Functional Properties of Human Primary Motor Cortex Gamma Oscillations

Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiment...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 104; no. 5; pp. 2873 - 2885
Main Author Muthukumaraswamy, Suresh D.
Format Journal Article
LanguageEnglish
Published United States 01.11.2010
Subjects
Online AccessGet full text
ISSN0022-3077
1522-1598
1522-1598
DOI10.1152/jn.00607.2010

Cover

Abstract Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction.
AbstractList Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction.
Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction.Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction.
Author Muthukumaraswamy, Suresh D.
Author_xml – sequence: 1
  givenname: Suresh D.
  surname: Muthukumaraswamy
  fullname: Muthukumaraswamy, Suresh D.
  organization: Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20884762$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LAzEQxYNU7IcevcrePG2dJNt8HKXYKlTqQc8hTbOwZTepyS7of2-2rR4E8TTD8Jth3ntjNHDeWYSuMUwxnpG7nZsCMOBTAhjO0CjNSI5nUgzQCCD1FDgfonGMOwDgMyAXaEhAiIIzMkKLRedMW3mn6-wl-L0NbWVj5svssWu0S7Oq0eEze_atD9nch9Z-ZEvdNDpbR1PVte6X4yU6L3Ud7dWpTtDb4uF1_piv1sun-f0qN1RCm-vCUF6YAsOGMGwYJqS00hIqGS51-o9JKqQASNjWGEw5owaXosQbyQzZ0gm6Pd7dB__e2diqporGpjec9V1UAvPkhcDsXzKpL7gktCdvTmS3aexW7Y-S1bdJCciPgAk-xmDLHwSD6kNQO6cOIag-hMTTX7yp2oNPbdBV_cfWFxFqiCc
CitedBy_id crossref_primary_10_1016_j_brainresbull_2017_03_006
crossref_primary_10_1111_desc_12935
crossref_primary_10_3389_fnins_2022_836703
crossref_primary_10_1016_j_concog_2020_103053
crossref_primary_10_1111_ejn_12369
crossref_primary_10_1038_s41598_022_24417_w
crossref_primary_10_1007_s00429_017_1387_1
crossref_primary_10_1016_j_nbd_2023_106283
crossref_primary_10_1038_s41398_021_01678_z
crossref_primary_10_1016_j_neuropsychologia_2019_04_017
crossref_primary_10_1016_j_neuroimage_2013_02_013
crossref_primary_10_1007_s11055_014_9889_2
crossref_primary_10_3389_fnagi_2018_00147
crossref_primary_10_3390_brainsci12050530
crossref_primary_10_1109_TNSRE_2019_2934231
crossref_primary_10_1002_hbm_23000
crossref_primary_10_1002_hbm_23121
crossref_primary_10_1523_JNEUROSCI_5624_12_2013
crossref_primary_10_1016_j_nicl_2019_101977
crossref_primary_10_1016_j_euroneuro_2015_04_012
crossref_primary_10_1016_j_nicl_2021_102560
crossref_primary_10_1162_nol_a_00086
crossref_primary_10_3390_brainsci11081095
crossref_primary_10_1038_s41467_023_40056_9
crossref_primary_10_1002_hbm_25535
crossref_primary_10_1016_j_neuroimage_2012_12_038
crossref_primary_10_1038_npp_2013_9
crossref_primary_10_1016_j_expneurol_2012_07_005
crossref_primary_10_1016_j_neuroimage_2013_02_038
crossref_primary_10_1152_jn_00792_2014
crossref_primary_10_1016_j_expneurol_2012_11_011
crossref_primary_10_1088_2634_4386_ad850f
crossref_primary_10_3389_fnhum_2021_787157
crossref_primary_10_1523_ENEURO_0009_21_2021
crossref_primary_10_1523_JNEUROSCI_0098_17_2017
crossref_primary_10_1523_JNEUROSCI_3860_11_2012
crossref_primary_10_1016_j_neuroimage_2020_117447
crossref_primary_10_1152_jn_00380_2021
crossref_primary_10_7554_eLife_69977
crossref_primary_10_7554_eLife_100238
crossref_primary_10_1038_s41598_022_08741_9
crossref_primary_10_1016_j_neuropharm_2017_04_009
crossref_primary_10_1016_j_dcn_2025_101529
crossref_primary_10_1038_s41598_022_10130_1
crossref_primary_10_1016_j_neuroscience_2023_11_017
crossref_primary_10_1002_hbm_23943
crossref_primary_10_1371_journal_pone_0260304
crossref_primary_10_1093_texcom_tgaa009
crossref_primary_10_1523_JNEUROSCI_2929_12_2012
crossref_primary_10_1113_JP287085
crossref_primary_10_3390_s22145255
crossref_primary_10_1016_j_neuroimage_2014_08_013
crossref_primary_10_3389_fnhum_2014_00156
crossref_primary_10_3390_e21040365
crossref_primary_10_1016_j_cortex_2016_03_004
crossref_primary_10_1002_brb3_2324
crossref_primary_10_1007_s00429_011_0307_z
crossref_primary_10_1073_pnas_2104569118
crossref_primary_10_1093_braincomms_fcac249
crossref_primary_10_1152_jn_00590_2018
crossref_primary_10_1007_s10548_018_0628_9
crossref_primary_10_1093_cercor_bhaa199
crossref_primary_10_1371_journal_pone_0074273
crossref_primary_10_1016_j_neuroimage_2023_120444
crossref_primary_10_1093_cercor_bhac140
crossref_primary_10_1016_j_bbr_2019_112170
crossref_primary_10_1016_j_isci_2022_104338
crossref_primary_10_1016_j_neuroimage_2020_116562
crossref_primary_10_1088_1741_2552_ad2e1d
crossref_primary_10_1016_j_clinph_2011_04_017
crossref_primary_10_3389_fnins_2021_800436
crossref_primary_10_3390_brainsci13050792
crossref_primary_10_1016_j_neuroimage_2012_01_028
crossref_primary_10_1162_imag_a_00056
crossref_primary_10_1097_WNR_0000000000001409
crossref_primary_10_1016_j_neuroimage_2015_03_045
crossref_primary_10_1523_JNEUROSCI_2063_13_2013
crossref_primary_10_1016_j_neuroimage_2016_11_042
crossref_primary_10_1016_j_neuroimage_2022_119745
crossref_primary_10_1016_j_neuroimage_2014_09_024
crossref_primary_10_1016_j_expneurol_2012_08_030
crossref_primary_10_1016_j_neuroimage_2015_10_076
crossref_primary_10_3233_JPD_181480
crossref_primary_10_3389_fnhum_2018_00130
crossref_primary_10_4236_jbise_2012_52011
crossref_primary_10_1016_j_neuroimage_2019_116349
crossref_primary_10_1016_j_neuroimage_2013_05_084
crossref_primary_10_1113_JP286873
crossref_primary_10_1016_j_neures_2022_03_004
crossref_primary_10_1109_TNSRE_2024_3523109
crossref_primary_10_1111_ejn_70018
crossref_primary_10_1038_s41598_022_18323_4
crossref_primary_10_1162_jocn_a_00948
crossref_primary_10_1007_s12021_013_9185_2
crossref_primary_10_1371_journal_pone_0050095
crossref_primary_10_3389_fneur_2019_01298
crossref_primary_10_3389_fnhum_2025_1521491
crossref_primary_10_1016_j_neuroimage_2016_04_032
crossref_primary_10_1093_brain_awae300
crossref_primary_10_1007_s40473_018_0151_z
crossref_primary_10_1016_j_neuroimage_2023_120197
crossref_primary_10_1016_j_neuroimage_2014_06_039
crossref_primary_10_7554_eLife_24573
crossref_primary_10_1016_j_neuroimage_2015_12_021
crossref_primary_10_1016_j_expneurol_2021_113670
crossref_primary_10_3390_brainsci13121639
crossref_primary_10_1523_JNEUROSCI_2044_16_2016
crossref_primary_10_3758_s13423_012_0371_2
crossref_primary_10_1093_schbul_sby117
crossref_primary_10_1186_s11689_015_9121_x
crossref_primary_10_1016_j_neuroimage_2018_09_018
crossref_primary_10_1093_brain_aws183
crossref_primary_10_7554_eLife_51956
crossref_primary_10_1016_j_brs_2024_09_001
crossref_primary_10_1016_j_clinph_2015_05_014
crossref_primary_10_7554_eLife_33977
crossref_primary_10_14814_phy2_16150
crossref_primary_10_1093_cercor_bht121
crossref_primary_10_1016_j_neuroimage_2014_02_029
crossref_primary_10_1038_s41598_019_54396_4
crossref_primary_10_1093_cercor_bht002
crossref_primary_10_1111_ejn_15004
crossref_primary_10_1016_j_clinph_2012_07_029
crossref_primary_10_1016_j_expneurol_2022_114140
crossref_primary_10_1016_j_neuroimage_2012_11_043
crossref_primary_10_3390_ani14030509
crossref_primary_10_1016_j_neuropsychologia_2015_06_014
crossref_primary_10_3389_fped_2021_626734
crossref_primary_10_1016_j_expneurol_2012_05_013
crossref_primary_10_1089_brain_2021_0003
crossref_primary_10_1093_cercor_bhab141
crossref_primary_10_1111_nmo_14173
crossref_primary_10_1002_hbm_26149
crossref_primary_10_1371_journal_pone_0082920
crossref_primary_10_1016_j_neuroimage_2024_120572
crossref_primary_10_1016_j_neuroimage_2020_116747
crossref_primary_10_1016_j_neuroimage_2020_116632
crossref_primary_10_1016_j_neuroimage_2021_118659
crossref_primary_10_1016_j_clinph_2015_08_020
crossref_primary_10_1016_j_neuroimage_2015_03_006
crossref_primary_10_1016_j_cortex_2018_03_029
crossref_primary_10_1093_cercor_bhae411
crossref_primary_10_1016_j_medengphy_2022_103772
crossref_primary_10_1016_j_nbd_2019_03_013
crossref_primary_10_1016_j_neuroimage_2015_05_081
crossref_primary_10_1016_j_jneumeth_2015_11_012
crossref_primary_10_1016_j_nbd_2015_11_009
crossref_primary_10_1093_brain_awy176
crossref_primary_10_1016_j_neuroscience_2025_01_016
crossref_primary_10_1038_s41598_021_85851_w
crossref_primary_10_1142_S0129065718500144
crossref_primary_10_1088_1741_2552_ac3314
crossref_primary_10_1016_j_neuroimage_2012_10_054
crossref_primary_10_1016_j_expneurol_2015_12_004
crossref_primary_10_1080_00222895_2021_1940820
crossref_primary_10_1371_journal_pone_0085578
crossref_primary_10_1002_hbm_22518
crossref_primary_10_1002_hbm_24819
crossref_primary_10_1152_jn_00186_2012
crossref_primary_10_1371_journal_pone_0150359
crossref_primary_10_1038_s41598_024_61375_x
crossref_primary_10_1016_j_brs_2018_03_015
crossref_primary_10_1152_jn_00690_2014
crossref_primary_10_1038_s41598_020_61909_z
crossref_primary_10_1016_j_dcn_2018_02_013
crossref_primary_10_1016_j_neuroimage_2010_12_077
crossref_primary_10_1016_j_cub_2012_01_024
crossref_primary_10_3389_fnhum_2021_640609
crossref_primary_10_1016_j_neuroimage_2017_09_059
crossref_primary_10_1152_jn_00530_2021
crossref_primary_10_1007_s00221_011_2775_z
crossref_primary_10_1016_j_brainres_2025_149521
crossref_primary_10_1007_s11357_023_01057_0
crossref_primary_10_1016_j_neuroimage_2021_118645
crossref_primary_10_1038_npp_2014_58
crossref_primary_10_1002_ana_26883
crossref_primary_10_1016_j_neuroimage_2019_116288
crossref_primary_10_1093_cercor_bhac423
crossref_primary_10_1002_hbm_23834
crossref_primary_10_1016_j_neubiorev_2019_12_024
crossref_primary_10_1016_j_neuroscience_2018_09_013
crossref_primary_10_1016_j_neuroimage_2014_07_015
crossref_primary_10_1155_2018_4593095
crossref_primary_10_1038_s41514_024_00182_0
crossref_primary_10_7554_eLife_67355
crossref_primary_10_1016_j_neuroimage_2018_12_045
crossref_primary_10_1523_JNEUROSCI_0339_16_2016
crossref_primary_10_3390_brainsci14121284
crossref_primary_10_1002_hbm_25126
crossref_primary_10_1016_j_neuroimage_2011_02_025
crossref_primary_10_1016_j_neuroimage_2019_06_009
crossref_primary_10_1002_pchj_696
crossref_primary_10_1016_j_nicl_2021_102857
crossref_primary_10_1016_j_brainres_2023_148650
crossref_primary_10_1002_bem_21740
crossref_primary_10_1016_j_expneurol_2022_113999
crossref_primary_10_3389_fnhum_2025_1524485
crossref_primary_10_1002_hbm_22888
crossref_primary_10_1371_journal_pone_0057685
Cites_doi 10.1016/j.neuroimage.2005.05.045
10.1152/jn.1996.75.1.233
10.1523/JNEUROSCI.5228-04.2006
10.1007/BF00231461
10.1016/j.clinph.2009.10.036
10.1002/hbm.20644
10.1002/hbm.20102
10.1016/j.neuroimage.2007.11.038
10.1016/j.neuroimage.2008.04.178
10.1016/j.neuroimage.2010.01.077
10.1016/j.neuroimage.2009.08.041
10.1152/jn.91044.2008
10.1006/nimg.2002.1211
10.1016/S1364-6613(97)01059-0
10.1016/S1388-2457(03)00067-1
10.1038/338334a0
10.1073/pnas.0913697107
10.1038/35094565
10.1016/j.tins.2007.05.001
10.1016/j.neuroimage.2008.01.052
10.1016/S1053-8119(03)00249-0
10.1002/hbm.10072
10.1016/S0165-0270(01)00372-7
10.1111/j.1460-9568.2006.04876.x
10.1111/j.2517-6161.1995.tb02031.x
10.1093/cercor/bhk025
10.1007/BF00227095
10.1002/hbm.10062
10.1016/j.clinph.2005.02.027
10.1002/hbm.1058
10.1016/S0926-6410(00)00004-5
10.1093/brain/121.12.2301
10.1016/j.tins.2007.05.005
10.1007/BF00238515
10.1523/JNEUROSCI.17-02-00722.1997
10.1523/JNEUROSCI.3886-06.2007
10.1016/S0926-6410(03)00173-3
10.1186/1471-2202-8-101
10.1088/0031-9155/44/2/010
10.1002/hbm.20963
10.1016/j.braindev.2009.09.021
10.1113/jphysiol.1971.sp009579
10.1016/S1364-6613(00)01568-0
10.1523/JNEUROSCI.5171-07.2008
10.1016/j.neuroimage.2010.02.001
10.1111/j.1460-9568.2005.03966.x
10.1016/j.neuroimage.2008.02.032
10.1523/JNEUROSCI.5506-08.2009
10.1016/S0304-3940(03)00108-3
10.1016/S1364-6613(99)01299-1
10.1016/j.cub.2009.07.066
10.1111/j.1460-9568.2004.03495.x
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1152/jn.00607.2010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList CrossRef
MEDLINE - Academic
Neurosciences Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 2885
ExternalDocumentID 20884762
10_1152_jn_00607_2010
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
18M
1CY
1Z7
29L
2WC
39C
3O-
4.4
41~
53G
5GY
5VS
8M5
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AI.
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
MVM
NEJ
OHT
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
UQL
VH1
W8F
WH7
WOQ
WOW
X7M
XJT
XOL
XSW
YBH
YQT
YSK
ZGI
ZXP
ZY4
AFOSN
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ID FETCH-LOGICAL-c390t-a4c374c410b261c6122fe9e23961fa00069389800c37dcc13763c1f8f1b96c2d3
ISSN 0022-3077
1522-1598
IngestDate Fri Sep 05 10:27:21 EDT 2025
Wed Oct 01 14:35:58 EDT 2025
Mon Jul 21 06:03:06 EDT 2025
Thu Apr 24 23:03:41 EDT 2025
Wed Oct 01 06:52:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-a4c374c410b261c6122fe9e23961fa00069389800c37dcc13763c1f8f1b96c2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20884762
PQID 762479236
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_817607816
proquest_miscellaneous_762479236
pubmed_primary_20884762
crossref_primary_10_1152_jn_00607_2010
crossref_citationtrail_10_1152_jn_00607_2010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-11-01
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2010
References B20
Robinson SE (B41) 1999
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B7
B8
B9
B40
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B10
B11
Benjamini Y (B6) 1995; 57
B12
B13
B14
B15
B16
B17
B18
B19
References_xml – ident: B7
  doi: 10.1016/j.neuroimage.2005.05.045
– ident: B12
  doi: 10.1152/jn.1996.75.1.233
– ident: B5
  doi: 10.1523/JNEUROSCI.5228-04.2006
– ident: B13
  doi: 10.1007/BF00231461
– ident: B18
  doi: 10.1016/j.clinph.2009.10.036
– ident: B36
  doi: 10.1002/hbm.20644
– ident: B24
  doi: 10.1002/hbm.20102
– ident: B51
  doi: 10.1016/j.neuroimage.2007.11.038
– ident: B8
  doi: 10.1016/j.neuroimage.2008.04.178
– ident: B20
  doi: 10.1016/j.neuroimage.2010.01.077
– ident: B11
  doi: 10.1016/j.neuroimage.2009.08.041
– ident: B46
  doi: 10.1152/jn.91044.2008
– ident: B42
  doi: 10.1006/nimg.2002.1211
– ident: B31
  doi: 10.1016/S1364-6613(97)01059-0
– ident: B39
  doi: 10.1016/S1388-2457(03)00067-1
– ident: B21
  doi: 10.1038/338334a0
– ident: B33
  doi: 10.1073/pnas.0913697107
– ident: B15
  doi: 10.1038/35094565
– ident: B27
  doi: 10.1016/j.tins.2007.05.001
– ident: B35
  doi: 10.1016/j.neuroimage.2008.01.052
– ident: B44
  doi: 10.1016/S1053-8119(03)00249-0
– ident: B4
  doi: 10.1002/hbm.10072
– ident: B30
  doi: 10.1016/S0165-0270(01)00372-7
– ident: B48
  doi: 10.1111/j.1460-9568.2006.04876.x
– volume: 57
  start-page: 289
  year: 1995
  ident: B6
  publication-title: J R Stat Soc B Methodological
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: B43
  doi: 10.1093/cercor/bhk025
– ident: B28
  doi: 10.1007/BF00227095
– ident: B45
  doi: 10.1002/hbm.10062
– ident: B23
  doi: 10.1016/j.clinph.2005.02.027
– ident: B38
  doi: 10.1002/hbm.1058
– ident: B52
  doi: 10.1016/S0926-6410(00)00004-5
– ident: B10
  doi: 10.1093/brain/121.12.2301
– ident: B17
  doi: 10.1016/j.tins.2007.05.005
– ident: B29
  doi: 10.1007/BF00238515
– ident: B50
  doi: 10.1523/JNEUROSCI.17-02-00722.1997
– ident: B32
  doi: 10.1523/JNEUROSCI.3886-06.2007
– ident: B9
  doi: 10.1016/S0926-6410(03)00173-3
– ident: B2
  doi: 10.1186/1471-2202-8-101
– ident: B25
  doi: 10.1088/0031-9155/44/2/010
– ident: B37
  doi: 10.1002/hbm.20963
– ident: B26
  doi: 10.1016/j.braindev.2009.09.021
– ident: B40
  doi: 10.1113/jphysiol.1971.sp009579
– ident: B16
  doi: 10.1016/S1364-6613(00)01568-0
– ident: B53
  doi: 10.1523/JNEUROSCI.5171-07.2008
– start-page: 302
  volume-title: Recent Advances in Biomagnetism
  year: 1999
  ident: B41
– ident: B22
  doi: 10.1016/j.neuroimage.2010.02.001
– ident: B47
  doi: 10.1111/j.1460-9568.2005.03966.x
– ident: B3
  doi: 10.1016/j.neuroimage.2008.02.032
– ident: B34
  doi: 10.1523/JNEUROSCI.5506-08.2009
– ident: B19
  doi: 10.1016/S0304-3940(03)00108-3
– ident: B49
  doi: 10.1016/S1364-6613(99)01299-1
– ident: B14
  doi: 10.1016/j.cub.2009.07.066
– ident: B1
  doi: 10.1111/j.1460-9568.2004.03495.x
SSID ssj0007502
Score 2.4717507
Snippet Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 2873
SubjectTerms Adult
Analysis of Variance
Brain Mapping
Brain Waves - physiology
Electromyography
Female
Fingers - physiology
Humans
Magnetoencephalography
Male
Motor Cortex - physiology
Movement - physiology
Muscle Contraction - physiology
Title Functional Properties of Human Primary Motor Cortex Gamma Oscillations
URI https://www.ncbi.nlm.nih.gov/pubmed/20884762
https://www.proquest.com/docview/762479236
https://www.proquest.com/docview/817607816
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1522-1598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007502
  issn: 0022-3077
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1522-1598
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007502
  issn: 0022-3077
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEZN_kB9WUEEudWP05o3bStW5FaqW-W49iaRpuMLhGXX885jpO0GtWAlyiKTpL2fI7PxcffIeR9ziXMizB4ozDJIEDxQw8TDJ7JcgkhrgYvAzcnj8-T41l0Mo_nfes7u7ukyj6qX3_cV_I_qMI1wBV3yf4Dst1D4QKcA75wBITh-FcYj8AouVzeBJPqK2RH7VPzE8ckMS4hsIYvf1XpH_tHcrmU-xdg-RaLtWzdbf_UMl3axMdG5n1cV5f1VyzMljff5bIpFashaL90xcMuhYDlGF0KYa2k33f9VNppsWkL7PCP1ye5YdN9xBlMNmya7tyejGMkd70qsHbOT20ZXW912pX28wsxmp2dienhfDq4_uZhPzBcN3fNUe6TByxNEuxNcfql54EHP6fngYcf3rKnxuzTxvs2vY0tIYR1JaaPySOnY3rQAPqE3NPFU7J7UMiqXP6kAzrplL5LRj3GtMeYloZajKnDmFqMaYMxtRjTdYyfkdnocPr52HO9LzwVcr_yZKTCNFJR4GcQ4yrwQ5nRXLOQJ4GR6GRwcDXB2wexXKkA7YQKzNAEGU8Uy8PnZKcoC_2SUBP7fpYyyTF6ZobBtwhhZM55ajSy1-2RD62OhHLE8NifZCFsgBgzcVUIq1KBKt0jg078uvmP2wRpq3ABcxYuRMlCl_WNAAMcIW9lsl1kGKQJ8lCByIsGq-5lDAxjBI94dffNr8nDfry_ITvVqtZvwYmssnd2PP0GbqxyKQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Properties+of+Human+Primary+Motor+Cortex+Gamma+Oscillations&rft.jtitle=Journal+of+neurophysiology&rft.au=Muthukumaraswamy%2C+Suresh+D&rft.date=2010-11-01&rft.issn=0022-3077&rft.volume=104&rft.issue=5&rft.spage=2873&rft.epage=2885&rft_id=info:doi/10.1152%2Fjn.00607.2010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon