Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform
In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self-driving cars. At the same time, the real-time performance of the LiDAR data processing al...
        Saved in:
      
    
          | Published in | Chronic diseases and translational medicine Vol. 14; no. 5; pp. 201 - 209 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Beijing
          The Institution of Engineering and Technology
    
        01.09.2020
     John Wiley & Sons, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1751-8601 1751-861X 2095-882X 1751-861X 2589-0514  | 
| DOI | 10.1049/iet-cdt.2019.0166 | 
Cover
| Abstract | In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self-driving cars. At the same time, the real-time performance of the LiDAR data processing algorithm is highly demanding in self-driving cars. The LiDAR point cloud is characterised by its high density and uneven distribution, which poses a severe challenge in the implementation and optimisation of data processing algorithms. In view of the distribution characteristics of LiDAR data and the characteristics of the data processing algorithm, this study completes the implementation and optimisation of the LiDAR data processing algorithm on an NVIDIA Tegra X2 computing platform and greatly improves the real-time performance of LiDAR data processing algorithms. The experimental results show that compared with an Intel® Core™ i7 industrial personal computer, the optimised algorithm improves feature extraction by nearly 4.5 times, obstacle clustering by nearly 3.5 times, and the performance of the whole algorithm by 2.3 times. | 
    
|---|---|
| AbstractList | In recent years, light detection and ranging (LiDAR) has been widely used in the field of self‐driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self‐driving cars. At the same time, the real‐time performance of the LiDAR data processing algorithm is highly demanding in self‐driving cars. The LiDAR point cloud is characterised by its high density and uneven distribution, which poses a severe challenge in the implementation and optimisation of data processing algorithms. In view of the distribution characteristics of LiDAR data and the characteristics of the data processing algorithm, this study completes the implementation and optimisation of the LiDAR data processing algorithm on an NVIDIA Tegra X2 computing platform and greatly improves the real‐time performance of LiDAR data processing algorithms. The experimental results show that compared with an Intel® Core™ i7 industrial personal computer, the optimised algorithm improves feature extraction by nearly 4.5 times, obstacle clustering by nearly 3.5 times, and the performance of the whole algorithm by 2.3 times. | 
    
| Author | Li, Wei Zhang, Yunquan Li, Qing Xiao, Lin Jia, Haipeng Liang, Jun  | 
    
| Author_xml | – sequence: 1 givenname: Wei surname: Li fullname: Li, Wei organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China – sequence: 2 givenname: Jun surname: Liang fullname: Liang, Jun email: ldtliangjun@buu.edu.cn organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China – sequence: 3 givenname: Yunquan surname: Zhang fullname: Zhang, Yunquan organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China – sequence: 4 givenname: Haipeng surname: Jia fullname: Jia, Haipeng organization: 2State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, People's Republic of China – sequence: 5 givenname: Lin surname: Xiao fullname: Xiao, Lin organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China – sequence: 6 givenname: Qing surname: Li fullname: Li, Qing organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China  | 
    
| BookMark | eNqNkE1LAzEURYNU8PMHuAu4cjH1JfPRGXe1rVooCNKFuxCSl3ZkOhmTjNJ_7wwj4kLUVQK5576Xc0JGta2RkAsGYwZJcV1iiJQOYw6sGAPLsgNyzCYpi_KMPY--7sCOyIn3LwBplkJ-TMqpUlihkwE1XZXz6RPVMkjaOKvQ-7LeUFltrCvDdkeNddRjZSLtyrf-SUnnqa1p2CLdYkBnN1ijbT1Vdte0oc80lQwduDsjh0ZWHs8_z1OyvlusZw_R6vF-OZuuIhUXLIkmqc4gy2INHI0Co5I056Akl2gSAzo1aZKA4bHRqkhAM50jFKyYGMyMNvEp4UNtWzdy_y6rSjSu3Em3FwxE70p0rkTnSvSuRO-qgy4HqPv2a4s-iBfburpbU8RQ8BhyKJIuxYaUctZ7h-ZfzTcD815WuP8bELP5mt_eAfC8HxgNcB_72ui3YVc_5JeLdd_6bUbTefoAfXitPw | 
    
| Cites_doi | 10.1109/ICRA.2011.5979818 10.1080/17538947.2016.1269842 10.18576/amis/100131 10.1109/ICRA.2012.6224734 10.1093/comjnl/bxy085 10.1145/3093742.3093921 10.1109/HPCA.2017.14 10.1049/iet-cdt.2017.0004 10.1109/BigData.2014.7004221 10.1109/TVCG.2017.2744059 10.1109/PacificVis.2018.00019 10.1016/j.parco.2003.04.001 10.3390/ijgi6110363 10.1049/iet-cdt.2016.0135 10.1109/AERO.2007.352692 10.23919/VLSIC.2017.8008500 10.1145/2749246.2749263 10.1109/ICDCS.2018.00071 10.1109/SC.2018.00004 10.1109/Trustcom.2015.612 10.1145/2675743.2776758 10.1109/ICRA.2017.7989591 10.1145/3155284.3018756 10.1109/ICRA.2018.8461224 10.1080/02693799508902032 10.1016/j.cageo.2017.02.017 10.1109/ROBOT.2004.1307225 10.1007/BFb0037170 10.1117/12.833740 10.1049/iet-cdt.2018.5136 10.1145/2934495.2934496 10.1109/ICSDM.2015.7298040 10.1109/IVS.2010.5548059 10.1109/TSMCC.2004.840048 10.1108/IR-11-2016-0309  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Institution of Engineering and Technology 2020 The Institution of Engineering and Technology Copyright John Wiley & Sons, Inc. 2020  | 
    
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2020 The Institution of Engineering and Technology – notice: Copyright John Wiley & Sons, Inc. 2020  | 
    
| DBID | AAYXX CITATION 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.1049/iet-cdt.2019.0166 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Medicine  | 
    
| EISSN | 1751-861X 2589-0514  | 
    
| EndPage | 209 | 
    
| ExternalDocumentID | 10.1049/iet-cdt.2019.0166 10_1049_iet_cdt_2019_0166 CDT2BF00284  | 
    
| Genre | article | 
    
| GrantInformation_xml | – fundername: General Project of Scientific Research Project of the Beijing Education Committee grantid: KM201611417015 – fundername: General Project of Scientific Research Project of the Beijing Education Committee grantid: KM201811417006 – fundername: National Natural Science Foundation of China grantid: 61502036 – fundername: National Natural Science Foundation of China funderid: 61502036 – fundername: General Project of Scientific Research Project of the Beijing Education Committee funderid: KM201811417006; KM201611417015  | 
    
| GroupedDBID | 0R 24P 29I 3V. 4.4 4IJ 5GY 6IK 8AL 8FE 8FG 8VB AAJGR ABJCF ABPTK ABUWG ACGFS ACIWK AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BFFAM BGLVJ BPHCQ CS3 DU5 DWQXO EBS EJD ESX GNUQQ GOZPB GRPMH HCIFZ HZ IFIPE IPLJI JAVBF K6V K7- L6V LAI LOTEE LXI M0N M43 M7S MS NADUK NXXTH O9- OCL P2P P62 PQEST PQQKQ PQUKI PROAC PTHSS QWB RIE RNS RUI U5U UNMZH UNR ZL0 ZZ .DC 0R~ 0ZK 1OC 96U AAHHS AAHJG ABQXS ACCFJ ACCMX ACESK ACXQS ADEYR AEEZP AEGXH AEQDE AFAZI AIWBW AJBDE ALUQN AVUZU CCPQU F8P GROUPED_DOAJ HZ~ IAO ITC K1G MCNEO MS~ OK1 ROL ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION ICD IDLOA PHGZM PHGZT PQGLB WIN 457 7X7 7XB 8FI 8FJ 8FK 92F 92I AAEDW AALRI AAXUO AAYWO ABMAC ACVFH ADCNI ADEZE ADVLN AEUPX AFPUW AFTJW AGHFR AHDRD AIGII AITUG AKBMS AKRWK AKYEP AMRAJ FDB FYUFA HMCUK HYE K9. KQ8 PIMPY PJZUB PKEHL PPXIY PRINS RPM SSZ TCJ TGQ U5O UKHRP W2D WFFXF ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3914-75d60663d02efc0fc45820ca2aef4f0d5f5440f23fdc940d1d8e09197fe6fdf3 | 
    
| IEDL.DBID | 24P | 
    
| ISSN | 1751-8601 1751-861X 2095-882X  | 
    
| IngestDate | Thu Oct 30 05:58:18 EDT 2025 Tue Oct 07 07:23:49 EDT 2025 Wed Oct 29 21:19:23 EDT 2025 Wed Jan 22 16:31:01 EST 2025 Fri Aug 28 04:20:27 EDT 2020 Tue Jan 05 21:45:25 EST 2021  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | optimisation accelerated LiDAR data processing algorithm feature extraction automobiles obstacle clustering NVIDIA Tegra X2 computing platform optical information processing traffic engineering computing mobile robots heterogeneous computing platform optical radar self-driving cars  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3914-75d60663d02efc0fc45820ca2aef4f0d5f5440f23fdc940d1d8e09197fe6fdf3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.proquest.com/docview/3092308094?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 3092308094 | 
    
| PQPubID | 6860415 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | wiley_primary_10_1049_iet_cdt_2019_0166_CDT2BF00284 iet_journals_10_1049_iet_cdt_2019_0166 unpaywall_primary_10_1049_iet_cdt_2019_0166 proquest_journals_3092308094 crossref_primary_10_1049_iet_cdt_2019_0166  | 
    
| ProviderPackageCode | RUI | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20200900 September 2020 2020-09-00 20200901  | 
    
| PublicationDateYYYYMMDD | 2020-09-01 | 
    
| PublicationDate_xml | – month: 9 year: 2020 text: 20200900  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Beijing | 
    
| PublicationPlace_xml | – name: Beijing | 
    
| PublicationTitle | Chronic diseases and translational medicine | 
    
| PublicationYear | 2020 | 
    
| Publisher | The Institution of Engineering and Technology John Wiley & Sons, Inc  | 
    
| Publisher_xml | – name: The Institution of Engineering and Technology – name: John Wiley & Sons, Inc  | 
    
| References | Wang, H.; Guan, X.; Wu, H. (C20) 2007; 6 Haythem, B.; Fatma, S.; Marwa, C. (C9) 2016; 10 Bahri, H; Sayadi, F.; Khemiri, R. (C10) 2017; 11 Armstrong, M.P.; Marciano, R. (C17) 1995; 9 Bedkowski, J.M.; Röhling, T. (C21) 2017; 44 Hawick, K.A.; Coddington, P.D.; James, H.A. (C19) 2003; 29 Garibotti, R.; Ost, L.; Butko, A. (C37) 2019; 13 Li, Z.; Hodgson, M.E.; Li, W. (C25) 2018; 11 Kumar, N.; Prakash Vidyarthi, D. (C32) 2018; 62 Hamraz, H.; Contreras, M.A.; Zhang, J. (C22) 2017; 102 Zhang, J.; Guo, H.; Homg, F. (C31) 2018; 24 Stepan, P.; Kulich, M.; Preucil, L. (C2) 2005; 35 Zhang, Y.; Xing, Z.; Tang, C. (C40) 2017; 12 1995; 9 2012 2011 2010 2017; 44 2019; 13 2016; 10 1998 2009 2008 2007 2004 2018; 62 2018; 24 2017; 52 2017; 11 2017; 12 2019 2018 2007; 6 2017 2016 2015 2003; 29 2014 2018; 11 2017; 102 2005; 35 e_1_2_6_31_2 e_1_2_6_30_2 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2  | 
    
| References_xml | – volume: 24 start-page: 954 issue: 1 year: 2018 end-page: 963 ident: C31 article-title: Dynamic load balancing based on constrained k-d tree decomposition for parallel particle tracing publication-title: IEEE Trans. Vis. Comput. Graph. – volume: 29 start-page: 1297 issue: 10 year: 2003 end-page: 1333 ident: C19 article-title: Distributed frameworks and parallel algorithms for processing large-scale geographic data publication-title: Parallel Comput. – volume: 12 start-page: 87 issue: 3 year: 2017 end-page: 94 ident: C40 article-title: Locality-protected cache allocation scheme with low overhead on GPUs publication-title: IET Comput. Digit. Tech. – volume: 9 start-page: 169 issue: 2 year: 1995 end-page: 189 ident: C17 article-title: Massively parallel processing of spatial statistics publication-title: Int. J. Geogr. Inf. Syst. – volume: 6 start-page: 363 issue: 11 year: 2007 end-page: 379 ident: C20 article-title: A hybrid parallel spatial interpolation algorithm for massive LiDAR point clouds on heterogeneous CPU–GPU systems publication-title: ISPRS. Int. J. Geoinf. – volume: 10 start-page: 297 issue: 1 year: 2016 ident: C9 article-title: Accelerating Fourier descriptor for image recognition using GPU publication-title: Appl. Math Inf. Sci. – volume: 11 start-page: 125 issue: 4 year: 2017 end-page: 132 ident: C10 article-title: Image feature extraction algorithm based on CUDA architecture: case study GFD and GCFD publication-title: IET Comput. Digit. Tech. – volume: 102 start-page: 139 year: 2017 end-page: 147 ident: C22 article-title: A scalable approach for tree segmentation within small-footprint airborne LiDAR data publication-title: Comput. Geosci. – volume: 62 start-page: 276 issue: 2 year: 2018 end-page: 291 ident: C32 article-title: A hybrid heuristic for load-balanced scheduling of heterogeneous workload on heterogeneous systems publication-title: Comput. J. – volume: 44 start-page: 442 issue: 4 year: 2017 end-page: 456 ident: C21 article-title: Online 3D LIDAR Monte Carlo localization with GPU acceleration publication-title: Ind. Robot. – volume: 35 start-page: 106 issue: 1 year: 2005 end-page: 115 ident: C2 article-title: Robust data fusion with occupancy grid publication-title: IEEE Trans. Syst. Man Cybern. C, Appl. Rev. – volume: 11 start-page: 26 issue: 1 year: 2018 end-page: 47 ident: C25 article-title: A general-purpose framework for parallel processing of large-scale LiDAR data publication-title: Int. J. Digit. Earth – volume: 13 start-page: 302 issue: 4 year: 2019 end-page: 311 ident: C37 article-title: Exploiting memory allocations in clusterised many-core architectures publication-title: IET Comput. Digit. Tech. – volume: 35 start-page: 106 issue: 1 year: 2005 end-page: 115 article-title: Robust data fusion with occupancy grid publication-title: IEEE Trans. Syst. Man Cybern. C, Appl. Rev. – volume: 6 start-page: 363 issue: 11 year: 2007 end-page: 379 article-title: A hybrid parallel spatial interpolation algorithm for massive LiDAR point clouds on heterogeneous CPU–GPU systems publication-title: ISPRS. Int. J. Geoinf. – start-page: 161 year: 2015 end-page: 172 article-title: Accelerating irregular computations with hardware transactional memory and active messages – start-page: 1 year: 2007 end-page: 11 article-title: Terrain classification and classifier fusion for planetary exploration rovers – volume: 9 start-page: 169 issue: 2 year: 1995 end-page: 189 article-title: Massively parallel processing of spatial statistics publication-title: Int. J. Geogr. Inf. Syst. – start-page: 86 year: 2018 end-page: 95 article-title: Dynamic data repartitioning for load‐balanced parallel particle tracing – start-page: 560 year: 2010 end-page: 565 article-title: Fast segmentation of 3D point clouds for ground vehicles – start-page: 112 year: 2017 end-page: 123 article-title: Maximizing determinism in stream processing under latency constraints – volume: 11 start-page: 125 issue: 4 year: 2017 end-page: 132 article-title: Image feature extraction algorithm based on CUDA architecture: case study GFD and GCFD publication-title: IET Comput. Digit. Tech. – volume: 62 start-page: 276 issue: 2 year: 2018 end-page: 291 article-title: A hybrid heuristic for load‐balanced scheduling of heterogeneous workload on heterogeneous systems publication-title: Comput. J. – start-page: 665 year: 2004 end-page: 671 article-title: Classifier fusion for outdoor obstacle detection – start-page: 671 year: 2018 end-page: 684 article-title: Continuous and parallel LiDAR point‐cloud clustering – start-page: 1 year: 2018 end-page: 13 article-title: SP‐cache: load‐balanced, redundancy‐free cluster caching with selective partition – start-page: 429 year: 1998 end-page: 438 article-title: Kriging interpolation on high‐performance computers – year: 2018 – start-page: C20 year: 2017 end-page: C22 article-title: Inside Waymo's self‐driving car: my favorite transistors – start-page: 649 year: 2017 end-page: 660 article-title: Controlled kernel launch for dynamic parallelism in GPUs – start-page: 4038 year: 2012 end-page: 4044 article-title: What could move? Finding cars, pedestrians and bicyclists in 3d laser data – volume: 10 start-page: 297 issue: 1 year: 2016 article-title: Accelerating Fourier descriptor for image recognition using GPU publication-title: Appl. Math Inf. Sci. – start-page: 135 year: 2015 end-page: 140 article-title: Toward a new approach for massive LiDAR data processing – volume: 29 start-page: 1297 issue: 10 year: 2003 end-page: 1333 article-title: Distributed frameworks and parallel algorithms for processing large‐scale geographic data publication-title: Parallel Comput. – start-page: 5067 year: 2017 end-page: 5073 article-title: Fast segmentation of 3d point clouds: a paradigm on LiDAR data for autonomous vehicle applications – start-page: 2 year: 2016 end-page: 9 article-title: Highly concurrent stream synchronization in many‐core embedded systems – volume: 24 start-page: 954 issue: 1 year: 2018 end-page: 963 article-title: Dynamic load balancing based on constrained k‐d tree decomposition for parallel particle tracing publication-title: IEEE Trans. Vis. Comput. Graph. – start-page: 4670 year: 2018 end-page: 4677 article-title: Robust and precise vehicle localization based on multi‐sensor fusion in diverse city scenes – start-page: 53 year: 2015 end-page: 60 article-title: Exploiting hyper‐loop parallelism in vectorization to improve memory performance on CUDA GPGPU – volume: 13 start-page: 302 issue: 4 year: 2019 end-page: 311 article-title: Exploiting memory allocations in clusterised many‐core architectures publication-title: IET Comput. Digit. Tech. – volume: 11 start-page: 26 issue: 1 year: 2018 end-page: 47 article-title: A general‐purpose framework for parallel processing of large‐scale LiDAR data publication-title: Int. J. Digit. Earth – start-page: 1 year: 2008 end-page: 9 article-title: LiDAR‐based perception for offroad navigation – start-page: 749716 year: 2009 end-page: 749716 article-title: GPGPU‐based parallel processing of massive LiDAR point cloud – volume: 52 start-page: 235 issue: 8 year: 2017 end-page: 248 article-title: Groute: an asynchronous multi‐GPU programming model for irregular computations publication-title: ACM SIGPLAN Notices – volume: 44 start-page: 442 issue: 4 year: 2017 end-page: 456 article-title: Online 3D LIDAR Monte Carlo localization with GPU acceleration publication-title: Ind. Robot. – volume: 12 start-page: 87 issue: 3 year: 2017 end-page: 94 article-title: Locality‐protected cache allocation scheme with low overhead on GPUs publication-title: IET Comput. Digit. Tech. – year: 2017 – start-page: 129 year: 2014 end-page: 134 article-title: Online temporal‐spatial analysis for detection of critical events in cyber‐physical systems – start-page: 2798 year: 2011 end-page: 2805 article-title: On the segmentation of 3D LIDAR point clouds – year: 2019 – volume: 102 start-page: 139 year: 2017 end-page: 147 article-title: A scalable approach for tree segmentation within small‐footprint airborne LiDAR data publication-title: Comput. Geosci. – start-page: 316 year: 2015 end-page: 317 article-title: Deterministic real‐time analytics of geospatial data streams through scalegate objects – ident: e_1_2_6_14_2 doi: 10.1109/ICRA.2011.5979818 – ident: e_1_2_6_26_2 doi: 10.1080/17538947.2016.1269842 – ident: e_1_2_6_2_2 – ident: e_1_2_6_10_2 doi: 10.18576/amis/100131 – ident: e_1_2_6_16_2 doi: 10.1109/ICRA.2012.6224734 – ident: e_1_2_6_33_2 doi: 10.1093/comjnl/bxy085 – ident: e_1_2_6_9_2 doi: 10.1145/3093742.3093921 – ident: e_1_2_6_29_2 doi: 10.1109/HPCA.2017.14 – ident: e_1_2_6_41_2 doi: 10.1049/iet-cdt.2017.0004 – ident: e_1_2_6_6_2 doi: 10.1109/BigData.2014.7004221 – ident: e_1_2_6_32_2 doi: 10.1109/TVCG.2017.2744059 – ident: e_1_2_6_34_2 doi: 10.1109/PacificVis.2018.00019 – ident: e_1_2_6_20_2 doi: 10.1016/j.parco.2003.04.001 – ident: e_1_2_6_21_2 doi: 10.3390/ijgi6110363 – ident: e_1_2_6_35_2 – ident: e_1_2_6_11_2 doi: 10.1049/iet-cdt.2016.0135 – ident: e_1_2_6_5_2 doi: 10.1109/AERO.2007.352692 – ident: e_1_2_6_12_2 doi: 10.23919/VLSIC.2017.8008500 – ident: e_1_2_6_28_2 doi: 10.1145/2749246.2749263 – ident: e_1_2_6_24_2 doi: 10.1109/ICDCS.2018.00071 – ident: e_1_2_6_31_2 doi: 10.1109/SC.2018.00004 – ident: e_1_2_6_39_2 doi: 10.1109/Trustcom.2015.612 – ident: e_1_2_6_7_2 doi: 10.1145/2675743.2776758 – ident: e_1_2_6_17_2 doi: 10.1109/ICRA.2017.7989591 – ident: e_1_2_6_30_2 doi: 10.1145/3155284.3018756 – ident: e_1_2_6_40_2 – ident: e_1_2_6_13_2 doi: 10.1109/ICRA.2018.8461224 – ident: e_1_2_6_18_2 doi: 10.1080/02693799508902032 – ident: e_1_2_6_23_2 doi: 10.1016/j.cageo.2017.02.017 – ident: e_1_2_6_37_2 – ident: e_1_2_6_4_2 doi: 10.1109/ROBOT.2004.1307225 – ident: e_1_2_6_19_2 doi: 10.1007/BFb0037170 – ident: e_1_2_6_25_2 doi: 10.1117/12.833740 – ident: e_1_2_6_38_2 doi: 10.1049/iet-cdt.2018.5136 – ident: e_1_2_6_8_2 doi: 10.1145/2934495.2934496 – ident: e_1_2_6_27_2 doi: 10.1109/ICSDM.2015.7298040 – ident: e_1_2_6_15_2 doi: 10.1109/IVS.2010.5548059 – ident: e_1_2_6_36_2 – ident: e_1_2_6_3_2 doi: 10.1109/TSMCC.2004.840048 – ident: e_1_2_6_22_2 doi: 10.1108/IR-11-2016-0309  | 
    
| SSID | ssj0056508 ssj0001651162  | 
    
| Score | 2.2171052 | 
    
| Snippet | In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the... In recent years, light detection and ranging (LiDAR) has been widely used in the field of self‐driving cars, and the LiDAR data processing algorithm is the...  | 
    
| SourceID | unpaywall proquest crossref wiley iet  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher Enrichment Source  | 
    
| StartPage | 201 | 
    
| SubjectTerms | accelerated LiDAR data processing algorithm Algorithms automobiles Autonomous vehicles Data processing Data transmission feature extraction Field programmable gate arrays heterogeneous computing platform mobile robots NVIDIA Tegra X2 computing platform obstacle clustering optical information processing optical radar optimisation Power Random access memory Research Article Roads & highways self‐driving cars Supercomputers traffic engineering computing Workloads  | 
    
| SummonAdditionalLinks | – databaseName: IET Digital Library Open Access dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbo9gAcEE-xUJCFEAeQaeJHHsel21WLCge0SL1FzthuI4Uk2u6q6r9nJtntshKCXpNP0WTGsr_PnvEw9h5sGudlBsJkwQutA4isNIlwtvS582VqY6p3_vY9Ofmpv56b8215tKsuqFeG2Oy40W65HyoPKHUb5-HDtY-HhiTIbw8RIMBRXmScf0YGk-yxfYnqXI7Y_un0jCTWMDMbYiN9gaSJRYZK5PaU8y8f2Vmn9vD1DgW9v2o6e3Nt63qX1Par0uwxe7Smk3wyxP8Ju-ebp-zhH5cMPmPVBADXFroSwvGzajr5wSktlHdDiQBiuK0v2kW1vPzFkcLyK18H4RYVbTVwQOHL24aji_glpc60OOJ8u7ri0PeDIExX2yVx3-dsPjueH52IdYMFASqPtUiNI_2iXCR9gCgAHaJFYKX1QYfImWC0joJUwUGuIxe7zCO_yNPgk-CCesFGTdv4l4wnEmUXlE4po7RVIYc0OGkh83EJUOox-7jxZtEN12gU_fG3zgv0bYGuL8j1Bbl-zD7Qs02g_wV8twM8PZ4XR9P5FlB0LozZwSZuW6SKkNgiWc7Rsk-3sbyLaaqP9v-RZIj8MiNNq1_d9YdesweS9Hyfw3bARsvFyr9B0rMs367H8m8KSf6I priority: 102 providerName: Institution of Engineering and Technology – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61qQRcEE-RUtAKIQ6gpfbu-rEHhNI2UUE0QlWQcrPW-6ARrm0aR4gbP4HfyC9hxrEb5VK42t9hPTve-WbnRchLo5NQ5alhUeodk9IbluZRzKzOnbIuT3SI9c5n0_j0i_w4j-Y7ZNrXwmBaZX8mtge1rQzekR-KAKgI0Bsl39ffGU6NwuhqP0JDd6MV7Lu2xdgu2ePYGWtA9o7G08_nm1uXGAhGO2WUA7dgQC_n16FOdbhwDTMWMyxD9Raw8Zax2oXXWzz09qqs9c8fuii2mW1rmib3yN2OU9LRWgnukx1XPiC3zrqo-UPybWQMWBdsCmHpp8XJ6JxiYiit10UCYLyoLr7CxzYXlxRILF26wv_59dteLfC6gRpwfmlVUuCK9ALTZyrQOletltS0MyEQUxe6Qf77iMwm49nxKeuGLDAjVChZEln0YYQNuPMm8AYDaYHRXDsvfWAjH0kZeC68NUoGNrSpA46hEu9ib714TAZlVbonhMYcXC-TWyEiIbXwyiTecm1SF-bG5HJIXvfCzOp1K42sDYFLlYFoM5B8hpLPUPJD8gqfdT_U8ibgiy3gh_EsOz6ZbQBZbf2QHPTbtkFuNGpI3lxv5f8sTbSb_W8kLoQfTdCvlfs3L-EpucPRk2-z1w7IoLlauWdAd5r8eafDfwEqmf6f priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbY7gFx4B9RtCALIQ6gVElsJ_Gx7G61IFgh1JXKKbLH9rbakERtKgQnHoFn5EkYJ2mXIsSPxC1KJsl4PGN_Y8-MCXkCKo2kziAQmbMB5w6CTIskMEpbaaxOVeTznd-cJidn_NVMzPrMujYXxjZ9lZv5qKsVsV1881bSjt3e2GvjujG_80C59G8GYHx4ZCRHCGSSPbKfCAToA7J_dvp2_L5NjRRRkCXtocj9dTTb7nX-4hs7s9UePt4BolfXZa0-fVRFsQtt27lpcoM0m1Z1ISkXo3WjR_D5p4KP_7nZN8n1HsvScad8t8gVW94m136ocHiHXIwBcGLz9SgMfb04Gr-jPiaV1l1-AtJQVZxXy0Uz_0ARP9OVLdy3L1_NcuFXOiig302rkiJMpXMfuVOhwttqvaLQHkfhaepCNR563yXTyfH08CToz3cIgMmIB6kw3n1iJoytg9CB38MLQcXKOu5CI5zgPHQxcwYkD01kMovwRqbOJs44do8Myqq09wlNYvT6QBvGBOOKOQmpM7GCzEYaQPMhebbpxrzuqnjk7e47lzkKMEcB5l6AuRfgkDz193pbXv2O8PEO4cvjaX54NL0kyLG7huRgozCXlCxEXI1YXSJnz7dK9DessVYf_kzpGYlfTLxLzR_80z8OyKBZru1DxFqNftTbzncyXCwd priority: 102 providerName: Unpaywall  | 
    
| Title | Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform | 
    
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-cdt.2019.0166 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cdt.2019.0166 https://www.proquest.com/docview/3092308094 https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-cdt.2019.0166  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651162 issn: 1751-8601 databaseCode: KQ8 dateStart: 20150301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651162 issn: 1751-8601 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056508 issn: 1751-8601 databaseCode: IDLOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651162 issn: 1751-8601 databaseCode: AKRWK dateStart: 20150301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651162 issn: 1751-8601 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651162 issn: 1751-8601 databaseCode: 7X7 dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651162 issn: 1751-8601 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056508 issn: 1751-8601 databaseCode: AVUZU dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001651162 issn: 1751-8601 databaseCode: 24P dateStart: 20150101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-861X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056508 issn: 1751-8601 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELb2cQAOiKfo7lJZCHEABZLYefjY7UO7aKmqVVcqp8jxY7ciJFGbCnHjJ_Ab-SXMOG2XCgkQl0RJvljWjB_f2DNjQl4qmQQiT5UXpdZ4nFvlpXkUe1rmRmiTJzLAeOcP4_jsir-fRbM90t_EwrT5IbYLbtgz3HiNHVzm7SkkQGpBiXPTeEqjO2Qg3gJxiffJYQB8Bpt5yCeb4ThCCuKiIqPAS-Ngtt3aFO9-K2JnctqHzzu8886qrOXXL7Iodpmsm4pGD8j9NYekvVbpD8meKR-Re79kFnxMPvWUggkF80BoejEf9C4p-oLSuo0LAAyVxXW1mDc3nynwVro0hf3x7btezHGFgSqwd2lVUqCH9AY9ZipoaKZaLalyx0Agpi5kg5T3CZmOhtP-mbc-V8FTTATcSyKNZgvTfmis8q3CvTNfyVAay62vIxtx7tuQWa0E93WgUwO0QiTWxFZb9pQclFVpnhEah2BtqVwzFjEumRUqsTqUKjVBrlTOO-T1Rp5Z3WbPyNyuNxcZSDcD4Wco_AyF3yGv8N26Dy3_BHyxAzwfTrP-YHoLyGptO-Rko7lbJPOBzwJHFlCzN1tt_kvVmNP335FYkfB0hKYsP_qvv47J3RBteufHdkIOmsXKPAfi0-Rd17DhmsySLjk8HY4nl123iABP54MLd78aT3offwLGMAVG | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF71IVEuiKcIFFgh4ABya3vXjz1UKG0SJTSJUGWk3FbrfdAIY5vGUdUbP4E_xJ_hlzDr2I1yKVx6tUer1czszjevHYTeSBF5LI2lE8RGO5Qa6cRpEDpKpJopnUbCs_3Ok2k4_EI_zYLZFvrd9sLYssr2TqwvalVIGyM_JC5AEYA3jH4sfzh2apTNrrYjNEQzWkEd1U-MNY0dp_rqEly4xdGoB_J-6_uDfnIydJopA44kzKNOFCgL4olyfW2ka6TNJLlS-EIbalwVmIBS1_jEKMmoqzwVazCyLDI6NMoQWHYb7VJCGfh-u8f96eezdZAnBDxTDzX1Aco4gGZn15lVdjjXlSOVLej02AHQhhu2cRt-b8DevWVeiqtLkWWbQLq2hIP76F4DYXF3pXMP0JbOH6I7kyZJ_wh960oJxsy-QaHweN7rnmFbh4rLVU8C2Eossq_A2-r8OwbMjBc6M39-_lIXcxvdwBJ8bVzkGKApPrfVOgUouS6WCyzrERSWpsxEZeH2Y5TcBrefoJ28yPVThEMfPD2ZKkICQgUxTEZG-ULG2kulTGkHvW-ZycvVyx28zrhTxoG1HDjPLee55XwHvbPfmvO7uInw9QbhqJ_wk16yJuClMh2034ptTblW4A76cC3K_9kaqYX9b0q7Ef94YN1o-uzmLbxCe8NkMubj0fT0Obrr2yBCXTi3j3aqi6V-AUirSl82-owRv-UT9Be6yjuo | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2uxKPA-IpCgtYCHEAZUliO4mPZbvVLiwrhFpUcbEcP9iKkERtKsSNn8Bv5Jcwk7RdKiRAXJMvkTVje77xPEzIE6PTSOaZCUTmXcC5N0GWiySwOnfSujzVEdY7vzlLjif81VRMd8hwXQvT9YfYHLjhymj3a1zgrra-czg5NsmcuSYwFvMhI3kAzCXZJXtgz0PeI3uD95MPk_WOLJCFtIWRIgqyJJpuopvyxW8_2bJPu_B6i3peXpa1_vpFF8U2mW2t0eg6ubaikXTQ6f0G2XHlTXL1l-aCt8ingTFgU7AVhKWns-HgHcV0UFp3pQGAobr4WM1nzflnCtSVLlzhf3z7buczPGSgBlxeWpUUGCI9x6SZCuaaq5YLatqbIBBTF7pB1nubjEdH48PjYHW1QmCYjHiQCoueC7Nh7LwJvcHwWWh0rJ3nPrTCC85DHzNvjeShjWzmgFnI1LvEW8_ukF5Zle4uoUkMDpfJLWOCcc28NKm3sTaZi3Jjct4nz9byVHXXQEO1gW8uFUhXgfAVCl-h8PvkKT5bLaPFn4CPt4AnR2N1OBxfABTMlT7ZX2vuAslCoLRAkyWM7PlGm_8yNNbq--9IHEj8coTeLL_3X189IpfeDkfq9OTs9X1yJUYPv81q2ye9Zr50D4AGNfnD1Sz_CdTGA1Q | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbY7gFx4B9RtCALIQ6gVElsJ_Gx7G61IFgh1JXKKbLH9rbakERtKgQnHoFn5EkYJ2mXIsSPxC1KJsl4PGN_Y8-MCXkCKo2kziAQmbMB5w6CTIskMEpbaaxOVeTznd-cJidn_NVMzPrMujYXxjZ9lZv5qKsVsV1881bSjt3e2GvjujG_80C59G8GYHx4ZCRHCGSSPbKfCAToA7J_dvp2_L5NjRRRkCXtocj9dTTb7nX-4hs7s9UePt4BolfXZa0-fVRFsQtt27lpcoM0m1Z1ISkXo3WjR_D5p4KP_7nZN8n1HsvScad8t8gVW94m136ocHiHXIwBcGLz9SgMfb04Gr-jPiaV1l1-AtJQVZxXy0Uz_0ARP9OVLdy3L1_NcuFXOiig302rkiJMpXMfuVOhwttqvaLQHkfhaepCNR563yXTyfH08CToz3cIgMmIB6kw3n1iJoytg9CB38MLQcXKOu5CI5zgPHQxcwYkD01kMovwRqbOJs44do8Myqq09wlNYvT6QBvGBOOKOQmpM7GCzEYaQPMhebbpxrzuqnjk7e47lzkKMEcB5l6AuRfgkDz193pbXv2O8PEO4cvjaX54NL0kyLG7huRgozCXlCxEXI1YXSJnz7dK9DessVYf_kzpGYlfTLxLzR_80z8OyKBZru1DxFqNftTbzncyXCwd | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+LiDAR+data+processing+algorithm+for+self%E2%80%90driving+cars+on+the+heterogeneous+computing+platform&rft.jtitle=IET+computers+%26+digital+techniques&rft.au=Li%2C+Wei&rft.au=Liang%2C+Jun&rft.au=Zhang%2C+Yunquan&rft.au=Jia%2C+Haipeng&rft.date=2020-09-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-861X&rft.eissn=1751-861X&rft.volume=14&rft.issue=5&rft.spage=201&rft.epage=209&rft_id=info:doi/10.1049%2Fiet-cdt.2019.0166&rft.externalDBID=10.1049%252Fiet-cdt.2019.0166&rft.externalDocID=CDT2BF00284 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8601&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8601&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8601&client=summon |