Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform

In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self-driving cars. At the same time, the real-time performance of the LiDAR data processing al...

Full description

Saved in:
Bibliographic Details
Published inChronic diseases and translational medicine Vol. 14; no. 5; pp. 201 - 209
Main Authors Li, Wei, Liang, Jun, Zhang, Yunquan, Jia, Haipeng, Xiao, Lin, Li, Qing
Format Journal Article
LanguageEnglish
Published Beijing The Institution of Engineering and Technology 01.09.2020
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1751-8601
1751-861X
2095-882X
1751-861X
2589-0514
DOI10.1049/iet-cdt.2019.0166

Cover

Abstract In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self-driving cars. At the same time, the real-time performance of the LiDAR data processing algorithm is highly demanding in self-driving cars. The LiDAR point cloud is characterised by its high density and uneven distribution, which poses a severe challenge in the implementation and optimisation of data processing algorithms. In view of the distribution characteristics of LiDAR data and the characteristics of the data processing algorithm, this study completes the implementation and optimisation of the LiDAR data processing algorithm on an NVIDIA Tegra X2 computing platform and greatly improves the real-time performance of LiDAR data processing algorithms. The experimental results show that compared with an Intel® Core™ i7 industrial personal computer, the optimised algorithm improves feature extraction by nearly 4.5 times, obstacle clustering by nearly 3.5 times, and the performance of the whole algorithm by 2.3 times.
AbstractList In recent years, light detection and ranging (LiDAR) has been widely used in the field of self‐driving cars, and the LiDAR data processing algorithm is the core algorithm used for environment perception in self‐driving cars. At the same time, the real‐time performance of the LiDAR data processing algorithm is highly demanding in self‐driving cars. The LiDAR point cloud is characterised by its high density and uneven distribution, which poses a severe challenge in the implementation and optimisation of data processing algorithms. In view of the distribution characteristics of LiDAR data and the characteristics of the data processing algorithm, this study completes the implementation and optimisation of the LiDAR data processing algorithm on an NVIDIA Tegra X2 computing platform and greatly improves the real‐time performance of LiDAR data processing algorithms. The experimental results show that compared with an Intel® Core™ i7 industrial personal computer, the optimised algorithm improves feature extraction by nearly 4.5 times, obstacle clustering by nearly 3.5 times, and the performance of the whole algorithm by 2.3 times.
Author Li, Wei
Zhang, Yunquan
Li, Qing
Xiao, Lin
Jia, Haipeng
Liang, Jun
Author_xml – sequence: 1
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China
– sequence: 2
  givenname: Jun
  surname: Liang
  fullname: Liang, Jun
  email: ldtliangjun@buu.edu.cn
  organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China
– sequence: 3
  givenname: Yunquan
  surname: Zhang
  fullname: Zhang, Yunquan
  organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China
– sequence: 4
  givenname: Haipeng
  surname: Jia
  fullname: Jia, Haipeng
  organization: 2State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, People's Republic of China
– sequence: 5
  givenname: Lin
  surname: Xiao
  fullname: Xiao, Lin
  organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China
– sequence: 6
  givenname: Qing
  surname: Li
  fullname: Li, Qing
  organization: 1Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing, People's Republic of China
BookMark eNqNkE1LAzEURYNU8PMHuAu4cjH1JfPRGXe1rVooCNKFuxCSl3ZkOhmTjNJ_7wwj4kLUVQK5576Xc0JGta2RkAsGYwZJcV1iiJQOYw6sGAPLsgNyzCYpi_KMPY--7sCOyIn3LwBplkJ-TMqpUlihkwE1XZXz6RPVMkjaOKvQ-7LeUFltrCvDdkeNddRjZSLtyrf-SUnnqa1p2CLdYkBnN1ijbT1Vdte0oc80lQwduDsjh0ZWHs8_z1OyvlusZw_R6vF-OZuuIhUXLIkmqc4gy2INHI0Co5I056Akl2gSAzo1aZKA4bHRqkhAM50jFKyYGMyMNvEp4UNtWzdy_y6rSjSu3Em3FwxE70p0rkTnSvSuRO-qgy4HqPv2a4s-iBfburpbU8RQ8BhyKJIuxYaUctZ7h-ZfzTcD815WuP8bELP5mt_eAfC8HxgNcB_72ui3YVc_5JeLdd_6bUbTefoAfXitPw
Cites_doi 10.1109/ICRA.2011.5979818
10.1080/17538947.2016.1269842
10.18576/amis/100131
10.1109/ICRA.2012.6224734
10.1093/comjnl/bxy085
10.1145/3093742.3093921
10.1109/HPCA.2017.14
10.1049/iet-cdt.2017.0004
10.1109/BigData.2014.7004221
10.1109/TVCG.2017.2744059
10.1109/PacificVis.2018.00019
10.1016/j.parco.2003.04.001
10.3390/ijgi6110363
10.1049/iet-cdt.2016.0135
10.1109/AERO.2007.352692
10.23919/VLSIC.2017.8008500
10.1145/2749246.2749263
10.1109/ICDCS.2018.00071
10.1109/SC.2018.00004
10.1109/Trustcom.2015.612
10.1145/2675743.2776758
10.1109/ICRA.2017.7989591
10.1145/3155284.3018756
10.1109/ICRA.2018.8461224
10.1080/02693799508902032
10.1016/j.cageo.2017.02.017
10.1109/ROBOT.2004.1307225
10.1007/BFb0037170
10.1117/12.833740
10.1049/iet-cdt.2018.5136
10.1145/2934495.2934496
10.1109/ICSDM.2015.7298040
10.1109/IVS.2010.5548059
10.1109/TSMCC.2004.840048
10.1108/IR-11-2016-0309
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2020 The Institution of Engineering and Technology
Copyright John Wiley & Sons, Inc. 2020
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2020 The Institution of Engineering and Technology
– notice: Copyright John Wiley & Sons, Inc. 2020
DBID AAYXX
CITATION
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.1049/iet-cdt.2019.0166
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Medicine
EISSN 1751-861X
2589-0514
EndPage 209
ExternalDocumentID 10.1049/iet-cdt.2019.0166
10_1049_iet_cdt_2019_0166
CDT2BF00284
Genre article
GrantInformation_xml – fundername: General Project of Scientific Research Project of the Beijing Education Committee
  grantid: KM201611417015
– fundername: General Project of Scientific Research Project of the Beijing Education Committee
  grantid: KM201811417006
– fundername: National Natural Science Foundation of China
  grantid: 61502036
– fundername: National Natural Science Foundation of China
  funderid: 61502036
– fundername: General Project of Scientific Research Project of the Beijing Education Committee
  funderid: KM201811417006; KM201611417015
GroupedDBID 0R
24P
29I
3V.
4.4
4IJ
5GY
6IK
8AL
8FE
8FG
8VB
AAJGR
ABJCF
ABPTK
ABUWG
ACGFS
ACIWK
AENEX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BFFAM
BGLVJ
BPHCQ
CS3
DU5
DWQXO
EBS
EJD
ESX
GNUQQ
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
M0N
M43
M7S
MS
NADUK
NXXTH
O9-
OCL
P2P
P62
PQEST
PQQKQ
PQUKI
PROAC
PTHSS
QWB
RIE
RNS
RUI
U5U
UNMZH
UNR
ZL0
ZZ
.DC
0R~
0ZK
1OC
96U
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
AEEZP
AEGXH
AEQDE
AFAZI
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
ITC
K1G
MCNEO
MS~
OK1
ROL
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
ICD
IDLOA
PHGZM
PHGZT
PQGLB
WIN
457
7X7
7XB
8FI
8FJ
8FK
92F
92I
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACVFH
ADCNI
ADEZE
ADVLN
AEUPX
AFPUW
AFTJW
AGHFR
AHDRD
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
FDB
FYUFA
HMCUK
HYE
K9.
KQ8
PIMPY
PJZUB
PKEHL
PPXIY
PRINS
RPM
SSZ
TCJ
TGQ
U5O
UKHRP
W2D
WFFXF
ADTOC
UNPAY
ID FETCH-LOGICAL-c3914-75d60663d02efc0fc45820ca2aef4f0d5f5440f23fdc940d1d8e09197fe6fdf3
IEDL.DBID 24P
ISSN 1751-8601
1751-861X
2095-882X
IngestDate Thu Oct 30 05:58:18 EDT 2025
Tue Oct 07 07:23:49 EDT 2025
Wed Oct 29 21:19:23 EDT 2025
Wed Jan 22 16:31:01 EST 2025
Fri Aug 28 04:20:27 EDT 2020
Tue Jan 05 21:45:25 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords optimisation
accelerated LiDAR data processing algorithm
feature extraction
automobiles
obstacle clustering
NVIDIA Tegra X2 computing platform
optical information processing
traffic engineering computing
mobile robots
heterogeneous computing platform
optical radar
self-driving cars
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3914-75d60663d02efc0fc45820ca2aef4f0d5f5440f23fdc940d1d8e09197fe6fdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3092308094?pq-origsite=%requestingapplication%&accountid=15518
PQID 3092308094
PQPubID 6860415
PageCount 9
ParticipantIDs wiley_primary_10_1049_iet_cdt_2019_0166_CDT2BF00284
iet_journals_10_1049_iet_cdt_2019_0166
unpaywall_primary_10_1049_iet_cdt_2019_0166
proquest_journals_3092308094
crossref_primary_10_1049_iet_cdt_2019_0166
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 20200900
September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200900
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Chronic diseases and translational medicine
PublicationYear 2020
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
References Wang, H.; Guan, X.; Wu, H. (C20) 2007; 6
Haythem, B.; Fatma, S.; Marwa, C. (C9) 2016; 10
Bahri, H; Sayadi, F.; Khemiri, R. (C10) 2017; 11
Armstrong, M.P.; Marciano, R. (C17) 1995; 9
Bedkowski, J.M.; Röhling, T. (C21) 2017; 44
Hawick, K.A.; Coddington, P.D.; James, H.A. (C19) 2003; 29
Garibotti, R.; Ost, L.; Butko, A. (C37) 2019; 13
Li, Z.; Hodgson, M.E.; Li, W. (C25) 2018; 11
Kumar, N.; Prakash Vidyarthi, D. (C32) 2018; 62
Hamraz, H.; Contreras, M.A.; Zhang, J. (C22) 2017; 102
Zhang, J.; Guo, H.; Homg, F. (C31) 2018; 24
Stepan, P.; Kulich, M.; Preucil, L. (C2) 2005; 35
Zhang, Y.; Xing, Z.; Tang, C. (C40) 2017; 12
1995; 9
2012
2011
2010
2017; 44
2019; 13
2016; 10
1998
2009
2008
2007
2004
2018; 62
2018; 24
2017; 52
2017; 11
2017; 12
2019
2018
2007; 6
2017
2016
2015
2003; 29
2014
2018; 11
2017; 102
2005; 35
e_1_2_6_31_2
e_1_2_6_30_2
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – volume: 24
  start-page: 954
  issue: 1
  year: 2018
  end-page: 963
  ident: C31
  article-title: Dynamic load balancing based on constrained k-d tree decomposition for parallel particle tracing
  publication-title: IEEE Trans. Vis. Comput. Graph.
– volume: 29
  start-page: 1297
  issue: 10
  year: 2003
  end-page: 1333
  ident: C19
  article-title: Distributed frameworks and parallel algorithms for processing large-scale geographic data
  publication-title: Parallel Comput.
– volume: 12
  start-page: 87
  issue: 3
  year: 2017
  end-page: 94
  ident: C40
  article-title: Locality-protected cache allocation scheme with low overhead on GPUs
  publication-title: IET Comput. Digit. Tech.
– volume: 9
  start-page: 169
  issue: 2
  year: 1995
  end-page: 189
  ident: C17
  article-title: Massively parallel processing of spatial statistics
  publication-title: Int. J. Geogr. Inf. Syst.
– volume: 6
  start-page: 363
  issue: 11
  year: 2007
  end-page: 379
  ident: C20
  article-title: A hybrid parallel spatial interpolation algorithm for massive LiDAR point clouds on heterogeneous CPU–GPU systems
  publication-title: ISPRS. Int. J. Geoinf.
– volume: 10
  start-page: 297
  issue: 1
  year: 2016
  ident: C9
  article-title: Accelerating Fourier descriptor for image recognition using GPU
  publication-title: Appl. Math Inf. Sci.
– volume: 11
  start-page: 125
  issue: 4
  year: 2017
  end-page: 132
  ident: C10
  article-title: Image feature extraction algorithm based on CUDA architecture: case study GFD and GCFD
  publication-title: IET Comput. Digit. Tech.
– volume: 102
  start-page: 139
  year: 2017
  end-page: 147
  ident: C22
  article-title: A scalable approach for tree segmentation within small-footprint airborne LiDAR data
  publication-title: Comput. Geosci.
– volume: 62
  start-page: 276
  issue: 2
  year: 2018
  end-page: 291
  ident: C32
  article-title: A hybrid heuristic for load-balanced scheduling of heterogeneous workload on heterogeneous systems
  publication-title: Comput. J.
– volume: 44
  start-page: 442
  issue: 4
  year: 2017
  end-page: 456
  ident: C21
  article-title: Online 3D LIDAR Monte Carlo localization with GPU acceleration
  publication-title: Ind. Robot.
– volume: 35
  start-page: 106
  issue: 1
  year: 2005
  end-page: 115
  ident: C2
  article-title: Robust data fusion with occupancy grid
  publication-title: IEEE Trans. Syst. Man Cybern. C, Appl. Rev.
– volume: 11
  start-page: 26
  issue: 1
  year: 2018
  end-page: 47
  ident: C25
  article-title: A general-purpose framework for parallel processing of large-scale LiDAR data
  publication-title: Int. J. Digit. Earth
– volume: 13
  start-page: 302
  issue: 4
  year: 2019
  end-page: 311
  ident: C37
  article-title: Exploiting memory allocations in clusterised many-core architectures
  publication-title: IET Comput. Digit. Tech.
– volume: 35
  start-page: 106
  issue: 1
  year: 2005
  end-page: 115
  article-title: Robust data fusion with occupancy grid
  publication-title: IEEE Trans. Syst. Man Cybern. C, Appl. Rev.
– volume: 6
  start-page: 363
  issue: 11
  year: 2007
  end-page: 379
  article-title: A hybrid parallel spatial interpolation algorithm for massive LiDAR point clouds on heterogeneous CPU–GPU systems
  publication-title: ISPRS. Int. J. Geoinf.
– start-page: 161
  year: 2015
  end-page: 172
  article-title: Accelerating irregular computations with hardware transactional memory and active messages
– start-page: 1
  year: 2007
  end-page: 11
  article-title: Terrain classification and classifier fusion for planetary exploration rovers
– volume: 9
  start-page: 169
  issue: 2
  year: 1995
  end-page: 189
  article-title: Massively parallel processing of spatial statistics
  publication-title: Int. J. Geogr. Inf. Syst.
– start-page: 86
  year: 2018
  end-page: 95
  article-title: Dynamic data repartitioning for load‐balanced parallel particle tracing
– start-page: 560
  year: 2010
  end-page: 565
  article-title: Fast segmentation of 3D point clouds for ground vehicles
– start-page: 112
  year: 2017
  end-page: 123
  article-title: Maximizing determinism in stream processing under latency constraints
– volume: 11
  start-page: 125
  issue: 4
  year: 2017
  end-page: 132
  article-title: Image feature extraction algorithm based on CUDA architecture: case study GFD and GCFD
  publication-title: IET Comput. Digit. Tech.
– volume: 62
  start-page: 276
  issue: 2
  year: 2018
  end-page: 291
  article-title: A hybrid heuristic for load‐balanced scheduling of heterogeneous workload on heterogeneous systems
  publication-title: Comput. J.
– start-page: 665
  year: 2004
  end-page: 671
  article-title: Classifier fusion for outdoor obstacle detection
– start-page: 671
  year: 2018
  end-page: 684
  article-title: Continuous and parallel LiDAR point‐cloud clustering
– start-page: 1
  year: 2018
  end-page: 13
  article-title: SP‐cache: load‐balanced, redundancy‐free cluster caching with selective partition
– start-page: 429
  year: 1998
  end-page: 438
  article-title: Kriging interpolation on high‐performance computers
– year: 2018
– start-page: C20
  year: 2017
  end-page: C22
  article-title: Inside Waymo's self‐driving car: my favorite transistors
– start-page: 649
  year: 2017
  end-page: 660
  article-title: Controlled kernel launch for dynamic parallelism in GPUs
– start-page: 4038
  year: 2012
  end-page: 4044
  article-title: What could move? Finding cars, pedestrians and bicyclists in 3d laser data
– volume: 10
  start-page: 297
  issue: 1
  year: 2016
  article-title: Accelerating Fourier descriptor for image recognition using GPU
  publication-title: Appl. Math Inf. Sci.
– start-page: 135
  year: 2015
  end-page: 140
  article-title: Toward a new approach for massive LiDAR data processing
– volume: 29
  start-page: 1297
  issue: 10
  year: 2003
  end-page: 1333
  article-title: Distributed frameworks and parallel algorithms for processing large‐scale geographic data
  publication-title: Parallel Comput.
– start-page: 5067
  year: 2017
  end-page: 5073
  article-title: Fast segmentation of 3d point clouds: a paradigm on LiDAR data for autonomous vehicle applications
– start-page: 2
  year: 2016
  end-page: 9
  article-title: Highly concurrent stream synchronization in many‐core embedded systems
– volume: 24
  start-page: 954
  issue: 1
  year: 2018
  end-page: 963
  article-title: Dynamic load balancing based on constrained k‐d tree decomposition for parallel particle tracing
  publication-title: IEEE Trans. Vis. Comput. Graph.
– start-page: 4670
  year: 2018
  end-page: 4677
  article-title: Robust and precise vehicle localization based on multi‐sensor fusion in diverse city scenes
– start-page: 53
  year: 2015
  end-page: 60
  article-title: Exploiting hyper‐loop parallelism in vectorization to improve memory performance on CUDA GPGPU
– volume: 13
  start-page: 302
  issue: 4
  year: 2019
  end-page: 311
  article-title: Exploiting memory allocations in clusterised many‐core architectures
  publication-title: IET Comput. Digit. Tech.
– volume: 11
  start-page: 26
  issue: 1
  year: 2018
  end-page: 47
  article-title: A general‐purpose framework for parallel processing of large‐scale LiDAR data
  publication-title: Int. J. Digit. Earth
– start-page: 1
  year: 2008
  end-page: 9
  article-title: LiDAR‐based perception for offroad navigation
– start-page: 749716
  year: 2009
  end-page: 749716
  article-title: GPGPU‐based parallel processing of massive LiDAR point cloud
– volume: 52
  start-page: 235
  issue: 8
  year: 2017
  end-page: 248
  article-title: Groute: an asynchronous multi‐GPU programming model for irregular computations
  publication-title: ACM SIGPLAN Notices
– volume: 44
  start-page: 442
  issue: 4
  year: 2017
  end-page: 456
  article-title: Online 3D LIDAR Monte Carlo localization with GPU acceleration
  publication-title: Ind. Robot.
– volume: 12
  start-page: 87
  issue: 3
  year: 2017
  end-page: 94
  article-title: Locality‐protected cache allocation scheme with low overhead on GPUs
  publication-title: IET Comput. Digit. Tech.
– year: 2017
– start-page: 129
  year: 2014
  end-page: 134
  article-title: Online temporal‐spatial analysis for detection of critical events in cyber‐physical systems
– start-page: 2798
  year: 2011
  end-page: 2805
  article-title: On the segmentation of 3D LIDAR point clouds
– year: 2019
– volume: 102
  start-page: 139
  year: 2017
  end-page: 147
  article-title: A scalable approach for tree segmentation within small‐footprint airborne LiDAR data
  publication-title: Comput. Geosci.
– start-page: 316
  year: 2015
  end-page: 317
  article-title: Deterministic real‐time analytics of geospatial data streams through scalegate objects
– ident: e_1_2_6_14_2
  doi: 10.1109/ICRA.2011.5979818
– ident: e_1_2_6_26_2
  doi: 10.1080/17538947.2016.1269842
– ident: e_1_2_6_2_2
– ident: e_1_2_6_10_2
  doi: 10.18576/amis/100131
– ident: e_1_2_6_16_2
  doi: 10.1109/ICRA.2012.6224734
– ident: e_1_2_6_33_2
  doi: 10.1093/comjnl/bxy085
– ident: e_1_2_6_9_2
  doi: 10.1145/3093742.3093921
– ident: e_1_2_6_29_2
  doi: 10.1109/HPCA.2017.14
– ident: e_1_2_6_41_2
  doi: 10.1049/iet-cdt.2017.0004
– ident: e_1_2_6_6_2
  doi: 10.1109/BigData.2014.7004221
– ident: e_1_2_6_32_2
  doi: 10.1109/TVCG.2017.2744059
– ident: e_1_2_6_34_2
  doi: 10.1109/PacificVis.2018.00019
– ident: e_1_2_6_20_2
  doi: 10.1016/j.parco.2003.04.001
– ident: e_1_2_6_21_2
  doi: 10.3390/ijgi6110363
– ident: e_1_2_6_35_2
– ident: e_1_2_6_11_2
  doi: 10.1049/iet-cdt.2016.0135
– ident: e_1_2_6_5_2
  doi: 10.1109/AERO.2007.352692
– ident: e_1_2_6_12_2
  doi: 10.23919/VLSIC.2017.8008500
– ident: e_1_2_6_28_2
  doi: 10.1145/2749246.2749263
– ident: e_1_2_6_24_2
  doi: 10.1109/ICDCS.2018.00071
– ident: e_1_2_6_31_2
  doi: 10.1109/SC.2018.00004
– ident: e_1_2_6_39_2
  doi: 10.1109/Trustcom.2015.612
– ident: e_1_2_6_7_2
  doi: 10.1145/2675743.2776758
– ident: e_1_2_6_17_2
  doi: 10.1109/ICRA.2017.7989591
– ident: e_1_2_6_30_2
  doi: 10.1145/3155284.3018756
– ident: e_1_2_6_40_2
– ident: e_1_2_6_13_2
  doi: 10.1109/ICRA.2018.8461224
– ident: e_1_2_6_18_2
  doi: 10.1080/02693799508902032
– ident: e_1_2_6_23_2
  doi: 10.1016/j.cageo.2017.02.017
– ident: e_1_2_6_37_2
– ident: e_1_2_6_4_2
  doi: 10.1109/ROBOT.2004.1307225
– ident: e_1_2_6_19_2
  doi: 10.1007/BFb0037170
– ident: e_1_2_6_25_2
  doi: 10.1117/12.833740
– ident: e_1_2_6_38_2
  doi: 10.1049/iet-cdt.2018.5136
– ident: e_1_2_6_8_2
  doi: 10.1145/2934495.2934496
– ident: e_1_2_6_27_2
  doi: 10.1109/ICSDM.2015.7298040
– ident: e_1_2_6_15_2
  doi: 10.1109/IVS.2010.5548059
– ident: e_1_2_6_36_2
– ident: e_1_2_6_3_2
  doi: 10.1109/TSMCC.2004.840048
– ident: e_1_2_6_22_2
  doi: 10.1108/IR-11-2016-0309
SSID ssj0056508
ssj0001651162
Score 2.2171052
Snippet In recent years, light detection and ranging (LiDAR) has been widely used in the field of self-driving cars, and the LiDAR data processing algorithm is the...
In recent years, light detection and ranging (LiDAR) has been widely used in the field of self‐driving cars, and the LiDAR data processing algorithm is the...
SourceID unpaywall
proquest
crossref
wiley
iet
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
Enrichment Source
StartPage 201
SubjectTerms accelerated LiDAR data processing algorithm
Algorithms
automobiles
Autonomous vehicles
Data processing
Data transmission
feature extraction
Field programmable gate arrays
heterogeneous computing platform
mobile robots
NVIDIA Tegra X2 computing platform
obstacle clustering
optical information processing
optical radar
optimisation
Power
Random access memory
Research Article
Roads & highways
self‐driving cars
Supercomputers
traffic engineering computing
Workloads
SummonAdditionalLinks – databaseName: IET Digital Library Open Access
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbo9gAcEE-xUJCFEAeQaeJHHsel21WLCge0SL1FzthuI4Uk2u6q6r9nJtntshKCXpNP0WTGsr_PnvEw9h5sGudlBsJkwQutA4isNIlwtvS582VqY6p3_vY9Ofmpv56b8215tKsuqFeG2Oy40W65HyoPKHUb5-HDtY-HhiTIbw8RIMBRXmScf0YGk-yxfYnqXI7Y_un0jCTWMDMbYiN9gaSJRYZK5PaU8y8f2Vmn9vD1DgW9v2o6e3Nt63qX1Par0uwxe7Smk3wyxP8Ju-ebp-zhH5cMPmPVBADXFroSwvGzajr5wSktlHdDiQBiuK0v2kW1vPzFkcLyK18H4RYVbTVwQOHL24aji_glpc60OOJ8u7ri0PeDIExX2yVx3-dsPjueH52IdYMFASqPtUiNI_2iXCR9gCgAHaJFYKX1QYfImWC0joJUwUGuIxe7zCO_yNPgk-CCesFGTdv4l4wnEmUXlE4po7RVIYc0OGkh83EJUOox-7jxZtEN12gU_fG3zgv0bYGuL8j1Bbl-zD7Qs02g_wV8twM8PZ4XR9P5FlB0LozZwSZuW6SKkNgiWc7Rsk-3sbyLaaqP9v-RZIj8MiNNq1_d9YdesweS9Hyfw3bARsvFyr9B0rMs367H8m8KSf6I
  priority: 102
  providerName: Institution of Engineering and Technology
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61qQRcEE-RUtAKIQ6gpfbu-rEHhNI2UUE0QlWQcrPW-6ARrm0aR4gbP4HfyC9hxrEb5VK42t9hPTve-WbnRchLo5NQ5alhUeodk9IbluZRzKzOnbIuT3SI9c5n0_j0i_w4j-Y7ZNrXwmBaZX8mtge1rQzekR-KAKgI0Bsl39ffGU6NwuhqP0JDd6MV7Lu2xdgu2ePYGWtA9o7G08_nm1uXGAhGO2WUA7dgQC_n16FOdbhwDTMWMyxD9Raw8Zax2oXXWzz09qqs9c8fuii2mW1rmib3yN2OU9LRWgnukx1XPiC3zrqo-UPybWQMWBdsCmHpp8XJ6JxiYiit10UCYLyoLr7CxzYXlxRILF26wv_59dteLfC6gRpwfmlVUuCK9ALTZyrQOletltS0MyEQUxe6Qf77iMwm49nxKeuGLDAjVChZEln0YYQNuPMm8AYDaYHRXDsvfWAjH0kZeC68NUoGNrSpA46hEu9ib714TAZlVbonhMYcXC-TWyEiIbXwyiTecm1SF-bG5HJIXvfCzOp1K42sDYFLlYFoM5B8hpLPUPJD8gqfdT_U8ibgiy3gh_EsOz6ZbQBZbf2QHPTbtkFuNGpI3lxv5f8sTbSb_W8kLoQfTdCvlfs3L-EpucPRk2-z1w7IoLlauWdAd5r8eafDfwEqmf6f
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbY7gFx4B9RtCALIQ6gVElsJ_Gx7G61IFgh1JXKKbLH9rbakERtKgQnHoFn5EkYJ2mXIsSPxC1KJsl4PGN_Y8-MCXkCKo2kziAQmbMB5w6CTIskMEpbaaxOVeTznd-cJidn_NVMzPrMujYXxjZ9lZv5qKsVsV1881bSjt3e2GvjujG_80C59G8GYHx4ZCRHCGSSPbKfCAToA7J_dvp2_L5NjRRRkCXtocj9dTTb7nX-4hs7s9UePt4BolfXZa0-fVRFsQtt27lpcoM0m1Z1ISkXo3WjR_D5p4KP_7nZN8n1HsvScad8t8gVW94m136ocHiHXIwBcGLz9SgMfb04Gr-jPiaV1l1-AtJQVZxXy0Uz_0ARP9OVLdy3L1_NcuFXOiig302rkiJMpXMfuVOhwttqvaLQHkfhaepCNR563yXTyfH08CToz3cIgMmIB6kw3n1iJoytg9CB38MLQcXKOu5CI5zgPHQxcwYkD01kMovwRqbOJs44do8Myqq09wlNYvT6QBvGBOOKOQmpM7GCzEYaQPMhebbpxrzuqnjk7e47lzkKMEcB5l6AuRfgkDz193pbXv2O8PEO4cvjaX54NL0kyLG7huRgozCXlCxEXI1YXSJnz7dK9DessVYf_kzpGYlfTLxLzR_80z8OyKBZru1DxFqNftTbzncyXCwd
  priority: 102
  providerName: Unpaywall
Title Accelerated LiDAR data processing algorithm for self-driving cars on the heterogeneous computing platform
URI http://digital-library.theiet.org/content/journals/10.1049/iet-cdt.2019.0166
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cdt.2019.0166
https://www.proquest.com/docview/3092308094
https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-cdt.2019.0166
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651162
  issn: 1751-8601
  databaseCode: KQ8
  dateStart: 20150301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651162
  issn: 1751-8601
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056508
  issn: 1751-8601
  databaseCode: IDLOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651162
  issn: 1751-8601
  databaseCode: AKRWK
  dateStart: 20150301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651162
  issn: 1751-8601
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651162
  issn: 1751-8601
  databaseCode: 7X7
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651162
  issn: 1751-8601
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056508
  issn: 1751-8601
  databaseCode: AVUZU
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001651162
  issn: 1751-8601
  databaseCode: 24P
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-861X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056508
  issn: 1751-8601
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELb2cQAOiKfo7lJZCHEABZLYefjY7UO7aKmqVVcqp8jxY7ciJFGbCnHjJ_Ab-SXMOG2XCgkQl0RJvljWjB_f2DNjQl4qmQQiT5UXpdZ4nFvlpXkUe1rmRmiTJzLAeOcP4_jsir-fRbM90t_EwrT5IbYLbtgz3HiNHVzm7SkkQGpBiXPTeEqjO2Qg3gJxiffJYQB8Bpt5yCeb4ThCCuKiIqPAS-Ngtt3aFO9-K2JnctqHzzu8886qrOXXL7Iodpmsm4pGD8j9NYekvVbpD8meKR-Re79kFnxMPvWUggkF80BoejEf9C4p-oLSuo0LAAyVxXW1mDc3nynwVro0hf3x7btezHGFgSqwd2lVUqCH9AY9ZipoaKZaLalyx0Agpi5kg5T3CZmOhtP-mbc-V8FTTATcSyKNZgvTfmis8q3CvTNfyVAay62vIxtx7tuQWa0E93WgUwO0QiTWxFZb9pQclFVpnhEah2BtqVwzFjEumRUqsTqUKjVBrlTOO-T1Rp5Z3WbPyNyuNxcZSDcD4Wco_AyF3yGv8N26Dy3_BHyxAzwfTrP-YHoLyGptO-Rko7lbJPOBzwJHFlCzN1tt_kvVmNP335FYkfB0hKYsP_qvv47J3RBteufHdkIOmsXKPAfi0-Rd17DhmsySLjk8HY4nl123iABP54MLd78aT3offwLGMAVG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF71IVEuiKcIFFgh4ABya3vXjz1UKG0SJTSJUGWk3FbrfdAIY5vGUdUbP4E_xJ_hlzDr2I1yKVx6tUer1czszjevHYTeSBF5LI2lE8RGO5Qa6cRpEDpKpJopnUbCs_3Ok2k4_EI_zYLZFvrd9sLYssr2TqwvalVIGyM_JC5AEYA3jH4sfzh2apTNrrYjNEQzWkEd1U-MNY0dp_rqEly4xdGoB_J-6_uDfnIydJopA44kzKNOFCgL4olyfW2ka6TNJLlS-EIbalwVmIBS1_jEKMmoqzwVazCyLDI6NMoQWHYb7VJCGfh-u8f96eezdZAnBDxTDzX1Aco4gGZn15lVdjjXlSOVLej02AHQhhu2cRt-b8DevWVeiqtLkWWbQLq2hIP76F4DYXF3pXMP0JbOH6I7kyZJ_wh960oJxsy-QaHweN7rnmFbh4rLVU8C2Eossq_A2-r8OwbMjBc6M39-_lIXcxvdwBJ8bVzkGKApPrfVOgUouS6WCyzrERSWpsxEZeH2Y5TcBrefoJ28yPVThEMfPD2ZKkICQgUxTEZG-ULG2kulTGkHvW-ZycvVyx28zrhTxoG1HDjPLee55XwHvbPfmvO7uInw9QbhqJ_wk16yJuClMh2034ptTblW4A76cC3K_9kaqYX9b0q7Ef94YN1o-uzmLbxCe8NkMubj0fT0Obrr2yBCXTi3j3aqi6V-AUirSl82-owRv-UT9Be6yjuo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2uxKPA-IpCgtYCHEAZUliO4mPZbvVLiwrhFpUcbEcP9iKkERtKsSNn8Bv5Jcwk7RdKiRAXJMvkTVje77xPEzIE6PTSOaZCUTmXcC5N0GWiySwOnfSujzVEdY7vzlLjif81VRMd8hwXQvT9YfYHLjhymj3a1zgrra-czg5NsmcuSYwFvMhI3kAzCXZJXtgz0PeI3uD95MPk_WOLJCFtIWRIgqyJJpuopvyxW8_2bJPu_B6i3peXpa1_vpFF8U2mW2t0eg6ubaikXTQ6f0G2XHlTXL1l-aCt8ingTFgU7AVhKWns-HgHcV0UFp3pQGAobr4WM1nzflnCtSVLlzhf3z7buczPGSgBlxeWpUUGCI9x6SZCuaaq5YLatqbIBBTF7pB1nubjEdH48PjYHW1QmCYjHiQCoueC7Nh7LwJvcHwWWh0rJ3nPrTCC85DHzNvjeShjWzmgFnI1LvEW8_ukF5Zle4uoUkMDpfJLWOCcc28NKm3sTaZi3Jjct4nz9byVHXXQEO1gW8uFUhXgfAVCl-h8PvkKT5bLaPFn4CPt4AnR2N1OBxfABTMlT7ZX2vuAslCoLRAkyWM7PlGm_8yNNbq--9IHEj8coTeLL_3X189IpfeDkfq9OTs9X1yJUYPv81q2ye9Zr50D4AGNfnD1Sz_CdTGA1Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbY7gFx4B9RtCALIQ6gVElsJ_Gx7G61IFgh1JXKKbLH9rbakERtKgQnHoFn5EkYJ2mXIsSPxC1KJsl4PGN_Y8-MCXkCKo2kziAQmbMB5w6CTIskMEpbaaxOVeTznd-cJidn_NVMzPrMujYXxjZ9lZv5qKsVsV1881bSjt3e2GvjujG_80C59G8GYHx4ZCRHCGSSPbKfCAToA7J_dvp2_L5NjRRRkCXtocj9dTTb7nX-4hs7s9UePt4BolfXZa0-fVRFsQtt27lpcoM0m1Z1ISkXo3WjR_D5p4KP_7nZN8n1HsvScad8t8gVW94m136ocHiHXIwBcGLz9SgMfb04Gr-jPiaV1l1-AtJQVZxXy0Uz_0ARP9OVLdy3L1_NcuFXOiig302rkiJMpXMfuVOhwttqvaLQHkfhaepCNR563yXTyfH08CToz3cIgMmIB6kw3n1iJoytg9CB38MLQcXKOu5CI5zgPHQxcwYkD01kMovwRqbOJs44do8Myqq09wlNYvT6QBvGBOOKOQmpM7GCzEYaQPMhebbpxrzuqnjk7e47lzkKMEcB5l6AuRfgkDz193pbXv2O8PEO4cvjaX54NL0kyLG7huRgozCXlCxEXI1YXSJnz7dK9DessVYf_kzpGYlfTLxLzR_80z8OyKBZru1DxFqNftTbzncyXCwd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+LiDAR+data+processing+algorithm+for+self%E2%80%90driving+cars+on+the+heterogeneous+computing+platform&rft.jtitle=IET+computers+%26+digital+techniques&rft.au=Li%2C+Wei&rft.au=Liang%2C+Jun&rft.au=Zhang%2C+Yunquan&rft.au=Jia%2C+Haipeng&rft.date=2020-09-01&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-861X&rft.eissn=1751-861X&rft.volume=14&rft.issue=5&rft.spage=201&rft.epage=209&rft_id=info:doi/10.1049%2Fiet-cdt.2019.0166&rft.externalDBID=10.1049%252Fiet-cdt.2019.0166&rft.externalDocID=CDT2BF00284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8601&client=summon