Fuzzy EMG classification for prosthesis control
Proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the...
Saved in:
| Published in | IEEE transactions on rehabilitation engineering Vol. 8; no. 3; pp. 305 - 311 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.09.2000
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6528 |
| DOI | 10.1109/86.867872 |
Cover
| Abstract | Proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed. |
|---|---|
| AbstractList | This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed. Proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed. This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed.This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed. |
| Author | Parker, P.A. Chan, F.H.Y. Yong-Sheng Yang Lam, F.K. Yuan-Ting Zhang |
| Author_xml | – sequence: 1 givenname: F.H.Y. surname: Chan fullname: Chan, F.H.Y. organization: Dept. of Electr. & Electron. Eng., Hong Kong Univ., China – sequence: 2 surname: Yong-Sheng Yang fullname: Yong-Sheng Yang – sequence: 3 givenname: F.K. surname: Lam fullname: Lam, F.K. – sequence: 4 surname: Yuan-Ting Zhang fullname: Yuan-Ting Zhang – sequence: 5 givenname: P.A. surname: Parker fullname: Parker, P.A. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11001510$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0TtPwzAUBWAPRfQBAysDygRiSOtX_BhR1RakIhaYLcdxhFGaFDsZ2l-PSwoDQjBZsr97dHU8BoO6qS0AFwhOEYJyJthUMC44HoARgoykLMNiCMYhvEGIKJXyFAyjhChDcARmy26_3yWLx1ViKh2CK53RrWvqpGx8svVNaF9tcCExTd36pjoDJ6Wugj0_nhPwslw8z-_T9dPqYX63Tg2RsE2NIQXCEkmqM5oVEAmi41p5KQqdY0LiXVkQS0xGCsohpcbg0iCIcsmFlQWZgJs-N67w3tnQqo0LxlaVrm3TBcU5opwxyqK8_ltizCUT8l-IEcWEZ4fEqyPs8o0t1Na7jfY79dVaBLMemNhP8LZUxrWfrbVeu0oheLBSCab6v4gTtz8mvkN_sZe9ddbab3d8_ACmhpCv |
| CODEN | IEEREN |
| CitedBy_id | crossref_primary_10_1007_s00521_015_1953_5 crossref_primary_10_3233_XST_17260 crossref_primary_10_3390_mi13101681 crossref_primary_10_1016_j_pmrj_2010_06_016 crossref_primary_10_16984_saufenbilder_1176459 crossref_primary_10_1109_JBHI_2013_2284476 crossref_primary_10_3390_s110403545 crossref_primary_10_1016_j_clinph_2003_12_030 crossref_primary_10_1109_JBHI_2018_2864335 crossref_primary_10_1109_TMECH_2007_897253 crossref_primary_10_1016_S0208_5216_13_70054_8 crossref_primary_10_1109_TBME_2011_2155063 crossref_primary_10_1016_j_compenvurbsys_2012_10_005 crossref_primary_10_4015_S1016237212500329 crossref_primary_10_1007_s11760_013_0526_2 crossref_primary_10_3233_JIFS_169795 crossref_primary_10_5302_J_ICROS_2006_12_9_935 crossref_primary_10_1016_j_bspc_2019_02_026 crossref_primary_10_1109_TNSRE_2009_2039590 crossref_primary_10_1002_tee_21863 crossref_primary_10_1109_TNSRE_2016_2563222 crossref_primary_10_9746_sicetr_45_717 crossref_primary_10_1541_ieejeiss_131_1409 crossref_primary_10_7210_jrsj_33_275 crossref_primary_10_1007_s12553_016_0153_3 crossref_primary_10_1177_2055668317708731 crossref_primary_10_1109_MEMB_2002_1175148 crossref_primary_10_1111_j_1468_0394_2008_00496_x crossref_primary_10_1002_ecj_11465 crossref_primary_10_1109_TNSRE_2015_2502663 crossref_primary_10_1016_j_medengphy_2005_07_012 crossref_primary_10_1016_j_bspc_2018_07_010 crossref_primary_10_1016_j_eswa_2010_09_068 crossref_primary_10_1109_JBHI_2015_2430524 crossref_primary_10_1002_pi_2757 crossref_primary_10_3389_fbioe_2024_1463377 crossref_primary_10_1080_03772063_2019_1638316 crossref_primary_10_3390_act11030065 crossref_primary_10_1109_TEVC_2012_2185845 crossref_primary_10_1186_1743_0003_10_44 crossref_primary_10_28948_ngumuh_542973 crossref_primary_10_1016_j_bea_2023_100088 crossref_primary_10_1016_j_bspc_2007_07_009 crossref_primary_10_9746_sicetr_57_504 crossref_primary_10_1007_s11517_007_0291_x crossref_primary_10_1097_00008526_200604000_00002 crossref_primary_10_1145_3078844 crossref_primary_10_1251_bpo115 crossref_primary_10_5391_JKIIS_2009_19_1_054 crossref_primary_10_1109_TBME_2007_894829 crossref_primary_10_1016_j_bspc_2015_02_009 crossref_primary_10_1007_s13246_011_0079_z crossref_primary_10_2170_jjphysiol_53_301 crossref_primary_10_1145_2331147_2331157 crossref_primary_10_3233_JIFS_169924 crossref_primary_10_3390_s130202613 crossref_primary_10_1088_1741_2560_12_4_046005 crossref_primary_10_3390_s140304342 crossref_primary_10_1109_ACCESS_2018_2851282 crossref_primary_10_1109_TBME_2008_2005942 crossref_primary_10_3389_fnins_2015_00389 crossref_primary_10_1016_j_neunet_2018_02_017 crossref_primary_10_1109_TNSRE_2011_2182525 crossref_primary_10_1002_ecj_11369 crossref_primary_10_1016_j_bspc_2020_102122 crossref_primary_10_1016_j_neucom_2021_10_044 crossref_primary_10_1109_TIE_2015_2497212 crossref_primary_10_4028_www_scientific_net_AMM_121_126_2156 crossref_primary_10_1243_09544119JEIM210 crossref_primary_10_1088_0967_3334_27_12_001 crossref_primary_10_1088_1757_899X_671_1_012064 crossref_primary_10_1109_TBME_2006_889192 crossref_primary_10_1109_TMECH_2007_897262 crossref_primary_10_1109_TNSRE_2009_2039619 crossref_primary_10_1007_s13534_023_00281_z crossref_primary_10_1109_TNSRE_2009_2023282 crossref_primary_10_4236_ica_2013_41012 crossref_primary_10_1186_1743_0003_10_50 crossref_primary_10_3389_fnins_2017_00597 crossref_primary_10_3390_s24113264 crossref_primary_10_1016_j_eswa_2017_03_012 crossref_primary_10_1016_j_bspc_2012_08_005 crossref_primary_10_1002_aisy_202200063 crossref_primary_10_1080_10739149_2021_1880933 crossref_primary_10_1016_j_bbe_2017_03_001 crossref_primary_10_1016_j_cmpb_2008_01_003 crossref_primary_10_20965_jrm_2007_p0381 crossref_primary_10_1016_j_eswa_2009_11_072 crossref_primary_10_1541_ieejias_132_411 crossref_primary_10_29048_makufebed_206628 crossref_primary_10_1109_MTS_2015_2494279 crossref_primary_10_1155_2013_908591 crossref_primary_10_1541_ieejias_130_1272 crossref_primary_10_1016_j_engappai_2017_10_017 crossref_primary_10_1109_TIM_2023_3286004 crossref_primary_10_1177_09544119221074770 crossref_primary_10_1109_RBME_2010_2085429 crossref_primary_10_1109_TBME_2013_2250502 crossref_primary_10_1109_TNSRE_2011_2108667 crossref_primary_10_1016_j_asoc_2012_03_035 crossref_primary_10_1186_1475_925X_12_133 crossref_primary_10_3390_s16040592 crossref_primary_10_1016_j_bspc_2016_01_011 crossref_primary_10_1016_j_ergon_2006_06_006 crossref_primary_10_1109_TIE_2010_2053334 crossref_primary_10_1109_TRO_2009_2019782 crossref_primary_10_1109_TMECH_2012_2226597 crossref_primary_10_3390_electronics12112444 crossref_primary_10_1007_s11771_013_1571_2 crossref_primary_10_1016_j_bspc_2007_11_005 crossref_primary_10_17694_bajece_899088 crossref_primary_10_9718_JBER_2012_33_2_065 crossref_primary_10_1007_s13534_022_00236_w crossref_primary_10_1155_2021_5541255 crossref_primary_10_1007_s41666_017_0001_x crossref_primary_10_1016_j_procs_2018_07_012 crossref_primary_10_1109_JSEN_2024_3446868 crossref_primary_10_1186_1475_925X_9_41 crossref_primary_10_1016_j_compbiomed_2009_02_001 crossref_primary_10_1016_j_ultrasmedbio_2010_04_015 crossref_primary_10_1016_j_robot_2014_01_008 crossref_primary_10_1007_s10846_012_9677_6 crossref_primary_10_1007_s11517_006_0100_y crossref_primary_10_3182_20070904_3_KR_2922_00040 crossref_primary_10_1142_S0219519416500767 crossref_primary_10_26634_jele_9_1_14807 crossref_primary_10_1109_TNSRE_2007_908376 crossref_primary_10_9746_sicetr_60_656 crossref_primary_10_1007_s10916_010_9548_2 crossref_primary_10_1097_JPO_0b013e31822fcd1a crossref_primary_10_3109_03093641003674296 crossref_primary_10_1109_JSEN_2019_2931715 crossref_primary_10_1109_TBME_2008_923917 crossref_primary_10_1109_TBME_2006_883695 crossref_primary_10_1016_j_cap_2010_11_051 crossref_primary_10_1186_1475_925X_10_79 crossref_primary_10_1109_TNSRE_2009_2015177 crossref_primary_10_1109_TNSRE_2005_847357 crossref_primary_10_1109_TBME_2008_919734 crossref_primary_10_1109_TBME_2004_834280 crossref_primary_10_1007_s12209_009_0053_y crossref_primary_10_3390_s130912431 crossref_primary_10_1088_1741_2552_aafabc crossref_primary_10_1088_1741_2552_ab2c55 crossref_primary_10_1016_j_jbiomech_2023_111687 crossref_primary_10_1088_0967_3334_36_2_191 crossref_primary_10_1109_TNSRE_2013_2279737 crossref_primary_10_1007_s10846_017_0503_z crossref_primary_10_1016_j_engappai_2014_07_009 crossref_primary_10_1109_JSEN_2017_2782181 crossref_primary_10_3109_03093640409167756 crossref_primary_10_1109_ACCESS_2019_2946256 crossref_primary_10_3390_s22062236 crossref_primary_10_3389_fnbot_2019_00043 crossref_primary_10_1109_THMS_2023_3310524 crossref_primary_10_1016_j_bspc_2023_104962 crossref_primary_10_1080_10255842_2024_2310726 crossref_primary_10_1016_j_compbiomed_2022_105359 crossref_primary_10_1109_TNSRE_2008_2010480 crossref_primary_10_1080_03091900802491246 crossref_primary_10_1016_j_sbsr_2020_100353 crossref_primary_10_1080_03772063_2017_1381047 crossref_primary_10_1109_TBME_2008_2008171 crossref_primary_10_4015_S1016237213500269 crossref_primary_10_9717_kmms_2016_19_1_068 |
| Cites_doi | 10.1142/9789812814890_0010 10.1109/72.80341 10.1109/TBME.1982.324954 10.1109/10.204774 10.1109/FUZZY.1992.258720 10.1109/ROMAN.1992.253907 10.1109/MASSP.1987.1165576 10.1162/neco.1989.1.2.281 10.1109/10.52324 10.1016/0141-5425(82)90021-8 10.1109/91.388171 10.1109/TAC.1984.1103521 |
| ContentType | Journal Article |
| DBID | RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/86.867872 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Occupational Therapy & Rehabilitation |
| EndPage | 311 |
| ExternalDocumentID | 506729 11001510 10_1109_86_867872 867872 |
| Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | -~X .DC 0R~ 29I 53G 5GY 6IK AAJGR AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG Z5M 7X8 |
| ID | FETCH-LOGICAL-c390t-cc3d129194a545d0183a867bf8dab23345dfd3e3c53d47044cc2fc101b978e9d3 |
| IEDL.DBID | RIE |
| ISSN | 1063-6528 |
| IngestDate | Fri Sep 05 00:40:24 EDT 2025 Thu Sep 04 20:38:13 EDT 2025 Fri Sep 05 11:07:51 EDT 2025 Wed Feb 19 01:21:23 EST 2025 Wed Oct 01 02:37:29 EDT 2025 Thu Apr 24 23:04:08 EDT 2025 Wed Aug 27 02:53:35 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c390t-cc3d129194a545d0183a867bf8dab23345dfd3e3c53d47044cc2fc101b978e9d3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 ObjectType-Undefined-3 |
| PMID | 11001510 |
| PQID | 21423756 |
| PQPubID | 23462 |
| PageCount | 7 |
| ParticipantIDs | crossref_citationtrail_10_1109_86_867872 ieee_primary_867872 crossref_primary_10_1109_86_867872 proquest_miscellaneous_21423756 proquest_miscellaneous_72279689 proquest_miscellaneous_771476646 pubmed_primary_11001510 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2000-09-01 |
| PublicationDateYYYYMMDD | 2000-09-01 |
| PublicationDate_xml | – month: 09 year: 2000 text: 2000-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on rehabilitation engineering |
| PublicationTitleAbbrev | T-RE |
| PublicationTitleAlternate | IEEE Trans Rehabil Eng |
| PublicationYear | 2000 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 hudgins (ref6) 1994; 13 ref15 ref14 duda (ref3) 1973 ref11 ref10 ref2 ref1 ref16 scott (ref17) 1984 ref8 ref4 wang (ref18) 1994 ref5 ide (ref7) 1991 katutoshi (ref9) 1992 |
| References_xml | – start-page: 63 year: 1992 ident: ref9 article-title: a discrimination system using neural network for emg-controlled prostheses publication-title: Proc IEEE Int Workshop Robot Human Commun 92 – ident: ref1 doi: 10.1142/9789812814890_0010 – ident: ref2 doi: 10.1109/72.80341 – ident: ref16 doi: 10.1109/TBME.1982.324954 – ident: ref5 doi: 10.1109/10.204774 – year: 1984 ident: ref17 article-title: an introduction to myoelectric prostheses publication-title: UNB Mongraphs on Myoelectric Prostheses Series – start-page: 201 year: 1973 ident: ref3 publication-title: Pattern Classification and Scene Analysis – ident: ref12 doi: 10.1109/FUZZY.1992.258720 – ident: ref8 doi: 10.1109/ROMAN.1992.253907 – ident: ref14 doi: 10.1109/MASSP.1987.1165576 – start-page: 29 year: 1994 ident: ref18 publication-title: Adaptive Fuzzy Systems and Control Design and Stability Analysis – start-page: 7 year: 1991 ident: ref7 article-title: the control method for the robot hand based on the fuzzy theory publication-title: Robot – ident: ref15 doi: 10.1162/neco.1989.1.2.281 – volume: 13 start-page: 21 year: 1994 ident: ref6 article-title: control of artificial limbs using myoelectric pattern recognition publication-title: Med Life Sci Eng – ident: ref10 doi: 10.1109/10.52324 – ident: ref4 doi: 10.1016/0141-5425(82)90021-8 – ident: ref11 doi: 10.1109/91.388171 – ident: ref13 doi: 10.1109/TAC.1984.1103521 |
| SSID | ssj0014499 |
| Score | 2.1547172 |
| Snippet | Proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the... This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification... This paper proposes a fuzzy approach to classify single- site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 305 |
| SubjectTerms | Algorithms Artificial Limbs Artificial neural networks Backpropagation Bias Cluster Analysis Clustering algorithms Control systems Delay Electric Stimulation Therapy - methods Electromyography Electromyography - classification Electromyography - methods Electrophysiology Feedback Fuzzy control Fuzzy Logic Fuzzy systems Humans Neural networks Neural Networks (Computer) Pattern recognition Prosthetics Signal Processing, Computer-Assisted Software Validation Time Factors |
| Title | Fuzzy EMG classification for prosthesis control |
| URI | https://ieeexplore.ieee.org/document/867872 https://www.ncbi.nlm.nih.gov/pubmed/11001510 https://www.proquest.com/docview/21423756 https://www.proquest.com/docview/72279689 https://www.proquest.com/docview/771476646 |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore issn: 1063-6528 databaseCode: RIE dateStart: 19930101 customDbUrl: isFulltext: true dateEnd: 20001231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014499 providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwuP8ipPCwFiSZvGju2MCLVUSDCgVuoWxY8IBEor2gz013O200IRldgi5xxdHPv8XXz3HUKXMlScZyIJNJFxAAaPBZIYFpg4ZEpyAL2ZY_t8Yr0BfRjGw4pn2-XCGGNc8Jlp2kt3lq9HqrS_yloCLCsHe7vOBfOpWosDA0pdqUhwcEjA4khUJELtMIFeTd9xaetxtVRWw0q3vXS3fN72xLES2qiSt2Y5lU01-8XZ-E_Nt9FmBTPxrZ8XO2jNFHV09ZNSGPc9nwC-xs9LbN27qNUtZ7NP3Hm8x8qCaxtN5G5hQLh4bPNEXszkdYKrOPc9NOh2-ne9oCqsECiShNNAKaJhn28nNAMApUNY1hloKHOhMxkRAm25JoaomGjKQ0qVinIFi1eCz2kSTfZRrRgV5hBhYzJJdKRixXLKI5Fp8LW5ZjqUghqdNNDNfMxTVb2HLX7xnjrvI0xSwVI_Og10sRAde6qNv4TqdnQXAvPW8_l3TGF52DOPrDCjcpJaRjnCY7ZaglsORSZAU7xKgrcpZ4zCQw78HPnWz1JYgVk7-lOtY7ThM_dtSNoJqk0_SnMKGGYqz9zs_QKlK--I |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPejF9wOfG6PGS6F0X-3RGBAVOBhMvDXdB9FogAg9yK93dregGEi8NdvZZrrdnf2mO_MNQhcyVEJkcRJoIlkABo8HkhgeGBZyJQWA3syxfbZ545k-vLCXgmfb5cIYY1zwmSnbS3eWr_sqt7_KKjFYVgH2doVRSplP1poeGVDqikWCi0MCzqK4oBGqhgn0K_uuM5uPq6ayGFi6Daa-4TO3h46X0MaVvJfzkSyr8R_Wxn_qvonWC6CJb_zM2EJLpreNLn-TCuOOZxTAV_hphq97B1Xq-Xj8hWutO6wsvLbxRO4WBoyLBzZT5NUM34a4iHTfRc_1Wue2ERSlFQJFknAUKEU07PTVhGYAoXQICzsDDWU31pmMCIG2riaGKEY0FSGlSkVdBctXgtdpEk320HKv3zMHCBuTSaIjxRTvUhHFmQZvW2iuQxlTo5MSup6MeaqK97DlLz5S53-ESRrz1I9OCZ1PRQeebGOe0LYd3anApPVs8h1TWCD21CPrmX4-TC2nHBGML5YQlkWRx6ApXiQhqlRwTuEh-36O_OhnSazAsB3OVesMrTY6rWbavG8_HqE1n8dvA9SO0fLoMzcngGhG8tTN5G9Qy_LV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+EMG+classification+for+prosthesis+control&rft.jtitle=IEEE+transactions+on+rehabilitation+engineering&rft.au=Chan%2C+F.H.Y.&rft.au=Yong-Sheng+Yang&rft.au=Lam%2C+F.K.&rft.au=Yuan-Ting+Zhang&rft.date=2000-09-01&rft.pub=IEEE&rft.issn=1063-6528&rft.volume=8&rft.issue=3&rft.spage=305&rft.epage=311&rft_id=info:doi/10.1109%2F86.867872&rft.externalDocID=867872 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6528&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6528&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6528&client=summon |