K9RcSPeO0jalltXyiHInGLEtsBJEhWW1Zi_z0zTnYRaiUqzvEr8_J8tmcG4NBUlMUNOWC0HafKe7SDQtq0Dt5JZ3WjDcU7_zrV0zP1_Tw_34DpKhamzw-xPnAjzYj2mhR85ptBySnZQLibRfDf0QUCnehp1Fs0xi8UCiHJulDFw31CFmsPoz9hUopMGWKFcaSjf4_zeJv6y_d87MrGvWiyDVuDE8mOe67vwEZoX8PucYsA-mbJPrOin6m7WO6CLRbXKGr4n-wSMec8vljvWla1nqHzxyI6Z_TqcU6DsauW2nV3V9UenE1Ofn-ZpkO9hNRJy20qGsmDVVoZ7zTnjhtfIwTNKjRqlREOtVPmlSLEInUYI6bmwuW-brzJdDOW8g1stl0b9oGh0fMqM0FJZ1SNqKPKG4lImjdKa1HbBPIVeUo3JBOnmhbXZQ8qZPlA1pLIWvZkTeBo3W_Wp9N4ssdoRf1yUK8_iFcyLZClOkvg0_ozKgbddlRt6BbUhnONgHIsE3jbc209pZAE-3KdgIps_M-1lCfFFPdz--553T7Cy-LrpPz57fTHAbwSsa4GvSQcwebtfBHeo3dzW3-IgnsP-Jvx3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulmonary+hypertension+and+the+right+ventricle+in+hypoxia&rft.jtitle=Experimental+physiology&rft.au=Naeije%2C+Robert&rft.au=Dedobbeleer%2C+Chantal&rft.date=2013-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0958-0670&rft.eissn=1469-445X&rft.volume=98&rft.issue=8&rft.spage=1247&rft.epage=1256&rft_id=info:doi/10.1113%2Fexpphysiol.2012.069112&rft.externalDBID=10.1113%252Fexpphysiol.2012.069112&rft.externalDocID=EPH1289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon