Pulmonary hypertension and the right ventricle in hypoxia
New Findings • What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high‐altitude right heart failure. • What adv...
Saved in:
Published in | Experimental physiology Vol. 98; no. 8; pp. 1247 - 1256 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2013
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0958-0670 1469-445X 1469-445X |
DOI | 10.1113/expphysiol.2012.069112 |
Cover
Abstract | New Findings
•
What is the topic of this review?
Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high‐altitude right heart failure.
•
What advances does it highlight?
Non‐invasive field studies have shown that hypoxic pulmonary hypertension limits exercise capacity in relationship to increased pulmonary artery pressures in high‐altitude newcomers. This is compensated for by increased lung diffusing capacity, decreased ventilator response and polycythaemia in high‐altitude inhabitants. There is recently reported echocardiographic evidence of altered right ventricular function at high altitudes at rest. These data need to be confirmed with measurements during exercise.
Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure–flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10–25% of the hypoxia‐induced decrease in maximal oxygen uptake has been reported with intake‐specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established. |
---|---|
AbstractList | New Findings
•
What is the topic of this review?
Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high‐altitude right heart failure.
•
What advances does it highlight?
Non‐invasive field studies have shown that hypoxic pulmonary hypertension limits exercise capacity in relationship to increased pulmonary artery pressures in high‐altitude newcomers. This is compensated for by increased lung diffusing capacity, decreased ventilator response and polycythaemia in high‐altitude inhabitants. There is recently reported echocardiographic evidence of altered right ventricular function at high altitudes at rest. These data need to be confirmed with measurements during exercise.
Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure–flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10–25% of the hypoxia‐induced decrease in maximal oxygen uptake has been reported with intake‐specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established. Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure-flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10-25% of the hypoxia-induced decrease in maximal oxygen uptake has been reported with intake-specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established. New Findings * What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high-altitude right heart failure. * What advances does it highlight? Non-invasive field studies have shown that hypoxic pulmonary hypertension limits exercise capacity in relationship to increased pulmonary artery pressures in high-altitude newcomers. This is compensated for by increased lung diffusing capacity, decreased ventilator response and polycythaemia in high-altitude inhabitants. There is recently reported echocardiographic evidence of altered right ventricular function at high altitudes at rest. These data need to be confirmed with measurements during exercise. Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure-flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10-25% of the hypoxia-induced decrease in maximal oxygen uptake has been reported with intake-specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established. Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure-flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10-25% of the hypoxia-induced decrease in maximal oxygen uptake has been reported with intake-specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established.Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure-flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10-25% of the hypoxia-induced decrease in maximal oxygen uptake has been reported with intake-specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro. However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established. What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the right ventricle to increased afterload, and that this is occasionally a cause of high‐altitude right heart failure. What advances does it highlight? Non‐invasive field studies have shown that hypoxic pulmonary hypertension limits exercise capacity in relationship to increased pulmonary artery pressures in high‐altitude newcomers. This is compensated for by increased lung diffusing capacity, decreased ventilator response and polycythaemia in high‐altitude inhabitants. There is recently reported echocardiographic evidence of altered right ventricular function at high altitudes at rest. These data need to be confirmed with measurements during exercise. Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic vasoconstriction increases right ventricular afterload. The hypoxic pulmonary pressor response is universal in mammals and in birds, but with considerable interspecies and interindividual variability. Chronic hypoxia induces pulmonary hypertension in proportion to initial vasoconstriction. Prolonged hypoxic exposure is also associated with an increase in red blood cell mass, which aggravates pulmonary hypertension by an increase in blood viscosity. Hypoxic pulmonary hypertension in humans is usually mild to moderate, but pulmonary vascular pressure–flow relationships are steep, which corresponds to a substantial afterload on the right ventricle during exercise. A partial recovery of 10–25% of the hypoxia‐induced decrease in maximal oxygen uptake has been reported with intake‐specific pulmonary vasodilating interventions. Hypoxia has been reported to decrease myocardial fibre contractility in vitro . However, the acutely hypoxic right ventricle remains able to preserve the coupling of its contractility to increased afterload in intact animals. Echocardiographic studies of the right ventricle in healthy hypoxic human subjects show altered diastolic function, but systolic function that is preserved or even increased acutely and slightly depressed chronically. These findings are more pronounced in patients with chronic mountain sickness. Their clinical significance remains incompletely understood. Almost no imaging studies of right ventricular function have been reported in a minority of subjects who develop severe pulmonary hypertension and clinical right ventricular failure in hypoxia. No imaging studies of right ventricular function during hypoxic exercise in normal subjects are yet available. Thus, while it is plausible that the right ventricle limits exercise capacity in hypoxia, this still needs to be firmly established. |
Author | Dedobbeleer, Chantal Naeije, Robert |
Author_xml | – sequence: 1 givenname: Robert surname: Naeije fullname: Naeije, Robert – sequence: 2 givenname: Chantal surname: Dedobbeleer fullname: Dedobbeleer, Chantal |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23625956$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctKxDAUhoMoOl5eQQpu3HTMSdpMgm5EvIGgCwV3IZOeOpFOWpNWnbc34yiCG12dzfed279N1n3rkZB9oGMA4Ef43nWzRXRtM2YU2JgKBcDWyAgKofKiKB_XyYiqUuZUTOgW2Y7xmVLgVBabZItxwUpVihFRd0Mzb70Ji2y26DD06FNTnxlfZf0Ms-CeZn32ir4PzjaYOb_k2ndndslGbZqIe191hzxcnN-fXeU3t5fXZ6c3ueUKVM5qDqgKUcjKCgALspoC59SUXBrJLCsnvDQFFUJwgROcMmC2rKZ1JamoJ5zvkMNV3y60LwPGXs9dtNg0xmM7RA0FgGCSfaIHv9Dndgg-bZcoKlg6XtBE7X9Rw3SOle6Cm6f79fdTEnCyAmxoYwxYa-t606e39MG4RgPVywz0TwZ6mYFeZZB08Uv_nvCneLwS31yDi39a-vzuCphU_ANAW6BD |
CitedBy_id | crossref_primary_10_33549_physiolres_932861 crossref_primary_10_1155_2017_8381653 crossref_primary_10_1113_JP275278 crossref_primary_10_3389_fphar_2020_607384 crossref_primary_10_1111_crj_12924 crossref_primary_10_2174_011573403X308818241030051249 crossref_primary_10_1113_JP284622 crossref_primary_10_1113_JP284943 crossref_primary_10_4187_respcare_06544 crossref_primary_10_1016_j_abb_2022_109294 crossref_primary_10_1007_s11684_018_0634_z crossref_primary_10_14814_phy2_12674 crossref_primary_10_1113_EP088657 crossref_primary_10_1007_s00421_020_04435_0 crossref_primary_10_1016_j_cbpa_2014_10_009 crossref_primary_10_3390_ijms21176421 crossref_primary_10_1089_ham_2015_0114 crossref_primary_10_1016_j_resp_2020_103534 crossref_primary_10_3389_fgene_2022_810157 crossref_primary_10_1183_13993003_01753_2015 crossref_primary_10_1016_j_echo_2020_12_003 crossref_primary_10_1016_j_lfs_2015_11_020 crossref_primary_10_1152_ajpheart_00146_2018 crossref_primary_10_1111_mec_12836 crossref_primary_10_3389_fphys_2018_00248 crossref_primary_10_1016_j_mvr_2020_104129 crossref_primary_10_1113_JP281724 crossref_primary_10_3389_fphys_2021_650696 crossref_primary_10_1016_j_jep_2018_01_010 crossref_primary_10_1089_ham_2017_0113 crossref_primary_10_1113_expphysiol_2012_068940 crossref_primary_10_1113_JP284550 crossref_primary_10_1152_ajpheart_00458_2016 crossref_primary_10_61186_jrds_21_4_302 crossref_primary_10_1097_MCP_0000000000001092 crossref_primary_10_1152_japplphysiol_00153_2019 crossref_primary_10_1111_apha_12749 crossref_primary_10_1016_j_cophys_2019_06_008 crossref_primary_10_1016_j_mehy_2020_110411 crossref_primary_10_3389_fphys_2021_786954 crossref_primary_10_1007_s00424_018_2127_y crossref_primary_10_1172_JCI85715 crossref_primary_10_1152_physiol_00007_2015 crossref_primary_10_1002_ame2_12191 crossref_primary_10_1016_j_rmr_2017_01_013 crossref_primary_10_1152_japplphysiol_01075_2020 crossref_primary_10_1093_eurjpc_zwaa020 crossref_primary_10_1093_eurjpc_zwac166 crossref_primary_10_2478_prilozi_2021_0003 crossref_primary_10_1155_2018_9504158 crossref_primary_10_1155_2020_1478291 crossref_primary_10_1113_EP087027 crossref_primary_10_1177_2045894020934625 crossref_primary_10_3389_fcvm_2021_744393 crossref_primary_10_1016_j_omtn_2019_12_027 crossref_primary_10_1016_j_ijcard_2013_07_129 crossref_primary_10_1038_s41467_025_57707_8 crossref_primary_10_1007_s00421_020_04319_3 crossref_primary_10_1093_cvr_cvv243 crossref_primary_10_3233_CH_190671 crossref_primary_10_3892_ijmm_2018_3740 crossref_primary_10_1097_MD_0000000000021133 crossref_primary_10_3390_ijerph19084558 crossref_primary_10_1007_s10554_015_0614_1 crossref_primary_10_1161_JAHA_120_018327 crossref_primary_10_1186_s13741_024_00388_6 crossref_primary_10_1089_ham_2015_0066 crossref_primary_10_1016_j_jelectrocard_2020_05_008 |
Cites_doi | 10.1152/jappl.1976.41.4.449 10.1136/hrt.33.5.647 10.1089/ham.2011.1060 10.1378/chest.11-2845 10.1089/ham.2006.7.125 10.1161/CIRCULATIONAHA.106.624544 10.1139/H08-009 10.1152/ajpheart.1997.273.3.H1126 10.1164/ajrccm.161.1.9902096 10.1164/rccm.201211-2090CI 10.1152/jappl.1967.23.6.849 10.1016/j.amjcard.2009.02.006 10.1152/ajpheart.00332.2005 10.1152/jappl.1956.9.3.328 10.1152/japplphysiol.00205.2005 10.1152/ajpregu.00444.2012 10.1152/ajpheart.00053.2012 10.1152/jappl.1987.63.2.531 10.1152/jappl.1976.41.3.356 10.1152/jappl.1993.74.1.312 10.1183/09031936.00024410 10.1161/CIRCULATIONAHA.106.650796 10.1161/CIRCULATIONAHA.106.650994 10.1113/jphysiol.2012.234310 10.1152/jappl.1986.61.1.260 10.1152/ajpheart.2000.279.4.H2013 10.1016/S0735-1097(99)00055-8 10.1016/0002-9149(87)91000-9 10.1152/ajplegacy.1947.150.2.315 10.1089/ham.2012.1124 10.1152/ajplung.00162.2004 10.1164/rccm.201207-1323CI 10.1152/physrev.00041.2010 10.1016/0002-9343(71)90181-1 10.1152/jappl.1992.73.3.987 10.1089/ham.2012.1073 10.1034/j.1600-0838.2000.010003123.x 10.1378/chest.12-0071 10.1161/01.CIR.33.2.249 10.1152/japplphysiol.00457.2010 10.1016/j.jacc.2007.10.041 10.1161/01.CIR.103.16.2078 10.1016/0002-9343(62)90288-7 10.1016/j.pcad.2010.03.004 10.1378/chest.08-1094 10.1161/01.RES.80.5.699 10.1016/0140-6736(90)90348-9 10.1111/j.1748-1716.1946.tb00389.x 10.1111/j.1748-1716.1963.tb02572.x 10.1002/path.1711550213 10.1161/01.CIR.28.5.915 10.1089/ham.2005.6.147 10.1378/chest.09-1355 10.1113/jphysiol.1933.sp003009 10.1002/cphy.c100091 10.1152/ajpheart.00518.2003 |
ContentType | Journal Article |
Copyright | 2013 The Authors. Experimental Physiology © 2013 The Physiological Society |
Copyright_xml | – notice: 2013 The Authors. Experimental Physiology © 2013 The Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TK 7TS K9. 7X8 |
DOI | 10.1113/expphysiol.2012.069112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1469-445X |
EndPage | 1256 |
ExternalDocumentID | 3024959181 23625956 10_1113_expphysiol_2012_069112 EPH1289 |
Genre | article Journal Article Review |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 18M 1OB 1OC 24P 29G 2WC 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAFWJ AAHHS AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABGDZ ABITZ ABPVW ABUWG ABVKB ABXGK ACAHQ ACCFJ ACCMX ACCZN ACGFO ACGFS ACMXC ACPOU ACPRK ACQPF ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADPDF ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFGKR AFKRA AFPWT AFZJQ AIACR AIAGR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AVUZU AZBYB AZVAB BAFTC BAWUL BBNVY BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 C1A C45 CAG CCPQU CHEAL COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBD EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ FUBAC G-S G.N GODZA GROUPED_DOAJ GX1 H.X H13 HCIFZ HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO L98 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7P MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 NF~ NQS O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P2Z P4B P4D PGMZT PQQKQ Q.N Q11 QB0 R.K RCA RIG ROL RPM RX1 SAMSI SUPJJ SV3 TEORI TLM TR2 UB1 V8K W8F W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOQ WOW WQJ WRC WXI WXSBR WYISQ X7M XG1 ZXP ZZTAW ~IA ~WT AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QP 7TK 7TS AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 AFPKN |
ID | FETCH-LOGICAL-c3919-2f31e94648dc611c18db1330a538a82c25735a4066636e7eb212c5dbfd806f733 |
IEDL.DBID | DR2 |
ISSN | 0958-0670 1469-445X |
IngestDate | Sat Sep 27 21:34:39 EDT 2025 Sat Sep 06 07:31:05 EDT 2025 Thu Apr 03 07:09:36 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Tue Jul 01 02:03:56 EDT 2025 Wed Jan 22 16:45:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3919-2f31e94648dc611c18db1330a538a82c25735a4066636e7eb212c5dbfd806f733 |
Notes | Hypoxic pulmonary hypertension: mechanisms of pulmonary vascular change and their effect on the right ventricle Symposium Report from the symposium at IUPS in Birmingham on 22 July 2013. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 23625956 |
PQID | 1406208460 |
PQPubID | 37290 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1411628273 proquest_journals_1406208460 pubmed_primary_23625956 crossref_citationtrail_10_1113_expphysiol_2012_069112 crossref_primary_10_1113_expphysiol_2012_069112 wiley_primary_10_1113_expphysiol_2012_069112_EPH1289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2013 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: August 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Experimental physiology |
PublicationTitleAlternate | Exp Physiol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | 1997; 80 2004; 286 2010; 109 1967; 23 1997; 273 2008; 33 2011; 12 1962; 32 2001; 103 1933; 78 2013; 14 1990; 335 1971; 50 1989; 266 2000; 10 1993; 74 2000; 161 1983 1989 1976; 41 2012; 142 2012; 186 2010; 36 2000; 279 1962; 19 2013; 304 2000; 72 2006; 7 2013; 187 2012; 302 2008; 51 1966; 33 1963; 28 1992; 73 1963; 57 2012; 590 2007; 115 1971; 33 2012; 92 2012; 2 2007; 116 1986; 61 1987; 63 1987; 60 2005; 288 2005; 289 2010; 137 1963; 2 1999; 33 1956; 9 2005; 6 1988; 155 1947; 150 2008; 135 2013 2005; 99 2009; 103 2010; 52 1946; 12 e_1_2_2_4_1 e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 Naeye RL (e_1_2_2_42_1) 1962; 19 e_1_2_2_2_1 e_1_2_2_41_1 e_1_2_2_62_1 e_1_2_2_43_1 e_1_2_2_64_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_60_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_30_1 e_1_2_2_19_1 e_1_2_2_32_1 e_1_2_2_53_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_55_1 Tucker CE (e_1_2_2_56_1) 1976; 41 e_1_2_2_15_1 e_1_2_2_36_1 e_1_2_2_57_1 Penaloza D (e_1_2_2_48_1) 1963; 2 e_1_2_2_25_1 e_1_2_2_5_1 Heath D (e_1_2_2_20_1) 1989 e_1_2_2_23_1 e_1_2_2_7_1 e_1_2_2_21_1 e_1_2_2_3_1 Vogel JHK (e_1_2_2_59_1) 1962; 19 e_1_2_2_40_1 e_1_2_2_63_1 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_61_1 Grover RF (e_1_2_2_18_1) 1983 Pei SX (e_1_2_2_45_1) 1989; 266 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_1 e_1_2_2_39_1 e_1_2_2_10_1 Beall CM (e_1_2_2_11_1) 2000; 72 Rotta Canepa AA (e_1_2_2_51_1) 1956; 9 Lockhart A (e_1_2_2_31_1) 1976; 41 e_1_2_2_52_1 e_1_2_2_54_1 e_1_2_2_33_1 e_1_2_2_16_1 e_1_2_2_35_1 e_1_2_2_58_1 e_1_2_2_50_1 |
References_xml | – volume: 41 start-page: 356 year: 1976 end-page: 361 article-title: Depressed myocardial function in the goat at high altitude publication-title: J Appl Physiol – volume: 74 start-page: 312 year: 1993 end-page: 318 article-title: Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m publication-title: J Appl Physiol – volume: 2 start-page: 283 year: 1963 end-page: 98 article-title: The heart in chronic hypoxia publication-title: Biochem Clin – volume: 115 start-page: e308 year: 2007 end-page: e309 article-title: Images in cardiovascular medicine. High‐altitude‐induced right‐heart failure publication-title: Circulation – volume: 10 start-page: 119 year: 2000 end-page: 123 article-title: Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance publication-title: Scand J Med Sci Sports – volume: 50 start-page: 728 year: 1971 end-page: 743 article-title: Chronic cor pulmonale due to loss of acclimatization (chronic mountain sickness) publication-title: Am J Med – volume: 186 start-page: 1229 year: 2012 end-page: 1237 article-title: Concise clinical review: high altitude medicine publication-title: Am J Respir Crit Care Med – volume: 36 start-page: 1049 year: 2010 end-page: 1055 article-title: Pulmonary artery pressure limits exercise capacity at high altitudes publication-title: Eur Respir J – volume: 115 start-page: 1132 year: 2007 end-page: 1146 article-title: The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness publication-title: Circulation – volume: 155 start-page: 161 year: 1988 end-page: 170 article-title: Subacute infantile mountain sickness publication-title: J Pathol – volume: 57 start-page: 26 year: 1963 end-page: 50 article-title: Circulatory studies in well trained athletes at rest and during heavy exercise, with special reference to stroke volume and the influence of body position publication-title: Acta Physiol Scand – volume: 137 start-page: 288 year: 2010 end-page: 292 article-title: Exaggerated pulmonary hypertension during mild exercise in chronic mountain sickness publication-title: Chest – volume: 41 start-page: 449 year: 1976 end-page: 456 article-title: Pressure‐ flow‐volume relationships in pulmonary circulation of normal highlanders publication-title: J Appl Physiol – volume: 80 start-page: 699 year: 1997 end-page: 707 article-title: Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia publication-title: Circ Res – volume: 14 start-page: 19 year: 2013 end-page: 26 article-title: Pulmonary vascular reserve and exercise capacity, at sea level and at high altitude publication-title: High Alt Med Biol – volume: 60 start-page: 137 year: 1987 end-page: 142 article-title: Enhanced left ventricular systolic performance at high altitude during Operation Everest II publication-title: Am J Cardiol – volume: 33 start-page: 647 year: 1971 end-page: 657 article-title: Bradycardia, increased cardiac output and reversal of pulmonary hypertension in altitude natives living at sea level publication-title: Br Heart J – volume: 2 start-page: 711 year: 2012 end-page: 741 article-title: Pulmonary circulation at exercise publication-title: Compr Physiol – volume: 12 start-page: 301 year: 1946 end-page: 320 article-title: Observations on the pulmonary arterial blood pressure in the cat publication-title: Acta Physiol Scand – volume: 279 start-page: H2013 year: 2000 end-page: 6 article-title: Echocardiographic and invasive measurements of pulmonary artery pressure correlate closely at high altitude publication-title: Am J Physiol Heart Circ Physiol – volume: 273 start-page: H1126 year: 1997 end-page: 34 article-title: Time course of the human pulmonary vascular response to 8 hours of isocapnic hypoxia publication-title: Am J Physiol – volume: 72 start-page: 201 year: 2000 end-page: 228 article-title: Tibetan and Andean patterns of adaptation to high altitude hypoxia publication-title: Hum Biol – volume: 51 start-page: 750 year: 2008 end-page: 757 article-title: Interventricular mechanical asynchrony in pulmonary arterial hypertension: left‐to‐right delay in peak shortening is related to right ventricular overload and left ventricular underfilling publication-title: J Am Coll Cardiol – volume: 73 start-page: 987 year: 1992 end-page: 994 article-title: A simple distensible model for interpreting pulmonary vascular pressure‐flow curves publication-title: J Appl Physiol – year: 2013 article-title: Pulmonary hypertension and chronic mountain sickness publication-title: High Alt Med Biol – volume: 19 start-page: 302 year: 1962 end-page: 309 article-title: Hypoxemia, effects on pulmonary vascular bed publication-title: Med Thoracalis – volume: 142 start-page: 1158 year: 2012 end-page: 1165 article-title: Exercise stress echocardiography of the pulmonary circulation: limits of normal and gender differences publication-title: Chest – volume: 33 start-page: 1662 year: 1999 end-page: 1666 article-title: Range of tricuspid regurgitation velocity at rest and during exercise in normal adult men: implications for the diagnosis of pulmonary hypertension publication-title: J Am Coll Cardiol – volume: 52 start-page: 456 year: 2010 end-page: 466 article-title: Physiological adaptation of the cardiovascular system to high altitude publication-title: Progr Cardiovasc Dis – volume: 12 start-page: 309 year: 2011 end-page: 312 article-title: Pro: hypoxic pulmonary vasoconstriction is a limiting factor for exercise capacity at high altitude publication-title: High Alt Med Biol – volume: 302 start-page: H2646 year: 2012 end-page: H2653 article-title: Pulmonary artery pressure and cardiac function in children and adolescents after rapid ascent to 3,450 m publication-title: Am J Physiol Heart Circ Physiol – volume: 266 start-page: 555 year: 1989 end-page: 574 article-title: Chronic mountain sickness in Tibet publication-title: Q J Med – volume: 33 start-page: 249 year: 1966 end-page: 262 article-title: Pulmonary pressure, cardiac output, and arterial oxygen saturation during exercise at high altitude and at sea level publication-title: Circulation – volume: 109 start-page: 1307 year: 2010 end-page: 1317 article-title: Pulmonary transit of agitated contrast is associated with enhanced pulmonary vascular reserve and right ventricular function at exercise publication-title: J Appl Physiol – volume: 590 start-page: 4279 year: 2012 end-page: 4288 article-title: Pulmonary vascular distensibility predicts aerobic capacity in healthy individuals publication-title: J Physiol – volume: 187 start-page: 576 year: 2013 end-page: 583 article-title: Exercise‐induced pulmonary hypertension: physiological basis and methodological concerns publication-title: Am J Respir Crit Care Med – volume: 28 start-page: 915 year: 1963 end-page: 925 article-title: The terminal portion of the pulmonary arterial tree in people native to high altitude publication-title: Circulation – volume: 103 start-page: 1605 year: 2009 end-page: 1609 article-title: Echocardiographic and tissue Doppler imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders publication-title: Am J Cardiol – volume: 92 start-page: 367 year: 2012 end-page: 520 article-title: Hypoxic pulmonary vasoconstriction publication-title: Physiol Rev – volume: 150 start-page: 315 year: 1947 end-page: 320 article-title: The influence of short periods of induced acute anoxia upon pulmonary artery pressures in man publication-title: Am J Physiol – volume: 78 start-page: 339 year: 1933 end-page: 369 article-title: The apparent viscosity of blood flowing in the isolated hindlimb of the dog, and its variation with corpuscular concentration publication-title: J Physiol – volume: 23 start-page: 849 year: 1967 end-page: 858 article-title: Reduction of stroke volume during exercise in man following ascent to 3100 m altitude publication-title: J Appl Physiol – volume: 116 start-page: 2191 year: 2007 end-page: 2202 article-title: Effect of altitude on the heart and the lungs publication-title: Circulation – volume: 135 start-page: 499 year: 2008 end-page: 504 article-title: Pulmonary pressure and cardiac function in chronic mountain sickness patients publication-title: Chest – volume: 289 start-page: H1391 year: 2005 end-page: H1398 article-title: Right and left ventricular adaptation to hypoxia: a tissue Doppler imaging study publication-title: Am J Physiol Heart Circ Physiol – volume: 103 start-page: 2078 year: 2001 end-page: 2083 article-title: High altitude pulmonary edema is initially caused by an increased capillary pressure publication-title: Circulation – volume: 19 start-page: 461 year: 1962 end-page: 477 article-title: Pulmonary hypertension on exertion in normal man living at 10,150 feet (Leadville, Colorado) publication-title: Med Thorac – start-page: 103 year: 1983 end-page: 136 – volume: 7 start-page: 125 year: 2006 end-page: 137 article-title: Respiratory control in residents at high altitude: physiology and pathophysiology publication-title: High Alt Med Biol – volume: 304 start-page: R171 year: 2013 end-page: R176 article-title: Role of the fragility of the pulmonary blood‐gas barrier in the evolution of the pulmonary circulation publication-title: Am J Physiol Regul Integr Comp Physiol – volume: 33 start-page: 582 year: 2008 end-page: 592 article-title: Do high‐altitude natives have an enhanced exercise performance at high altitude publication-title: Appl Physiol Nutr Metab – volume: 61 start-page: 260 year: 1986 end-page: 270 article-title: Pulmonary gas exchange in humans at sea level and simulated altitude publication-title: J Appl Physiol – start-page: 186 year: 1989 end-page: 195 – volume: 32 start-page: 171 year: 1962 end-page: 183 article-title: Brisket disease publication-title: Am J Med – volume: 161 start-page: 264 year: 2000 end-page: 270 article-title: Operation Everest III (Comex ’97): modifications of cardiac function secondary to altitude‐induced hypoxia publication-title: Am J Respir Crit Care Med – volume: 335 start-page: 561 year: 1990 end-page: 565 article-title: Adult subacute mountain sickness: a syndrome of congestive heart failure in man at very high altitude publication-title: Lancet – volume: 9 start-page: 328 year: 1956 end-page: 336 article-title: Pulmonary circulation at sea level and at high altitude publication-title: J Appl Physiol – volume: 286 start-page: H856 year: 2004 end-page: H862 article-title: Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude publication-title: Am J Physiol Heart Circ Physiol – volume: 142 start-page: 877 year: 2012 end-page: 884 article-title: Exercise pathophysiology in patients with chronic mountain sickness publication-title: Chest – volume: 99 start-page: 1796 year: 2005 end-page: 1801 article-title: Nitric oxide and cardiopulmonary hemodynamics in Tibetan highlanders publication-title: J Appl Physiol – volume: 6 start-page: 147 year: 2005 end-page: 157 article-title: Consensus statement on chronic and subacute high altitude diseases publication-title: High Alt Med Biol – volume: 288 start-page: L419 year: 2005 end-page: L425 article-title: Distensibility of the normal human lung circulation during exercise publication-title: Am J Physiol Lung Cell Mol Physiol – volume: 63 start-page: 531 year: 1987 end-page: 539 article-title: Operation Everest II: preservation of cardiac function at extreme altitude publication-title: J Appl Physiol – volume: 41 start-page: 449 year: 1976 ident: e_1_2_2_31_1 article-title: Pressure‐ flow‐volume relationships in pulmonary circulation of normal highlanders publication-title: J Appl Physiol doi: 10.1152/jappl.1976.41.4.449 – ident: e_1_2_2_52_1 doi: 10.1136/hrt.33.5.647 – ident: e_1_2_2_37_1 doi: 10.1089/ham.2011.1060 – ident: e_1_2_2_17_1 doi: 10.1378/chest.11-2845 – volume: 2 start-page: 283 year: 1963 ident: e_1_2_2_48_1 article-title: The heart in chronic hypoxia publication-title: Biochem Clin – ident: e_1_2_2_29_1 doi: 10.1089/ham.2006.7.125 – ident: e_1_2_2_46_1 doi: 10.1161/CIRCULATIONAHA.106.624544 – ident: e_1_2_2_15_1 doi: 10.1139/H08-009 – ident: e_1_2_2_16_1 doi: 10.1152/ajpheart.1997.273.3.H1126 – ident: e_1_2_2_14_1 doi: 10.1164/ajrccm.161.1.9902096 – ident: e_1_2_2_41_1 doi: 10.1164/rccm.201211-2090CI – ident: e_1_2_2_2_1 doi: 10.1152/jappl.1967.23.6.849 – ident: e_1_2_2_23_1 doi: 10.1016/j.amjcard.2009.02.006 – ident: e_1_2_2_25_1 doi: 10.1152/ajpheart.00332.2005 – volume: 19 start-page: 461 year: 1962 ident: e_1_2_2_59_1 article-title: Pulmonary hypertension on exertion in normal man living at 10,150 feet (Leadville, Colorado) publication-title: Med Thorac – volume: 9 start-page: 328 year: 1956 ident: e_1_2_2_51_1 article-title: Pulmonary circulation at sea level and at high altitude publication-title: J Appl Physiol doi: 10.1152/jappl.1956.9.3.328 – ident: e_1_2_2_22_1 doi: 10.1152/japplphysiol.00205.2005 – ident: e_1_2_2_63_1 doi: 10.1152/ajpregu.00444.2012 – ident: e_1_2_2_5_1 doi: 10.1152/ajpheart.00053.2012 – ident: e_1_2_2_49_1 doi: 10.1152/jappl.1987.63.2.531 – volume: 41 start-page: 356 year: 1976 ident: e_1_2_2_56_1 article-title: Depressed myocardial function in the goat at high altitude publication-title: J Appl Physiol doi: 10.1152/jappl.1976.41.3.356 – ident: e_1_2_2_19_1 doi: 10.1152/jappl.1993.74.1.312 – ident: e_1_2_2_39_1 doi: 10.1183/09031936.00024410 – ident: e_1_2_2_10_1 doi: 10.1161/CIRCULATIONAHA.106.650796 – ident: e_1_2_2_24_1 doi: 10.1161/CIRCULATIONAHA.106.650994 – ident: e_1_2_2_27_1 doi: 10.1113/jphysiol.2012.234310 – ident: e_1_2_2_61_1 doi: 10.1152/jappl.1986.61.1.260 – ident: e_1_2_2_3_1 doi: 10.1152/ajpheart.2000.279.4.H2013 – volume: 72 start-page: 201 year: 2000 ident: e_1_2_2_11_1 article-title: Tibetan and Andean patterns of adaptation to high altitude hypoxia publication-title: Hum Biol – ident: e_1_2_2_13_1 doi: 10.1016/S0735-1097(99)00055-8 – ident: e_1_2_2_58_1 doi: 10.1016/0002-9149(87)91000-9 – ident: e_1_2_2_35_1 doi: 10.1152/ajplegacy.1947.150.2.315 – ident: e_1_2_2_40_1 doi: 10.1089/ham.2012.1124 – ident: e_1_2_2_50_1 doi: 10.1152/ajplung.00162.2004 – ident: e_1_2_2_62_1 doi: 10.1164/rccm.201207-1323CI – ident: e_1_2_2_55_1 doi: 10.1152/physrev.00041.2010 – ident: e_1_2_2_47_1 doi: 10.1016/0002-9343(71)90181-1 – ident: e_1_2_2_30_1 doi: 10.1152/jappl.1992.73.3.987 – ident: e_1_2_2_44_1 doi: 10.1089/ham.2012.1073 – ident: e_1_2_2_43_1 doi: 10.1034/j.1600-0838.2000.010003123.x – ident: e_1_2_2_7_1 doi: 10.1378/chest.12-0071 – ident: e_1_2_2_9_1 doi: 10.1161/01.CIR.33.2.249 – volume: 19 start-page: 302 year: 1962 ident: e_1_2_2_42_1 article-title: Hypoxemia, effects on pulmonary vascular bed publication-title: Med Thoracalis – ident: e_1_2_2_26_1 doi: 10.1152/japplphysiol.00457.2010 – volume: 266 start-page: 555 year: 1989 ident: e_1_2_2_45_1 article-title: Chronic mountain sickness in Tibet publication-title: Q J Med – ident: e_1_2_2_34_1 doi: 10.1016/j.jacc.2007.10.041 – start-page: 186 volume-title: High‐Altitude Medicine and Pathology year: 1989 ident: e_1_2_2_20_1 – ident: e_1_2_2_32_1 doi: 10.1161/01.CIR.103.16.2078 – ident: e_1_2_2_21_1 doi: 10.1016/0002-9343(62)90288-7 – ident: e_1_2_2_36_1 doi: 10.1016/j.pcad.2010.03.004 – ident: e_1_2_2_33_1 doi: 10.1378/chest.08-1094 – ident: e_1_2_2_57_1 doi: 10.1161/01.RES.80.5.699 – ident: e_1_2_2_6_1 doi: 10.1016/0140-6736(90)90348-9 – ident: e_1_2_2_60_1 doi: 10.1111/j.1748-1716.1946.tb00389.x – ident: e_1_2_2_12_1 doi: 10.1111/j.1748-1716.1963.tb02572.x – ident: e_1_2_2_54_1 doi: 10.1002/path.1711550213 – ident: e_1_2_2_8_1 doi: 10.1161/01.CIR.28.5.915 – ident: e_1_2_2_28_1 doi: 10.1089/ham.2005.6.147 – ident: e_1_2_2_53_1 doi: 10.1378/chest.09-1355 – ident: e_1_2_2_64_1 doi: 10.1113/jphysiol.1933.sp003009 – ident: e_1_2_2_38_1 doi: 10.1002/cphy.c100091 – ident: e_1_2_2_4_1 doi: 10.1152/ajpheart.00518.2003 – start-page: 103 volume-title: Handbook of Physiology, section 2, The Cardiovascular System, volume III, Peripheral Circulation and Organ Blood Flow year: 1983 ident: e_1_2_2_18_1 |
SSID | ssj0013084 |
Score | 2.3329968 |
SecondaryResourceType | review_article |
Snippet | New Findings
•
What is the topic of this review?
Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent... What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent remodelling expose the... Hypoxia causes pulmonary vasoconstriction. Regional hypoxic vasoconstriction improves the matching of perfusion to alveolar ventilation. Global hypoxic... New Findings * What is the topic of this review? Studies a,contabs,longabsre reviewed showing that hypoxic pulmonary vasoconstriction and subsequent... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1247 |
SubjectTerms | Altitude Sickness - physiopathology Animals Heart Ventricles - physiopathology Humans Hypertension, Pulmonary - physiopathology Hypoxia - physiopathology Ventricular Function, Right - physiology |
Title | Pulmonary hypertension and the right ventricle in hypoxia |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1113%2Fexpphysiol.2012.069112 https://www.ncbi.nlm.nih.gov/pubmed/23625956 https://www.proquest.com/docview/1406208460 https://www.proquest.com/docview/1411628273 |
Volume | 98 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VnrgApTxCS2UkxC1t_IjXPla01RYEWiEq9RY5tgOrlqRadqW2v74zTnarAlIR4pJLMnbseXg-ezwD8NY4yuKGHDDajnIVAtpBIW1ex-Clt7rRhu47f_qsxyfqw2l5ugbj5V2YPj_EasONNCPZa1JwVw9VSDglG4iXFwn8d3SAQDt6GvWWjDGXmpLoH3wRt8cJRSo9jO6EyeliynBVGBva-3Mzd1ep31zPu55sWoqOHsN0OYg-AuVsdzGvd_31L_kd_8con8CjwV9l-72AbcBabJ_C5n6LWP3HFXvHJj1Z9-1qE-xkcY5SjZ2x7whvZyk4vmuZawNDP5OljQBGAZYzaoxNW_quu5y6Z3BydPj1_TgfSjPkXlpuc9FIHq3SygSvOffchBrRbuHQfjojPBoCWTpF4EjqOEL4zoUvQ90EU-hmJOVzWG-7Nr4EhvY1qMJEJb1RNQIcVzYSQTtvlNaithmUS1ZUfshbTuUzzqsev8jqdo4qmqOqn6MM9lZ0F33mjnsptpecrgZN_onQqNACxUcXGbxZvUYdpIMV18ZuQd9wrhG7jmQGL3oJWXUpJCHMUmegEp__8l-qw8kYXQf76t_ItuChSHU7KFJxG9bns0V8jd7TvN6BB0JN8Hlw_HEnackNww0Vaw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED3oR39ZnBPFWbJo0mxwXUdYne3BFvJQ2SVXQVlYX9N8709YVUVA8N6_OZB5fkpkB2NUZZXFDDmhlOqF0DvVgLEyYe2eFNapQmuKdzy9UbyBPrpPrNqUQxcI0-SHGB24kGbW-JgGnA-lWyinbgH99qtF_RTcIdKSnUHBRG08laFZxs091rwY3g88rhaguP4wuhQ4pOKUNF8ax9n8e6aul-uZ-fvVma3N0NAezrR_Jug3j52HClwuw2C0RQz--sT3Wb2aqbt8WwfRHD7jb8FfZHcLOYf1ovSpZVjqG_h-rATqjh49DGozdl9Suer3PlmBwdHh50AvbkgmhFYabMC4E90YqqZ1VnFuuXY4oNMpQr2U6tiigIskkgRahfAdhNY9t4vLC6UgVHSGWYbKsSr8KDPWek5H2UlgtcwQeWVIIBNO8kErFuQkg-SBPatt84lTW4iFtcIVIP8maElnThqwB7I_7PTUZNX7tsfFB_bSVsGeELJGKkaUqCmBn_Bllgy48stJXI2rDuUJM2REBrDRcG08ZC0J-iQpA1mz841rSw34PTbpZ-1-3bZjuXZ6fpWfHF6frMBPXtTXoNeEGTL4MR34TPZyXfKvdu-8H9PR5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKlW9ICi0pGxbV0K9RcSPeO0jalltXyiHInGLEtsBJEhWW1Zi_z0zTnYRaiUqzvEr8_J8tmcG4NBUlMUNOWC0HafKe7SDQtq0Dt5JZ3WjDcU7_zrV0zP1_Tw_34DpKhamzw-xPnAjzYj2mhR85ptBySnZQLibRfDf0QUCnehp1Fs0xi8UCiHJulDFw31CFmsPoz9hUopMGWKFcaSjf4_zeJv6y_d87MrGvWiyDVuDE8mOe67vwEZoX8PucYsA-mbJPrOin6m7WO6CLRbXKGr4n-wSMec8vljvWla1nqHzxyI6Z_TqcU6DsauW2nV3V9UenE1Ofn-ZpkO9hNRJy20qGsmDVVoZ7zTnjhtfIwTNKjRqlREOtVPmlSLEInUYI6bmwuW-brzJdDOW8g1stl0b9oGh0fMqM0FJZ1SNqKPKG4lImjdKa1HbBPIVeUo3JBOnmhbXZQ8qZPlA1pLIWvZkTeBo3W_Wp9N4ssdoRf1yUK8_iFcyLZClOkvg0_ozKgbddlRt6BbUhnONgHIsE3jbc209pZAE-3KdgIps_M-1lCfFFPdz--553T7Cy-LrpPz57fTHAbwSsa4GvSQcwebtfBHeo3dzW3-IgnsP-Jvx3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pulmonary+hypertension+and+the+right+ventricle+in+hypoxia&rft.jtitle=Experimental+physiology&rft.au=Naeije%2C+Robert&rft.au=Dedobbeleer%2C+Chantal&rft.date=2013-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0958-0670&rft.eissn=1469-445X&rft.volume=98&rft.issue=8&rft.spage=1247&rft.epage=1256&rft_id=info:doi/10.1113%2Fexpphysiol.2012.069112&rft.externalDBID=10.1113%252Fexpphysiol.2012.069112&rft.externalDocID=EPH1289 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0958-0670&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0958-0670&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0958-0670&client=summon |