Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks

Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the clo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 4125 - 4134
Main Authors Zhang, Xiang, Chen, Shuhang, Wang, Yiwen
Format Journal Article
LanguageEnglish
Published New York IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2023.3321756

Cover

Abstract Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks.
AbstractList Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks.
Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks.Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks.
Author Chen, Shuhang
Zhang, Xiang
Wang, Yiwen
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0002-7432-9904
  surname: Zhang
  fullname: Zhang, Xiang
  email: xzhangaz@connect.ust.hk
  organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong
– sequence: 2
  givenname: Shuhang
  orcidid: 0000-0003-4634-3220
  surname: Chen
  fullname: Chen, Shuhang
  email: schenbx@connect.ust.hk
  organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong
– sequence: 3
  givenname: Yiwen
  orcidid: 0000-0002-1878-6182
  surname: Wang
  fullname: Wang, Yiwen
  email: eewangyw@ust.hk
  organization: Department of Electronic and Computer Engineering and the Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong
BookMark eNplkk1vEzEQhleoiH7AH0AcVuLCZYPt2fXHsYQWKiKQ2nC2JuvZymFjB9sB9d-zSSqEysUejZ739When1cnIQaqqteczThn5v3y693t1UwwATMAwVUnn1VnvOt0wwRnJ_sa2qYFwU6r85zXjHElO_WiOgWljJjKs2rzhVKgsb4lH4aYetpQKPWCMAUf7pvLnH0u5OpLh9vif1H9kfroKNXX2PvRFyyU67uCq5FqDK6ex1B82MVdrj8k9OHQSHGsl5h_5JfV8wHHTK8e74vq-_XVcv65WXz7dDO_XDQ9GFYaMr1DQtkzoQcywminVquWOnLQAXPMtUJI5VomXTuYtjcrORAnLYyE6YCL6ubo6yKu7Tb5DaYHG9HbQyOme4up-H4ki8BROaNUB7LtBrkSnOtBg5RaESCbvODotQtbfPiN4_jXkDO7D8KWkBPZfRD2MYhJ9e6o2qb4c0e52I3PPY0jBpqWY4VWIDrQABP69gm6jrsUpv1MlOYdNy3TEyWOVJ9inp4b_pvi8B2eTvHmKPJE9I9AKK5AwR9sMa9R
CODEN ITNSB3
Cites_doi 10.2307/j.ctv1khdr07
10.1109/tbme.2014.2354697
10.1109/tbme.2016.2582691
10.1038/nature14236
10.1109/tnsre.2010.2092443
10.1109/embc.2018.8513597
10.1163/1568537042484977
10.1109/tsp.2007.907881
10.1109/EMBC.2019.8856555
10.1109/tnn.1998.712192
10.1109/tnsre.2019.2934176
10.1109/tnsre.2022.3210700
10.1515/revneuro.2003.14.1-2.107
10.1080/00222895.2010.526457
10.1109/embc.2018.8512241
10.1007/3-540-44581-1_27
10.1152/jn.00371.2011
10.1038/nature10845
10.1016/j.neuroimage.2015.11.036
10.1152/physrev.00027.2016
10.1162/0899766054615699
10.3390/e23060743
10.1016/j.plrev.2006.02.001
10.1016/j.neuron.2014.04.048
10.2478/s13380-014-0212-z
10.1016/j.neuron.2018.01.040
10.1109/iembs.2004.1404215
10.1038/nn.3265
10.1109/TNSRE.2014.2341275
10.1007/s11517-009-0459-7
10.1109/TBME.2008.926699
10.1109/tnsre.2020.3039970
10.1103/physreve.67.046204
10.1371/journal.pone.0014760
10.1016/j.tins.2006.07.004
10.1002/9780470608593
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2023.3321756
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (LUT & LAB)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 4134
ExternalDocumentID oai_doaj_org_article_a31a7d97753645f6b2118f836687e3a0
10.1109/tnsre.2023.3321756
10_1109_TNSRE_2023_3321756
10271737
Genre orig-research
GrantInformation_xml – fundername: STI 2030-Major Projects 2021ZD0200403
– fundername: Special Research Support from the Chau Hoi Shuen Foundation
  grantid: R9051
– fundername: Seed Fund of the Big Data for Bio-Intelligence Laboratory
  grantid: Z0428
– fundername: Innovation and Technology Commission
  grantid: ITCPD/17-9
  funderid: 10.13039/501100003452
– fundername: National Natural Science Foundation of China
  grantid: 61836003
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c390t-e9cdaea6c028fe9298d7bb4e5ed3530d0d42267d406d4f94c9b6fe1e829638293
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Fri Oct 03 12:45:21 EDT 2025
Wed Oct 01 16:54:52 EDT 2025
Fri Jul 11 12:40:57 EDT 2025
Fri Jul 25 07:17:44 EDT 2025
Wed Oct 01 01:12:35 EDT 2025
Wed Aug 27 02:24:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-e9cdaea6c028fe9298d7bb4e5ed3530d0d42267d406d4f94c9b6fe1e829638293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4634-3220
0000-0002-1878-6182
0000-0002-7432-9904
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10271737
PMID 37792657
PQID 2881519408
PQPubID 85423
PageCount 10
ParticipantIDs unpaywall_primary_10_1109_tnsre_2023_3321756
crossref_primary_10_1109_TNSRE_2023_3321756
ieee_primary_10271737
doaj_primary_oai_doaj_org_article_a31a7d97753645f6b2118f836687e3a0
proquest_journals_2881519408
proquest_miscellaneous_2873253833
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
Wu (ref17) 2003; 15
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref39
ref16
Assimakis (ref38) 2012; 2
ref19
ref18
Mnih (ref36) 2013
Wu (ref34)
ref24
ref23
ref26
ref25
Ribeiro (ref20) 2004; 43
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref11
  doi: 10.2307/j.ctv1khdr07
– ident: ref23
  doi: 10.1109/tbme.2014.2354697
– ident: ref24
  doi: 10.1109/tbme.2016.2582691
– ident: ref37
  doi: 10.1038/nature14236
– ident: ref19
  doi: 10.1109/tnsre.2010.2092443
– ident: ref28
  doi: 10.1109/embc.2018.8513597
– start-page: 66
  volume-title: Proc. SAB Workshop Motor Control Humans Robots, Interplay Real Brains Artif. Devices
  ident: ref34
  article-title: Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter
– ident: ref6
  doi: 10.1163/1568537042484977
– ident: ref32
  doi: 10.1109/tsp.2007.907881
– ident: ref30
  doi: 10.1109/EMBC.2019.8856555
– ident: ref25
  doi: 10.1109/tnn.1998.712192
– ident: ref29
  doi: 10.1109/tnsre.2019.2934176
– volume: 2
  start-page: 1
  year: 2012
  ident: ref38
  article-title: Information filter and Kalman filter comparison: Selection of the faster filter
  publication-title: Int. J. Inf. Eng.
– ident: ref41
  doi: 10.1109/tnsre.2022.3210700
– ident: ref14
  doi: 10.1515/revneuro.2003.14.1-2.107
– ident: ref8
  doi: 10.1080/00222895.2010.526457
– volume: 15
  start-page: 133
  volume-title: Advances in Neural Information Processing Systems
  year: 2003
  ident: ref17
  article-title: Neural decoding of cursor motion using a Kalman filter
– ident: ref15
  doi: 10.1109/embc.2018.8512241
– ident: ref33
  doi: 10.1007/3-540-44581-1_27
– ident: ref9
  doi: 10.1152/jn.00371.2011
– ident: ref12
  doi: 10.1038/nature10845
– year: 2013
  ident: ref36
  article-title: Playing Atari with deep reinforcement learning
  publication-title: arXiv:1312.5602
– ident: ref7
  doi: 10.1016/j.neuroimage.2015.11.036
– ident: ref3
  doi: 10.1152/physrev.00027.2016
– ident: ref35
  doi: 10.1162/0899766054615699
– ident: ref39
  doi: 10.3390/e23060743
– ident: ref5
  doi: 10.1016/j.plrev.2006.02.001
– ident: ref13
  doi: 10.1016/j.neuron.2014.04.048
– ident: ref2
  doi: 10.2478/s13380-014-0212-z
– ident: ref10
  doi: 10.1016/j.neuron.2018.01.040
– ident: ref18
  doi: 10.1109/iembs.2004.1404215
– ident: ref22
  doi: 10.1038/nn.3265
– ident: ref16
  doi: 10.1109/TNSRE.2014.2341275
– volume: 43
  start-page: 3736
  issue: 46
  year: 2004
  ident: ref20
  article-title: Kalman and extended Kalman filters: Concept, derivation and properties
  publication-title: Inst. Syst. Robot.
– ident: ref21
  doi: 10.1007/s11517-009-0459-7
– ident: ref26
  doi: 10.1109/TBME.2008.926699
– ident: ref27
  doi: 10.1109/tnsre.2020.3039970
– ident: ref4
  doi: 10.1103/physreve.67.046204
– ident: ref40
  doi: 10.1371/journal.pone.0014760
– ident: ref1
  doi: 10.1016/j.tins.2006.07.004
– ident: ref31
  doi: 10.1002/9780470608593
SSID ssj0017657
Score 2.4050941
Snippet Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4125
SubjectTerms Adaptation
Adaptive control
Brain
Brain modeling
Brain-machine interface
Closed loops
Continuity (mathematics)
continuous brain control
Control tasks
Decoders
Decoding
Feedback control
Kalman filters
Kernel
kernel reinforcement learning
Kernels
Learning
Man-machine interfaces
Mapping
Movement
Neural prostheses
Prostheses
Prosthetics
Rats
Reinforcement
Sensory feedback
stability over days
state-observation model
Task analysis
Trajectory
Trajectory control
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPIoItMhIwAXSZmMnto8tdFWB6KFspd4sO54gxOJdbXaF-u-ZcbKrrDhw4epYtsczznzjxzeMvVFeSemrSV5KrzFA0SZ3hYC8LAmPt0qZ9I7761V9eSM_31a3o1RfdCespwfuJ-7UiYlTAVFKRQdmbe0xYtGtFnWtFQiXonXsYRtMDecHqq7U9olMYU5nV9-uL04oU_iJEAjCKV31yA0ltv4hvcoe0ry_iUt399vN5yOnM33EHg5okZ_1o3zM7kF8wt6OmYH5rKcF4O_49R7p9lP26wusIsyxPLGjNmkjkA-Eqt9zVAypOPCz4Jb00-OfgB64r_jUNX0z0HEEo34O3MXAicjqR9wsNh0_p8QSqWC1wCG47md3yG6mF7OPl_mQXSFvhCnWOZgmOHB1gwijBURJOijvJVQQRCWKUAR6ZKsCevwgWyMb4-sWJqBLWrOIEp6xg7iI8Jxx6XwZiCkN6KgYAzpsNggiljeqkq7I2PvtZNtlT6JhU_BRGJtUY0k1dlBNxs5JH7uaRICdCtAs7GAW9l9mkbFD0uaou5LuG6iMHW3Va4fV2tlSawQ-Bi01Y693n3Gd0eGJi4ATi3WUKNE7CJGxDzuz-EucdUQp98R58T_EeckeUJv93s8RO1ivNnCMaGjtXyXD_wNNvALA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZG98ATDBiiaENGAl4gaRo7cSyeOlg1gajQaKUhIUV2fEHTSlq1ifjx13PnpFULT_AWOVYS5-583-Vy3zH2TFklpU2GQSxthgFKpgMTCQjimPB4qZT2ddwfJunFTL67Sq4O2OttLQwA-J_PIKRDn8u_hvkPNVBCiAE6d402hrYeU_pYhUtX3mKHaYJAvMcOZ5OPo88tQ6oMpPCkjOgws4Aim03JTKQHdYX-J6TO4aEQCMqpffWOW_Ls_V27lT3kebuplubndzOf7zih8V32ZfP47b8nN2FT27D49Qez43-u74jd6cApH7XadI8dQHWfPd8lIubTloWAv-CXexzfD9i397CqYI7jnoy18N8decff-jVAPSCNcnzkzJL2WP4WqJ5-xcemaC8Da47Y186Bm8px4s26rppFs-Zn1MfCD6wW-AhmfbM-ZrPx-fTNRdA1cwgKoaM6AF04AyYtENCUgKAsc8paCQk4kYjIRY5qepVDgOFkqWWhbVrCELKYtggEJQ9Zr1pU8IhxaWzsiJgNKDON8SNe1gnisdcqkSbqs5cbWebLlrMj97FOpPPp5NPleU6SzzvJ99kZiXs7k_i2_QCKJu_MNzdiaJRDrJxQ2rZMLcbNWZmJNM0UCLrlMYlz53at_PrsZKM9ebc5rPM4yxBnaTSMPnu6PY1mTbkaUwG-WJyjRIzOSIg-e7XVur-W4xV5bzmP_236CevVqwZOEVnV9klnQb8BwbscSQ
  priority: 102
  providerName: Unpaywall
Title Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks
URI https://ieeexplore.ieee.org/document/10271737
https://www.proquest.com/docview/2881519408
https://www.proquest.com/docview/2873253833
https://ieeexplore.ieee.org/ielx7/7333/4359219/10271737.pdf
https://doaj.org/article/a31a7d97753645f6b2118f836687e3a0
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYeIAXfg6RMSojAS-QLo2dOH7sYNUEokKjlcZTZMcXhNalVZMIwV_PnZNWLQiJt8ixEjufz_7sy33H2EtllZQ2GYWxtBluUDIdmkhAGMfEx0ultI_j_jRNL-byw1Vy1Qer-1gYAPA_n8GQLr0v3y2Llo7K0MJjchqrA3agsrQL1tq6DFTqZT3RgmUoRRxtImQifTqbfrk8H1Ki8KEQyMETSlxESntxSsvSzoLkdfv7RCt7nPNOW63Mzx9msdhZfib32XTT8O6vk-th29hh8esPTcf_7tkDdq8nonzcjZyH7BZUj9irXdFhPusUB_hrfrmn5_2Y3XyEdQULLPfCq4U_Y-S9Vuu3EDGn0eP42JkVzaf8PVDs_JpPTNE9BmqOPNcugJvKcdLI-l61y7bmZ5Szwhesl9gEU1_XR2w-OZ-9uwj7xA1hIXTUhKALZ8CkBZKXEpCAZU5ZKyEBJxIRuchR_K5ySCacLLUstE1LGEEW03SABOQJO6yWFTxlXBobOxJhA_JC414RH-sEadZrlUgTBezNBr181elz5H5fE-ncw54T7HkPe8DOCOBtTdLW9gUIRt6bam7EyCiHvDghF22ZWtwjZ2Um0jRTIOiVRwTgzus67AJ2shkveT8R1HmcZcipNBpBwF5sb6MJk1_GVIAfFusoEePCI0TA3m7H2V_daSrs5V53jv_RkmfsLlXrTopO2GGzbuE5cqfGDvyZw8BbzoDdnk8_j7_-BmLjFEQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHMqFzyICBYwEXCAhGztxcmyhq4W2eyhbqTfLjicIdcmuNokQ_HpmnOxqF4TELXK-7DyP_ezJvGHslbJKSpuOwkTaHBcoeRGaWECYJMTHK6UKH8d9Ps0ml_LzVXo1BKv7WBgA8D-fQUSH3pfvFmVHW2Vo4Qk5jdVNdiuVUqZ9uNbGaaAyL-yJNixDKZJ4HSMTF-9n0y8XJxGlCo-EQBaeUuoi0tpLMpqYtqYkr9w_pFrZYZ37Xb00P3-Y-XxrAhrfZdN11fv_Tq6jrrVR-esPVcf_bts9dmegovyo7zv32Q2oH7DX27LDfNZrDvA3_GJH0fsh-34KqxrmWO6lV0u_y8gHtdavIaJO_cfxI2eWNKLyj0DR8ys-NmX_GGg4Ml07B25qx0kl61vdLbqGH1PWCl-wWmAVTHPdHLDL8cnswyQcUjeEpSjiNoSidAZMViJ9qQApWO6UtRJScCIVsYsdRfAqh3TCyaqQZWGzCkaQJzQgIAV5xPbqRQ2PGZfGJo5k2ID80LhaxMc6Qar1hUqliQP2do2eXvYKHdqvbOJCe9g1wa4H2AN2TABvriR1bV-AYOjBWLURI6McMuOUnLRVZnGVnFe5yLJcgaBXHhCAW6_rsQvY4bq_6GEoaHSS58iqCjSDgL3cnEYjJs-MqQE_LF6jRIJTjxABe7fpZ381p62xlTvNefKPmrxg-5PZ-Zk--zQ9fcpu0y39vtEh22tXHTxDJtXa595-fgPNVBTs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZG98ATDBiiaENGAl4gaRo7cSyeOlg1gajQaKUhIUV2fEHTSlq1ifjx13PnpFULT_AWOVYS5-583-Vy3zH2TFklpU2GQSxthgFKpgMTCQjimPB4qZT2ddwfJunFTL67Sq4O2OttLQwA-J_PIKRDn8u_hvkPNVBCiAE6d402hrYeU_pYhUtX3mKHaYJAvMcOZ5OPo88tQ6oMpPCkjOgws4Aim03JTKQHdYX-J6TO4aEQCMqpffWOW_Ls_V27lT3kebuplubndzOf7zih8V32ZfP47b8nN2FT27D49Qez43-u74jd6cApH7XadI8dQHWfPd8lIubTloWAv-CXexzfD9i397CqYI7jnoy18N8decff-jVAPSCNcnzkzJL2WP4WqJ5-xcemaC8Da47Y186Bm8px4s26rppFs-Zn1MfCD6wW-AhmfbM-ZrPx-fTNRdA1cwgKoaM6AF04AyYtENCUgKAsc8paCQk4kYjIRY5qepVDgOFkqWWhbVrCELKYtggEJQ9Zr1pU8IhxaWzsiJgNKDON8SNe1gnisdcqkSbqs5cbWebLlrMj97FOpPPp5NPleU6SzzvJ99kZiXs7k_i2_QCKJu_MNzdiaJRDrJxQ2rZMLcbNWZmJNM0UCLrlMYlz53at_PrsZKM9ebc5rPM4yxBnaTSMPnu6PY1mTbkaUwG-WJyjRIzOSIg-e7XVur-W4xV5bzmP_236CevVqwZOEVnV9klnQb8BwbscSQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Reinforcement+Learning-Assisted+Adaptive+Decoder+Facilitates+Stable+and+Continuous+Brain+Control+Tasks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhang%2C+Xiang&rft.au=Chen%2C+Shuhang&rft.au=Wang%2C+Yiwen&rft.date=2023&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=31&rft.spage=4125&rft.epage=4134&rft_id=info:doi/10.1109%2FTNSRE.2023.3321756&rft_id=info%3Apmid%2F37792657&rft.externalDocID=10271737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon