Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer’s disease based on cerebral gray matter changes
This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 norma...
Saved in:
| Published in | Cerebral cortex (New York, N.Y. 1991) Vol. 33; no. 3; pp. 754 - 763 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Oxford University Press
05.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1047-3211 1460-2199 1460-2199 |
| DOI | 10.1093/cercor/bhac099 |
Cover
| Abstract | This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease. |
|---|---|
| AbstractList | This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease. This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease. |
| Author | Qiu, Jinming Zheng, Shiqiang Zhou, Teng Yang, Zhongxian Wu, Renhua Mikulis, David John Lin, Panpan Cheng, Yan Huang, Huaidong Guan, Jitian Li, Yan Wu, Yi Lin, Yan |
| Author_xml | – sequence: 1 givenname: Huaidong surname: Huang fullname: Huang, Huaidong – sequence: 2 givenname: Shiqiang surname: Zheng fullname: Zheng, Shiqiang – sequence: 3 givenname: Zhongxian surname: Yang fullname: Yang, Zhongxian – sequence: 4 givenname: Yi surname: Wu fullname: Wu, Yi – sequence: 5 givenname: Yan surname: Li fullname: Li, Yan – sequence: 6 givenname: Jinming surname: Qiu fullname: Qiu, Jinming – sequence: 7 givenname: Yan surname: Cheng fullname: Cheng, Yan – sequence: 8 givenname: Panpan surname: Lin fullname: Lin, Panpan – sequence: 9 givenname: Yan surname: Lin fullname: Lin, Yan – sequence: 10 givenname: Jitian surname: Guan fullname: Guan, Jitian – sequence: 11 givenname: David John surname: Mikulis fullname: Mikulis, David John – sequence: 12 givenname: Teng surname: Zhou fullname: Zhou, Teng – sequence: 13 givenname: Renhua surname: Wu fullname: Wu, Renhua |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35301516$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUbuO1TAQjdAi9gEtJXJJk72283DSIK1WvKSVaIDWmjjjxMixg53LEipKfoHf40vwVS4rQEJUM9Kch8_xeXbivMMse8zoJaNtsVMYlA-7bgRF2_ZedsbKmuacte1J2mkp8oIzdpqdx_iBUiZ4xR9kp0VVUFax-iz79t5_Rpt3ELEnkw_z6CdcwkrA9QRIjzgTixCccUO692iJ9oEsI5LewOB8NJF4TRLEruTKfhnRTBh-fP0eEyBi0iWbuHckPRa7AJYMAVYywbJgIGoEN2B8mN3XYCM-Os6L7N2L52-vX-U3b16-vr66yVXR0iXXWvQoAESvRVM3rNBM1ZxDywXXXcrFO9Z2tKkLreqKNqLUnCpoSq2VFqCLi2y36e7dDOstWCvnYCYIq2RUHjqVW6fy2GliPNsY876bsFfolpThjuXByD8vzoxy8J9k27S0rA8CT48CwX_cY1zkZKJCa8Gh30fJ6zL5iKouE_TJ7153Jr8-LAHKDaCCjzGglsossBh_sDb23xku_6L9J_RPGhjCmw |
| CitedBy_id | crossref_primary_10_1007_s00500_023_08615_w crossref_primary_10_18705_2782_3806_2024_4_6_495_503 crossref_primary_10_3233_JAD_231416 crossref_primary_10_1007_s00500_023_09173_x crossref_primary_10_3390_app13169310 crossref_primary_10_1016_j_nicl_2024_103691 crossref_primary_10_1007_s10462_023_10644_8 crossref_primary_10_1093_psyrad_kkad031 crossref_primary_10_1109_JBHI_2022_3164937 crossref_primary_10_2196_54538 crossref_primary_10_3390_app13127253 crossref_primary_10_1017_S0033291724002563 crossref_primary_10_3390_math10152772 crossref_primary_10_3390_pathophysiology32010011 crossref_primary_10_3389_fnagi_2024_1461556 crossref_primary_10_15212_RADSCI_2023_0004 crossref_primary_10_3390_app13158686 crossref_primary_10_1038_s41598_024_62712_w crossref_primary_10_1007_s00234_024_03304_3 crossref_primary_10_3390_make5020035 crossref_primary_10_1007_s00521_024_10399_5 crossref_primary_10_1007_s10339_024_01197_x crossref_primary_10_1109_ACCESS_2022_3224235 crossref_primary_10_1177_13872877241283920 |
| Cites_doi | 10.3390/ijms18010046 10.1212/01.wnl.0000287073.12737.35 10.1136/jnnp.2003.029876 10.1016/j.jalz.2012.09.017 10.1007/s00234-007-0269-2 10.1148/radiol.2016152703 10.1016/j.arr.2016.01.003 10.1212/01.wnl.0000344568.09360.31 10.1093/brain/awn146 10.1016/j.jalz.2012.06.004 10.1007/s00415-006-0435-1 10.3389/fnins.2019.00509 10.1016/S1474-4422(12)70291-0 10.1142/S0129065716500258 10.1017/S1041610218001370 10.3389/fnins.2018.00777 10.1016/j.jalz.2010.03.007 10.1016/j.jalz.2018.02.018 10.1038/461895a 10.3233/JAD-2010-1223 10.1016/j.neuroimage.2017.03.057 10.3233/JAD-160382 10.4236/jamp.2017.59159 10.1006/nimg.2000.0582 10.1016/j.jalz.2010.03.004 10.1007/s00259-004-1740-5 10.1148/radiol.2262011600 10.1016/j.neuroimage.2006.06.010 10.1016/j.pneurobio.2008.09.004 10.1016/S0960-9822(00)00593-5 10.1016/j.neuroimage.2014.06.077 10.1001/jama.2014.13806 10.1016/j.scib.2020.04.003 10.1097/01.mnm.0000189783.39411.ef 10.1016/j.jalz.2019.02.007 10.1016/j.neuroimage.2010.10.081 10.1038/s41568-018-0016-5 10.1016/S0304-3940(00)01067-3 10.1016/j.neuroimage.2019.01.031 10.1016/j.neulet.2017.08.028 10.1016/j.neuroimage.2004.07.006 10.1159/000363245 10.1016/j.neurobiolaging.2015.10.020 10.1016/j.nicl.2019.101859 10.1006/nimg.2001.0848 10.1002/mds.22858 10.1016/j.mri.2019.07.003 10.3390/brainsci9090217 10.1093/brain/awh088 10.1371/journal.pone.0052531 10.1016/j.parkreldis.2015.10.013 10.1212/01.wnl.0000303960.01039.43 10.1016/j.neuroimage.2019.116459 10.1161/01.STR.21.7.1013 10.1016/j.neuroimage.2014.10.002 10.1093/brain/awl388 10.1148/rg.2017160130 10.1016/0197-4580(95)00021-6 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022 |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/cercor/bhac099 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1460-2199 |
| EndPage | 763 |
| ExternalDocumentID | 10.1093/cercor/bhac099 PMC9890469 35301516 10_1093_cercor_bhac099 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; grantid: 2020LKSFBME06; 2020LKSFG05D – fundername: ; grantid: 82020108016; 31870981; 61902232 – fundername: ; grantid: 002-18120302 |
| GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 1TH 29B 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAVAP AAVLN AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NOYVH NU- O9- OAWHX OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OWPYF P2P P6G PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX RUSNO RW1 RXO TCN TJX TLC TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 CGR CUY CVF ECM EIF M49 NPM 7X8 5PM ACUTJ KBUDW .GJ AAJQQ AAPGJ AAUQX AAWDT ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACPQN ACUKT ACVCV ACZBC ADMTO ADTOC AEHUL AEKPW AFFNX AFFQV AFSHK AGKRT AGMDO AGQPQ AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ASPBG ATDFG ATTQO AVNTJ AVWKF AZFZN BZKNY C1A CAG COF CXTWN DFGAJ EIHJH EJD ELUNK FEDTE HVGLF MBLQV MBTAY NTWIH NVLIB O0~ OBFPC OVD O~Y PB- RNI ROZ RZF RZO TEORI TMA UNPAY UQL |
| ID | FETCH-LOGICAL-c390t-ff7de7aa7df786813f1c622a9272fb3532b19b0863fc650874f20ca84ffcf7af3 |
| IEDL.DBID | UNPAY |
| ISSN | 1047-3211 1460-2199 |
| IngestDate | Sun Oct 26 03:42:25 EDT 2025 Tue Sep 30 17:16:47 EDT 2025 Sun Sep 28 02:17:36 EDT 2025 Thu Apr 03 07:01:54 EDT 2025 Wed Oct 01 01:13:07 EDT 2025 Thu Apr 24 23:08:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | deep learning mild cognitive impairment voxel-based morphometry cerebral grey matter convolutional neural network |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c390t-ff7de7aa7df786813f1c622a9272fb3532b19b0863fc650874f20ca84ffcf7af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Huaidong Huang and Shiqiang Zheng contributed equally to this work. |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/cercor/advance-article-pdf/doi/10.1093/cercor/bhac099/42950643/bhac099.pdf |
| PMID | 35301516 |
| PQID | 2640997564 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1093_cercor_bhac099 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9890469 proquest_miscellaneous_2640997564 pubmed_primary_35301516 crossref_citationtrail_10_1093_cercor_bhac099 crossref_primary_10_1093_cercor_bhac099 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-05 |
| PublicationDateYYYYMMDD | 2023-01-05 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Cerebral cortex (New York, N.Y. 1991) |
| PublicationTitleAlternate | Cereb Cortex |
| PublicationYear | 2023 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Gao (2023020110291162600_ref11) 2017; 658 Huang (2023020110291162600_ref19) 2019; 13 Möller (2023020110291162600_ref38) 2016; 38 Potgieser (2023020110291162600_ref46) 2014; 14 Whitwell (2023020110291162600_ref56) 2007; 130 Serra (2023020110291162600_ref49) 2010; 19 Ishii (2023020110291162600_ref20) 2005; 26 Wyman (2023020110291162600_ref57) 2013; 9 Jessen (2023020110291162600_ref25) 2014; 10 Graybiel (2023020110291162600_ref14) 2000; 10 Kinkingnéhun (2023020110291162600_ref29) 2008; 70 Shiino (2023020110291162600_ref50) 2006; 33 (2023020110291162600_ref40) 2009; 461 Tessitore (2023020110291162600_ref53) 2016; 24 Erickson (2023020110291162600_ref9) 2017; 37 Jack (2023020110291162600_ref22) 2010; 6 Zhao (2023020110291162600_ref59) 2020; 65 Karas (2023020110291162600_ref28) 2007; 49 Zhang (2023020110291162600_ref58) 2016; 18 Muñoz-Ruiz (2023020110291162600_ref41) 2012; 7 Wang (2023020110291162600_ref54) 2019; 23 Jack (2023020110291162600_ref24) 2018; 14 Josephs (2023020110291162600_ref26) 2008; 70 Karas (2023020110291162600_ref27) 2004; 23 Rombouts (2023020110291162600_ref48) 2000; 285 Langa (2023020110291162600_ref30) 2014; 312 Moradi (2023020110291162600_ref39) 2015; 104 (2023020110291162600_ref36a) 2016; 281 Jack (2023020110291162600_ref23) 2013; 12 Collij (2023020110291162600_ref7) 2016; 281 Frisoni (2023020110291162600_ref10) 2005; 76 Li (2023020110291162600_ref32) 2019; 15 Pinto (2023020110291162600_ref45) 2019; 31 Matsuda (2023020110291162600_ref37) 2016; 30 Babikian (2023020110291162600_ref2) 1990; 21 Hinrichs (2023020110291162600_ref16) 2011; 55 Liu (2023020110291162600_ref34) 2019; 64 Baron (2023020110291162600_ref3) 2001; 14 Chapleau (2023020110291162600_ref6) 2016; 54 Petrella (2023020110291162600_ref44) 2003; 226 Lin (2023020110291162600_ref33) 2018; 12 Nestor (2023020110291162600_ref42) 2008; 131 Ortiz (2023020110291162600_ref43) 2016; 26 Spasov (2023020110291162600_ref51) 2019; 189 Rathore (2023020110291162600_ref47) 2017; 155 Henneman (2023020110291162600_ref15) 2009; 72 Lee (2023020110291162600_ref31) 2010; 25 Ashburner (2023020110291162600_ref1) 2000; 11 Braak (2023020110291162600_ref4) 1995; 16 Hosny (2023020110291162600_ref18) 2018; 18 Suk (2023020110291162600_ref52) 2014; 101 Burton (2023020110291162600_ref5) 2004; 127 Ishii (2023020110291162600_ref21) 2005; 32 Grahn (2023020110291162600_ref13) 2008; 86 Hirao (2023020110291162600_ref17) 2006; 27 Luo (2023020110291162600_ref36) 2017; 05 Di Paola (2023020110291162600_ref8) 2007; 254 Weiner (2023020110291162600_ref55) 2010; 6 Gorji (2023020110291162600_ref12) 2019; 9 Liu (2023020110291162600_ref35) 2020; 208 |
| References_xml | – volume: 18 start-page: E46 year: 2016 ident: 2023020110291162600_ref58 article-title: Contribution of gray and white matter abnormalities to cognitive impairment in multiple sclerosis publication-title: Int J Mol Sci doi: 10.3390/ijms18010046 – volume: 70 start-page: 25 year: 2008 ident: 2023020110291162600_ref26 article-title: Progressive aphasia secondary to Alzheimer disease vs FTLD pathology publication-title: Neurology doi: 10.1212/01.wnl.0000287073.12737.35 – volume: 76 start-page: 112 year: 2005 ident: 2023020110291162600_ref10 article-title: Structural correlates of early and late onset Alzheimer's disease: voxel based morphometric study publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.2003.029876 – volume: 10 start-page: 76 year: 2014 ident: 2023020110291162600_ref25 article-title: AD dementia risk in late MCI, in early MCI, and in subjective memory impairment publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2012.09.017 – volume: 49 start-page: 967 year: 2007 ident: 2023020110291162600_ref28 article-title: Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study publication-title: Neuroradiology doi: 10.1007/s00234-007-0269-2 – volume: 281 start-page: 865 year: 2016 ident: 2023020110291162600_ref7 article-title: Application of machine learning to arterial spin labeling in mild cognitive impairment and Alzheimer disease publication-title: Radiology doi: 10.1148/radiol.2016152703 – volume: 30 start-page: 17 year: 2016 ident: 2023020110291162600_ref37 article-title: MRI morphometry in Alzheimer's disease publication-title: Ageing Res Rev doi: 10.1016/j.arr.2016.01.003 – volume: 72 start-page: 999 year: 2009 ident: 2023020110291162600_ref15 article-title: Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures publication-title: Neurology doi: 10.1212/01.wnl.0000344568.09360.31 – volume: 131 start-page: 2443 year: 2008 ident: 2023020110291162600_ref42 article-title: Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database publication-title: Brain doi: 10.1093/brain/awn146 – volume: 9 start-page: 332 year: 2013 ident: 2023020110291162600_ref57 article-title: Standardization of analysis sets for reporting results from ADNI MRI data publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2012.06.004 – volume: 254 start-page: 774 year: 2007 ident: 2023020110291162600_ref8 article-title: Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy. A voxel-based morphometry study publication-title: J Neurol doi: 10.1007/s00415-006-0435-1 – volume: 13 start-page: 509 year: 2019 ident: 2023020110291162600_ref19 article-title: Diagnosis of Alzheimer's disease via multi-modality 3D convolutional neural network publication-title: Front Neurosci doi: 10.3389/fnins.2019.00509 – volume: 12 start-page: 207 year: 2013 ident: 2023020110291162600_ref23 article-title: Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers publication-title: Lancet Neurol doi: 10.1016/S1474-4422(12)70291-0 – volume: 26 start-page: 1650025 year: 2016 ident: 2023020110291162600_ref43 article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease publication-title: Int J Neural Syst doi: 10.1142/S0129065716500258 – volume: 31 start-page: 491 year: 2019 ident: 2023020110291162600_ref45 article-title: Is the Montreal cognitive assessment (MoCA) screening superior to the mini-mental state examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer's disease (AD) in the elderly? publication-title: Int Psychogeriatr doi: 10.1017/S1041610218001370 – volume: 12 start-page: 777 year: 2018 ident: 2023020110291162600_ref33 article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment publication-title: Front Neurosci doi: 10.3389/fnins.2018.00777 – volume: 6 start-page: 202 year: 2010 ident: 2023020110291162600_ref55 article-title: The Alzheimer's disease neuroimaging initiative: progress report and future plans publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2010.03.007 – volume: 14 start-page: 535 year: 2018 ident: 2023020110291162600_ref24 article-title: NIA-AA research framework: toward a biological definition of Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2018.02.018 – volume: 461 start-page: 895 year: 2009 ident: 2023020110291162600_ref40 article-title: Neuroscience: Alzheimer's disease publication-title: Nature doi: 10.1038/461895a – volume: 19 start-page: 147 year: 2010 ident: 2023020110291162600_ref49 article-title: Grey and white matter changes at different stages of Alzheimer's disease publication-title: J Alzheimers Dis doi: 10.3233/JAD-2010-1223 – volume: 155 start-page: 530 year: 2017 ident: 2023020110291162600_ref47 article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.03.057 – volume: 54 start-page: 941 year: 2016 ident: 2023020110291162600_ref6 article-title: Atrophy in Alzheimer's disease and semantic dementia: an ALE meta-analysis of voxel-based morphometry studies publication-title: J Alzheimers Dis doi: 10.3233/JAD-160382 – volume: 05 start-page: 1892 year: 2017 ident: 2023020110291162600_ref36 article-title: Automatic Alzheimer’s disease recognition from MRI data using deep learning method publication-title: J Appl Math Phys doi: 10.4236/jamp.2017.59159 – volume: 11 start-page: 805 year: 2000 ident: 2023020110291162600_ref1 article-title: Voxel-based morphometry--the methods publication-title: NeuroImage doi: 10.1006/nimg.2000.0582 – volume: 6 start-page: 212 year: 2010 ident: 2023020110291162600_ref22 article-title: Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2010.03.004 – volume: 32 start-page: 959 year: 2005 ident: 2023020110291162600_ref21 article-title: Comparison of gray matter and metabolic reduction in mild Alzheimer's disease using FDG-PET and voxel-based morphometric MR studies publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-004-1740-5 – volume: 226 start-page: 315 year: 2003 ident: 2023020110291162600_ref44 article-title: Neuroimaging and early diagnosis of Alzheimer disease: a look to the future publication-title: Radiology doi: 10.1148/radiol.2262011600 – volume: 26 start-page: 333 year: 2005 ident: 2023020110291162600_ref20 article-title: Voxel-based morphometric comparison between early- and late-onset mild Alzheimer's disease and assessment of diagnostic performance of Z score images publication-title: AJNR Am J Neuroradiol – volume: 33 start-page: 17 year: 2006 ident: 2023020110291162600_ref50 article-title: Four subgroups of Alzheimer's disease based on patterns of atrophy using VBM and a unique pattern for early onset disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.06.010 – volume: 86 start-page: 141 year: 2008 ident: 2023020110291162600_ref13 article-title: The cognitive functions of the caudate nucleus publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2008.09.004 – volume: 10 start-page: R509 year: 2000 ident: 2023020110291162600_ref14 article-title: The basal ganglia publication-title: Curr Biol doi: 10.1016/S0960-9822(00)00593-5 – volume: 101 start-page: 569 year: 2014 ident: 2023020110291162600_ref52 article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 312 start-page: 2551 year: 2014 ident: 2023020110291162600_ref30 article-title: The diagnosis and management of mild cognitive impairment: a clinical review publication-title: JAMA doi: 10.1001/jama.2014.13806 – volume: 65 start-page: 1103 year: 2020 ident: 2023020110291162600_ref59 article-title: Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: diagnosis, longitudinal progress and biological basis publication-title: Sci Bull (Beijing) doi: 10.1016/j.scib.2020.04.003 – volume: 27 start-page: 151 year: 2006 ident: 2023020110291162600_ref17 article-title: Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography publication-title: Nucl Med Commun doi: 10.1097/01.mnm.0000189783.39411.ef – volume: 15 start-page: 1059 year: 2019 ident: 2023020110291162600_ref32 article-title: A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal magnetic resonance imaging data publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2019.02.007 – volume: 55 start-page: 574 year: 2011 ident: 2023020110291162600_ref16 article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.10.081 – volume: 18 start-page: 500 year: 2018 ident: 2023020110291162600_ref18 article-title: Artificial intelligence in radiology publication-title: Nat Rev Cancer doi: 10.1038/s41568-018-0016-5 – volume: 285 start-page: 231 year: 2000 ident: 2023020110291162600_ref48 article-title: Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease publication-title: Neurosci Lett doi: 10.1016/S0304-3940(00)01067-3 – volume: 189 start-page: 276 year: 2019 ident: 2023020110291162600_ref51 article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.01.031 – volume: 658 start-page: 121 year: 2017 ident: 2023020110291162600_ref11 article-title: Changes of brain structure in Parkinson's disease patients with mild cognitive impairment analyzed via VBM technology publication-title: Neurosci Lett doi: 10.1016/j.neulet.2017.08.028 – volume: 23 start-page: 708 year: 2004 ident: 2023020110291162600_ref27 article-title: Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.006 – volume: 14 start-page: 125 year: 2014 ident: 2023020110291162600_ref46 article-title: Anterior temporal atrophy and posterior progression in patients with Parkinson's disease publication-title: Neurodegener Dis doi: 10.1159/000363245 – volume: 38 start-page: 21 year: 2016 ident: 2023020110291162600_ref38 article-title: Different patterns of cortical gray matter loss over time in behavioral variant frontotemporal dementia and Alzheimer's disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2015.10.020 – volume: 23 start-page: 101859 year: 2019 ident: 2023020110291162600_ref54 article-title: Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2019.101859 – volume: 14 start-page: 298 year: 2001 ident: 2023020110291162600_ref3 article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease publication-title: NeuroImage doi: 10.1006/nimg.2001.0848 – volume: 25 start-page: 28 year: 2010 ident: 2023020110291162600_ref31 article-title: A comparison of gray and white matter density in patients with Parkinson's disease dementia and dementia with Lewy bodies using voxel-based morphometry publication-title: Mov Disord doi: 10.1002/mds.22858 – volume: 64 start-page: 190 year: 2019 ident: 2023020110291162600_ref34 article-title: Using deep Siamese neural networks for detection of brain asymmetries associated with Alzheimer's disease and mild cognitive impairment publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2019.07.003 – volume: 9 start-page: E217 year: 2019 ident: 2023020110291162600_ref12 article-title: A deep learning approach for diagnosis of mild cognitive impairment based on MRI images publication-title: Brain Sci doi: 10.3390/brainsci9090217 – volume: 127 start-page: 791 year: 2004 ident: 2023020110291162600_ref5 article-title: Cerebral atrophy in Parkinson's disease with and without dementia: a comparison with Alzheimer's disease, dementia with Lewy bodies and controls publication-title: Brain doi: 10.1093/brain/awh088 – volume: 7 start-page: e52531 year: 2012 ident: 2023020110291162600_ref41 article-title: Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry publication-title: PLoS One doi: 10.1371/journal.pone.0052531 – volume: 24 start-page: 119 year: 2016 ident: 2023020110291162600_ref53 article-title: Cortical thickness changes in patients with Parkinson's disease and impulse control disorders publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2015.10.013 – volume: 70 start-page: 2201 year: 2008 ident: 2023020110291162600_ref29 article-title: VBM anticipates the rate of progression of Alzheimer disease: a 3-year longitudinal study publication-title: Neurology doi: 10.1212/01.wnl.0000303960.01039.43 – volume: 208 start-page: 116459 year: 2020 ident: 2023020110291162600_ref35 article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116459 – volume: 21 start-page: 1013 year: 1990 ident: 2023020110291162600_ref2 article-title: Cognitive changes in patients with multiple cerebral infarcts publication-title: Stroke doi: 10.1161/01.STR.21.7.1013 – volume: 104 start-page: 398 year: 2015 ident: 2023020110291162600_ref39 article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.10.002 – volume: 281 start-page: 865 year: 2016 ident: 2023020110291162600_ref36a article-title: Application of Machine Learning to Arterial Spin Labeling in Mild Cognitive Impairment and Alzheimer Disease publication-title: Radiology doi: 10.1148/radiol.2016152703 – volume: 130 start-page: 708 year: 2007 ident: 2023020110291162600_ref56 article-title: Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awl388 – volume: 37 start-page: 505 year: 2017 ident: 2023020110291162600_ref9 article-title: Machine learning for medical imaging publication-title: Radiographics doi: 10.1148/rg.2017160130 – volume: 16 start-page: 271 year: 1995 ident: 2023020110291162600_ref4 article-title: Staging of Alzheimer's disease-related neurofibrillary changes publication-title: Neurobiol Aging doi: 10.1016/0197-4580(95)00021-6 |
| SSID | ssj0017252 |
| Score | 2.5684662 |
| Snippet | This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 754 |
| SubjectTerms | Alzheimer Disease - diagnostic imaging Alzheimer Disease - pathology Atrophy - pathology Cognitive Dysfunction - pathology Deep Learning Gray Matter - diagnostic imaging Gray Matter - pathology Humans Magnetic Resonance Imaging - methods Original |
| Title | Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer’s disease based on cerebral gray matter changes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35301516 https://www.proquest.com/docview/2640997564 https://pubmed.ncbi.nlm.nih.gov/PMC9890469 https://academic.oup.com/cercor/advance-article-pdf/doi/10.1093/cercor/bhac099/42950643/bhac099.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1460-2199 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017252 issn: 1460-2199 databaseCode: KQ8 dateStart: 19960101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1460-2199 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0017252 issn: 1460-2199 databaseCode: DIK dateStart: 19960101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuPFoKy6MaJARcvM3GeR5XiKqAWnFgUTlFtmN3V-SxymYF2xMHDvwF_h6_hHHiBLYVggvXZDSxnbH9jWf8DSFPXNzTHSkiij6yop52fMrR86ASJxbiZVexpg7Z8UlwNPVen_qnW0R2d2G4zQof9VcaVIVu2IGNiHfpYnSR6l_kAzHrxMSMS8Q8B7jKGiY21j0YofwVsh34CNgHZHt68nbyoeMpYG5TpReXDIfi_I17aseLWje3rkt49HJa5bVVseDrTzzLftuzDm-Sr11v21SVj6NVLUby_AIR5H8ejlvkhsW8MGm13CZbqtghu5MC_f18DU-hyUJtjvd3yNVjG-zfJd_el59VRs0-m0JeokGUuaqrNfAiBQ6pUguwRS_OoKnoA4jAAREtpG0C4XwJpQZlOJxhkp3P1DxX1Y8v35dg41LQKi8LwK6YEHoGZxVfQ96wjkJ7K3p5h0wPX757cURt4QgqWezUVOswVSHnYarDKIjGTI9l4Lo8dkNXC-YzV4xjgc4c09Ig1NDTaLA88rSWOuSa7ZFBURbqHgHtKsRcHhcGeaZCRzJFACVjR4ROKLU3JLSziURaVnVT3CNL2ug-S9pfkdiRH5Jnvfyi5RP5o-TjzsQSnPImjsMLVa6WCWJYc9_ZD_Drd1uT63Vh57B942BIwg1j7AUMnfjmm2I-a2jF4yg2hyVD8rw327808f6_iz4g112Eh83hlf-QDOpqpR4hnKvFPjoyr97s20n5E4c3Uaw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWrgRceOzyKC8NEgIu7qZ2EifHCrFaIe2KA0XLKXIce1uRJlWaCronDhz4C_w9fgnjxAl0VwguXJPRxHbG9jee8TeEPGO4p3sqjSj6yJr6xguoRM-DKpxYiJeZ5k0dsuOT8GjqvzkNTneI6u7CSJcVPuqvNOgK3bADFxHv0sXoMjO_yAdi3omlM6kQ8xzgKmuZ2Hj3YITyV8huGCBgH5Dd6cnbyYeOp4CzpkovLhkexfkb99SOF7Vub12X8OjltMpr62IpN59knv-2Zx3eJF-73rapKh9H6zodqfMLRJD_eThukRsO88Kk1XKb7Ohij-xPCvT3Fxt4Dk0WanO8v0euHrtg_z759r78rHNq99kMFiUaRLnQdbUBWWQgIdN6Ca7oxRk0FX0AETggooWsTSCcr6A0oC2HM0zy85meL3T148v3Fbi4FLTKywKwKzaEnsNZJTewaFhHob0VvbpDpoev3706oq5wBFU89mpqjMi0kFJkRkRhNOZmrELGZMwEMykPOEvHcYrOHDfKIlThGzRYGfnGKCOk4XfJoCgLfZ-AYRoxly9Tizyz1EQqQwClYi8VnlDGHxLa2USiHKu6Le6RJ210nyftr0jcyA_Ji15-2fKJ_FHyaWdiCU55G8eRhS7XqwQxrL3vHIT49XutyfW6sHPYvnE4JGLLGHsBSye-_aaYzxpa8TiK7WHJkLzszfYvTXzw76IPyXWG8LA5vAoekUFdrfVjhHN1-sRNx5-i1lCz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voxel-based+morphometry+and+a+deep+learning+model+for+the+diagnosis+of+early+Alzheimer%27s+disease+based+on+cerebral+gray+matter+changes&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Huang%2C+Huaidong&rft.au=Zheng%2C+Shiqiang&rft.au=Yang%2C+Zhongxian&rft.au=Wu%2C+Yi&rft.date=2023-01-05&rft.eissn=1460-2199&rft.volume=33&rft.issue=3&rft.spage=754&rft_id=info:doi/10.1093%2Fcercor%2Fbhac099&rft_id=info%3Apmid%2F35301516&rft.externalDocID=35301516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon |