On the Road Between Robust Optimization and the Scenario Approach for Chance Constrained Optimization Problems

We propose a new method for solving chance constrained optimization problems that lies between robust optimization and scenario-based methods. Our method does not require prior knowledge of the underlying probability distribution as in robust optimization methods, nor is it based entirely on randomi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 59; no. 8; pp. 2258 - 2263
Main Authors Margellos, Kostas, Goulart, Paul, Lygeros, John
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2014.2303232

Cover

Abstract We propose a new method for solving chance constrained optimization problems that lies between robust optimization and scenario-based methods. Our method does not require prior knowledge of the underlying probability distribution as in robust optimization methods, nor is it based entirely on randomization as in the scenario approach. It instead involves solving a robust optimization problem with bounded uncertainty, where the uncertainty bounds are randomized and are computed using the scenario approach. To guarantee that the resulting robust problem is solvable we impose certain assumptions on the dependency of the constraint functions with respect to the uncertainty and show that tractability is ensured for a wide class of systems. Our results lead immediately to guidelines under which the proposed methodology or the scenario approach is preferable in terms of providing less conservative guarantees or reducing the computational cost.
AbstractList We propose a new method for solving chance constrained optimization problems that lies between robust optimization and scenario-based methods. Our method does not require prior knowledge of the underlying probability distribution as in robust optimization methods, nor is it based entirely on randomization as in the scenario approach. It instead involves solving a robust optimization problem with bounded uncertainty, where the uncertainty bounds are randomized and are computed using the scenario approach. To guarantee that the resulting robust problem is solvable we impose certain assumptions on the dependency of the constraint functions with respect to the uncertainty and show that tractability is ensured for a wide class of systems. Our results lead immediately to guidelines under which the proposed methodology or the scenario approach is preferable in terms of providing less conservative guarantees or reducing the computational cost.
Author Margellos, Kostas
Lygeros, John
Goulart, Paul
Author_xml – sequence: 1
  givenname: Kostas
  surname: Margellos
  fullname: Margellos, Kostas
  email: margellos@control.ee.ethz.ch
  organization: Dept. of Inf. Technol. & Electr. Eng., ETH Zurich, Zürich, Switzerland
– sequence: 2
  givenname: Paul
  surname: Goulart
  fullname: Goulart, Paul
  email: goulart@control.ee.ethz.ch
  organization: Dept. of Inf. Technol. & Electr. Eng., ETH Zurich, Zürich, Switzerland
– sequence: 3
  givenname: John
  surname: Lygeros
  fullname: Lygeros, John
  email: lygeros@control.ee.ethz.ch
  organization: Dept. of Inf. Technol. & Electr. Eng., ETH Zurich, Zürich, Switzerland
BookMark eNp9kUtLLDEQRoMoOD72gpuAGzc95tmdLMdG770gjPhYNzFdzUR6kjHJIPrrzTgiXBeuQpFziqr6DtCuDx4QOqFkSinRFw-zdsoIFVPGCWec7aAJlVJVTDK-iyaEUFVppup9dJDScylrIegE-bnHeQH4LpgeX0J-BfCleFqnjOer7Jbu3WQXPDa-_wTvLXgTXcCz1SoGYxd4CBG3C-Mt4Db4lKNxHvr_7dsYnkZYpiO0N5gxwfHXe4ger68e2r_VzfzPv3Z2U1muSa4GYwXnqtFAhG2E6rnmwlAjDWeDlJQTWwtieaOMIpIpWX5rrbgQYqj7coBDdL7tW2Z8WUPK3dIlC-NoPIR16sppdEO4FBv07Af6HNbRl-kKJVQjCKlpoeotZWNIKcLQWZc_d9vsO3aUdJsYuhJDt4mh-4qhiOSHuIpuaeLbb8rpVnEA8I3XDWu41vwDMGqS1w
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_automatica_2025_112237
crossref_primary_10_1109_TSTE_2017_2718735
crossref_primary_10_1109_TPWRS_2024_3450369
crossref_primary_10_1109_TSG_2020_2979173
crossref_primary_10_1016_j_rser_2015_12_083
crossref_primary_10_1109_TPWRS_2020_3034488
crossref_primary_10_1109_TSTE_2015_2498143
crossref_primary_10_1016_j_trc_2019_05_045
crossref_primary_10_1007_s11750_022_00634_4
crossref_primary_10_1109_ACCESS_2021_3055581
crossref_primary_10_1109_TSTE_2021_3112983
crossref_primary_10_1109_TPWRS_2017_2760699
crossref_primary_10_1016_j_automatica_2021_110108
crossref_primary_10_1109_TPWRS_2023_3236378
crossref_primary_10_1021_acs_iecr_1c04736
crossref_primary_10_1016_j_epsr_2020_106564
crossref_primary_10_1109_TPWRS_2021_3115521
crossref_primary_10_1016_j_epsr_2020_106567
crossref_primary_10_1016_j_ifacol_2017_08_2170
crossref_primary_10_1016_j_ejor_2018_01_005
crossref_primary_10_1016_j_isatra_2019_01_013
crossref_primary_10_1016_j_automatica_2024_111643
crossref_primary_10_1109_TSG_2017_2715162
crossref_primary_10_1016_j_tust_2022_104865
crossref_primary_10_1109_TPWRS_2019_2958850
crossref_primary_10_1109_TPWRS_2018_2874072
crossref_primary_10_1109_TAC_2021_3051000
crossref_primary_10_1016_j_automatica_2019_03_027
crossref_primary_10_1109_TSG_2023_3304135
crossref_primary_10_1016_j_ifacol_2015_11_297
crossref_primary_10_1109_TAC_2022_3184389
crossref_primary_10_1109_TCOMM_2022_3227932
crossref_primary_10_1002_rnc_3782
crossref_primary_10_1109_TPWRS_2019_2895122
crossref_primary_10_1016_j_ijepes_2024_110107
crossref_primary_10_1007_s10287_019_00345_5
crossref_primary_10_1016_j_epsr_2022_108735
crossref_primary_10_1109_TSTE_2015_2498521
crossref_primary_10_1109_TSG_2017_2773603
crossref_primary_10_1016_j_automatica_2015_07_013
crossref_primary_10_1109_TAC_2015_2394874
crossref_primary_10_1109_TPWRS_2018_2874464
crossref_primary_10_1016_j_ifacol_2024_07_421
crossref_primary_10_1016_j_amc_2018_09_064
crossref_primary_10_1109_TPWRS_2014_2363159
crossref_primary_10_1002_oca_2534
crossref_primary_10_1109_TSG_2016_2597002
crossref_primary_10_1016_j_conengprac_2016_03_020
crossref_primary_10_1016_j_energy_2021_122158
crossref_primary_10_1016_j_epsr_2022_108725
crossref_primary_10_1115_1_4044918
crossref_primary_10_1137_21M1451385
crossref_primary_10_1016_j_asej_2024_102972
crossref_primary_10_1109_TSG_2022_3154023
crossref_primary_10_1109_LCSYS_2017_2714426
crossref_primary_10_1109_TSG_2016_2552173
crossref_primary_10_1016_j_ifacol_2017_08_1388
crossref_primary_10_1109_TPWRS_2021_3122529
crossref_primary_10_1109_TPWRS_2023_3242468
crossref_primary_10_3102_10769986231169039
crossref_primary_10_1016_j_enconman_2025_119707
crossref_primary_10_1016_j_ijepes_2015_02_024
crossref_primary_10_1287_mnsc_2020_3640
crossref_primary_10_1007_s10107_016_1056_9
crossref_primary_10_1109_LCSYS_2021_3089641
crossref_primary_10_1109_TSG_2017_2773627
crossref_primary_10_1109_TSG_2021_3051088
crossref_primary_10_1109_TETCI_2023_3332558
crossref_primary_10_1109_TSG_2017_2785040
crossref_primary_10_1016_j_ijepes_2021_107810
crossref_primary_10_1016_j_ejor_2021_10_051
crossref_primary_10_1016_j_ijepes_2015_02_017
crossref_primary_10_1016_j_ijepes_2015_02_012
crossref_primary_10_1109_TPWRS_2016_2572104
crossref_primary_10_1016_j_epsr_2022_109082
crossref_primary_10_1109_TAC_2022_3165320
crossref_primary_10_1007_s10107_024_02074_3
crossref_primary_10_1007_s10846_022_01732_y
crossref_primary_10_1016_j_renene_2024_121776
crossref_primary_10_1016_j_apenergy_2022_119291
crossref_primary_10_1002_rnc_5696
crossref_primary_10_1016_j_ejor_2020_11_027
crossref_primary_10_1109_TSG_2022_3185310
crossref_primary_10_1016_j_ress_2021_108088
crossref_primary_10_1016_j_apenergy_2019_113312
crossref_primary_10_1109_TPWRS_2023_3267097
crossref_primary_10_1109_JPROC_2020_3009323
crossref_primary_10_1109_TPWRS_2024_3442954
crossref_primary_10_1109_TAC_2022_3153888
crossref_primary_10_1049_iet_gtd_2020_0224
crossref_primary_10_3390_en14010023
crossref_primary_10_1109_LCSYS_2021_3096826
crossref_primary_10_1109_TAC_2017_2663766
crossref_primary_10_1016_j_ifacol_2020_12_362
crossref_primary_10_1007_s10107_021_01753_9
crossref_primary_10_1109_TITS_2021_3078230
crossref_primary_10_1109_TSG_2022_3210232
crossref_primary_10_1146_annurev_control_060117_105215
crossref_primary_10_1146_annurev_control_042820_125219
crossref_primary_10_1007_s11750_022_00639_z
crossref_primary_10_1016_j_compchemeng_2022_107662
crossref_primary_10_1109_TPWRS_2022_3217941
crossref_primary_10_1007_s11081_022_09761_0
crossref_primary_10_1109_TSMC_2024_3357872
crossref_primary_10_1109_TPWRS_2017_2745410
crossref_primary_10_1109_TSTE_2022_3223764
crossref_primary_10_1007_s00498_023_00372_3
crossref_primary_10_1016_j_epsr_2016_02_008
crossref_primary_10_1109_TSG_2018_2834150
crossref_primary_10_1109_TPWRS_2020_3046710
crossref_primary_10_1109_TPWRS_2013_2272546
crossref_primary_10_1002_ese3_1517
crossref_primary_10_1109_TAC_2018_2808446
crossref_primary_10_1021_acs_iecr_5b04973
crossref_primary_10_1109_TSG_2020_3010260
crossref_primary_10_1109_TCNS_2019_2930872
crossref_primary_10_1109_TITS_2021_3105579
crossref_primary_10_1109_TSG_2022_3175418
crossref_primary_10_1063_5_0240901
Cites_doi 10.1007/b137802
10.1016/S0167-6377(99)00016-4
10.1137/S1052623496305717
10.1016/j.compchemeng.2003.09.020
10.1109/TAC.2006.875041
10.1109/TAC.2009.2031207
10.1007/s10957-010-9754-6
10.1007/s10107-005-0677-1
10.1007/s10957-008-9423-1
10.1137/07069821X
10.1109/TPWRS.2013.2272546
10.1007/s10107-006-0090-4
10.1007/978-94-017-3087-7
10.1109/ACC.2010.5531078
10.1017/CBO9780511804441
10.1287/opre.1030.0065
10.1109/TAC.2008.2008335
10.1016/j.automatica.2011.02.029
10.1016/j.orl.2003.12.007
10.1109/TAC.2010.2078170
10.1137/050622328
10.1016/j.sysconle.2007.11.003
10.1287/moor.23.4.769
10.1016/S0167-6911(97)00005-4
10.1137/090773490
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
F28
DOI 10.1109/TAC.2014.2303232
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 2263
ExternalDocumentID 3386132221
10_1109_TAC_2014_2303232
6727399
Genre orig-research
GrantInformation_xml – fundername: European Commission
  funderid: 10.13039/501100000780
– fundername: Network of Excellence HYCON2
– fundername: Swiss Secretariat for Education and Research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
F28
ID FETCH-LOGICAL-c390t-fac433879e04c748d3934a1a5a32f55130c640c378a80528534a6983444f6d303
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Sun Sep 28 09:32:42 EDT 2025
Mon Jun 30 10:15:56 EDT 2025
Wed Oct 01 04:14:54 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Wed Aug 27 02:48:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Chance constrained optimization
randomized algorithms
scenario approach
robust optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-fac433879e04c748d3934a1a5a32f55130c640c378a80528534a6983444f6d303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1548740061
PQPubID 85475
PageCount 6
ParticipantIDs proquest_miscellaneous_1559703540
proquest_journals_1548740061
crossref_primary_10_1109_TAC_2014_2303232
ieee_primary_6727399
crossref_citationtrail_10_1109_TAC_2014_2303232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References löfberg (ref28) 0
ref15
ref11
ref10
tempo (ref14) 2005
ref2
ref1
ref17
ref16
ref19
ref18
calafiore (ref13) 2011; 47
(ref27) 2008
ref24
ref23
ref26
ref25
ref20
ref22
ref21
vidyasagar (ref9) 1997
ref29
ref8
ref7
ref4
nemirovski (ref12) 2005
ref3
ref6
ref5
References_xml – year: 2005
  ident: ref14
  publication-title: Randomized Algorithms for Analysis and Control of Uncertain Systems
  doi: 10.1007/b137802
– ident: ref22
  doi: 10.1016/S0167-6377(99)00016-4
– ident: ref2
  doi: 10.1137/S1052623496305717
– ident: ref23
  doi: 10.1016/j.compchemeng.2003.09.020
– ident: ref15
  doi: 10.1109/TAC.2006.875041
– ident: ref26
  doi: 10.1109/TAC.2009.2031207
– year: 1997
  ident: ref9
  publication-title: A Theory of Learning and Generalization
– ident: ref19
  doi: 10.1007/s10957-010-9754-6
– ident: ref3
  doi: 10.1007/s10107-005-0677-1
– ident: ref21
  doi: 10.1007/s10957-008-9423-1
– ident: ref16
  doi: 10.1137/07069821X
– ident: ref29
  doi: 10.1109/TPWRS.2013.2272546
– ident: ref11
  doi: 10.1007/s10107-006-0090-4
– ident: ref5
  doi: 10.1007/978-94-017-3087-7
– start-page: 284
  year: 0
  ident: ref28
  article-title: YALMIP: A toolbox for modeling and optimization in MATLAB
  publication-title: Proc IEEE Int Symp Comp Aided Control Syst Design
– ident: ref24
  doi: 10.1109/ACC.2010.5531078
– ident: ref6
  doi: 10.1017/CBO9780511804441
– ident: ref4
  doi: 10.1287/opre.1030.0065
– year: 2005
  ident: ref12
  article-title: Probabilistic and Randomized Methods for Design under Uncertainty
  publication-title: Scenario approximations of chance constraints
– ident: ref17
  doi: 10.1109/TAC.2008.2008335
– year: 2008
  ident: ref27
  publication-title: CPLEX11 0 Users Manual
– volume: 47
  start-page: 1279
  year: 2011
  ident: ref13
  article-title: Research on probabilistic methods for control system design
  publication-title: Automatica
  doi: 10.1016/j.automatica.2011.02.029
– ident: ref7
  doi: 10.1016/j.orl.2003.12.007
– ident: ref10
  doi: 10.1109/TAC.2010.2078170
– ident: ref25
  doi: 10.1137/050622328
– ident: ref20
  doi: 10.1016/j.sysconle.2007.11.003
– ident: ref1
  doi: 10.1287/moor.23.4.769
– ident: ref8
  doi: 10.1016/S0167-6911(97)00005-4
– ident: ref18
  doi: 10.1137/090773490
SSID ssj0016441
Score 2.5327647
Snippet We propose a new method for solving chance constrained optimization problems that lies between robust optimization and scenario-based methods. Our method does...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2258
SubjectTerms Algorithms
Chance constrained optimization
Computational efficiency
Constraints
Guidelines
Mathematical analysis
Nickel
Optimization
Probabilistic logic
Randomization
randomized algorithms
Roads
robust optimization
Robustness
scenario approach
Uncertainty
Vectors
Title On the Road Between Robust Optimization and the Scenario Approach for Chance Constrained Optimization Problems
URI https://ieeexplore.ieee.org/document/6727399
https://www.proquest.com/docview/1548740061
https://www.proquest.com/docview/1559703540
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4QwFH5RT3pwN45bauLFRGYYKFCOo9EYE5e4JN5I57VcVDAOXPz1vlcY4hbjDcIrNHztW_o2gINQo1Z5Hnh6aIwnUSpPhzb1ciRpiD6Og4CTky-v4vMHefEYPc7AUZcLY611wWe2z5fOl29KrPmobMBeQ3rFLMwmKm5ytTqPAcv1huvSBg5U55L008H96IRjuCQHPYdBGHwRQa6nyg9G7KTL2RJcTufVBJU89etq3Mf3byUb_zvxZVhs1UwxatbFCszYYhUWPhUfXIPiuhCk_YnbUhtx3IRr0c24nlTimhjJS5uhKXRhHOEd2oIs61KM2jrkghRewekJaAU3_nTtJqz5Ovqm6VgzWYeHs9P7k3Ov7b7gEUx-5eUaJdmvSWp9iYlUJkxDqYc60mGQc1sYH2PpY5gozW0RSOxLHafctkPmsaE_vQFzRVnYTRBWR6hJT1FciDgnFmuUxDTKo6FWCSL2YDAFJMO2NDlP-TlzJoqfZgRhxhBmLYQ9OOxGvDZlOf6gXWNEOroWjB7sTDHP2n07yZwBJ1mv68F-95h2HLtRdGHLmmnICPP5vGzr9zdvwzx_vwkT3IG56q22u6S6VOM9t2Y_ABs36gQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5BOJQeKC0gwnMr9VKpThx7_TqmEShQklRtInGzNrPrC2BXjX3pr2dm7VilVIibLc-uVp7deew8PoBPvkIVZ5nnqIHWjkQZO8o3iZMhaUN0cel5XJw8mYbjhby-DW434EtbC2OMsclnpsePNpavC6z4qqzPUUOaYhO2AillUFdrtTED1uy13KUj7MVtUNJN-vPhiLO4JKc9-57vPVFCFlXlmSi2-uXyHUzWK6vTSu56Vbns4Z9_mja-dum7sNMYmmJY74z3sGHyD_D2r_aDe5DPckH2n_hRKC2-1glb9LKsVqWYkSh5aGo0hcq1JfyJJiffuhDDphO5IJNXcIECGsHQnxZwwuino7_XmDWrfVhcXsxHY6fBX3CIUW7pZAolebBRYlyJkYy1n_hSDVSgfC9jYBgXQ-miH8WKgRFI8UsVJgzcIbNQ058-gE5e5OYQhFEBKrJUYm5FnJGQ1bHEJMiCgYojROxCf82QFJvm5Lzk-9Q6KW6SEgtTZmHasLALn9sRv-rGHC_Q7jFHWrqGGV04WfM8bU7uKrUunGTLrgsf28905jiQonJTVExDbpjLN2ZH_5_5HN6M55Ob9OZq-u0Ytnktdf3iCXTK35U5JUOmXJ7Z_fsIgqHtSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Road+Between+Robust+Optimization+and+the+Scenario+Approach+for+Chance+Constrained+Optimization+Problems&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Margellos%2C+Kostas&rft.au=Goulart%2C+Paul&rft.au=Lygeros%2C+John&rft.date=2014-08-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=59&rft.issue=8&rft.spage=2258&rft.epage=2263&rft_id=info:doi/10.1109%2FTAC.2014.2303232&rft.externalDocID=6727399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon