Fuzzy EMG classification for prosthesis control

Proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on rehabilitation engineering Vol. 8; no. 3; pp. 305 - 311
Main Authors Chan, F.H.Y., Yong-Sheng Yang, Lam, F.K., Yuan-Ting Zhang, Parker, P.A.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2000
Subjects
Online AccessGet full text
ISSN1063-6528
DOI10.1109/86.867872

Cover

Abstract Proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed.
AbstractList This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed.
Proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed.
This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed.This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the focus of this paper, the ultimate goal is to improve myoelectric system control performance, and classification is an essential step in the control. Time segmented features are fed to a fuzzy system for training and classification. In order to obtain acceptable training speed and realistic fuzzy system structure, these features are clustered without supervision using the Basic Isodata algorithm at the beginning of the training phase, and the clustering results are used in initializing the fuzzy system parameters. Afterwards, fuzzy rules in the system are trained with the back-propagation algorithm. The fuzzy approach was compared with an artificial neural network (ANN) method on four subjects, and very similar classification results were obtained. It is superior to the latter in at least three points: slightly higher recognition rate; insensitivity to overtraining; and consistent outputs demonstrating higher reliability. Some potential advantages of the fuzzy approach over the ANN approach are also discussed.
Author Parker, P.A.
Chan, F.H.Y.
Yong-Sheng Yang
Lam, F.K.
Yuan-Ting Zhang
Author_xml – sequence: 1
  givenname: F.H.Y.
  surname: Chan
  fullname: Chan, F.H.Y.
  organization: Dept. of Electr. & Electron. Eng., Hong Kong Univ., China
– sequence: 2
  surname: Yong-Sheng Yang
  fullname: Yong-Sheng Yang
– sequence: 3
  givenname: F.K.
  surname: Lam
  fullname: Lam, F.K.
– sequence: 4
  surname: Yuan-Ting Zhang
  fullname: Yuan-Ting Zhang
– sequence: 5
  givenname: P.A.
  surname: Parker
  fullname: Parker, P.A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11001510$$D View this record in MEDLINE/PubMed
BookMark eNqF0TtPwzAUBWAPRfQBAysDygRiSOtX_BhR1RakIhaYLcdxhFGaFDsZ2l-PSwoDQjBZsr97dHU8BoO6qS0AFwhOEYJyJthUMC44HoARgoykLMNiCMYhvEGIKJXyFAyjhChDcARmy26_3yWLx1ViKh2CK53RrWvqpGx8svVNaF9tcCExTd36pjoDJ6Wugj0_nhPwslw8z-_T9dPqYX63Tg2RsE2NIQXCEkmqM5oVEAmi41p5KQqdY0LiXVkQS0xGCsohpcbg0iCIcsmFlQWZgJs-N67w3tnQqo0LxlaVrm3TBcU5opwxyqK8_ltizCUT8l-IEcWEZ4fEqyPs8o0t1Na7jfY79dVaBLMemNhP8LZUxrWfrbVeu0oheLBSCab6v4gTtz8mvkN_sZe9ddbab3d8_ACmhpCv
CODEN IEEREN
CitedBy_id crossref_primary_10_1007_s00521_015_1953_5
crossref_primary_10_3233_XST_17260
crossref_primary_10_3390_mi13101681
crossref_primary_10_1016_j_pmrj_2010_06_016
crossref_primary_10_16984_saufenbilder_1176459
crossref_primary_10_1109_JBHI_2013_2284476
crossref_primary_10_3390_s110403545
crossref_primary_10_1016_j_clinph_2003_12_030
crossref_primary_10_1109_JBHI_2018_2864335
crossref_primary_10_1109_TMECH_2007_897253
crossref_primary_10_1016_S0208_5216_13_70054_8
crossref_primary_10_1109_TBME_2011_2155063
crossref_primary_10_1016_j_compenvurbsys_2012_10_005
crossref_primary_10_4015_S1016237212500329
crossref_primary_10_1007_s11760_013_0526_2
crossref_primary_10_3233_JIFS_169795
crossref_primary_10_5302_J_ICROS_2006_12_9_935
crossref_primary_10_1016_j_bspc_2019_02_026
crossref_primary_10_1109_TNSRE_2009_2039590
crossref_primary_10_1002_tee_21863
crossref_primary_10_1109_TNSRE_2016_2563222
crossref_primary_10_9746_sicetr_45_717
crossref_primary_10_1541_ieejeiss_131_1409
crossref_primary_10_7210_jrsj_33_275
crossref_primary_10_1007_s12553_016_0153_3
crossref_primary_10_1177_2055668317708731
crossref_primary_10_1109_MEMB_2002_1175148
crossref_primary_10_1111_j_1468_0394_2008_00496_x
crossref_primary_10_1002_ecj_11465
crossref_primary_10_1109_TNSRE_2015_2502663
crossref_primary_10_1016_j_medengphy_2005_07_012
crossref_primary_10_1016_j_bspc_2018_07_010
crossref_primary_10_1016_j_eswa_2010_09_068
crossref_primary_10_1109_JBHI_2015_2430524
crossref_primary_10_1002_pi_2757
crossref_primary_10_3389_fbioe_2024_1463377
crossref_primary_10_1080_03772063_2019_1638316
crossref_primary_10_3390_act11030065
crossref_primary_10_1109_TEVC_2012_2185845
crossref_primary_10_1186_1743_0003_10_44
crossref_primary_10_28948_ngumuh_542973
crossref_primary_10_1016_j_bea_2023_100088
crossref_primary_10_1016_j_bspc_2007_07_009
crossref_primary_10_9746_sicetr_57_504
crossref_primary_10_1007_s11517_007_0291_x
crossref_primary_10_1097_00008526_200604000_00002
crossref_primary_10_1145_3078844
crossref_primary_10_1251_bpo115
crossref_primary_10_5391_JKIIS_2009_19_1_054
crossref_primary_10_1109_TBME_2007_894829
crossref_primary_10_1016_j_bspc_2015_02_009
crossref_primary_10_1007_s13246_011_0079_z
crossref_primary_10_2170_jjphysiol_53_301
crossref_primary_10_1145_2331147_2331157
crossref_primary_10_3233_JIFS_169924
crossref_primary_10_3390_s130202613
crossref_primary_10_1088_1741_2560_12_4_046005
crossref_primary_10_3390_s140304342
crossref_primary_10_1109_ACCESS_2018_2851282
crossref_primary_10_1109_TBME_2008_2005942
crossref_primary_10_3389_fnins_2015_00389
crossref_primary_10_1016_j_neunet_2018_02_017
crossref_primary_10_1109_TNSRE_2011_2182525
crossref_primary_10_1002_ecj_11369
crossref_primary_10_1016_j_bspc_2020_102122
crossref_primary_10_1016_j_neucom_2021_10_044
crossref_primary_10_1109_TIE_2015_2497212
crossref_primary_10_4028_www_scientific_net_AMM_121_126_2156
crossref_primary_10_1243_09544119JEIM210
crossref_primary_10_1088_0967_3334_27_12_001
crossref_primary_10_1088_1757_899X_671_1_012064
crossref_primary_10_1109_TBME_2006_889192
crossref_primary_10_1109_TMECH_2007_897262
crossref_primary_10_1109_TNSRE_2009_2039619
crossref_primary_10_1007_s13534_023_00281_z
crossref_primary_10_1109_TNSRE_2009_2023282
crossref_primary_10_4236_ica_2013_41012
crossref_primary_10_1186_1743_0003_10_50
crossref_primary_10_3389_fnins_2017_00597
crossref_primary_10_3390_s24113264
crossref_primary_10_1016_j_eswa_2017_03_012
crossref_primary_10_1016_j_bspc_2012_08_005
crossref_primary_10_1002_aisy_202200063
crossref_primary_10_1080_10739149_2021_1880933
crossref_primary_10_1016_j_bbe_2017_03_001
crossref_primary_10_1016_j_cmpb_2008_01_003
crossref_primary_10_20965_jrm_2007_p0381
crossref_primary_10_1016_j_eswa_2009_11_072
crossref_primary_10_1541_ieejias_132_411
crossref_primary_10_29048_makufebed_206628
crossref_primary_10_1109_MTS_2015_2494279
crossref_primary_10_1155_2013_908591
crossref_primary_10_1541_ieejias_130_1272
crossref_primary_10_1016_j_engappai_2017_10_017
crossref_primary_10_1109_TIM_2023_3286004
crossref_primary_10_1177_09544119221074770
crossref_primary_10_1109_RBME_2010_2085429
crossref_primary_10_1109_TBME_2013_2250502
crossref_primary_10_1109_TNSRE_2011_2108667
crossref_primary_10_1016_j_asoc_2012_03_035
crossref_primary_10_1186_1475_925X_12_133
crossref_primary_10_3390_s16040592
crossref_primary_10_1016_j_bspc_2016_01_011
crossref_primary_10_1016_j_ergon_2006_06_006
crossref_primary_10_1109_TIE_2010_2053334
crossref_primary_10_1109_TRO_2009_2019782
crossref_primary_10_1109_TMECH_2012_2226597
crossref_primary_10_3390_electronics12112444
crossref_primary_10_1007_s11771_013_1571_2
crossref_primary_10_1016_j_bspc_2007_11_005
crossref_primary_10_17694_bajece_899088
crossref_primary_10_9718_JBER_2012_33_2_065
crossref_primary_10_1007_s13534_022_00236_w
crossref_primary_10_1155_2021_5541255
crossref_primary_10_1007_s41666_017_0001_x
crossref_primary_10_1016_j_procs_2018_07_012
crossref_primary_10_1109_JSEN_2024_3446868
crossref_primary_10_1186_1475_925X_9_41
crossref_primary_10_1016_j_compbiomed_2009_02_001
crossref_primary_10_1016_j_ultrasmedbio_2010_04_015
crossref_primary_10_1016_j_robot_2014_01_008
crossref_primary_10_1007_s10846_012_9677_6
crossref_primary_10_1007_s11517_006_0100_y
crossref_primary_10_3182_20070904_3_KR_2922_00040
crossref_primary_10_1142_S0219519416500767
crossref_primary_10_26634_jele_9_1_14807
crossref_primary_10_1109_TNSRE_2007_908376
crossref_primary_10_9746_sicetr_60_656
crossref_primary_10_1007_s10916_010_9548_2
crossref_primary_10_1097_JPO_0b013e31822fcd1a
crossref_primary_10_3109_03093641003674296
crossref_primary_10_1109_JSEN_2019_2931715
crossref_primary_10_1109_TBME_2008_923917
crossref_primary_10_1109_TBME_2006_883695
crossref_primary_10_1016_j_cap_2010_11_051
crossref_primary_10_1186_1475_925X_10_79
crossref_primary_10_1109_TNSRE_2009_2015177
crossref_primary_10_1109_TNSRE_2005_847357
crossref_primary_10_1109_TBME_2008_919734
crossref_primary_10_1109_TBME_2004_834280
crossref_primary_10_1007_s12209_009_0053_y
crossref_primary_10_3390_s130912431
crossref_primary_10_1088_1741_2552_aafabc
crossref_primary_10_1088_1741_2552_ab2c55
crossref_primary_10_1016_j_jbiomech_2023_111687
crossref_primary_10_1088_0967_3334_36_2_191
crossref_primary_10_1109_TNSRE_2013_2279737
crossref_primary_10_1007_s10846_017_0503_z
crossref_primary_10_1016_j_engappai_2014_07_009
crossref_primary_10_1109_JSEN_2017_2782181
crossref_primary_10_3109_03093640409167756
crossref_primary_10_1109_ACCESS_2019_2946256
crossref_primary_10_3390_s22062236
crossref_primary_10_3389_fnbot_2019_00043
crossref_primary_10_1109_THMS_2023_3310524
crossref_primary_10_1016_j_bspc_2023_104962
crossref_primary_10_1080_10255842_2024_2310726
crossref_primary_10_1016_j_compbiomed_2022_105359
crossref_primary_10_1109_TNSRE_2008_2010480
crossref_primary_10_1080_03091900802491246
crossref_primary_10_1016_j_sbsr_2020_100353
crossref_primary_10_1080_03772063_2017_1381047
crossref_primary_10_1109_TBME_2008_2008171
crossref_primary_10_4015_S1016237213500269
crossref_primary_10_9717_kmms_2016_19_1_068
Cites_doi 10.1142/9789812814890_0010
10.1109/72.80341
10.1109/TBME.1982.324954
10.1109/10.204774
10.1109/FUZZY.1992.258720
10.1109/ROMAN.1992.253907
10.1109/MASSP.1987.1165576
10.1162/neco.1989.1.2.281
10.1109/10.52324
10.1016/0141-5425(82)90021-8
10.1109/91.388171
10.1109/TAC.1984.1103521
ContentType Journal Article
DBID RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/86.867872
DatabaseName IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EndPage 311
ExternalDocumentID 506729
11001510
10_1109_86_867872
867872
Genre Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -~X
.DC
0R~
29I
53G
5GY
6IK
AAJGR
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
Z5M
7X8
ID FETCH-LOGICAL-c390t-cc3d129194a545d0183a867bf8dab23345dfd3e3c53d47044cc2fc101b978e9d3
IEDL.DBID RIE
ISSN 1063-6528
IngestDate Fri Sep 05 00:40:24 EDT 2025
Thu Sep 04 20:38:13 EDT 2025
Fri Sep 05 11:07:51 EDT 2025
Wed Feb 19 01:21:23 EST 2025
Wed Oct 01 02:37:29 EDT 2025
Thu Apr 24 23:04:08 EDT 2025
Wed Aug 27 02:53:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-cc3d129194a545d0183a867bf8dab23345dfd3e3c53d47044cc2fc101b978e9d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Undefined-3
PMID 11001510
PQID 21423756
PQPubID 23462
PageCount 7
ParticipantIDs crossref_citationtrail_10_1109_86_867872
ieee_primary_867872
crossref_primary_10_1109_86_867872
proquest_miscellaneous_21423756
proquest_miscellaneous_72279689
proquest_miscellaneous_771476646
pubmed_primary_11001510
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2000-09-01
PublicationDateYYYYMMDD 2000-09-01
PublicationDate_xml – month: 09
  year: 2000
  text: 2000-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on rehabilitation engineering
PublicationTitleAbbrev T-RE
PublicationTitleAlternate IEEE Trans Rehabil Eng
PublicationYear 2000
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
hudgins (ref6) 1994; 13
ref15
ref14
duda (ref3) 1973
ref11
ref10
ref2
ref1
ref16
scott (ref17) 1984
ref8
ref4
wang (ref18) 1994
ref5
ide (ref7) 1991
katutoshi (ref9) 1992
References_xml – start-page: 63
  year: 1992
  ident: ref9
  article-title: a discrimination system using neural network for emg-controlled prostheses
  publication-title: Proc IEEE Int Workshop Robot Human Commun 92
– ident: ref1
  doi: 10.1142/9789812814890_0010
– ident: ref2
  doi: 10.1109/72.80341
– ident: ref16
  doi: 10.1109/TBME.1982.324954
– ident: ref5
  doi: 10.1109/10.204774
– year: 1984
  ident: ref17
  article-title: an introduction to myoelectric prostheses
  publication-title: UNB Mongraphs on Myoelectric Prostheses Series
– start-page: 201
  year: 1973
  ident: ref3
  publication-title: Pattern Classification and Scene Analysis
– ident: ref12
  doi: 10.1109/FUZZY.1992.258720
– ident: ref8
  doi: 10.1109/ROMAN.1992.253907
– ident: ref14
  doi: 10.1109/MASSP.1987.1165576
– start-page: 29
  year: 1994
  ident: ref18
  publication-title: Adaptive Fuzzy Systems and Control Design and Stability Analysis
– start-page: 7
  year: 1991
  ident: ref7
  article-title: the control method for the robot hand based on the fuzzy theory
  publication-title: Robot
– ident: ref15
  doi: 10.1162/neco.1989.1.2.281
– volume: 13
  start-page: 21
  year: 1994
  ident: ref6
  article-title: control of artificial limbs using myoelectric pattern recognition
  publication-title: Med Life Sci Eng
– ident: ref10
  doi: 10.1109/10.52324
– ident: ref4
  doi: 10.1016/0141-5425(82)90021-8
– ident: ref11
  doi: 10.1109/91.388171
– ident: ref13
  doi: 10.1109/TAC.1984.1103521
SSID ssj0014499
Score 2.1547172
Snippet Proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification problem is the...
This paper proposes a fuzzy approach to classify single-site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification...
This paper proposes a fuzzy approach to classify single- site electromyograph (EMG) signals for multifunctional prosthesis control. While the classification...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 305
SubjectTerms Algorithms
Artificial Limbs
Artificial neural networks
Backpropagation
Bias
Cluster Analysis
Clustering algorithms
Control systems
Delay
Electric Stimulation Therapy - methods
Electromyography
Electromyography - classification
Electromyography - methods
Electrophysiology
Feedback
Fuzzy control
Fuzzy Logic
Fuzzy systems
Humans
Neural networks
Neural Networks (Computer)
Pattern recognition
Prosthetics
Signal Processing, Computer-Assisted
Software Validation
Time Factors
Title Fuzzy EMG classification for prosthesis control
URI https://ieeexplore.ieee.org/document/867872
https://www.ncbi.nlm.nih.gov/pubmed/11001510
https://www.proquest.com/docview/21423756
https://www.proquest.com/docview/72279689
https://www.proquest.com/docview/771476646
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  issn: 1063-6528
  databaseCode: RIE
  dateStart: 19930101
  customDbUrl:
  isFulltext: true
  dateEnd: 20001231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014499
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwuP8ipPCwFiSZvGju2MCLVUSDCgVuoWxY8IBEor2gz013O200IRldgi5xxdHPv8XXz3HUKXMlScZyIJNJFxAAaPBZIYFpg4ZEpyAL2ZY_t8Yr0BfRjGw4pn2-XCGGNc8Jlp2kt3lq9HqrS_yloCLCsHe7vOBfOpWosDA0pdqUhwcEjA4khUJELtMIFeTd9xaetxtVRWw0q3vXS3fN72xLES2qiSt2Y5lU01-8XZ-E_Nt9FmBTPxrZ8XO2jNFHV09ZNSGPc9nwC-xs9LbN27qNUtZ7NP3Hm8x8qCaxtN5G5hQLh4bPNEXszkdYKrOPc9NOh2-ne9oCqsECiShNNAKaJhn28nNAMApUNY1hloKHOhMxkRAm25JoaomGjKQ0qVinIFi1eCz2kSTfZRrRgV5hBhYzJJdKRixXLKI5Fp8LW5ZjqUghqdNNDNfMxTVb2HLX7xnjrvI0xSwVI_Og10sRAde6qNv4TqdnQXAvPW8_l3TGF52DOPrDCjcpJaRjnCY7ZaglsORSZAU7xKgrcpZ4zCQw78HPnWz1JYgVk7-lOtY7ThM_dtSNoJqk0_SnMKGGYqz9zs_QKlK--I
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4YPejF9wOfG6PGS6F0X-3RGBAVOBhMvDXdB9FogAg9yK93dregGEi8NdvZZrrdnf2mO_MNQhcyVEJkcRJoIlkABo8HkhgeGBZyJQWA3syxfbZ545k-vLCXgmfb5cIYY1zwmSnbS3eWr_sqt7_KKjFYVgH2doVRSplP1poeGVDqikWCi0MCzqK4oBGqhgn0K_uuM5uPq6ayGFi6Daa-4TO3h46X0MaVvJfzkSyr8R_Wxn_qvonWC6CJb_zM2EJLpreNLn-TCuOOZxTAV_hphq97B1Xq-Xj8hWutO6wsvLbxRO4WBoyLBzZT5NUM34a4iHTfRc_1Wue2ERSlFQJFknAUKEU07PTVhGYAoXQICzsDDWU31pmMCIG2riaGKEY0FSGlSkVdBctXgtdpEk320HKv3zMHCBuTSaIjxRTvUhHFmQZvW2iuQxlTo5MSup6MeaqK97DlLz5S53-ESRrz1I9OCZ1PRQeebGOe0LYd3anApPVs8h1TWCD21CPrmX4-TC2nHBGML5YQlkWRx6ApXiQhqlRwTuEh-36O_OhnSazAsB3OVesMrTY6rWbavG8_HqE1n8dvA9SO0fLoMzcngGhG8tTN5G9Qy_LV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+EMG+classification+for+prosthesis+control&rft.jtitle=IEEE+transactions+on+rehabilitation+engineering&rft.au=Chan%2C+F.H.Y.&rft.au=Yong-Sheng+Yang&rft.au=Lam%2C+F.K.&rft.au=Yuan-Ting+Zhang&rft.date=2000-09-01&rft.pub=IEEE&rft.issn=1063-6528&rft.volume=8&rft.issue=3&rft.spage=305&rft.epage=311&rft_id=info:doi/10.1109%2F86.867872&rft.externalDocID=867872
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6528&client=summon