Real-time markerless tumour tracking with patient-specific deep learning using a personalised data generation strategy: proof of concept by phantom study
For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digit...
Saved in:
Published in | British journal of radiology Vol. 93; no. 1109; p. 20190420 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The British Institute of Radiology
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0007-1285 1748-880X 1748-880X |
DOI | 10.1259/bjr.20190420 |
Cover
Abstract | For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies.
We developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom's lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom's treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition.
We defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing.
We proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies.
Using DL with personalised data generation is an efficient strategy for real-time lung tumour tracking. |
---|---|
AbstractList | For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies.
We developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom's lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom's treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition.
We defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing.
We proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies.
Using DL with personalised data generation is an efficient strategy for real-time lung tumour tracking. For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies.OBJECTIVEFor real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL) using a personalised data generation strategy, avoiding the need for collection of a large patient data set. We validated our strategy with digital phantom simulation and epoxy phantom studies.We developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom's lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom's treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition.METHODSWe developed lung tumour tracking for radiotherapy using a convolutional neural network trained for each phantom's lesion by using multiple digitally reconstructed radiographs (DRRs) generated from each phantom's treatment planning four-dimensional CT. We trained tumour-bone differentiation using large numbers of training DRRs generated with various projection geometries to simulate tumour motion. We solved the problem of using DRRs for training and X-ray images for tracking using the training DRRs with random contrast transformation and random noise addition.We defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing.RESULTSWe defined adequate tracking accuracy as the percentage frames satisfying <1 mm tracking error of the isocentre. In the simulation study, we achieved 100% tracking accuracy in 3 cm spherical and 1.5×2.25×3 cm ovoid masses. In the phantom study, we achieved 100 and 94.7% tracking accuracy in 3 cm and 2 cm spherical masses, respectively. This required 32.5 ms/frame (30.8 fps) real-time processing.We proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies.CONCLUSIONSWe proved the potential feasibility of a real-time markerless tumour tracking framework for stereotactic lung radiotherapy based on patient-specific DL with personalised data generation with digital phantom and epoxy phantom studies.Using DL with personalised data generation is an efficient strategy for real-time lung tumour tracking.ADVANCES IN KNOWLEDGEUsing DL with personalised data generation is an efficient strategy for real-time lung tumour tracking. |
Author | Oshikawa, Shota Mori, Shinichiro Takahashi, Wataru |
Author_xml | – sequence: 1 givenname: Wataru surname: Takahashi fullname: Takahashi, Wataru – sequence: 2 givenname: Shota surname: Oshikawa fullname: Oshikawa, Shota – sequence: 3 givenname: Shinichiro surname: Mori fullname: Mori, Shinichiro |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32101456$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUuLFDEUhYOMOD2jO9eSpQtrzKNSDxeCDL5gQBAFdyGPW92ZSSVlklL6p_hvTTvToiKEhEu-ew73njN0EmIAhB5TckGZGJ_r63TBCB1Jy8g9tKF9OzTDQL6coA0hpG8oG8QpOsv5-lCKkTxAp5xRQlvRbdCPj6B8U9wMeFbpBpKHnHFZ57gmXJIyNy5s8XdXdnhRxUEoTV7AuMkZbAEW7EGlcGDWfLgVXiDlGJR3GSy2qii8hQCpNseAc5UssN2_wEuKccL1mBgMLAXrPV52KpQ4V2q1-4fo_qR8hkd37zn6_Ob1p8t3zdWHt-8vX101ho-kNKCI6LteaSEYr4XVzBpFeNdOtDcjByCj1RZaTTVYDt3EjVaamtEMQnWWn6OXt7rLqmewpo6YlJdLcnUhexmVk3__BLeT2_hN9oz2YuBV4OmdQIpfV8hFzi4b8F4FiGuWjHddx0XH2oo--dPrt8kxjwqwW8CkmHOCSRpXfq2uWjsvKZGH0GUNXR5Dr03P_mk66v4X_wk3abRr |
CitedBy_id | crossref_primary_10_1002_mp_16470 crossref_primary_10_1111_1754_9485_13285 crossref_primary_10_3390_app122010620 crossref_primary_10_1007_s13246_023_01290_z crossref_primary_10_1002_mp_17039 crossref_primary_10_1002_acm2_13894 crossref_primary_10_1016_j_semradonc_2022_06_003 crossref_primary_10_1088_1361_6560_adb89c crossref_primary_10_1002_mp_15456 crossref_primary_10_3390_s20102997 crossref_primary_10_1002_mp_15418 crossref_primary_10_1002_mp_16705 crossref_primary_10_1109_TMI_2022_3194517 crossref_primary_10_1140_epjp_s13360_024_05660_8 crossref_primary_10_1016_j_zemedi_2021_04_001 crossref_primary_10_3390_bioengineering11111051 crossref_primary_10_1016_j_radonc_2020_10_004 crossref_primary_10_3390_app12073223 |
Cites_doi | 10.1007/s13246-012-0142-4 10.1093/jrr/rrs017 10.1016/j.ijrobp.2016.01.014 10.1088/0031-9155/54/20/N03 10.1088/1361-6560/aa6393 10.1118/1.4956986 10.1118/1.4917480 10.1007/s00270-010-9949-0 10.1016/j.radonc.2015.08.021 10.1118/1.3480985 10.1118/1.595715 10.1002/cncr.10856 10.1120/jacmp.v17i4.6114 10.1118/1.4903892 10.1109/TPAMI.2016.2577031 10.1016/j.ijrobp.2013.06.2048 10.1007/s12194-017-0435-0 |
ContentType | Journal Article |
Copyright | 2020 The Authors. Published by the British Institute of Radiology 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors. Published by the British Institute of Radiology 2020 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1259/bjr.20190420 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
DocumentTitleAlternate | Markerless tumour tracking with phantom-specific deep learning |
EISSN | 1748-880X |
ExternalDocumentID | PMC7217583 32101456 10_1259_bjr_20190420 |
Genre | Evaluation Study Journal Article |
GroupedDBID | --- .55 0R~ 169 18M 1OC 23N 2WC 33P 36B 4.4 53G 5GY 5RE 5WD 6J9 AANLZ AASGY AAUAY AAWTL AAXRX AAYXX ABCUV ABDFA ABEJV ABGNP ABJNI ABNHQ ABQNK ABSZQ ABXGK ABXVV ACAHQ ACCZN ACGFO ACGOF ACXBN ADBBV ADBTR ADIPN ADMGS ADNBA ADOZA ADVOB ADXAS AEGXH AENEX AEUYR AHMMS AIACR AIAGR AIURR AJAOE AJNCP ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AOIJS BAWUL BCRHZ BFHJK C45 CITATION CS3 DCZOG DIK DRFUL DRMAN DRSTM DU5 E3Z EBD EBS EMB EMOBN F5P GX1 H13 HYE IH2 KBYEO KOP L7B LATKE LEEKS LYRES MXFUL MXMAN MXSTM NU- OCZFY OJZSN OK1 OVD OWPYF P0W P2P ROX SJN SUPJJ SV3 TEORI TR2 TUS TWZ TXR W8F WIN WOQ X7M ZZTAW 24P ACPOU AEIGN CGR CUY CVF ECM EIF FRP NPM RPM 7X8 5PM |
ID | FETCH-LOGICAL-c390t-ea05767ab5523ea0db2dca0364f17c93ee09dbde4b1bed3e6f3cbab1c9c85a6d3 |
ISSN | 0007-1285 1748-880X |
IngestDate | Tue Sep 30 16:57:20 EDT 2025 Sun Sep 28 07:06:38 EDT 2025 Wed Feb 19 02:05:37 EST 2025 Wed Oct 01 04:49:49 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1109 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c390t-ea05767ab5523ea0db2dca0364f17c93ee09dbde4b1bed3e6f3cbab1c9c85a6d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
PMID | 32101456 |
PQID | 2366635624 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217583 proquest_miscellaneous_2366635624 pubmed_primary_32101456 crossref_citationtrail_10_1259_bjr_20190420 crossref_primary_10_1259_bjr_20190420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | British journal of radiology |
PublicationTitleAlternate | Br J Radiol |
PublicationYear | 2020 |
Publisher | The British Institute of Radiology |
Publisher_xml | – name: The British Institute of Radiology |
References | Shiinoki (2024050215253660800_b3) 2016; 17 Shiinoki (2024050215253660800_b9) 2016; 43 Ren (2024050215253660800_b23) 2017; 39 Patel (2024050215253660800_b8) 2015; 42 2024050215253660800_b19 Bhagat (2024050215253660800_b4) 2010; 33 Kingma (2024050215253660800_b17) 2014; 6980 Mori (2024050215253660800_b24) 2016; 95 Dhont (2024050215253660800_b7) 2015; 117 Siddon (2024050215253660800_b20) 1985; 12 Ronneberger (2024050215253660800_b16) 2015 Ishiyama (2024050215253660800_b1) 2017; 74 Mori (2024050215253660800_b22) 2012; 53 Teske (2024050215253660800_b10) 2015; 42 Li (2024050215253660800_b12) 2009; 54 2024050215253660800_b25 Terunuma (2024050215253660800_b13) 2018; 11 Shieh (2024050215253660800_b11) 2017; 62 Harada (2024050215253660800_b2) 2002; 95 Yang (2024050215253660800_b6) 2017; 7 Segars (2024050215253660800_b18) 2010; 37 Bahig (2024050215253660800_b5) 2013; 87 Long (2024050215253660800_b14) 2015 Shi (2024050215253660800_b15) 2016 Mori (2024050215253660800_b21) 2012; 35 |
References_xml | – ident: 2024050215253660800_b25 – ident: 2024050215253660800_b19 – volume: 35 start-page: 221 year: 2012 ident: 2024050215253660800_b21 article-title: Development of digital reconstructed radiography software at new treatment facility for carbon-ion beam scanning of National Institute of radiological sciences publication-title: Australas Phys Eng Sci Med doi: 10.1007/s13246-012-0142-4 – start-page: 3431 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2015 ident: 2024050215253660800_b14 – volume: 53 start-page: 760 year: 2012 ident: 2024050215253660800_b22 article-title: First clinical experience in carbon ion scanning beam therapy: retrospective analysis of patient positional accuracy publication-title: J Radiat Res doi: 10.1093/jrr/rrs017 – volume: 95 start-page: 258 year: 2016 ident: 2024050215253660800_b24 article-title: Carbon-Ion pencil beam scanning treatment with gated Markerless tumor tracking: an analysis of positional accuracy publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2016.01.014 – volume: 54 start-page: N489 year: 2009 ident: 2024050215253660800_b12 article-title: A feasibility study of markerless fluoroscopic gating for lung cancer radiotherapy using 4DCT templates publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/20/N03 – start-page: 1874 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2016 ident: 2024050215253660800_b15 – start-page: 234 volume-title: International Conference on Medical image computing and computer-assisted intervention year: 2015 ident: 2024050215253660800_b16 – volume: 62 start-page: 3065 year: 2017 ident: 2024050215253660800_b11 article-title: A Bayesian approach for three-dimensional markerless tumor tracking using kV imaging during lung radiotherapy publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa6393 – volume: 43 start-page: 3650 issue: 6Part26 year: 2016 ident: 2024050215253660800_b9 article-title: SU-G-JeP1-11: feasibility study of Markerless tracking using dual energy fluoroscopic images for real-time Tumor-Tracking radiotherapy system publication-title: Med Phys doi: 10.1118/1.4956986 – volume: 42 start-page: 2540 year: 2015 ident: 2024050215253660800_b10 article-title: Real-Time markerless lung tumor tracking in fluoroscopic video: handling overlapping of projected structures publication-title: Med Phys doi: 10.1118/1.4917480 – volume: 33 start-page: 1186 year: 2010 ident: 2024050215253660800_b4 article-title: Complications associated with the percutaneous insertion of fiducial markers in the thorax publication-title: Cardiovasc Intervent Radiol doi: 10.1007/s00270-010-9949-0 – volume: 117 start-page: 487 year: 2015 ident: 2024050215253660800_b7 article-title: Feasibility of markerless tumor tracking by sequential dual-energy fluoroscopy on a clinical tumor tracking system publication-title: Radiother Oncol doi: 10.1016/j.radonc.2015.08.021 – volume: 37 start-page: 4902 year: 2010 ident: 2024050215253660800_b18 article-title: 4D XCAT phantom for multimodality imaging research publication-title: Med Phys doi: 10.1118/1.3480985 – volume: 12 start-page: 252 year: 1985 ident: 2024050215253660800_b20 article-title: Fast calculation of the exact radiological path for a three-dimensional CT array publication-title: Med Phys doi: 10.1118/1.595715 – volume: 95 start-page: 1720 year: 2002 ident: 2024050215253660800_b2 article-title: Real-Time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy publication-title: Cancer doi: 10.1002/cncr.10856 – volume: 7 year: 2017 ident: 2024050215253660800_b6 article-title: Target margin design for real-time lung tumor tracking stereotactic body radiation therapy using CyberKnife Xsight lung tracking system publication-title: Sci Rep – volume: 17 start-page: 202 year: 2016 ident: 2024050215253660800_b3 article-title: Evaluation of a combined respiratory-gating system comprising the TrueBeam linear accelerator and a new real-time tumor-tracking radiotherapy system: a preliminary study publication-title: J Appl Clin Med Phys doi: 10.1120/jacmp.v17i4.6114 – volume: 42 start-page: 254 year: 2015 ident: 2024050215253660800_b8 article-title: Markerless motion tracking of lung tumors using dual-energy fluoroscopy publication-title: Med Phys doi: 10.1118/1.4903892 – volume: 39 start-page: 1137 year: 2017 ident: 2024050215253660800_b23 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – volume: 87 start-page: 583 year: 2013 ident: 2024050215253660800_b5 article-title: Predictive parameters of CyberKnife fiducial-less (XSight lung) applicability for treatment of early non-small cell lung cancer: a single-center experience publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2013.06.2048 – volume: 6980 year: 2014 ident: 2024050215253660800_b17 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint – volume: 74 start-page: 73 year: 2017 ident: 2024050215253660800_b1 article-title: Development of the SyncTraX FX4 version real-time tumor tracking system for radiation therapy publication-title: Shimadzu Hyoron – volume: 11 start-page: 43 year: 2018 ident: 2024050215253660800_b13 article-title: Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy publication-title: Radiol Phys Technol doi: 10.1007/s12194-017-0435-0 |
SSID | ssj0007590 |
Score | 2.3873847 |
Snippet | For real-time markerless tumour tracking in stereotactic lung radiotherapy, we propose a different approach which uses patient-specific deep learning (DL)... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20190420 |
SubjectTerms | Deep Learning Feasibility Studies Fluoroscopy - methods Four-Dimensional Computed Tomography - methods Humans Image Processing, Computer-Assisted - methods Lung Neoplasms - radiotherapy Movement Phantoms, Imaging |
Title | Real-time markerless tumour tracking with patient-specific deep learning using a personalised data generation strategy: proof of concept by phantom study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32101456 https://www.proquest.com/docview/2366635624 https://pubmed.ncbi.nlm.nih.gov/PMC7217583 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1748-880X dateEnd: 20231001 omitProxy: true ssIdentifier: ssj0007590 issn: 0007-1285 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1748-880X dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0007590 issn: 0007-1285 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7qisu-iK63rhdG0KeQNfeLbyLqItQHt4t9C3PLttamJU1Y9Jfov_WcmSRNWxdUKKFNphPo9_WcM5NzvkPIixwFPQRTtsO5soEh3Obg9m1fSow_XFcFWJw8-hSdXQQfJ-FkMPjZy1qqK34qfvyxruR_UIVzgCtWyf4Dst2kcALeA75wBITh-FcYf4Yoz8bu8NYCs2zwufnaqmpYzZfY-0HMu53WRj7VxsJKTA6ypFKrtmXEpVXrHQOGIsYmNF9DHIrJo9hhWTUkWRshWy0RBXYXokydkq7LHjGKXU2xIfGip1i7I5zUU6komZxtbeiP2RyLy3SLYesL3Lmsu_1fODtnVzrKPZ8uq86RjJamTP58itWd01m57O9heM4mY_BUGbsbB4kNpmTSN8ymdWJLQNdJ-4YWa-ADXUe37wVgSQfQ8a-o97o_DH6l1UIzAuuX3CDckeI2zr25dIPc9OIowt4YHyab5KE4TJ2mjAJu9qp_qyNy2H55O9bZW8Ds5uH2ApvxHXK7WZHQN4Zed8lAFcfkcNTkXByTWzpJWKzvkV8d3-iGb9TwjbZ8o8g3uss3inyjLd-o5htltM83inyjG77Rlm-vqWYbhVfDNsq_04ZtVLPtPrl4_2789sxuWnvYwk-dylYM1glRzHgYej58kNyTguEz8dyNReor5aSSSxVwlyvpqyj3BWfcFalIQhZJ_wE5KJaFekSojNMEPFUuHCEDCf7bS2SMbiZRQS48NiRWC0ImGt17bL_yLcP1L6CXAXpZi96QvOxGr4zeyzXjnrd4ZmCQ8SkbK9SyXmdg_DCKj7xgSB4afLuZWmIMSbyFfDcAxd63rxSzqRZ9jz0I9BP_5No5H5OjzV_rCTmoylo9hYC54s80d38D59bMYA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+markerless+tumour+tracking+with+patient-specific+deep+learning+using+a+personalised+data+generation+strategy%3A+proof+of+concept+by+phantom+study&rft.jtitle=British+journal+of+radiology&rft.au=Takahashi%2C+Wataru&rft.au=Oshikawa%2C+Shota&rft.au=Mori%2C+Shinichiro&rft.date=2020-05-01&rft.eissn=1748-880X&rft.volume=93&rft.issue=1109&rft.spage=20190420&rft_id=info:doi/10.1259%2Fbjr.20190420&rft_id=info%3Apmid%2F32101456&rft.externalDocID=32101456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1285&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1285&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1285&client=summon |