Real-time markerless tumour tracking with patient-specific deep learning using a personalised data generation strategy: proof of concept by phantom study

For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digit...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of radiology Vol. 93; no. 1109; p. 20190420
Main Authors Takahashi, Wataru, Oshikawa, Shota, Mori, Shinichiro
Format Journal Article
LanguageEnglish
Published England The British Institute of Radiology 01.05.2020
Subjects
Online AccessGet full text
ISSN0007-1285
1748-880X
1748-880X
DOI10.1259/bjr.20190420

Cover

Abstract For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies. We developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom's lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom's treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition. We defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing. We proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies. Using DL with personalised data generation is an efficient strategy for real-time lung tumour tracking.
AbstractList For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies. We developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom's lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom's treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition. We defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing. We proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies. Using DL with personalised data generation is an efficient strategy for real-time lung tumour tracking.
For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies.OBJECTIVEFor real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies.We developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom's lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom's treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition.METHODSWe developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom's lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom's treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition.We defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing.RESULTSWe defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing.We proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies.CONCLUSIONSWe proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies.Using DL with personalised data generation is an efficient strategy for real-time lung tumour tracking.ADVANCES IN KNOWLEDGEUsing DL with personalised data generation is an efficient strategy for real-time lung tumour tracking.
Author Oshikawa, Shota
Mori, Shinichiro
Takahashi, Wataru
Author_xml – sequence: 1
  givenname: Wataru
  surname: Takahashi
  fullname: Takahashi, Wataru
– sequence: 2
  givenname: Shota
  surname: Oshikawa
  fullname: Oshikawa, Shota
– sequence: 3
  givenname: Shinichiro
  surname: Mori
  fullname: Mori, Shinichiro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32101456$$D View this record in MEDLINE/PubMed
BookMark eNptkUuLFDEUhYOMOD2jO9eSpQtrzKNSDxeCDL5gQBAFdyGPW92ZSSVlklL6p_hvTTvToiKEhEu-ew73njN0EmIAhB5TckGZGJ_r63TBCB1Jy8g9tKF9OzTDQL6coA0hpG8oG8QpOsv5-lCKkTxAp5xRQlvRbdCPj6B8U9wMeFbpBpKHnHFZ57gmXJIyNy5s8XdXdnhRxUEoTV7AuMkZbAEW7EGlcGDWfLgVXiDlGJR3GSy2qii8hQCpNseAc5UssN2_wEuKccL1mBgMLAXrPV52KpQ4V2q1-4fo_qR8hkd37zn6_Ob1p8t3zdWHt-8vX101ho-kNKCI6LteaSEYr4XVzBpFeNdOtDcjByCj1RZaTTVYDt3EjVaamtEMQnWWn6OXt7rLqmewpo6YlJdLcnUhexmVk3__BLeT2_hN9oz2YuBV4OmdQIpfV8hFzi4b8F4FiGuWjHddx0XH2oo--dPrt8kxjwqwW8CkmHOCSRpXfq2uWjsvKZGH0GUNXR5Dr03P_mk66v4X_wk3abRr
CitedBy_id crossref_primary_10_1002_mp_16470
crossref_primary_10_1111_1754_9485_13285
crossref_primary_10_3390_app122010620
crossref_primary_10_1007_s13246_023_01290_z
crossref_primary_10_1002_mp_17039
crossref_primary_10_1002_acm2_13894
crossref_primary_10_1016_j_semradonc_2022_06_003
crossref_primary_10_1088_1361_6560_adb89c
crossref_primary_10_1002_mp_15456
crossref_primary_10_3390_s20102997
crossref_primary_10_1002_mp_15418
crossref_primary_10_1002_mp_16705
crossref_primary_10_1109_TMI_2022_3194517
crossref_primary_10_1140_epjp_s13360_024_05660_8
crossref_primary_10_1016_j_zemedi_2021_04_001
crossref_primary_10_3390_bioengineering11111051
crossref_primary_10_1016_j_radonc_2020_10_004
crossref_primary_10_3390_app12073223
Cites_doi 10.1007/s13246-012-0142-4
10.1093/jrr/rrs017
10.1016/j.ijrobp.2016.01.014
10.1088/0031-9155/54/20/N03
10.1088/1361-6560/aa6393
10.1118/1.4956986
10.1118/1.4917480
10.1007/s00270-010-9949-0
10.1016/j.radonc.2015.08.021
10.1118/1.3480985
10.1118/1.595715
10.1002/cncr.10856
10.1120/jacmp.v17i4.6114
10.1118/1.4903892
10.1109/TPAMI.2016.2577031
10.1016/j.ijrobp.2013.06.2048
10.1007/s12194-017-0435-0
ContentType Journal Article
Copyright 2020 The Authors. Published by the British Institute of Radiology 2020 The Authors
Copyright_xml – notice: 2020 The Authors. Published by the British Institute of Radiology 2020 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1259/bjr.20190420
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
DocumentTitleAlternate Markerless tumour tracking with phantom-specific deep learning
EISSN 1748-880X
ExternalDocumentID PMC7217583
32101456
10_1259_bjr_20190420
Genre Evaluation Study
Journal Article
GroupedDBID ---
.55
0R~
169
18M
1OC
23N
2WC
33P
36B
4.4
53G
5GY
5RE
5WD
6J9
AANLZ
AASGY
AAUAY
AAWTL
AAXRX
AAYXX
ABCUV
ABDFA
ABEJV
ABGNP
ABJNI
ABNHQ
ABQNK
ABSZQ
ABXGK
ABXVV
ACAHQ
ACCZN
ACGFO
ACGOF
ACXBN
ADBBV
ADBTR
ADIPN
ADMGS
ADNBA
ADOZA
ADVOB
ADXAS
AEGXH
AENEX
AEUYR
AHMMS
AIACR
AIAGR
AIURR
AJAOE
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AOIJS
BAWUL
BCRHZ
BFHJK
C45
CITATION
CS3
DCZOG
DIK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBD
EBS
EMB
EMOBN
F5P
GX1
H13
HYE
IH2
KBYEO
KOP
L7B
LATKE
LEEKS
LYRES
MXFUL
MXMAN
MXSTM
NU-
OCZFY
OJZSN
OK1
OVD
OWPYF
P0W
P2P
ROX
SJN
SUPJJ
SV3
TEORI
TR2
TUS
TWZ
TXR
W8F
WIN
WOQ
X7M
ZZTAW
24P
ACPOU
AEIGN
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RPM
7X8
5PM
ID FETCH-LOGICAL-c390t-ea05767ab5523ea0db2dca0364f17c93ee09dbde4b1bed3e6f3cbab1c9c85a6d3
ISSN 0007-1285
1748-880X
IngestDate Tue Sep 30 16:57:20 EDT 2025
Sun Sep 28 07:06:38 EDT 2025
Wed Feb 19 02:05:37 EST 2025
Wed Oct 01 04:49:49 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1109
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-ea05767ab5523ea0db2dca0364f17c93ee09dbde4b1bed3e6f3cbab1c9c85a6d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 32101456
PQID 2366635624
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217583
proquest_miscellaneous_2366635624
pubmed_primary_32101456
crossref_citationtrail_10_1259_bjr_20190420
crossref_primary_10_1259_bjr_20190420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle British journal of radiology
PublicationTitleAlternate Br J Radiol
PublicationYear 2020
Publisher The British Institute of Radiology
Publisher_xml – name: The British Institute of Radiology
References Shiinoki (2024050215253660800_b3) 2016; 17
Shiinoki (2024050215253660800_b9) 2016; 43
Ren (2024050215253660800_b23) 2017; 39
Patel (2024050215253660800_b8) 2015; 42
2024050215253660800_b19
Bhagat (2024050215253660800_b4) 2010; 33
Kingma (2024050215253660800_b17) 2014; 6980
Mori (2024050215253660800_b24) 2016; 95
Dhont (2024050215253660800_b7) 2015; 117
Siddon (2024050215253660800_b20) 1985; 12
Ronneberger (2024050215253660800_b16) 2015
Ishiyama (2024050215253660800_b1) 2017; 74
Mori (2024050215253660800_b22) 2012; 53
Teske (2024050215253660800_b10) 2015; 42
Li (2024050215253660800_b12) 2009; 54
2024050215253660800_b25
Terunuma (2024050215253660800_b13) 2018; 11
Shieh (2024050215253660800_b11) 2017; 62
Harada (2024050215253660800_b2) 2002; 95
Yang (2024050215253660800_b6) 2017; 7
Segars (2024050215253660800_b18) 2010; 37
Bahig (2024050215253660800_b5) 2013; 87
Long (2024050215253660800_b14) 2015
Shi (2024050215253660800_b15) 2016
Mori (2024050215253660800_b21) 2012; 35
References_xml – ident: 2024050215253660800_b25
– ident: 2024050215253660800_b19
– volume: 35
  start-page: 221
  year: 2012
  ident: 2024050215253660800_b21
  article-title: Development of digital reconstructed radiography software at new treatment facility for carbon-ion beam scanning of National Institute of radiological sciences
  publication-title: Australas Phys Eng Sci Med
  doi: 10.1007/s13246-012-0142-4
– start-page: 3431
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2015
  ident: 2024050215253660800_b14
– volume: 53
  start-page: 760
  year: 2012
  ident: 2024050215253660800_b22
  article-title: First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy
  publication-title: J Radiat Res
  doi: 10.1093/jrr/rrs017
– volume: 95
  start-page: 258
  year: 2016
  ident: 2024050215253660800_b24
  article-title: Carbon-Ion pencil beam scanning treatment with gated Markerless tumor tracking: an analysis of positional accuracy
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2016.01.014
– volume: 54
  start-page: N489
  year: 2009
  ident: 2024050215253660800_b12
  article-title: A feasibility study of markerless fluoroscopic gating for lung cancer radiotherapy using 4DCT templates
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/20/N03
– start-page: 1874
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2016
  ident: 2024050215253660800_b15
– start-page: 234
  volume-title: International Conference on Medical image computing and computer-assisted intervention
  year: 2015
  ident: 2024050215253660800_b16
– volume: 62
  start-page: 3065
  year: 2017
  ident: 2024050215253660800_b11
  article-title: A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa6393
– volume: 43
  start-page: 3650
  issue: 6Part26
  year: 2016
  ident: 2024050215253660800_b9
  article-title: SU-G-JeP1-11: feasibility study of Markerless tracking using dual energy fluoroscopic images for real-time Tumor-Tracking radiotherapy system
  publication-title: Med Phys
  doi: 10.1118/1.4956986
– volume: 42
  start-page: 2540
  year: 2015
  ident: 2024050215253660800_b10
  article-title: Real-Time markerless lung tumor tracking in fluoroscopic video: handling overlapping of projected structures
  publication-title: Med Phys
  doi: 10.1118/1.4917480
– volume: 33
  start-page: 1186
  year: 2010
  ident: 2024050215253660800_b4
  article-title: Complications associated with the percutaneous insertion of fiducial markers in the thorax
  publication-title: Cardiovasc Intervent Radiol
  doi: 10.1007/s00270-010-9949-0
– volume: 117
  start-page: 487
  year: 2015
  ident: 2024050215253660800_b7
  article-title: Feasibility of markerless tumor tracking by sequential dual-energy fluoroscopy on a clinical tumor tracking system
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2015.08.021
– volume: 37
  start-page: 4902
  year: 2010
  ident: 2024050215253660800_b18
  article-title: 4D XCAT phantom for multimodality imaging research
  publication-title: Med Phys
  doi: 10.1118/1.3480985
– volume: 12
  start-page: 252
  year: 1985
  ident: 2024050215253660800_b20
  article-title: Fast calculation of the exact radiological path for a three-dimensional CT array
  publication-title: Med Phys
  doi: 10.1118/1.595715
– volume: 95
  start-page: 1720
  year: 2002
  ident: 2024050215253660800_b2
  article-title: Real-Time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy
  publication-title: Cancer
  doi: 10.1002/cncr.10856
– volume: 7
  year: 2017
  ident: 2024050215253660800_b6
  article-title: Target margin design for real-time lung tumor tracking stereotactic body radiation therapy using CyberKnife Xsight lung tracking system
  publication-title: Sci Rep
– volume: 17
  start-page: 202
  year: 2016
  ident: 2024050215253660800_b3
  article-title: Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v17i4.6114
– volume: 42
  start-page: 254
  year: 2015
  ident: 2024050215253660800_b8
  article-title: Markerless motion tracking of lung tumors using dual-energy fluoroscopy
  publication-title: Med Phys
  doi: 10.1118/1.4903892
– volume: 39
  start-page: 1137
  year: 2017
  ident: 2024050215253660800_b23
  article-title: Faster R-CNN: towards real-time object detection with region proposal networks
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– volume: 87
  start-page: 583
  year: 2013
  ident: 2024050215253660800_b5
  article-title: Predictive parameters of CyberKnife fiducial-less (XSight lung) applicability for treatment of early non-small cell lung cancer: a single-center experience
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2013.06.2048
– volume: 6980
  year: 2014
  ident: 2024050215253660800_b17
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint
– volume: 74
  start-page: 73
  year: 2017
  ident: 2024050215253660800_b1
  article-title: Development of the SyncTraX FX4 version real-time tumor tracking system for radiation therapy
  publication-title: Shimadzu Hyoron
– volume: 11
  start-page: 43
  year: 2018
  ident: 2024050215253660800_b13
  article-title: Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy
  publication-title: Radiol Phys Technol
  doi: 10.1007/s12194-017-0435-0
SSID ssj0007590
Score 2.3873847
Snippet For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL)...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20190420
SubjectTerms Deep Learning
Feasibility Studies
Fluoroscopy - methods
Four-Dimensional Computed Tomography - methods
Humans
Image Processing, Computer-Assisted - methods
Lung Neoplasms - radiotherapy
Movement
Phantoms, Imaging
Title Real-time markerless tumour tracking with patient-specific deep learning using a personalised data generation strategy: proof of concept by phantom study
URI https://www.ncbi.nlm.nih.gov/pubmed/32101456
https://www.proquest.com/docview/2366635624
https://pubmed.ncbi.nlm.nih.gov/PMC7217583
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1748-880X
  dateEnd: 20231001
  omitProxy: true
  ssIdentifier: ssj0007590
  issn: 0007-1285
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1748-880X
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0007590
  issn: 0007-1285
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qisu-iK63rhdG0KeQNfeLbyLqItQHt4t9C3PLttamJU1Y9Jfov_WcmSRNWxdUKKFNphPo9_WcM5NzvkPIixwFPQRTtsO5soEh3Obg9m1fSow_XFcFWJw8-hSdXQQfJ-FkMPjZy1qqK34qfvyxruR_UIVzgCtWyf4Dst2kcALeA75wBITh-FcYf4Yoz8bu8NYCs2zwufnaqmpYzZfY-0HMu53WRj7VxsJKTA6ypFKrtmXEpVXrHQOGIsYmNF9DHIrJo9hhWTUkWRshWy0RBXYXokydkq7LHjGKXU2xIfGip1i7I5zUU6komZxtbeiP2RyLy3SLYesL3Lmsu_1fODtnVzrKPZ8uq86RjJamTP58itWd01m57O9heM4mY_BUGbsbB4kNpmTSN8ymdWJLQNdJ-4YWa-ADXUe37wVgSQfQ8a-o97o_DH6l1UIzAuuX3CDckeI2zr25dIPc9OIowt4YHyab5KE4TJ2mjAJu9qp_qyNy2H55O9bZW8Ds5uH2ApvxHXK7WZHQN4Zed8lAFcfkcNTkXByTWzpJWKzvkV8d3-iGb9TwjbZ8o8g3uss3inyjLd-o5htltM83inyjG77Rlm-vqWYbhVfDNsq_04ZtVLPtPrl4_2789sxuWnvYwk-dylYM1glRzHgYej58kNyTguEz8dyNReor5aSSSxVwlyvpqyj3BWfcFalIQhZJ_wE5KJaFekSojNMEPFUuHCEDCf7bS2SMbiZRQS48NiRWC0ImGt17bL_yLcP1L6CXAXpZi96QvOxGr4zeyzXjnrd4ZmCQ8SkbK9SyXmdg_DCKj7xgSB4afLuZWmIMSbyFfDcAxd63rxSzqRZ9jz0I9BP_5No5H5OjzV_rCTmoylo9hYC54s80d38D59bMYA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+markerless+tumour+tracking+with+patient-specific+deep+learning+using+a+personalised+data+generation+strategy%3A+proof+of+concept+by+phantom+study&rft.jtitle=British+journal+of+radiology&rft.au=Takahashi%2C+Wataru&rft.au=Oshikawa%2C+Shota&rft.au=Mori%2C+Shinichiro&rft.date=2020-05-01&rft.eissn=1748-880X&rft.volume=93&rft.issue=1109&rft.spage=20190420&rft_id=info:doi/10.1259%2Fbjr.20190420&rft_id=info%3Apmid%2F32101456&rft.externalDocID=32101456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1285&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1285&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1285&client=summon