Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer’s disease based on cerebral gray matter changes

This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 norma...

Full description

Saved in:
Bibliographic Details
Published inCerebral cortex (New York, N.Y. 1991) Vol. 33; no. 3; pp. 754 - 763
Main Authors Huang, Huaidong, Zheng, Shiqiang, Yang, Zhongxian, Wu, Yi, Li, Yan, Qiu, Jinming, Cheng, Yan, Lin, Panpan, Lin, Yan, Guan, Jitian, Mikulis, David John, Zhou, Teng, Wu, Renhua
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 05.01.2023
Subjects
Online AccessGet full text
ISSN1047-3211
1460-2199
1460-2199
DOI10.1093/cercor/bhac099

Cover

Abstract This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.
AbstractList This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.
This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's disease using deep learning methods based on convolutional neural networks (CNNs) evaluating these changes. Participants (111 MCI, 73 normal cognition) underwent 3-T structural magnetic resonance imaging. The obtained images were assessed using voxel-based morphometry, including extraction of cerebral grey matter, analyses of statistical differences, and correlation analyses between cerebral grey matter and clinical cognitive scores in MCI. The CNN-based deep learning method was used to extract features of cerebral grey matter images. Compared to subjects with normal cognition, participants with MCI had grey matter atrophy mainly in the entorhinal cortex, frontal cortex, and bilateral frontotemporal lobes (p < 0.0001). This atrophy was significantly correlated with the decline in cognitive scores (p < 0.01). The accuracy, sensitivity, and specificity of the CNN model for identifying participants with MCI were 80.9%, 88.9%, and 75%, respectively. The area under the curve of the model was 0.891. These findings demonstrate that research based on brain morphology can provide an effective way for the clinical, non-invasive, objective evaluation and identification of early Alzheimer's disease.
Author Qiu, Jinming
Zheng, Shiqiang
Zhou, Teng
Yang, Zhongxian
Wu, Renhua
Mikulis, David John
Lin, Panpan
Cheng, Yan
Huang, Huaidong
Guan, Jitian
Li, Yan
Wu, Yi
Lin, Yan
Author_xml – sequence: 1
  givenname: Huaidong
  surname: Huang
  fullname: Huang, Huaidong
– sequence: 2
  givenname: Shiqiang
  surname: Zheng
  fullname: Zheng, Shiqiang
– sequence: 3
  givenname: Zhongxian
  surname: Yang
  fullname: Yang, Zhongxian
– sequence: 4
  givenname: Yi
  surname: Wu
  fullname: Wu, Yi
– sequence: 5
  givenname: Yan
  surname: Li
  fullname: Li, Yan
– sequence: 6
  givenname: Jinming
  surname: Qiu
  fullname: Qiu, Jinming
– sequence: 7
  givenname: Yan
  surname: Cheng
  fullname: Cheng, Yan
– sequence: 8
  givenname: Panpan
  surname: Lin
  fullname: Lin, Panpan
– sequence: 9
  givenname: Yan
  surname: Lin
  fullname: Lin, Yan
– sequence: 10
  givenname: Jitian
  surname: Guan
  fullname: Guan, Jitian
– sequence: 11
  givenname: David John
  surname: Mikulis
  fullname: Mikulis, David John
– sequence: 12
  givenname: Teng
  surname: Zhou
  fullname: Zhou, Teng
– sequence: 13
  givenname: Renhua
  surname: Wu
  fullname: Wu, Renhua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35301516$$D View this record in MEDLINE/PubMed
BookMark eNqFUbuO1TAQjdAi9gEtJXJJk72283DSIK1WvKSVaIDWmjjjxMixg53LEipKfoHf40vwVS4rQEJUM9Kch8_xeXbivMMse8zoJaNtsVMYlA-7bgRF2_ZedsbKmuacte1J2mkp8oIzdpqdx_iBUiZ4xR9kp0VVUFax-iz79t5_Rpt3ELEnkw_z6CdcwkrA9QRIjzgTixCccUO692iJ9oEsI5LewOB8NJF4TRLEruTKfhnRTBh-fP0eEyBi0iWbuHckPRa7AJYMAVYywbJgIGoEN2B8mN3XYCM-Os6L7N2L52-vX-U3b16-vr66yVXR0iXXWvQoAESvRVM3rNBM1ZxDywXXXcrFO9Z2tKkLreqKNqLUnCpoSq2VFqCLi2y36e7dDOstWCvnYCYIq2RUHjqVW6fy2GliPNsY876bsFfolpThjuXByD8vzoxy8J9k27S0rA8CT48CwX_cY1zkZKJCa8Gh30fJ6zL5iKouE_TJ7153Jr8-LAHKDaCCjzGglsossBh_sDb23xku_6L9J_RPGhjCmw
CitedBy_id crossref_primary_10_1007_s00500_023_08615_w
crossref_primary_10_18705_2782_3806_2024_4_6_495_503
crossref_primary_10_3233_JAD_231416
crossref_primary_10_1007_s00500_023_09173_x
crossref_primary_10_3390_app13169310
crossref_primary_10_1016_j_nicl_2024_103691
crossref_primary_10_1007_s10462_023_10644_8
crossref_primary_10_1093_psyrad_kkad031
crossref_primary_10_1109_JBHI_2022_3164937
crossref_primary_10_2196_54538
crossref_primary_10_3390_app13127253
crossref_primary_10_1017_S0033291724002563
crossref_primary_10_3390_math10152772
crossref_primary_10_3390_pathophysiology32010011
crossref_primary_10_3389_fnagi_2024_1461556
crossref_primary_10_15212_RADSCI_2023_0004
crossref_primary_10_3390_app13158686
crossref_primary_10_1038_s41598_024_62712_w
crossref_primary_10_1007_s00234_024_03304_3
crossref_primary_10_3390_make5020035
crossref_primary_10_1007_s00521_024_10399_5
crossref_primary_10_1007_s10339_024_01197_x
crossref_primary_10_1109_ACCESS_2022_3224235
crossref_primary_10_1177_13872877241283920
Cites_doi 10.3390/ijms18010046
10.1212/01.wnl.0000287073.12737.35
10.1136/jnnp.2003.029876
10.1016/j.jalz.2012.09.017
10.1007/s00234-007-0269-2
10.1148/radiol.2016152703
10.1016/j.arr.2016.01.003
10.1212/01.wnl.0000344568.09360.31
10.1093/brain/awn146
10.1016/j.jalz.2012.06.004
10.1007/s00415-006-0435-1
10.3389/fnins.2019.00509
10.1016/S1474-4422(12)70291-0
10.1142/S0129065716500258
10.1017/S1041610218001370
10.3389/fnins.2018.00777
10.1016/j.jalz.2010.03.007
10.1016/j.jalz.2018.02.018
10.1038/461895a
10.3233/JAD-2010-1223
10.1016/j.neuroimage.2017.03.057
10.3233/JAD-160382
10.4236/jamp.2017.59159
10.1006/nimg.2000.0582
10.1016/j.jalz.2010.03.004
10.1007/s00259-004-1740-5
10.1148/radiol.2262011600
10.1016/j.neuroimage.2006.06.010
10.1016/j.pneurobio.2008.09.004
10.1016/S0960-9822(00)00593-5
10.1016/j.neuroimage.2014.06.077
10.1001/jama.2014.13806
10.1016/j.scib.2020.04.003
10.1097/01.mnm.0000189783.39411.ef
10.1016/j.jalz.2019.02.007
10.1016/j.neuroimage.2010.10.081
10.1038/s41568-018-0016-5
10.1016/S0304-3940(00)01067-3
10.1016/j.neuroimage.2019.01.031
10.1016/j.neulet.2017.08.028
10.1016/j.neuroimage.2004.07.006
10.1159/000363245
10.1016/j.neurobiolaging.2015.10.020
10.1016/j.nicl.2019.101859
10.1006/nimg.2001.0848
10.1002/mds.22858
10.1016/j.mri.2019.07.003
10.3390/brainsci9090217
10.1093/brain/awh088
10.1371/journal.pone.0052531
10.1016/j.parkreldis.2015.10.013
10.1212/01.wnl.0000303960.01039.43
10.1016/j.neuroimage.2019.116459
10.1161/01.STR.21.7.1013
10.1016/j.neuroimage.2014.10.002
10.1093/brain/awl388
10.1148/rg.2017160130
10.1016/0197-4580(95)00021-6
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/cercor/bhac099
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1460-2199
EndPage 763
ExternalDocumentID 10.1093/cercor/bhac099
PMC9890469
35301516
10_1093_cercor_bhac099
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2020LKSFBME06; 2020LKSFG05D
– fundername: ;
  grantid: 82020108016; 31870981; 61902232
– fundername: ;
  grantid: 002-18120302
GroupedDBID ---
-E4
.2P
.I3
.ZR
0R~
1TH
29B
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAVAP
AAVLN
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
O9-
OAWHX
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OWPYF
P2P
P6G
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
ROL
ROX
RUSNO
RW1
RXO
TCN
TJX
TLC
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ACUTJ
KBUDW
.GJ
AAJQQ
AAPGJ
AAUQX
AAWDT
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
ADTOC
AEHUL
AEKPW
AFFNX
AFFQV
AFSHK
AGKRT
AGMDO
AGQPQ
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CAG
COF
CXTWN
DFGAJ
EIHJH
EJD
ELUNK
FEDTE
HVGLF
MBLQV
MBTAY
NTWIH
NVLIB
O0~
OBFPC
OVD
O~Y
PB-
RNI
ROZ
RZF
RZO
TEORI
TMA
UNPAY
UQL
ID FETCH-LOGICAL-c390t-ff7de7aa7df786813f1c622a9272fb3532b19b0863fc650874f20ca84ffcf7af3
IEDL.DBID UNPAY
ISSN 1047-3211
1460-2199
IngestDate Sun Oct 26 03:42:25 EDT 2025
Tue Sep 30 17:16:47 EDT 2025
Sun Sep 28 02:17:36 EDT 2025
Thu Apr 03 07:01:54 EDT 2025
Wed Oct 01 01:13:07 EDT 2025
Thu Apr 24 23:08:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
mild cognitive impairment
voxel-based morphometry
cerebral grey matter
convolutional neural network
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-ff7de7aa7df786813f1c622a9272fb3532b19b0863fc650874f20ca84ffcf7af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Huaidong Huang and Shiqiang Zheng contributed equally to this work.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/cercor/advance-article-pdf/doi/10.1093/cercor/bhac099/42950643/bhac099.pdf
PMID 35301516
PQID 2640997564
PQPubID 23479
PageCount 10
ParticipantIDs unpaywall_primary_10_1093_cercor_bhac099
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9890469
proquest_miscellaneous_2640997564
pubmed_primary_35301516
crossref_citationtrail_10_1093_cercor_bhac099
crossref_primary_10_1093_cercor_bhac099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-05
PublicationDateYYYYMMDD 2023-01-05
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cerebral cortex (New York, N.Y. 1991)
PublicationTitleAlternate Cereb Cortex
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Gao (2023020110291162600_ref11) 2017; 658
Huang (2023020110291162600_ref19) 2019; 13
Möller (2023020110291162600_ref38) 2016; 38
Potgieser (2023020110291162600_ref46) 2014; 14
Whitwell (2023020110291162600_ref56) 2007; 130
Serra (2023020110291162600_ref49) 2010; 19
Ishii (2023020110291162600_ref20) 2005; 26
Wyman (2023020110291162600_ref57) 2013; 9
Jessen (2023020110291162600_ref25) 2014; 10
Graybiel (2023020110291162600_ref14) 2000; 10
Kinkingnéhun (2023020110291162600_ref29) 2008; 70
Shiino (2023020110291162600_ref50) 2006; 33
(2023020110291162600_ref40) 2009; 461
Tessitore (2023020110291162600_ref53) 2016; 24
Erickson (2023020110291162600_ref9) 2017; 37
Jack (2023020110291162600_ref22) 2010; 6
Zhao (2023020110291162600_ref59) 2020; 65
Karas (2023020110291162600_ref28) 2007; 49
Zhang (2023020110291162600_ref58) 2016; 18
Muñoz-Ruiz (2023020110291162600_ref41) 2012; 7
Wang (2023020110291162600_ref54) 2019; 23
Jack (2023020110291162600_ref24) 2018; 14
Josephs (2023020110291162600_ref26) 2008; 70
Karas (2023020110291162600_ref27) 2004; 23
Rombouts (2023020110291162600_ref48) 2000; 285
Langa (2023020110291162600_ref30) 2014; 312
Moradi (2023020110291162600_ref39) 2015; 104
(2023020110291162600_ref36a) 2016; 281
Jack (2023020110291162600_ref23) 2013; 12
Collij (2023020110291162600_ref7) 2016; 281
Frisoni (2023020110291162600_ref10) 2005; 76
Li (2023020110291162600_ref32) 2019; 15
Pinto (2023020110291162600_ref45) 2019; 31
Matsuda (2023020110291162600_ref37) 2016; 30
Babikian (2023020110291162600_ref2) 1990; 21
Hinrichs (2023020110291162600_ref16) 2011; 55
Liu (2023020110291162600_ref34) 2019; 64
Baron (2023020110291162600_ref3) 2001; 14
Chapleau (2023020110291162600_ref6) 2016; 54
Petrella (2023020110291162600_ref44) 2003; 226
Lin (2023020110291162600_ref33) 2018; 12
Nestor (2023020110291162600_ref42) 2008; 131
Ortiz (2023020110291162600_ref43) 2016; 26
Spasov (2023020110291162600_ref51) 2019; 189
Rathore (2023020110291162600_ref47) 2017; 155
Henneman (2023020110291162600_ref15) 2009; 72
Lee (2023020110291162600_ref31) 2010; 25
Ashburner (2023020110291162600_ref1) 2000; 11
Braak (2023020110291162600_ref4) 1995; 16
Hosny (2023020110291162600_ref18) 2018; 18
Suk (2023020110291162600_ref52) 2014; 101
Burton (2023020110291162600_ref5) 2004; 127
Ishii (2023020110291162600_ref21) 2005; 32
Grahn (2023020110291162600_ref13) 2008; 86
Hirao (2023020110291162600_ref17) 2006; 27
Luo (2023020110291162600_ref36) 2017; 05
Di Paola (2023020110291162600_ref8) 2007; 254
Weiner (2023020110291162600_ref55) 2010; 6
Gorji (2023020110291162600_ref12) 2019; 9
Liu (2023020110291162600_ref35) 2020; 208
References_xml – volume: 18
  start-page: E46
  year: 2016
  ident: 2023020110291162600_ref58
  article-title: Contribution of gray and white matter abnormalities to cognitive impairment in multiple sclerosis
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18010046
– volume: 70
  start-page: 25
  year: 2008
  ident: 2023020110291162600_ref26
  article-title: Progressive aphasia secondary to Alzheimer disease vs FTLD pathology
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000287073.12737.35
– volume: 76
  start-page: 112
  year: 2005
  ident: 2023020110291162600_ref10
  article-title: Structural correlates of early and late onset Alzheimer's disease: voxel based morphometric study
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.2003.029876
– volume: 10
  start-page: 76
  year: 2014
  ident: 2023020110291162600_ref25
  article-title: AD dementia risk in late MCI, in early MCI, and in subjective memory impairment
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2012.09.017
– volume: 49
  start-page: 967
  year: 2007
  ident: 2023020110291162600_ref28
  article-title: Precuneus atrophy in early-onset Alzheimer's disease: a morphometric structural MRI study
  publication-title: Neuroradiology
  doi: 10.1007/s00234-007-0269-2
– volume: 281
  start-page: 865
  year: 2016
  ident: 2023020110291162600_ref7
  article-title: Application of machine learning to arterial spin labeling in mild cognitive impairment and Alzheimer disease
  publication-title: Radiology
  doi: 10.1148/radiol.2016152703
– volume: 30
  start-page: 17
  year: 2016
  ident: 2023020110291162600_ref37
  article-title: MRI morphometry in Alzheimer's disease
  publication-title: Ageing Res Rev
  doi: 10.1016/j.arr.2016.01.003
– volume: 72
  start-page: 999
  year: 2009
  ident: 2023020110291162600_ref15
  article-title: Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000344568.09360.31
– volume: 131
  start-page: 2443
  year: 2008
  ident: 2023020110291162600_ref42
  article-title: Ventricular enlargement as a possible measure of Alzheimer's disease progression validated using the Alzheimer's disease neuroimaging initiative database
  publication-title: Brain
  doi: 10.1093/brain/awn146
– volume: 9
  start-page: 332
  year: 2013
  ident: 2023020110291162600_ref57
  article-title: Standardization of analysis sets for reporting results from ADNI MRI data
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2012.06.004
– volume: 254
  start-page: 774
  year: 2007
  ident: 2023020110291162600_ref8
  article-title: Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy. A voxel-based morphometry study
  publication-title: J Neurol
  doi: 10.1007/s00415-006-0435-1
– volume: 13
  start-page: 509
  year: 2019
  ident: 2023020110291162600_ref19
  article-title: Diagnosis of Alzheimer's disease via multi-modality 3D convolutional neural network
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.00509
– volume: 12
  start-page: 207
  year: 2013
  ident: 2023020110291162600_ref23
  article-title: Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(12)70291-0
– volume: 26
  start-page: 1650025
  year: 2016
  ident: 2023020110291162600_ref43
  article-title: Ensembles of deep learning architectures for the early diagnosis of the Alzheimer's disease
  publication-title: Int J Neural Syst
  doi: 10.1142/S0129065716500258
– volume: 31
  start-page: 491
  year: 2019
  ident: 2023020110291162600_ref45
  article-title: Is the Montreal cognitive assessment (MoCA) screening superior to the mini-mental state examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer's disease (AD) in the elderly?
  publication-title: Int Psychogeriatr
  doi: 10.1017/S1041610218001370
– volume: 12
  start-page: 777
  year: 2018
  ident: 2023020110291162600_ref33
  article-title: Convolutional neural networks-based MRI image analysis for the Alzheimer's disease prediction from mild cognitive impairment
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2018.00777
– volume: 6
  start-page: 202
  year: 2010
  ident: 2023020110291162600_ref55
  article-title: The Alzheimer's disease neuroimaging initiative: progress report and future plans
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2010.03.007
– volume: 14
  start-page: 535
  year: 2018
  ident: 2023020110291162600_ref24
  article-title: NIA-AA research framework: toward a biological definition of Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2018.02.018
– volume: 461
  start-page: 895
  year: 2009
  ident: 2023020110291162600_ref40
  article-title: Neuroscience: Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/461895a
– volume: 19
  start-page: 147
  year: 2010
  ident: 2023020110291162600_ref49
  article-title: Grey and white matter changes at different stages of Alzheimer's disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2010-1223
– volume: 155
  start-page: 530
  year: 2017
  ident: 2023020110291162600_ref47
  article-title: A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.03.057
– volume: 54
  start-page: 941
  year: 2016
  ident: 2023020110291162600_ref6
  article-title: Atrophy in Alzheimer's disease and semantic dementia: an ALE meta-analysis of voxel-based morphometry studies
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-160382
– volume: 05
  start-page: 1892
  year: 2017
  ident: 2023020110291162600_ref36
  article-title: Automatic Alzheimer’s disease recognition from MRI data using deep learning method
  publication-title: J Appl Math Phys
  doi: 10.4236/jamp.2017.59159
– volume: 11
  start-page: 805
  year: 2000
  ident: 2023020110291162600_ref1
  article-title: Voxel-based morphometry--the methods
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0582
– volume: 6
  start-page: 212
  year: 2010
  ident: 2023020110291162600_ref22
  article-title: Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2010.03.004
– volume: 32
  start-page: 959
  year: 2005
  ident: 2023020110291162600_ref21
  article-title: Comparison of gray matter and metabolic reduction in mild Alzheimer's disease using FDG-PET and voxel-based morphometric MR studies
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-004-1740-5
– volume: 226
  start-page: 315
  year: 2003
  ident: 2023020110291162600_ref44
  article-title: Neuroimaging and early diagnosis of Alzheimer disease: a look to the future
  publication-title: Radiology
  doi: 10.1148/radiol.2262011600
– volume: 26
  start-page: 333
  year: 2005
  ident: 2023020110291162600_ref20
  article-title: Voxel-based morphometric comparison between early- and late-onset mild Alzheimer's disease and assessment of diagnostic performance of Z score images
  publication-title: AJNR Am J Neuroradiol
– volume: 33
  start-page: 17
  year: 2006
  ident: 2023020110291162600_ref50
  article-title: Four subgroups of Alzheimer's disease based on patterns of atrophy using VBM and a unique pattern for early onset disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.06.010
– volume: 86
  start-page: 141
  year: 2008
  ident: 2023020110291162600_ref13
  article-title: The cognitive functions of the caudate nucleus
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2008.09.004
– volume: 10
  start-page: R509
  year: 2000
  ident: 2023020110291162600_ref14
  article-title: The basal ganglia
  publication-title: Curr Biol
  doi: 10.1016/S0960-9822(00)00593-5
– volume: 101
  start-page: 569
  year: 2014
  ident: 2023020110291162600_ref52
  article-title: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 312
  start-page: 2551
  year: 2014
  ident: 2023020110291162600_ref30
  article-title: The diagnosis and management of mild cognitive impairment: a clinical review
  publication-title: JAMA
  doi: 10.1001/jama.2014.13806
– volume: 65
  start-page: 1103
  year: 2020
  ident: 2023020110291162600_ref59
  article-title: Independent and reproducible hippocampal radiomic biomarkers for multisite Alzheimer’s disease: diagnosis, longitudinal progress and biological basis
  publication-title: Sci Bull (Beijing)
  doi: 10.1016/j.scib.2020.04.003
– volume: 27
  start-page: 151
  year: 2006
  ident: 2023020110291162600_ref17
  article-title: Functional interactions between entorhinal cortex and posterior cingulate cortex at the very early stage of Alzheimer's disease using brain perfusion single-photon emission computed tomography
  publication-title: Nucl Med Commun
  doi: 10.1097/01.mnm.0000189783.39411.ef
– volume: 15
  start-page: 1059
  year: 2019
  ident: 2023020110291162600_ref32
  article-title: A deep learning model for early prediction of Alzheimer's disease dementia based on hippocampal magnetic resonance imaging data
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2019.02.007
– volume: 55
  start-page: 574
  year: 2011
  ident: 2023020110291162600_ref16
  article-title: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.10.081
– volume: 18
  start-page: 500
  year: 2018
  ident: 2023020110291162600_ref18
  article-title: Artificial intelligence in radiology
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-018-0016-5
– volume: 285
  start-page: 231
  year: 2000
  ident: 2023020110291162600_ref48
  article-title: Unbiased whole-brain analysis of gray matter loss in Alzheimer's disease
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(00)01067-3
– volume: 189
  start-page: 276
  year: 2019
  ident: 2023020110291162600_ref51
  article-title: A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.01.031
– volume: 658
  start-page: 121
  year: 2017
  ident: 2023020110291162600_ref11
  article-title: Changes of brain structure in Parkinson's disease patients with mild cognitive impairment analyzed via VBM technology
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2017.08.028
– volume: 23
  start-page: 708
  year: 2004
  ident: 2023020110291162600_ref27
  article-title: Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.006
– volume: 14
  start-page: 125
  year: 2014
  ident: 2023020110291162600_ref46
  article-title: Anterior temporal atrophy and posterior progression in patients with Parkinson's disease
  publication-title: Neurodegener Dis
  doi: 10.1159/000363245
– volume: 38
  start-page: 21
  year: 2016
  ident: 2023020110291162600_ref38
  article-title: Different patterns of cortical gray matter loss over time in behavioral variant frontotemporal dementia and Alzheimer's disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2015.10.020
– volume: 23
  start-page: 101859
  year: 2019
  ident: 2023020110291162600_ref54
  article-title: Diagnosis and prognosis of Alzheimer's disease using brain morphometry and white matter connectomes
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2019.101859
– volume: 14
  start-page: 298
  year: 2001
  ident: 2023020110291162600_ref3
  article-title: In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0848
– volume: 25
  start-page: 28
  year: 2010
  ident: 2023020110291162600_ref31
  article-title: A comparison of gray and white matter density in patients with Parkinson's disease dementia and dementia with Lewy bodies using voxel-based morphometry
  publication-title: Mov Disord
  doi: 10.1002/mds.22858
– volume: 64
  start-page: 190
  year: 2019
  ident: 2023020110291162600_ref34
  article-title: Using deep Siamese neural networks for detection of brain asymmetries associated with Alzheimer's disease and mild cognitive impairment
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2019.07.003
– volume: 9
  start-page: E217
  year: 2019
  ident: 2023020110291162600_ref12
  article-title: A deep learning approach for diagnosis of mild cognitive impairment based on MRI images
  publication-title: Brain Sci
  doi: 10.3390/brainsci9090217
– volume: 127
  start-page: 791
  year: 2004
  ident: 2023020110291162600_ref5
  article-title: Cerebral atrophy in Parkinson's disease with and without dementia: a comparison with Alzheimer's disease, dementia with Lewy bodies and controls
  publication-title: Brain
  doi: 10.1093/brain/awh088
– volume: 7
  start-page: e52531
  year: 2012
  ident: 2023020110291162600_ref41
  article-title: Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0052531
– volume: 24
  start-page: 119
  year: 2016
  ident: 2023020110291162600_ref53
  article-title: Cortical thickness changes in patients with Parkinson's disease and impulse control disorders
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2015.10.013
– volume: 70
  start-page: 2201
  year: 2008
  ident: 2023020110291162600_ref29
  article-title: VBM anticipates the rate of progression of Alzheimer disease: a 3-year longitudinal study
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000303960.01039.43
– volume: 208
  start-page: 116459
  year: 2020
  ident: 2023020110291162600_ref35
  article-title: A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116459
– volume: 21
  start-page: 1013
  year: 1990
  ident: 2023020110291162600_ref2
  article-title: Cognitive changes in patients with multiple cerebral infarcts
  publication-title: Stroke
  doi: 10.1161/01.STR.21.7.1013
– volume: 104
  start-page: 398
  year: 2015
  ident: 2023020110291162600_ref39
  article-title: Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.10.002
– volume: 281
  start-page: 865
  year: 2016
  ident: 2023020110291162600_ref36a
  article-title: Application of Machine Learning to Arterial Spin Labeling in Mild Cognitive Impairment and Alzheimer Disease
  publication-title: Radiology
  doi: 10.1148/radiol.2016152703
– volume: 130
  start-page: 708
  year: 2007
  ident: 2023020110291162600_ref56
  article-title: Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awl388
– volume: 37
  start-page: 505
  year: 2017
  ident: 2023020110291162600_ref9
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
  doi: 10.1148/rg.2017160130
– volume: 16
  start-page: 271
  year: 1995
  ident: 2023020110291162600_ref4
  article-title: Staging of Alzheimer's disease-related neurofibrillary changes
  publication-title: Neurobiol Aging
  doi: 10.1016/0197-4580(95)00021-6
SSID ssj0017252
Score 2.5684662
Snippet This study aimed to analyse cerebral grey matter changes in mild cognitive impairment (MCI) using voxel-based morphometry and to diagnose early Alzheimer's...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 754
SubjectTerms Alzheimer Disease - diagnostic imaging
Alzheimer Disease - pathology
Atrophy - pathology
Cognitive Dysfunction - pathology
Deep Learning
Gray Matter - diagnostic imaging
Gray Matter - pathology
Humans
Magnetic Resonance Imaging - methods
Original
Title Voxel-based morphometry and a deep learning model for the diagnosis of early Alzheimer’s disease based on cerebral gray matter changes
URI https://www.ncbi.nlm.nih.gov/pubmed/35301516
https://www.proquest.com/docview/2640997564
https://pubmed.ncbi.nlm.nih.gov/PMC9890469
https://academic.oup.com/cercor/advance-article-pdf/doi/10.1093/cercor/bhac099/42950643/bhac099.pdf
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017252
  issn: 1460-2199
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1460-2199
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0017252
  issn: 1460-2199
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgIuPFoKy6MaJARcvM3GeR5XiKqAWnFgUTlFtmN3V-SxymYF2xMHDvwF_h6_hHHiBLYVggvXZDSxnbH9jWf8DSFPXNzTHSkiij6yop52fMrR86ASJxbiZVexpg7Z8UlwNPVen_qnW0R2d2G4zQof9VcaVIVu2IGNiHfpYnSR6l_kAzHrxMSMS8Q8B7jKGiY21j0YofwVsh34CNgHZHt68nbyoeMpYG5TpReXDIfi_I17aseLWje3rkt49HJa5bVVseDrTzzLftuzDm-Sr11v21SVj6NVLUby_AIR5H8ejlvkhsW8MGm13CZbqtghu5MC_f18DU-hyUJtjvd3yNVjG-zfJd_el59VRs0-m0JeokGUuaqrNfAiBQ6pUguwRS_OoKnoA4jAAREtpG0C4XwJpQZlOJxhkp3P1DxX1Y8v35dg41LQKi8LwK6YEHoGZxVfQ96wjkJ7K3p5h0wPX757cURt4QgqWezUVOswVSHnYarDKIjGTI9l4Lo8dkNXC-YzV4xjgc4c09Ig1NDTaLA88rSWOuSa7ZFBURbqHgHtKsRcHhcGeaZCRzJFACVjR4ROKLU3JLSziURaVnVT3CNL2ug-S9pfkdiRH5Jnvfyi5RP5o-TjzsQSnPImjsMLVa6WCWJYc9_ZD_Drd1uT63Vh57B942BIwg1j7AUMnfjmm2I-a2jF4yg2hyVD8rw327808f6_iz4g112Eh83hlf-QDOpqpR4hnKvFPjoyr97s20n5E4c3Uaw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWrgRceOzyKC8NEgIu7qZ2EifHCrFaIe2KA0XLKXIce1uRJlWaCronDhz4C_w9fgnjxAl0VwguXJPRxHbG9jee8TeEPGO4p3sqjSj6yJr6xguoRM-DKpxYiJeZ5k0dsuOT8GjqvzkNTneI6u7CSJcVPuqvNOgK3bADFxHv0sXoMjO_yAdi3omlM6kQ8xzgKmuZ2Hj3YITyV8huGCBgH5Dd6cnbyYeOp4CzpkovLhkexfkb99SOF7Vub12X8OjltMpr62IpN59knv-2Zx3eJF-73rapKh9H6zodqfMLRJD_eThukRsO88Kk1XKb7Ohij-xPCvT3Fxt4Dk0WanO8v0euHrtg_z759r78rHNq99kMFiUaRLnQdbUBWWQgIdN6Ca7oxRk0FX0AETggooWsTSCcr6A0oC2HM0zy85meL3T148v3Fbi4FLTKywKwKzaEnsNZJTewaFhHob0VvbpDpoev3706oq5wBFU89mpqjMi0kFJkRkRhNOZmrELGZMwEMykPOEvHcYrOHDfKIlThGzRYGfnGKCOk4XfJoCgLfZ-AYRoxly9Tizyz1EQqQwClYi8VnlDGHxLa2USiHKu6Le6RJ210nyftr0jcyA_Ji15-2fKJ_FHyaWdiCU55G8eRhS7XqwQxrL3vHIT49XutyfW6sHPYvnE4JGLLGHsBSye-_aaYzxpa8TiK7WHJkLzszfYvTXzw76IPyXWG8LA5vAoekUFdrfVjhHN1-sRNx5-i1lCz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voxel-based+morphometry+and+a+deep+learning+model+for+the+diagnosis+of+early+Alzheimer%27s+disease+based+on+cerebral+gray+matter+changes&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Huang%2C+Huaidong&rft.au=Zheng%2C+Shiqiang&rft.au=Yang%2C+Zhongxian&rft.au=Wu%2C+Yi&rft.date=2023-01-05&rft.eissn=1460-2199&rft.volume=33&rft.issue=3&rft.spage=754&rft_id=info:doi/10.1093%2Fcercor%2Fbhac099&rft_id=info%3Apmid%2F35301516&rft.externalDocID=35301516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon