Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks
Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the clo...
Saved in:
| Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 4125 - 4134 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1534-4320 1558-0210 1558-0210 |
| DOI | 10.1109/TNSRE.2023.3321756 |
Cover
| Abstract | Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks. |
|---|---|
| AbstractList | Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks. Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks.Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the subject imagines the movement of the real limb and adapts the brain activity according to the sensory feedback. The neural adaptation in the closed-loop control results in complex and changing brain signals. Simultaneously, the decoder interprets the time-varying functional mapping between neural activity and continuous trajectory. It is crucial and challenging to accurately and adaptively track the mapping to help the subject accomplish the BC task with a stable performance. Existing Kalman Filter (KF) based decoders achieve continuous trajectory control by linearly interpreting neural firing observations into self-evolving prosthetic states. However, the linear neural-state mapping might not accurately reflect the movement intention of the subject. In this paper, we propose a novel method that allows subjects to achieve continuous brain control efficiently and stably. The proposed method incorporates a kernel reinforcement learning method into a state-observation model to decode the nonlinearly neural observation into a continuous trajectory state. The state transition function ensures the continuity of the prosthetic state. The kernel reinforcement learning allows the quick adaptation of the nonlinear neural-movement mapping during the BC process. The proposed method is tested in an online brain control reaching task for rats. Compared with KF, our method achieved more successful trials, faster response time, shorter inter-trial time, and remained stable over days. These results demonstrate that the proposed method is an efficient tool to assist subjects in brain control tasks. |
| Author | Chen, Shuhang Zhang, Xiang Wang, Yiwen |
| Author_xml | – sequence: 1 givenname: Xiang orcidid: 0000-0002-7432-9904 surname: Zhang fullname: Zhang, Xiang email: xzhangaz@connect.ust.hk organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong – sequence: 2 givenname: Shuhang orcidid: 0000-0003-4634-3220 surname: Chen fullname: Chen, Shuhang email: schenbx@connect.ust.hk organization: Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong – sequence: 3 givenname: Yiwen orcidid: 0000-0002-1878-6182 surname: Wang fullname: Wang, Yiwen email: eewangyw@ust.hk organization: Department of Electronic and Computer Engineering and the Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Sai Kung, Hong Kong |
| BookMark | eNplkk1vEzEQhleoiH7AH0AcVuLCZYPt2fXHsYQWKiKQ2nC2JuvZymFjB9sB9d-zSSqEysUejZ739When1cnIQaqqteczThn5v3y693t1UwwATMAwVUnn1VnvOt0wwRnJ_sa2qYFwU6r85zXjHElO_WiOgWljJjKs2rzhVKgsb4lH4aYetpQKPWCMAUf7pvLnH0u5OpLh9vif1H9kfroKNXX2PvRFyyU67uCq5FqDK6ex1B82MVdrj8k9OHQSHGsl5h_5JfV8wHHTK8e74vq-_XVcv65WXz7dDO_XDQ9GFYaMr1DQtkzoQcywminVquWOnLQAXPMtUJI5VomXTuYtjcrORAnLYyE6YCL6ubo6yKu7Tb5DaYHG9HbQyOme4up-H4ki8BROaNUB7LtBrkSnOtBg5RaESCbvODotQtbfPiN4_jXkDO7D8KWkBPZfRD2MYhJ9e6o2qb4c0e52I3PPY0jBpqWY4VWIDrQABP69gm6jrsUpv1MlOYdNy3TEyWOVJ9inp4b_pvi8B2eTvHmKPJE9I9AKK5AwR9sMa9R |
| CODEN | ITNSB3 |
| Cites_doi | 10.2307/j.ctv1khdr07 10.1109/tbme.2014.2354697 10.1109/tbme.2016.2582691 10.1038/nature14236 10.1109/tnsre.2010.2092443 10.1109/embc.2018.8513597 10.1163/1568537042484977 10.1109/tsp.2007.907881 10.1109/EMBC.2019.8856555 10.1109/tnn.1998.712192 10.1109/tnsre.2019.2934176 10.1109/tnsre.2022.3210700 10.1515/revneuro.2003.14.1-2.107 10.1080/00222895.2010.526457 10.1109/embc.2018.8512241 10.1007/3-540-44581-1_27 10.1152/jn.00371.2011 10.1038/nature10845 10.1016/j.neuroimage.2015.11.036 10.1152/physrev.00027.2016 10.1162/0899766054615699 10.3390/e23060743 10.1016/j.plrev.2006.02.001 10.1016/j.neuron.2014.04.048 10.2478/s13380-014-0212-z 10.1016/j.neuron.2018.01.040 10.1109/iembs.2004.1404215 10.1038/nn.3265 10.1109/TNSRE.2014.2341275 10.1007/s11517-009-0459-7 10.1109/TBME.2008.926699 10.1109/tnsre.2020.3039970 10.1103/physreve.67.046204 10.1371/journal.pone.0014760 10.1016/j.tins.2006.07.004 10.1002/9780470608593 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY DOA |
| DOI | 10.1109/TNSRE.2023.3321756 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals (LUT & LAB) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EISSN | 1558-0210 |
| EndPage | 4134 |
| ExternalDocumentID | oai_doaj_org_article_a31a7d97753645f6b2118f836687e3a0 10.1109/tnsre.2023.3321756 10_1109_TNSRE_2023_3321756 10271737 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: STI 2030-Major Projects 2021ZD0200403 – fundername: Special Research Support from the Chau Hoi Shuen Foundation grantid: R9051 – fundername: Seed Fund of the Big Data for Bio-Intelligence Laboratory grantid: Z0428 – fundername: Innovation and Technology Commission grantid: ITCPD/17-9 funderid: 10.13039/501100003452 – fundername: National Natural Science Foundation of China grantid: 61836003 funderid: 10.13039/501100001809 |
| GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c390t-e9cdaea6c028fe9298d7bb4e5ed3530d0d42267d406d4f94c9b6fe1e829638293 |
| IEDL.DBID | RIE |
| ISSN | 1534-4320 1558-0210 |
| IngestDate | Fri Oct 03 12:45:21 EDT 2025 Wed Oct 01 16:54:52 EDT 2025 Fri Jul 11 12:40:57 EDT 2025 Fri Jul 25 07:17:44 EDT 2025 Wed Oct 01 01:12:35 EDT 2025 Wed Aug 27 02:24:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c390t-e9cdaea6c028fe9298d7bb4e5ed3530d0d42267d406d4f94c9b6fe1e829638293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4634-3220 0000-0002-1878-6182 0000-0002-7432-9904 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10271737 |
| PMID | 37792657 |
| PQID | 2881519408 |
| PQPubID | 85423 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1109_tnsre_2023_3321756 crossref_primary_10_1109_TNSRE_2023_3321756 ieee_primary_10271737 doaj_primary_oai_doaj_org_article_a31a7d97753645f6b2118f836687e3a0 proquest_journals_2881519408 proquest_miscellaneous_2873253833 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 20230000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
| PublicationTitleAbbrev | TNSRE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref37 ref14 Wu (ref17) 2003; 15 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref39 ref16 Assimakis (ref38) 2012; 2 ref19 ref18 Mnih (ref36) 2013 Wu (ref34) ref24 ref23 ref26 ref25 Ribeiro (ref20) 2004; 43 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref11 doi: 10.2307/j.ctv1khdr07 – ident: ref23 doi: 10.1109/tbme.2014.2354697 – ident: ref24 doi: 10.1109/tbme.2016.2582691 – ident: ref37 doi: 10.1038/nature14236 – ident: ref19 doi: 10.1109/tnsre.2010.2092443 – ident: ref28 doi: 10.1109/embc.2018.8513597 – start-page: 66 volume-title: Proc. SAB Workshop Motor Control Humans Robots, Interplay Real Brains Artif. Devices ident: ref34 article-title: Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter – ident: ref6 doi: 10.1163/1568537042484977 – ident: ref32 doi: 10.1109/tsp.2007.907881 – ident: ref30 doi: 10.1109/EMBC.2019.8856555 – ident: ref25 doi: 10.1109/tnn.1998.712192 – ident: ref29 doi: 10.1109/tnsre.2019.2934176 – volume: 2 start-page: 1 year: 2012 ident: ref38 article-title: Information filter and Kalman filter comparison: Selection of the faster filter publication-title: Int. J. Inf. Eng. – ident: ref41 doi: 10.1109/tnsre.2022.3210700 – ident: ref14 doi: 10.1515/revneuro.2003.14.1-2.107 – ident: ref8 doi: 10.1080/00222895.2010.526457 – volume: 15 start-page: 133 volume-title: Advances in Neural Information Processing Systems year: 2003 ident: ref17 article-title: Neural decoding of cursor motion using a Kalman filter – ident: ref15 doi: 10.1109/embc.2018.8512241 – ident: ref33 doi: 10.1007/3-540-44581-1_27 – ident: ref9 doi: 10.1152/jn.00371.2011 – ident: ref12 doi: 10.1038/nature10845 – year: 2013 ident: ref36 article-title: Playing Atari with deep reinforcement learning publication-title: arXiv:1312.5602 – ident: ref7 doi: 10.1016/j.neuroimage.2015.11.036 – ident: ref3 doi: 10.1152/physrev.00027.2016 – ident: ref35 doi: 10.1162/0899766054615699 – ident: ref39 doi: 10.3390/e23060743 – ident: ref5 doi: 10.1016/j.plrev.2006.02.001 – ident: ref13 doi: 10.1016/j.neuron.2014.04.048 – ident: ref2 doi: 10.2478/s13380-014-0212-z – ident: ref10 doi: 10.1016/j.neuron.2018.01.040 – ident: ref18 doi: 10.1109/iembs.2004.1404215 – ident: ref22 doi: 10.1038/nn.3265 – ident: ref16 doi: 10.1109/TNSRE.2014.2341275 – volume: 43 start-page: 3736 issue: 46 year: 2004 ident: ref20 article-title: Kalman and extended Kalman filters: Concept, derivation and properties publication-title: Inst. Syst. Robot. – ident: ref21 doi: 10.1007/s11517-009-0459-7 – ident: ref26 doi: 10.1109/TBME.2008.926699 – ident: ref27 doi: 10.1109/tnsre.2020.3039970 – ident: ref4 doi: 10.1103/physreve.67.046204 – ident: ref40 doi: 10.1371/journal.pone.0014760 – ident: ref1 doi: 10.1016/j.tins.2006.07.004 – ident: ref31 doi: 10.1002/9780470608593 |
| SSID | ssj0017657 |
| Score | 2.4050941 |
| Snippet | Brain-Machine Interfaces (BMIs) assist paralyzed people to brain control (BC) the neuro-prosthesis continuously moving in space. During the BC process, the... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 4125 |
| SubjectTerms | Adaptation Adaptive control Brain Brain modeling Brain-machine interface Closed loops Continuity (mathematics) continuous brain control Control tasks Decoders Decoding Feedback control Kalman filters Kernel kernel reinforcement learning Kernels Learning Man-machine interfaces Mapping Movement Neural prostheses Prostheses Prosthetics Rats Reinforcement Sensory feedback stability over days state-observation model Task analysis Trajectory Trajectory control |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBPIoItMhIwAXSZmMnto8tdFWB6KFspd4sO54gxOJdbXaF-u-ZcbKrrDhw4epYtsczznzjxzeMvVFeSemrSV5KrzFA0SZ3hYC8LAmPt0qZ9I7761V9eSM_31a3o1RfdCespwfuJ-7UiYlTAVFKRQdmbe0xYtGtFnWtFQiXonXsYRtMDecHqq7U9olMYU5nV9-uL04oU_iJEAjCKV31yA0ltv4hvcoe0ry_iUt399vN5yOnM33EHg5okZ_1o3zM7kF8wt6OmYH5rKcF4O_49R7p9lP26wusIsyxPLGjNmkjkA-Eqt9zVAypOPCz4Jb00-OfgB64r_jUNX0z0HEEo34O3MXAicjqR9wsNh0_p8QSqWC1wCG47md3yG6mF7OPl_mQXSFvhCnWOZgmOHB1gwijBURJOijvJVQQRCWKUAR6ZKsCevwgWyMb4-sWJqBLWrOIEp6xg7iI8Jxx6XwZiCkN6KgYAzpsNggiljeqkq7I2PvtZNtlT6JhU_BRGJtUY0k1dlBNxs5JH7uaRICdCtAs7GAW9l9mkbFD0uaou5LuG6iMHW3Va4fV2tlSawQ-Bi01Y693n3Gd0eGJi4ATi3WUKNE7CJGxDzuz-EucdUQp98R58T_EeckeUJv93s8RO1ivNnCMaGjtXyXD_wNNvALA priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZG98ATDBiiaENGAl4gaRo7cSyeOlg1gajQaKUhIUV2fEHTSlq1ifjx13PnpFULT_AWOVYS5-583-Vy3zH2TFklpU2GQSxthgFKpgMTCQjimPB4qZT2ddwfJunFTL67Sq4O2OttLQwA-J_PIKRDn8u_hvkPNVBCiAE6d402hrYeU_pYhUtX3mKHaYJAvMcOZ5OPo88tQ6oMpPCkjOgws4Aim03JTKQHdYX-J6TO4aEQCMqpffWOW_Ls_V27lT3kebuplubndzOf7zih8V32ZfP47b8nN2FT27D49Qez43-u74jd6cApH7XadI8dQHWfPd8lIubTloWAv-CXexzfD9i397CqYI7jnoy18N8decff-jVAPSCNcnzkzJL2WP4WqJ5-xcemaC8Da47Y186Bm8px4s26rppFs-Zn1MfCD6wW-AhmfbM-ZrPx-fTNRdA1cwgKoaM6AF04AyYtENCUgKAsc8paCQk4kYjIRY5qepVDgOFkqWWhbVrCELKYtggEJQ9Zr1pU8IhxaWzsiJgNKDON8SNe1gnisdcqkSbqs5cbWebLlrMj97FOpPPp5NPleU6SzzvJ99kZiXs7k_i2_QCKJu_MNzdiaJRDrJxQ2rZMLcbNWZmJNM0UCLrlMYlz53at_PrsZKM9ebc5rPM4yxBnaTSMPnu6PY1mTbkaUwG-WJyjRIzOSIg-e7XVur-W4xV5bzmP_236CevVqwZOEVnV9klnQb8BwbscSQ priority: 102 providerName: Unpaywall |
| Title | Kernel Reinforcement Learning-Assisted Adaptive Decoder Facilitates Stable and Continuous Brain Control Tasks |
| URI | https://ieeexplore.ieee.org/document/10271737 https://www.proquest.com/docview/2881519408 https://www.proquest.com/docview/2873253833 https://ieeexplore.ieee.org/ielx7/7333/4359219/10271737.pdf https://doaj.org/article/a31a7d97753645f6b2118f836687e3a0 |
| UnpaywallVersion | publishedVersion |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0210 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017657 issn: 1558-0210 databaseCode: RIE dateStart: 20010101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYeIAXfg6RMSojAS-QLo2dOH7sYNUEokKjlcZTZMcXhNalVZMIwV_PnZNWLQiJt8ixEjufz_7sy33H2EtllZQ2GYWxtBluUDIdmkhAGMfEx0ultI_j_jRNL-byw1Vy1Qer-1gYAPA_n8GQLr0v3y2Llo7K0MJjchqrA3agsrQL1tq6DFTqZT3RgmUoRRxtImQifTqbfrk8H1Ki8KEQyMETSlxESntxSsvSzoLkdfv7RCt7nPNOW63Mzx9msdhZfib32XTT8O6vk-th29hh8esPTcf_7tkDdq8nonzcjZyH7BZUj9irXdFhPusUB_hrfrmn5_2Y3XyEdQULLPfCq4U_Y-S9Vuu3EDGn0eP42JkVzaf8PVDs_JpPTNE9BmqOPNcugJvKcdLI-l61y7bmZ5Szwhesl9gEU1_XR2w-OZ-9uwj7xA1hIXTUhKALZ8CkBZKXEpCAZU5ZKyEBJxIRuchR_K5ySCacLLUstE1LGEEW03SABOQJO6yWFTxlXBobOxJhA_JC414RH-sEadZrlUgTBezNBr181elz5H5fE-ncw54T7HkPe8DOCOBtTdLW9gUIRt6bam7EyCiHvDghF22ZWtwjZ2Um0jRTIOiVRwTgzus67AJ2shkveT8R1HmcZcipNBpBwF5sb6MJk1_GVIAfFusoEePCI0TA3m7H2V_daSrs5V53jv_RkmfsLlXrTopO2GGzbuE5cqfGDvyZw8BbzoDdnk8_j7_-BmLjFEQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgHMqFzyICBYwEXCAhGztxcmyhq4W2eyhbqTfLjicIdcmuNokQ_HpmnOxqF4TELXK-7DyP_ezJvGHslbJKSpuOwkTaHBcoeRGaWECYJMTHK6UKH8d9Ps0ml_LzVXo1BKv7WBgA8D-fQUSH3pfvFmVHW2Vo4Qk5jdVNdiuVUqZ9uNbGaaAyL-yJNixDKZJ4HSMTF-9n0y8XJxGlCo-EQBaeUuoi0tpLMpqYtqYkr9w_pFrZYZ37Xb00P3-Y-XxrAhrfZdN11fv_Tq6jrrVR-esPVcf_bts9dmegovyo7zv32Q2oH7DX27LDfNZrDvA3_GJH0fsh-34KqxrmWO6lV0u_y8gHtdavIaJO_cfxI2eWNKLyj0DR8ys-NmX_GGg4Ml07B25qx0kl61vdLbqGH1PWCl-wWmAVTHPdHLDL8cnswyQcUjeEpSjiNoSidAZMViJ9qQApWO6UtRJScCIVsYsdRfAqh3TCyaqQZWGzCkaQJzQgIAV5xPbqRQ2PGZfGJo5k2ID80LhaxMc6Qar1hUqliQP2do2eXvYKHdqvbOJCe9g1wa4H2AN2TABvriR1bV-AYOjBWLURI6McMuOUnLRVZnGVnFe5yLJcgaBXHhCAW6_rsQvY4bq_6GEoaHSS58iqCjSDgL3cnEYjJs-MqQE_LF6jRIJTjxABe7fpZ381p62xlTvNefKPmrxg-5PZ-Zk--zQ9fcpu0y39vtEh22tXHTxDJtXa595-fgPNVBTs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZG98ATDBiiaENGAl4gaRo7cSyeOlg1gajQaKUhIUV2fEHTSlq1ifjx13PnpFULT_AWOVYS5-583-Vy3zH2TFklpU2GQSxthgFKpgMTCQjimPB4qZT2ddwfJunFTL67Sq4O2OttLQwA-J_PIKRDn8u_hvkPNVBCiAE6d402hrYeU_pYhUtX3mKHaYJAvMcOZ5OPo88tQ6oMpPCkjOgws4Aim03JTKQHdYX-J6TO4aEQCMqpffWOW_Ls_V27lT3kebuplubndzOf7zih8V32ZfP47b8nN2FT27D49Qez43-u74jd6cApH7XadI8dQHWfPd8lIubTloWAv-CXexzfD9i397CqYI7jnoy18N8decff-jVAPSCNcnzkzJL2WP4WqJ5-xcemaC8Da47Y186Bm8px4s26rppFs-Zn1MfCD6wW-AhmfbM-ZrPx-fTNRdA1cwgKoaM6AF04AyYtENCUgKAsc8paCQk4kYjIRY5qepVDgOFkqWWhbVrCELKYtggEJQ9Zr1pU8IhxaWzsiJgNKDON8SNe1gnisdcqkSbqs5cbWebLlrMj97FOpPPp5NPleU6SzzvJ99kZiXs7k_i2_QCKJu_MNzdiaJRDrJxQ2rZMLcbNWZmJNM0UCLrlMYlz53at_PrsZKM9ebc5rPM4yxBnaTSMPnu6PY1mTbkaUwG-WJyjRIzOSIg-e7XVur-W4xV5bzmP_236CevVqwZOEVnV9klnQb8BwbscSQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+Reinforcement+Learning-Assisted+Adaptive+Decoder+Facilitates+Stable+and+Continuous+Brain+Control+Tasks&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zhang%2C+Xiang&rft.au=Chen%2C+Shuhang&rft.au=Wang%2C+Yiwen&rft.date=2023&rft.pub=IEEE&rft.issn=1534-4320&rft.volume=31&rft.spage=4125&rft.epage=4134&rft_id=info:doi/10.1109%2FTNSRE.2023.3321756&rft_id=info%3Apmid%2F37792657&rft.externalDocID=10271737 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |