Functional Properties of Human Primary Motor Cortex Gamma Oscillations
Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiment...
Saved in:
Published in | Journal of neurophysiology Vol. 104; no. 5; pp. 2873 - 2885 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3077 1522-1598 1522-1598 |
DOI | 10.1152/jn.00607.2010 |
Cover
Abstract | Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction. |
---|---|
AbstractList | Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction. Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction.Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic (MEG)/electroencephalographic recordings, yet their functional significance within the sensorimotor system remains unknown. In a set of four MEG experiments described here a number of properties of these oscillations are elucidated. First, gamma oscillations were reliably localized by MEG in M1 and reached peak amplitude 137 ms after electromyographic onset and were not affected by whether movements were cued or self-paced. Gamma oscillations were found to be stronger for larger movements but were absent during the sustained part of isometric movements, with no finger movement or muscle shortening. During repetitive movement sequences gamma oscillations were greater for the first movement of a sequence. Finally, gamma oscillations were absent during passive shortening of the finger compared with active contractions sharing similar kinematic properties demonstrating that M1 oscillations are not simply related to somatosensory feedback. This combined pattern of results is consistent with gamma oscillations playing a role in a relatively late stage of motor control, encoding information related to limb movement rather than to muscle contraction. |
Author | Muthukumaraswamy, Suresh D. |
Author_xml | – sequence: 1 givenname: Suresh D. surname: Muthukumaraswamy fullname: Muthukumaraswamy, Suresh D. organization: Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20884762$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LAzEQxYNU7IcevcrePG2dJNt8HKXYKlTqQc8hTbOwZTepyS7of2-2rR4E8TTD8Jth3ntjNHDeWYSuMUwxnpG7nZsCMOBTAhjO0CjNSI5nUgzQCCD1FDgfonGMOwDgMyAXaEhAiIIzMkKLRedMW3mn6-wl-L0NbWVj5svssWu0S7Oq0eEze_atD9nch9Z-ZEvdNDpbR1PVte6X4yU6L3Ud7dWpTtDb4uF1_piv1sun-f0qN1RCm-vCUF6YAsOGMGwYJqS00hIqGS51-o9JKqQASNjWGEw5owaXosQbyQzZ0gm6Pd7dB__e2diqporGpjec9V1UAvPkhcDsXzKpL7gktCdvTmS3aexW7Y-S1bdJCciPgAk-xmDLHwSD6kNQO6cOIag-hMTTX7yp2oNPbdBV_cfWFxFqiCc |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2017_03_006 crossref_primary_10_1111_desc_12935 crossref_primary_10_3389_fnins_2022_836703 crossref_primary_10_1016_j_concog_2020_103053 crossref_primary_10_1111_ejn_12369 crossref_primary_10_1038_s41598_022_24417_w crossref_primary_10_1007_s00429_017_1387_1 crossref_primary_10_1016_j_nbd_2023_106283 crossref_primary_10_1038_s41398_021_01678_z crossref_primary_10_1016_j_neuropsychologia_2019_04_017 crossref_primary_10_1016_j_neuroimage_2013_02_013 crossref_primary_10_1007_s11055_014_9889_2 crossref_primary_10_3389_fnagi_2018_00147 crossref_primary_10_3390_brainsci12050530 crossref_primary_10_1109_TNSRE_2019_2934231 crossref_primary_10_1002_hbm_23000 crossref_primary_10_1002_hbm_23121 crossref_primary_10_1523_JNEUROSCI_5624_12_2013 crossref_primary_10_1016_j_nicl_2019_101977 crossref_primary_10_1016_j_euroneuro_2015_04_012 crossref_primary_10_1016_j_nicl_2021_102560 crossref_primary_10_1162_nol_a_00086 crossref_primary_10_3390_brainsci11081095 crossref_primary_10_1038_s41467_023_40056_9 crossref_primary_10_1002_hbm_25535 crossref_primary_10_1016_j_neuroimage_2012_12_038 crossref_primary_10_1038_npp_2013_9 crossref_primary_10_1016_j_expneurol_2012_07_005 crossref_primary_10_1016_j_neuroimage_2013_02_038 crossref_primary_10_1152_jn_00792_2014 crossref_primary_10_1016_j_expneurol_2012_11_011 crossref_primary_10_1088_2634_4386_ad850f crossref_primary_10_3389_fnhum_2021_787157 crossref_primary_10_1523_ENEURO_0009_21_2021 crossref_primary_10_1523_JNEUROSCI_0098_17_2017 crossref_primary_10_1523_JNEUROSCI_3860_11_2012 crossref_primary_10_1016_j_neuroimage_2020_117447 crossref_primary_10_1152_jn_00380_2021 crossref_primary_10_7554_eLife_69977 crossref_primary_10_7554_eLife_100238 crossref_primary_10_1038_s41598_022_08741_9 crossref_primary_10_1016_j_neuropharm_2017_04_009 crossref_primary_10_1016_j_dcn_2025_101529 crossref_primary_10_1038_s41598_022_10130_1 crossref_primary_10_1016_j_neuroscience_2023_11_017 crossref_primary_10_1002_hbm_23943 crossref_primary_10_1371_journal_pone_0260304 crossref_primary_10_1093_texcom_tgaa009 crossref_primary_10_1523_JNEUROSCI_2929_12_2012 crossref_primary_10_1113_JP287085 crossref_primary_10_3390_s22145255 crossref_primary_10_1016_j_neuroimage_2014_08_013 crossref_primary_10_3389_fnhum_2014_00156 crossref_primary_10_3390_e21040365 crossref_primary_10_1016_j_cortex_2016_03_004 crossref_primary_10_1002_brb3_2324 crossref_primary_10_1007_s00429_011_0307_z crossref_primary_10_1073_pnas_2104569118 crossref_primary_10_1093_braincomms_fcac249 crossref_primary_10_1152_jn_00590_2018 crossref_primary_10_1007_s10548_018_0628_9 crossref_primary_10_1093_cercor_bhaa199 crossref_primary_10_1371_journal_pone_0074273 crossref_primary_10_1016_j_neuroimage_2023_120444 crossref_primary_10_1093_cercor_bhac140 crossref_primary_10_1016_j_bbr_2019_112170 crossref_primary_10_1016_j_isci_2022_104338 crossref_primary_10_1016_j_neuroimage_2020_116562 crossref_primary_10_1088_1741_2552_ad2e1d crossref_primary_10_1016_j_clinph_2011_04_017 crossref_primary_10_3389_fnins_2021_800436 crossref_primary_10_3390_brainsci13050792 crossref_primary_10_1016_j_neuroimage_2012_01_028 crossref_primary_10_1162_imag_a_00056 crossref_primary_10_1097_WNR_0000000000001409 crossref_primary_10_1016_j_neuroimage_2015_03_045 crossref_primary_10_1523_JNEUROSCI_2063_13_2013 crossref_primary_10_1016_j_neuroimage_2016_11_042 crossref_primary_10_1016_j_neuroimage_2022_119745 crossref_primary_10_1016_j_neuroimage_2014_09_024 crossref_primary_10_1016_j_expneurol_2012_08_030 crossref_primary_10_1016_j_neuroimage_2015_10_076 crossref_primary_10_3233_JPD_181480 crossref_primary_10_3389_fnhum_2018_00130 crossref_primary_10_4236_jbise_2012_52011 crossref_primary_10_1016_j_neuroimage_2019_116349 crossref_primary_10_1016_j_neuroimage_2013_05_084 crossref_primary_10_1113_JP286873 crossref_primary_10_1016_j_neures_2022_03_004 crossref_primary_10_1109_TNSRE_2024_3523109 crossref_primary_10_1111_ejn_70018 crossref_primary_10_1038_s41598_022_18323_4 crossref_primary_10_1162_jocn_a_00948 crossref_primary_10_1007_s12021_013_9185_2 crossref_primary_10_1371_journal_pone_0050095 crossref_primary_10_3389_fneur_2019_01298 crossref_primary_10_3389_fnhum_2025_1521491 crossref_primary_10_1016_j_neuroimage_2016_04_032 crossref_primary_10_1093_brain_awae300 crossref_primary_10_1007_s40473_018_0151_z crossref_primary_10_1016_j_neuroimage_2023_120197 crossref_primary_10_1016_j_neuroimage_2014_06_039 crossref_primary_10_7554_eLife_24573 crossref_primary_10_1016_j_neuroimage_2015_12_021 crossref_primary_10_1016_j_expneurol_2021_113670 crossref_primary_10_3390_brainsci13121639 crossref_primary_10_1523_JNEUROSCI_2044_16_2016 crossref_primary_10_3758_s13423_012_0371_2 crossref_primary_10_1093_schbul_sby117 crossref_primary_10_1186_s11689_015_9121_x crossref_primary_10_1016_j_neuroimage_2018_09_018 crossref_primary_10_1093_brain_aws183 crossref_primary_10_7554_eLife_51956 crossref_primary_10_1016_j_brs_2024_09_001 crossref_primary_10_1016_j_clinph_2015_05_014 crossref_primary_10_7554_eLife_33977 crossref_primary_10_14814_phy2_16150 crossref_primary_10_1093_cercor_bht121 crossref_primary_10_1016_j_neuroimage_2014_02_029 crossref_primary_10_1038_s41598_019_54396_4 crossref_primary_10_1093_cercor_bht002 crossref_primary_10_1111_ejn_15004 crossref_primary_10_1016_j_clinph_2012_07_029 crossref_primary_10_1016_j_expneurol_2022_114140 crossref_primary_10_1016_j_neuroimage_2012_11_043 crossref_primary_10_3390_ani14030509 crossref_primary_10_1016_j_neuropsychologia_2015_06_014 crossref_primary_10_3389_fped_2021_626734 crossref_primary_10_1016_j_expneurol_2012_05_013 crossref_primary_10_1089_brain_2021_0003 crossref_primary_10_1093_cercor_bhab141 crossref_primary_10_1111_nmo_14173 crossref_primary_10_1002_hbm_26149 crossref_primary_10_1371_journal_pone_0082920 crossref_primary_10_1016_j_neuroimage_2024_120572 crossref_primary_10_1016_j_neuroimage_2020_116747 crossref_primary_10_1016_j_neuroimage_2020_116632 crossref_primary_10_1016_j_neuroimage_2021_118659 crossref_primary_10_1016_j_clinph_2015_08_020 crossref_primary_10_1016_j_neuroimage_2015_03_006 crossref_primary_10_1016_j_cortex_2018_03_029 crossref_primary_10_1093_cercor_bhae411 crossref_primary_10_1016_j_medengphy_2022_103772 crossref_primary_10_1016_j_nbd_2019_03_013 crossref_primary_10_1016_j_neuroimage_2015_05_081 crossref_primary_10_1016_j_jneumeth_2015_11_012 crossref_primary_10_1016_j_nbd_2015_11_009 crossref_primary_10_1093_brain_awy176 crossref_primary_10_1016_j_neuroscience_2025_01_016 crossref_primary_10_1038_s41598_021_85851_w crossref_primary_10_1142_S0129065718500144 crossref_primary_10_1088_1741_2552_ac3314 crossref_primary_10_1016_j_neuroimage_2012_10_054 crossref_primary_10_1016_j_expneurol_2015_12_004 crossref_primary_10_1080_00222895_2021_1940820 crossref_primary_10_1371_journal_pone_0085578 crossref_primary_10_1002_hbm_22518 crossref_primary_10_1002_hbm_24819 crossref_primary_10_1152_jn_00186_2012 crossref_primary_10_1371_journal_pone_0150359 crossref_primary_10_1038_s41598_024_61375_x crossref_primary_10_1016_j_brs_2018_03_015 crossref_primary_10_1152_jn_00690_2014 crossref_primary_10_1038_s41598_020_61909_z crossref_primary_10_1016_j_dcn_2018_02_013 crossref_primary_10_1016_j_neuroimage_2010_12_077 crossref_primary_10_1016_j_cub_2012_01_024 crossref_primary_10_3389_fnhum_2021_640609 crossref_primary_10_1016_j_neuroimage_2017_09_059 crossref_primary_10_1152_jn_00530_2021 crossref_primary_10_1007_s00221_011_2775_z crossref_primary_10_1016_j_brainres_2025_149521 crossref_primary_10_1007_s11357_023_01057_0 crossref_primary_10_1016_j_neuroimage_2021_118645 crossref_primary_10_1038_npp_2014_58 crossref_primary_10_1002_ana_26883 crossref_primary_10_1016_j_neuroimage_2019_116288 crossref_primary_10_1093_cercor_bhac423 crossref_primary_10_1002_hbm_23834 crossref_primary_10_1016_j_neubiorev_2019_12_024 crossref_primary_10_1016_j_neuroscience_2018_09_013 crossref_primary_10_1016_j_neuroimage_2014_07_015 crossref_primary_10_1155_2018_4593095 crossref_primary_10_1038_s41514_024_00182_0 crossref_primary_10_7554_eLife_67355 crossref_primary_10_1016_j_neuroimage_2018_12_045 crossref_primary_10_1523_JNEUROSCI_0339_16_2016 crossref_primary_10_3390_brainsci14121284 crossref_primary_10_1002_hbm_25126 crossref_primary_10_1016_j_neuroimage_2011_02_025 crossref_primary_10_1016_j_neuroimage_2019_06_009 crossref_primary_10_1002_pchj_696 crossref_primary_10_1016_j_nicl_2021_102857 crossref_primary_10_1016_j_brainres_2023_148650 crossref_primary_10_1002_bem_21740 crossref_primary_10_1016_j_expneurol_2022_113999 crossref_primary_10_3389_fnhum_2025_1524485 crossref_primary_10_1002_hbm_22888 crossref_primary_10_1371_journal_pone_0057685 |
Cites_doi | 10.1016/j.neuroimage.2005.05.045 10.1152/jn.1996.75.1.233 10.1523/JNEUROSCI.5228-04.2006 10.1007/BF00231461 10.1016/j.clinph.2009.10.036 10.1002/hbm.20644 10.1002/hbm.20102 10.1016/j.neuroimage.2007.11.038 10.1016/j.neuroimage.2008.04.178 10.1016/j.neuroimage.2010.01.077 10.1016/j.neuroimage.2009.08.041 10.1152/jn.91044.2008 10.1006/nimg.2002.1211 10.1016/S1364-6613(97)01059-0 10.1016/S1388-2457(03)00067-1 10.1038/338334a0 10.1073/pnas.0913697107 10.1038/35094565 10.1016/j.tins.2007.05.001 10.1016/j.neuroimage.2008.01.052 10.1016/S1053-8119(03)00249-0 10.1002/hbm.10072 10.1016/S0165-0270(01)00372-7 10.1111/j.1460-9568.2006.04876.x 10.1111/j.2517-6161.1995.tb02031.x 10.1093/cercor/bhk025 10.1007/BF00227095 10.1002/hbm.10062 10.1016/j.clinph.2005.02.027 10.1002/hbm.1058 10.1016/S0926-6410(00)00004-5 10.1093/brain/121.12.2301 10.1016/j.tins.2007.05.005 10.1007/BF00238515 10.1523/JNEUROSCI.17-02-00722.1997 10.1523/JNEUROSCI.3886-06.2007 10.1016/S0926-6410(03)00173-3 10.1186/1471-2202-8-101 10.1088/0031-9155/44/2/010 10.1002/hbm.20963 10.1016/j.braindev.2009.09.021 10.1113/jphysiol.1971.sp009579 10.1016/S1364-6613(00)01568-0 10.1523/JNEUROSCI.5171-07.2008 10.1016/j.neuroimage.2010.02.001 10.1111/j.1460-9568.2005.03966.x 10.1016/j.neuroimage.2008.02.032 10.1523/JNEUROSCI.5506-08.2009 10.1016/S0304-3940(03)00108-3 10.1016/S1364-6613(99)01299-1 10.1016/j.cub.2009.07.066 10.1111/j.1460-9568.2004.03495.x |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1152/jn.00607.2010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 2885 |
ExternalDocumentID | 20884762 10_1152_jn_00607_2010 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 .GJ 0VX 18M 1CY 1Z7 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5VS 8M5 AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AI. AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B MVM NEJ OHT OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT UQL VH1 W8F WH7 WOQ WOW X7M XJT XOL XSW YBH YQT YSK ZGI ZXP ZY4 AFOSN CGR CUY CVF ECM EIF NPM 7X8 7TK |
ID | FETCH-LOGICAL-c390t-a4c374c410b261c6122fe9e23961fa00069389800c37dcc13763c1f8f1b96c2d3 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Fri Sep 05 10:27:21 EDT 2025 Wed Oct 01 14:35:58 EDT 2025 Mon Jul 21 06:03:06 EDT 2025 Thu Apr 24 23:03:41 EDT 2025 Wed Oct 01 06:52:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c390t-a4c374c410b261c6122fe9e23961fa00069389800c37dcc13763c1f8f1b96c2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 20884762 |
PQID | 762479236 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_817607816 proquest_miscellaneous_762479236 pubmed_primary_20884762 crossref_primary_10_1152_jn_00607_2010 crossref_citationtrail_10_1152_jn_00607_2010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-11-01 |
PublicationDateYYYYMMDD | 2010-11-01 |
PublicationDate_xml | – month: 11 year: 2010 text: 2010-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2010 |
References | B20 Robinson SE (B41) 1999 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B7 B8 B9 B40 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B10 B11 Benjamini Y (B6) 1995; 57 B12 B13 B14 B15 B16 B17 B18 B19 |
References_xml | – ident: B7 doi: 10.1016/j.neuroimage.2005.05.045 – ident: B12 doi: 10.1152/jn.1996.75.1.233 – ident: B5 doi: 10.1523/JNEUROSCI.5228-04.2006 – ident: B13 doi: 10.1007/BF00231461 – ident: B18 doi: 10.1016/j.clinph.2009.10.036 – ident: B36 doi: 10.1002/hbm.20644 – ident: B24 doi: 10.1002/hbm.20102 – ident: B51 doi: 10.1016/j.neuroimage.2007.11.038 – ident: B8 doi: 10.1016/j.neuroimage.2008.04.178 – ident: B20 doi: 10.1016/j.neuroimage.2010.01.077 – ident: B11 doi: 10.1016/j.neuroimage.2009.08.041 – ident: B46 doi: 10.1152/jn.91044.2008 – ident: B42 doi: 10.1006/nimg.2002.1211 – ident: B31 doi: 10.1016/S1364-6613(97)01059-0 – ident: B39 doi: 10.1016/S1388-2457(03)00067-1 – ident: B21 doi: 10.1038/338334a0 – ident: B33 doi: 10.1073/pnas.0913697107 – ident: B15 doi: 10.1038/35094565 – ident: B27 doi: 10.1016/j.tins.2007.05.001 – ident: B35 doi: 10.1016/j.neuroimage.2008.01.052 – ident: B44 doi: 10.1016/S1053-8119(03)00249-0 – ident: B4 doi: 10.1002/hbm.10072 – ident: B30 doi: 10.1016/S0165-0270(01)00372-7 – ident: B48 doi: 10.1111/j.1460-9568.2006.04876.x – volume: 57 start-page: 289 year: 1995 ident: B6 publication-title: J R Stat Soc B Methodological doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: B43 doi: 10.1093/cercor/bhk025 – ident: B28 doi: 10.1007/BF00227095 – ident: B45 doi: 10.1002/hbm.10062 – ident: B23 doi: 10.1016/j.clinph.2005.02.027 – ident: B38 doi: 10.1002/hbm.1058 – ident: B52 doi: 10.1016/S0926-6410(00)00004-5 – ident: B10 doi: 10.1093/brain/121.12.2301 – ident: B17 doi: 10.1016/j.tins.2007.05.005 – ident: B29 doi: 10.1007/BF00238515 – ident: B50 doi: 10.1523/JNEUROSCI.17-02-00722.1997 – ident: B32 doi: 10.1523/JNEUROSCI.3886-06.2007 – ident: B9 doi: 10.1016/S0926-6410(03)00173-3 – ident: B2 doi: 10.1186/1471-2202-8-101 – ident: B25 doi: 10.1088/0031-9155/44/2/010 – ident: B37 doi: 10.1002/hbm.20963 – ident: B26 doi: 10.1016/j.braindev.2009.09.021 – ident: B40 doi: 10.1113/jphysiol.1971.sp009579 – ident: B16 doi: 10.1016/S1364-6613(00)01568-0 – ident: B53 doi: 10.1523/JNEUROSCI.5171-07.2008 – start-page: 302 volume-title: Recent Advances in Biomagnetism year: 1999 ident: B41 – ident: B22 doi: 10.1016/j.neuroimage.2010.02.001 – ident: B47 doi: 10.1111/j.1460-9568.2005.03966.x – ident: B3 doi: 10.1016/j.neuroimage.2008.02.032 – ident: B34 doi: 10.1523/JNEUROSCI.5506-08.2009 – ident: B19 doi: 10.1016/S0304-3940(03)00108-3 – ident: B49 doi: 10.1016/S1364-6613(99)01299-1 – ident: B14 doi: 10.1016/j.cub.2009.07.066 – ident: B1 doi: 10.1111/j.1460-9568.2004.03495.x |
SSID | ssj0007502 |
Score | 2.4717507 |
Snippet | Gamma oscillations in human primary motor cortex (M1) have been described in human electrocorticographic and noninvasive magnetoencephalographic... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2873 |
SubjectTerms | Adult Analysis of Variance Brain Mapping Brain Waves - physiology Electromyography Female Fingers - physiology Humans Magnetoencephalography Male Motor Cortex - physiology Movement - physiology Muscle Contraction - physiology |
Title | Functional Properties of Human Primary Motor Cortex Gamma Oscillations |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20884762 https://www.proquest.com/docview/762479236 https://www.proquest.com/docview/817607816 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1522-1598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007502 issn: 0022-3077 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1522-1598 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007502 issn: 0022-3077 databaseCode: DIK dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgvPCCgHEZN_kB9WUEEudWP05o3bStW5FaqW-W49iaRpuMLhGXX885jpO0GtWAlyiKTpL2fI7PxcffIeR9ziXMizB4ozDJIEDxQw8TDJ7JcgkhrgYvAzcnj8-T41l0Mo_nfes7u7ukyj6qX3_cV_I_qMI1wBV3yf4Dst1D4QKcA75wBITh-FcYj8AouVzeBJPqK2RH7VPzE8ckMS4hsIYvf1XpH_tHcrmU-xdg-RaLtWzdbf_UMl3axMdG5n1cV5f1VyzMljff5bIpFashaL90xcMuhYDlGF0KYa2k33f9VNppsWkL7PCP1ye5YdN9xBlMNmya7tyejGMkd70qsHbOT20ZXW912pX28wsxmp2dienhfDq4_uZhPzBcN3fNUe6TByxNEuxNcfql54EHP6fngYcf3rKnxuzTxvs2vY0tIYR1JaaPySOnY3rQAPqE3NPFU7J7UMiqXP6kAzrplL5LRj3GtMeYloZajKnDmFqMaYMxtRjTdYyfkdnocPr52HO9LzwVcr_yZKTCNFJR4GcQ4yrwQ5nRXLOQJ4GR6GRwcDXB2wexXKkA7YQKzNAEGU8Uy8PnZKcoC_2SUBP7fpYyyTF6ZobBtwhhZM55ajSy1-2RD62OhHLE8NifZCFsgBgzcVUIq1KBKt0jg078uvmP2wRpq3ABcxYuRMlCl_WNAAMcIW9lsl1kGKQJ8lCByIsGq-5lDAxjBI94dffNr8nDfry_ITvVqtZvwYmssnd2PP0GbqxyKQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Properties+of+Human+Primary+Motor+Cortex+Gamma+Oscillations&rft.jtitle=Journal+of+neurophysiology&rft.au=Muthukumaraswamy%2C+Suresh+D&rft.date=2010-11-01&rft.issn=0022-3077&rft.volume=104&rft.issue=5&rft.spage=2873&rft.epage=2885&rft_id=info:doi/10.1152%2Fjn.00607.2010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |