The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications

The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) i...

Full description

Saved in:
Bibliographic Details
Published inRNA (Cambridge) Vol. 18; no. 10; pp. 1886 - 1896
Main Authors Dewe, Joshua M., Whipple, Joseph M., Chernyakov, Irina, Jaramillo, Laura N., Phizicky, Eric M.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.10.2012
Subjects
Online AccessGet full text
ISSN1355-8382
1469-9001
1469-9001
DOI10.1261/rna.033654.112

Cover

Abstract The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5′-3′ exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8 -Δ trm4 -Δ strains are temperature sensitive due to lack of m 7 G 46 and m 5 C and the consequent RTD of tRNA Val(AAC) , and tan1 -Δ trm44 -Δ strains are temperature sensitive due to lack of ac 4 C 12 and Um 44 and the consequent RTD of tRNA Ser(CGA) and tRNA Ser(UGA) . It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1 -Δ trm4 -Δ mutants are subject to RTD of tRNA Ser(CGA) and tRNA Ser(UGA) due to lack of m 2,2 G 26 and m 5 C, and since trm8 -Δ, tan1 -Δ, and trm1 -Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.
AbstractList The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5′-3′ exonucleolytic degradation by Rat1 and Xrn1. For example, trm8 -Δ trm4 -Δ strains are temperature sensitive due to lack of m 7 G 46 and m 5 C and the consequent RTD of tRNA Val(AAC) . It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. The authors provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD. The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5′-3′ exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8 -Δ trm4 -Δ strains are temperature sensitive due to lack of m 7 G 46 and m 5 C and the consequent RTD of tRNA Val(AAC) , and tan1 -Δ trm44 -Δ strains are temperature sensitive due to lack of ac 4 C 12 and Um 44 and the consequent RTD of tRNA Ser(CGA) and tRNA Ser(UGA) . It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1 -Δ trm4 -Δ mutants are subject to RTD of tRNA Ser(CGA) and tRNA Ser(UGA) due to lack of m 2,2 G 26 and m 5 C, and since trm8 -Δ, tan1 -Δ, and trm1 -Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5′-3′ exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8 -Δ trm4 -Δ strains are temperature sensitive due to lack of m 7 G 46 and m 5 C and the consequent RTD of tRNA Val(AAC) , and tan1 -Δ trm44 -Δ strains are temperature sensitive due to lack of ac 4 C 12 and Um 44 and the consequent RTD of tRNA Ser(CGA) and tRNA Ser(UGA) . It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1 -Δ trm4 -Δ mutants are subject to RTD of tRNA Ser(CGA) and tRNA Ser(UGA) due to lack of m 2,2 G 26 and m 5 C, and since trm8 -Δ, tan1 -Δ, and trm1 -Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.
Author Dewe, Joshua M.
Whipple, Joseph M.
Jaramillo, Laura N.
Chernyakov, Irina
Phizicky, Eric M.
AuthorAffiliation Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
AuthorAffiliation_xml – name: Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
Author_xml – sequence: 1
  givenname: Joshua M.
  surname: Dewe
  fullname: Dewe, Joshua M.
– sequence: 2
  givenname: Joseph M.
  surname: Whipple
  fullname: Whipple, Joseph M.
– sequence: 3
  givenname: Irina
  surname: Chernyakov
  fullname: Chernyakov, Irina
– sequence: 4
  givenname: Laura N.
  surname: Jaramillo
  fullname: Jaramillo, Laura N.
– sequence: 5
  givenname: Eric M.
  surname: Phizicky
  fullname: Phizicky, Eric M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22895820$$D View this record in MEDLINE/PubMed
BookMark eNp1UU1v1DAQtVAR_YArR-Qjlyy24zjOBWlV8SVVIKFythxnsmtI7GB7W-0_6c_tsFsqQOL07Jn33oz9zslJiAEIecnZigvF36RgV6yuVSNXnIsn5IxL1VUdY_wEz3XTVLrW4pSc5_wdizW2n5FTIXTXaMHOyN31FugebC402cUPtHz9vKYDOLuniy3bW0QX5wUKZHrry5bCFMPGFh8DHa0rMVG-piNC3vW5JFvg4JGpDQNFQqbIPFYm6374sMECUBTMMSGONMMNJDvhffCjdwfv_Jw8He2U4cUDXpBv799dX36srr58-HS5vqpc3bFSdQPjnXSqF0qJum9HCbxxA-i2b1TXWNb3YmTOWSmFblTfKz4OkrVaK93YTtUX5O3Rd9n1MwwOAr5hMkvys017E603f3eC35pNvDG1lKrlHA1ePxik-HMHuZjZZwfTZAPEXTacSc6lkG2L1Fd_znoc8jsOJKyOBJdizgnGRwpn5lfeBvM2x7wN5o0C-Y_A-XL4QNzVT_-T3QOsQ7En
CitedBy_id crossref_primary_10_1126_sciadv_ads2923
crossref_primary_10_1261_rna_079620_123
crossref_primary_10_1007_s11427_022_2295_0
crossref_primary_10_1038_s42003_024_06942_8
crossref_primary_10_3390_life6020016
crossref_primary_10_1021_acs_chemrev_7b00462
crossref_primary_10_1038_s41586_020_2418_2
crossref_primary_10_1261_rna_035808_112
crossref_primary_10_1261_rna_064642_117
crossref_primary_10_1002_wrna_1287
crossref_primary_10_1016_j_celrep_2024_115092
crossref_primary_10_1007_s12551_017_0322_2
crossref_primary_10_1016_j_ajhg_2022_02_001
crossref_primary_10_3390_jof9101030
crossref_primary_10_1038_s41467_024_52389_0
crossref_primary_10_3390_biom7010023
crossref_primary_10_1080_15476286_2024_2340297
crossref_primary_10_3390_biom11010076
crossref_primary_10_1128_MCB_00214_17
crossref_primary_10_1080_15476286_2020_1809197
crossref_primary_10_1038_s41467_024_49796_8
crossref_primary_10_1261_rna_079290_122
crossref_primary_10_1016_j_jbc_2023_105326
crossref_primary_10_1016_j_bbagrm_2017_12_003
crossref_primary_10_3390_genes15030374
crossref_primary_10_1093_bfgp_elaa027
crossref_primary_10_1146_annurev_genet_111523_102042
crossref_primary_10_1021_jacs_1c11985
crossref_primary_10_1093_nar_gkad722
crossref_primary_10_1016_j_gene_2013_04_021
crossref_primary_10_1038_s41580_021_00342_0
crossref_primary_10_1093_nar_gkx764
crossref_primary_10_1038_s41392_023_01480_x
crossref_primary_10_3390_genes14020382
crossref_primary_10_1186_s13059_015_0779_x
crossref_primary_10_3390_ijms16011873
crossref_primary_10_1021_acschembio_8b00951
crossref_primary_10_1007_s00109_019_01830_9
crossref_primary_10_1261_rna_080315_124
crossref_primary_10_3389_fgene_2014_00144
crossref_primary_10_1016_j_bbagen_2017_03_012
crossref_primary_10_1016_j_jbc_2023_104966
crossref_primary_10_3390_genes9120612
crossref_primary_10_1093_nar_gkae341
crossref_primary_10_1016_j_jbc_2024_107488
crossref_primary_10_1093_nar_gkac404
crossref_primary_10_1016_j_bbagrm_2012_11_004
crossref_primary_10_1038_nprot_2014_047
crossref_primary_10_1093_molbev_msab255
crossref_primary_10_1073_pnas_1316579110
crossref_primary_10_3390_genes9110537
crossref_primary_10_1042_BST20160062
crossref_primary_10_1534_genetics_117_203232
crossref_primary_10_1080_15476286_2015_1008360
crossref_primary_10_1093_nar_gky623
crossref_primary_10_1126_science_aaf4791
crossref_primary_10_3390_ijms151223975
crossref_primary_10_1371_journal_pgen_1005671
crossref_primary_10_1080_00439339_2022_2119916
crossref_primary_10_1016_j_bbagrm_2017_11_007
crossref_primary_10_1016_j_bbagrm_2018_11_007
crossref_primary_10_1021_acs_chemrev_4c00142
crossref_primary_10_1101_gad_245936_114
crossref_primary_10_1093_nar_gkv075
crossref_primary_10_1016_j_celrep_2022_111317
crossref_primary_10_1093_nar_gkab001
crossref_primary_10_1038_nchembio_2117
crossref_primary_10_1261_rna_073155_119
crossref_primary_10_1261_rna_079861_123
crossref_primary_10_1002_humu_23976
crossref_primary_10_1534_g3_113_005579
crossref_primary_10_1080_15476286_2015_1008358
crossref_primary_10_1534_genetics_112_147470
crossref_primary_10_1210_en_2019_00098
crossref_primary_10_1080_15476286_2019_1568819
crossref_primary_10_1186_s12917_024_04362_8
crossref_primary_10_1261_rna_048173_114
crossref_primary_10_1038_s41586_022_04677_2
crossref_primary_10_1073_pnas_1814130116
crossref_primary_10_1371_journal_pgen_1008893
crossref_primary_10_1038_s41392_022_01175_9
crossref_primary_10_1371_journal_pgen_1011146
crossref_primary_10_1371_journal_pgen_1010215
crossref_primary_10_1016_j_molcel_2023_08_015
crossref_primary_10_1016_j_molmed_2019_05_011
crossref_primary_10_1002_wrna_1190
crossref_primary_10_1016_j_pneurobio_2021_102118
Cites_doi 10.1261/rna.485307
10.1016/0022-2836(85)90048-8
10.1128/MCB.01542-07
10.1128/jb.122.3.855-865.1975
10.1002/j.1460-2075.1991.tb07864.x
10.1038/nsmb866
10.1101/gad.1654308
10.1126/science.185.4149.435
10.1038/336179a0
10.1038/nature00935
10.1016/j.jmb.2009.01.021
10.1093/nar/gkn925
10.1101/gad.1183804
10.1038/nsmb.1581
10.1016/S0022-2836(76)80109-X
10.1093/emboj/16.23.7184
10.1016/j.cell.2009.01.036
10.1101/gad.1956510
10.1261/rna.2305406
10.1038/357513a0
10.1016/j.febslet.2009.11.049
10.1016/j.molcel.2005.10.036
10.1261/rna.808608
10.1038/nsb1003
10.1093/nar/26.22.5017
10.1016/j.cell.2005.04.029
10.1016/S0076-6879(02)50970-8
10.1101/gad.2050711
10.1093/nar/30.6.e23
10.1261/rna.811008
10.1016/j.molcel.2006.07.031
10.1016/j.molcel.2007.06.006
10.1101/gad.12.23.3650
10.1016/j.jmb.2006.11.046
10.1261/rna.1050408
10.1126/science.1111408
10.1371/journal.pbio.0030189
10.1261/rna.2201210
10.1016/S0021-9258(18)89476-5
10.1261/rna.2030705
10.1038/nsmb861
10.1126/science.1213671
10.1073/pnas.80.9.2432
10.1126/science.1064242
10.1261/rna.558707
10.1128/AAC.3.6.729
10.1101/gad.1362105
10.1074/jbc.M707245200
10.1261/rna.966208
10.1261/rna.2184703
10.1146/annurev.micro.091208.073210
10.1126/science.1179700
ContentType Journal Article
Copyright Copyright © 2012 RNA Society 2012
Copyright_xml – notice: Copyright © 2012 RNA Society 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1261/rna.033654.112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Dewe et al
EISSN 1469-9001
EndPage 1896
ExternalDocumentID PMC3446711
22895820
10_1261_rna_033654_112
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM052347
– fundername: NIGMS NIH HHS
  grantid: GM52347
– fundername: NIGMS NIH HHS
  grantid: T32 GM068411
– fundername: NIGMS NIH HHS
  grantid: 5T32 GM068411
GroupedDBID ---
.GJ
0VX
123
18M
29P
2WC
34G
39C
4.4
53G
5RE
5VS
8R4
8R5
AAYXX
ABDIX
ABDNZ
ABGDZ
ABVKB
ACGFO
ACLKE
ACNCT
ACQPF
ACYGS
ADBBV
AEILP
AENEX
AFFNX
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CAG
CITATION
COF
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
KQ8
MV1
OK1
P2P
RCA
RCX
RHI
RIG
ROL
RPM
SJN
TR2
W8F
WOQ
YKV
ZGI
ZWS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c390t-9d0194c6b26623b7f4e15cde87b5695a0bb2f0cca442856bb61fd40788685a963
ISSN 1355-8382
1469-9001
IngestDate Thu Aug 21 18:17:43 EDT 2025
Fri Sep 05 04:24:16 EDT 2025
Mon Jul 21 05:43:14 EDT 2025
Tue Jul 01 01:14:34 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c390t-9d0194c6b26623b7f4e15cde87b5695a0bb2f0cca442856bb61fd40788685a963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
Present address: Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
OpenAccessLink http://rnajournal.cshlp.org/content/18/10/1886.full.pdf
PMID 22895820
PQID 1041142477
PQPubID 23479
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3446711
proquest_miscellaneous_1041142477
pubmed_primary_22895820
crossref_primary_10_1261_rna_033654_112
crossref_citationtrail_10_1261_rna_033654_112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-10-00
2012-Oct
20121001
PublicationDateYYYYMMDD 2012-10-01
PublicationDate_xml – month: 10
  year: 2012
  text: 2012-10-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle RNA (Cambridge)
PublicationTitleAlternate RNA
PublicationYear 2012
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021112105524403000_18.10.1886.6
2021112105524403000_18.10.1886.7
2021112105524403000_18.10.1886.8
2021112105524403000_18.10.1886.1
2021112105524403000_18.10.1886.2
2021112105524403000_18.10.1886.3
2021112105524403000_18.10.1886.4
2021112105524403000_18.10.1886.36
2021112105524403000_18.10.1886.37
2021112105524403000_18.10.1886.38
2021112105524403000_18.10.1886.39
2021112105524403000_18.10.1886.9
2021112105524403000_18.10.1886.32
2021112105524403000_18.10.1886.33
2021112105524403000_18.10.1886.34
2021112105524403000_18.10.1886.35
2021112105524403000_18.10.1886.30
2021112105524403000_18.10.1886.31
2021112105524403000_18.10.1886.29
2021112105524403000_18.10.1886.25
2021112105524403000_18.10.1886.26
2021112105524403000_18.10.1886.27
2021112105524403000_18.10.1886.28
2021112105524403000_18.10.1886.21
2021112105524403000_18.10.1886.23
2021112105524403000_18.10.1886.24
2021112105524403000_18.10.1886.18
2021112105524403000_18.10.1886.19
2021112105524403000_18.10.1886.14
2021112105524403000_18.10.1886.15
2021112105524403000_18.10.1886.16
2021112105524403000_18.10.1886.17
2021112105524403000_18.10.1886.10
2021112105524403000_18.10.1886.11
2021112105524403000_18.10.1886.12
2021112105524403000_18.10.1886.13
2021112105524403000_18.10.1886.50
2021112105524403000_18.10.1886.51
2021112105524403000_18.10.1886.52
(2021112105524403000_18.10.1886.43) 1985; 260
(2021112105524403000_18.10.1886.5) 1991; 10
(2021112105524403000_18.10.1886.20) 1973; 3
(2021112105524403000_18.10.1886.22) 2002; 350
(2021112105524403000_18.10.1886.46) 1975; 122
2021112105524403000_18.10.1886.47
2021112105524403000_18.10.1886.48
2021112105524403000_18.10.1886.49
2021112105524403000_18.10.1886.44
2021112105524403000_18.10.1886.45
2021112105524403000_18.10.1886.40
2021112105524403000_18.10.1886.41
2021112105524403000_18.10.1886.42
9851972 - Genes Dev. 1998 Dec 1;12(23):3650-62
1608452 - Nature. 1992 Jun 11;357(6378):513-5
16322557 - Genes Dev. 2005 Dec 1;19(23):2816-26
18456844 - RNA. 2008 Jun;14(6):1214-27
17018299 - Mol Cell. 2006 Oct 6;24(1):139-48
9384595 - EMBO J. 1997 Dec 1;16(23):7184-95
3054566 - Nature. 1988 Nov 10;336(6195):179-81
17643380 - Mol Cell. 2007 Jul 20;27(2):324-31
11588263 - Science. 2001 Oct 5;294(5540):165-8
9801296 - Nucleic Acids Res. 1998 Nov 15;26(22):5017-35
18025252 - RNA. 2008 Jan;14(1):158-69
17449728 - RNA. 2007 Jun;13(6):835-40
15558052 - Nat Struct Mol Biol. 2004 Dec;11(12):1186-91
17187822 - J Mol Biol. 2007 Feb 9;366(1):1-13
18000032 - RNA. 2008 Jan;14(1):107-16
4597739 - Antimicrob Agents Chemother. 1973 Jun;3(6):729-38
15811913 - RNA. 2005 May;11(5):821-30
15935758 - Cell. 2005 Jun 3;121(5):713-24
19931536 - FEBS Lett. 2010 Jan 21;584(2):265-71
20651030 - RNA. 2010 Sep;16(9):1797-808
1915284 - EMBO J. 1991 Oct;10(10):3105-11
6189122 - Proc Natl Acad Sci U S A. 1983 May;80(9):2432-6
3897553 - J Mol Biol. 1985 Jul 5;184(1):119-45
19379069 - Annu Rev Microbiol. 2009;63:61-78
19305403 - Nat Struct Mol Biol. 2009 Apr;16(4):359-64
12140549 - Nature. 2002 Jul 25;418(6896):387-91
16431988 - RNA. 2006 Mar;12(3):508-21
4601792 - Science. 1974 Aug 2;185(4149):435-40
19452597 - J Mol Biol. 2009 Mar 13;386(5):1255-64
21632824 - Genes Dev. 2011 Jun 1;25(11):1173-84
15558050 - Nat Struct Mol Biol. 2004 Dec;11(12):1251-2
22076379 - Science. 2011 Nov 11;334(6057):817-21
15145828 - Genes Dev. 2004 Jun 1;18(11):1227-40
1097403 - J Bacteriol. 1975 Jun;122(3):855-65
17592039 - RNA. 2007 Aug;13(8):1245-55
15905403 - Science. 2005 May 20;308(5725):1178-80
19042972 - Nucleic Acids Res. 2009 Jan;37(1):298-308
19833920 - Science. 2009 Oct 30;326(5953):688-94
12649490 - RNA. 2003 Apr;9(4):384-5
14566331 - Nat Struct Biol. 2003 Nov;10(11):899-906
18314501 - RNA. 2008 Apr;14(4):666-74
18332122 - Mol Cell Biol. 2008 May;28(10):3301-12
19239893 - Cell. 2009 Feb 20;136(4):746-62
12073319 - Methods Enzymol. 2002;350:290-315
15828860 - PLoS Biol. 2005 Jun;3(6):e189
17925388 - J Biol Chem. 2007 Dec 7;282(49):35629-37
18443146 - Genes Dev. 2008 May 15;22(10):1369-80
3882705 - J Biol Chem. 1985 Mar 10;260(5):3084-9
11884642 - Nucleic Acids Res. 2002 Mar 15;30(6):e23
798036 - J Mol Biol. 1976 Dec 25;108(4):619-49
20810645 - Genes Dev. 2010 Sep 1;24(17):1832-60
16387656 - Mol Cell. 2006 Jan 6;21(1):87-96
References_xml – ident: 2021112105524403000_18.10.1886.39
  doi: 10.1261/rna.485307
– ident: 2021112105524403000_18.10.1886.48
  doi: 10.1016/0022-2836(85)90048-8
– ident: 2021112105524403000_18.10.1886.21
  doi: 10.1128/MCB.01542-07
– volume: 122
  start-page: 855
  year: 1975
  ident: 2021112105524403000_18.10.1886.46
  article-title: Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast
  publication-title: J Bacteriol
  doi: 10.1128/jb.122.3.855-865.1975
– volume: 10
  start-page: 3105
  year: 1991
  ident: 2021112105524403000_18.10.1886.5
  article-title: The 3 Å crystal structure of yeast initiator tRNA: Functional implications in initiator/elongator discrimination
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1991.tb07864.x
– ident: 2021112105524403000_18.10.1886.33
  doi: 10.1038/nsmb866
– ident: 2021112105524403000_18.10.1886.7
  doi: 10.1101/gad.1654308
– ident: 2021112105524403000_18.10.1886.25
  doi: 10.1126/science.185.4149.435
– ident: 2021112105524403000_18.10.1886.32
  doi: 10.1038/336179a0
– ident: 2021112105524403000_18.10.1886.14
  doi: 10.1038/nature00935
– ident: 2021112105524403000_18.10.1886.42
  doi: 10.1016/j.jmb.2009.01.021
– ident: 2021112105524403000_18.10.1886.36
  doi: 10.1093/nar/gkn925
– ident: 2021112105524403000_18.10.1886.23
  doi: 10.1101/gad.1183804
– ident: 2021112105524403000_18.10.1886.30
  doi: 10.1038/nsmb.1581
– ident: 2021112105524403000_18.10.1886.19
  doi: 10.1016/S0022-2836(76)80109-X
– ident: 2021112105524403000_18.10.1886.10
  doi: 10.1093/emboj/16.23.7184
– ident: 2021112105524403000_18.10.1886.52
  doi: 10.1016/j.cell.2009.01.036
– ident: 2021112105524403000_18.10.1886.38
  doi: 10.1101/gad.1956510
– ident: 2021112105524403000_18.10.1886.24
  doi: 10.1261/rna.2305406
– ident: 2021112105524403000_18.10.1886.35
  doi: 10.1038/357513a0
– ident: 2021112105524403000_18.10.1886.37
  doi: 10.1016/j.febslet.2009.11.049
– ident: 2021112105524403000_18.10.1886.3
  doi: 10.1016/j.molcel.2005.10.036
– ident: 2021112105524403000_18.10.1886.47
  doi: 10.1261/rna.808608
– ident: 2021112105524403000_18.10.1886.44
  doi: 10.1038/nsb1003
– ident: 2021112105524403000_18.10.1886.15
  doi: 10.1093/nar/26.22.5017
– ident: 2021112105524403000_18.10.1886.28
  doi: 10.1016/j.cell.2005.04.029
– volume: 350
  start-page: 290
  year: 2002
  ident: 2021112105524403000_18.10.1886.22
  article-title: Gene disruption
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(02)50970-8
– ident: 2021112105524403000_18.10.1886.49
  doi: 10.1101/gad.2050711
– ident: 2021112105524403000_18.10.1886.17
  doi: 10.1093/nar/30.6.e23
– ident: 2021112105524403000_18.10.1886.26
  doi: 10.1261/rna.811008
– ident: 2021112105524403000_18.10.1886.12
  doi: 10.1016/j.molcel.2006.07.031
– ident: 2021112105524403000_18.10.1886.41
  doi: 10.1016/j.molcel.2007.06.006
– ident: 2021112105524403000_18.10.1886.4
  doi: 10.1101/gad.12.23.3650
– ident: 2021112105524403000_18.10.1886.1
  doi: 10.1016/j.jmb.2006.11.046
– ident: 2021112105524403000_18.10.1886.9
  doi: 10.1261/rna.1050408
– ident: 2021112105524403000_18.10.1886.8
  doi: 10.1126/science.1111408
– ident: 2021112105524403000_18.10.1886.45
  doi: 10.1371/journal.pbio.0030189
– ident: 2021112105524403000_18.10.1886.27
  doi: 10.1261/rna.2201210
– volume: 260
  start-page: 3084
  year: 1985
  ident: 2021112105524403000_18.10.1886.43
  article-title: Elongation factor 1α from Saccharomyces cerevisiae. Rapid large-scale purification and molecular characterization
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)89476-5
– ident: 2021112105524403000_18.10.1886.2
  doi: 10.1261/rna.2030705
– ident: 2021112105524403000_18.10.1886.34
  doi: 10.1038/nsmb861
– ident: 2021112105524403000_18.10.1886.50
  doi: 10.1126/science.1213671
– ident: 2021112105524403000_18.10.1886.11
  doi: 10.1073/pnas.80.9.2432
– ident: 2021112105524403000_18.10.1886.29
  doi: 10.1126/science.1064242
– ident: 2021112105524403000_18.10.1886.6
  doi: 10.1261/rna.558707
– volume: 3
  start-page: 729
  year: 1973
  ident: 2021112105524403000_18.10.1886.20
  article-title: Mode of action of thiolutin, an inhibitor of macromolecular synthesis in Saccharomyces cerevisiae
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.3.6.729
– ident: 2021112105524403000_18.10.1886.13
  doi: 10.1101/gad.1362105
– ident: 2021112105524403000_18.10.1886.16
  doi: 10.1074/jbc.M707245200
– ident: 2021112105524403000_18.10.1886.18
  doi: 10.1261/rna.966208
– ident: 2021112105524403000_18.10.1886.51
  doi: 10.1261/rna.2184703
– ident: 2021112105524403000_18.10.1886.31
  doi: 10.1146/annurev.micro.091208.073210
– ident: 2021112105524403000_18.10.1886.40
  doi: 10.1126/science.1179700
– reference: 16431988 - RNA. 2006 Mar;12(3):508-21
– reference: 4597739 - Antimicrob Agents Chemother. 1973 Jun;3(6):729-38
– reference: 15558052 - Nat Struct Mol Biol. 2004 Dec;11(12):1186-91
– reference: 19833920 - Science. 2009 Oct 30;326(5953):688-94
– reference: 1915284 - EMBO J. 1991 Oct;10(10):3105-11
– reference: 798036 - J Mol Biol. 1976 Dec 25;108(4):619-49
– reference: 11588263 - Science. 2001 Oct 5;294(5540):165-8
– reference: 12649490 - RNA. 2003 Apr;9(4):384-5
– reference: 18443146 - Genes Dev. 2008 May 15;22(10):1369-80
– reference: 17187822 - J Mol Biol. 2007 Feb 9;366(1):1-13
– reference: 9801296 - Nucleic Acids Res. 1998 Nov 15;26(22):5017-35
– reference: 14566331 - Nat Struct Biol. 2003 Nov;10(11):899-906
– reference: 12140549 - Nature. 2002 Jul 25;418(6896):387-91
– reference: 16322557 - Genes Dev. 2005 Dec 1;19(23):2816-26
– reference: 18314501 - RNA. 2008 Apr;14(4):666-74
– reference: 9851972 - Genes Dev. 1998 Dec 1;12(23):3650-62
– reference: 3897553 - J Mol Biol. 1985 Jul 5;184(1):119-45
– reference: 17449728 - RNA. 2007 Jun;13(6):835-40
– reference: 19239893 - Cell. 2009 Feb 20;136(4):746-62
– reference: 1097403 - J Bacteriol. 1975 Jun;122(3):855-65
– reference: 19931536 - FEBS Lett. 2010 Jan 21;584(2):265-71
– reference: 4601792 - Science. 1974 Aug 2;185(4149):435-40
– reference: 15905403 - Science. 2005 May 20;308(5725):1178-80
– reference: 17925388 - J Biol Chem. 2007 Dec 7;282(49):35629-37
– reference: 20810645 - Genes Dev. 2010 Sep 1;24(17):1832-60
– reference: 3054566 - Nature. 1988 Nov 10;336(6195):179-81
– reference: 16387656 - Mol Cell. 2006 Jan 6;21(1):87-96
– reference: 9384595 - EMBO J. 1997 Dec 1;16(23):7184-95
– reference: 19452597 - J Mol Biol. 2009 Mar 13;386(5):1255-64
– reference: 12073319 - Methods Enzymol. 2002;350:290-315
– reference: 17018299 - Mol Cell. 2006 Oct 6;24(1):139-48
– reference: 18456844 - RNA. 2008 Jun;14(6):1214-27
– reference: 18332122 - Mol Cell Biol. 2008 May;28(10):3301-12
– reference: 19042972 - Nucleic Acids Res. 2009 Jan;37(1):298-308
– reference: 22076379 - Science. 2011 Nov 11;334(6057):817-21
– reference: 3882705 - J Biol Chem. 1985 Mar 10;260(5):3084-9
– reference: 15558050 - Nat Struct Mol Biol. 2004 Dec;11(12):1251-2
– reference: 18025252 - RNA. 2008 Jan;14(1):158-69
– reference: 20651030 - RNA. 2010 Sep;16(9):1797-808
– reference: 15811913 - RNA. 2005 May;11(5):821-30
– reference: 17643380 - Mol Cell. 2007 Jul 20;27(2):324-31
– reference: 15145828 - Genes Dev. 2004 Jun 1;18(11):1227-40
– reference: 15828860 - PLoS Biol. 2005 Jun;3(6):e189
– reference: 11884642 - Nucleic Acids Res. 2002 Mar 15;30(6):e23
– reference: 17592039 - RNA. 2007 Aug;13(8):1245-55
– reference: 19379069 - Annu Rev Microbiol. 2009;63:61-78
– reference: 6189122 - Proc Natl Acad Sci U S A. 1983 May;80(9):2432-6
– reference: 18000032 - RNA. 2008 Jan;14(1):107-16
– reference: 1608452 - Nature. 1992 Jun 11;357(6378):513-5
– reference: 15935758 - Cell. 2005 Jun 3;121(5):713-24
– reference: 21632824 - Genes Dev. 2011 Jun 1;25(11):1173-84
– reference: 19305403 - Nat Struct Mol Biol. 2009 Apr;16(4):359-64
SSID ssj0013146
Score 2.384856
Snippet The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are...
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1886
SubjectTerms Binding, Competitive - physiology
Metabolic Networks and Pathways - genetics
Metabolic Networks and Pathways - physiology
Mutant Proteins - metabolism
Mutant Proteins - physiology
Organisms, Genetically Modified
Peptide Elongation Factor 1 - genetics
Peptide Elongation Factor 1 - metabolism
Peptide Elongation Factor 1 - physiology
Peptide Elongation Factors - genetics
Peptide Elongation Factors - metabolism
Peptide Elongation Factors - physiology
Protein Binding
RNA Processing, Post-Transcriptional - genetics
RNA Processing, Post-Transcriptional - physiology
RNA Stability - genetics
RNA Stability - physiology
RNA, Transfer - chemistry
RNA, Transfer - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - physiology
Substrate Specificity
Transfection
tRNA Methyltransferases - genetics
tRNA Methyltransferases - metabolism
Yeasts - genetics
Yeasts - metabolism
Title The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications
URI https://www.ncbi.nlm.nih.gov/pubmed/22895820
https://www.proquest.com/docview/1041142477
https://pubmed.ncbi.nlm.nih.gov/PMC3446711
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20240929
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: HH5
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: KQ8
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20250329
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20240929
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: RPM
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLaqQQguCGZYyiYjIThEKdmXYymgEWgqQDPS3Ko4cWhFJ626MCq_hH_Kle_ZTppSkGAuaep4afM-2-89v4Wx504hZOkHiS1FUNpBWWJKYV-2U5EKtwgyE_HmZBgdnwXvz8PzTudny2ppvRK9_Psf_UquQlWUga7kJfsflG06RQHuQV9cQWFc_5nGG0q-Yy2y-aSwVp-HfauQebaheKnjS3zmmi82TmxyOqu-GPNClWjHcvvK0HCJ9UPFqVV96LjNWW7OElQJKfqUhXRFqaAsss8lRhMbK2m1KKMOGR219H911G_8JDoprn3DWqqHN_LSaPCX43VmnfS2O8QEzHH9TM7HrWcDgKzaZF9n39TytjDpv3W8gAWpa_RhEjl8Z9aw11ZruF5jIGesi2ZT8NtKt0nuTJgPaKdmBZketM1TaNUG02Qnvs5i1JO6DHK_nTqmy72lft2Y0-qF203qiNzmq86zu7fBQOAEKgCAnuP7URiQC1a7IgAyv1Bw8yDKhonnbDfaxvzx48nAhxgek0_6NS-OIkq98eFT6_jLuMXV_8tEG8Xgr3aHpljWZpxdxmpPWvrd6LfFRZ3eZreM-MP7Gst3WEdWh-yoX-GFX2z4C64MktVJzyG7_rq-uzGo0xIesR8APVeg5wr0nODJFei5AT2vQc8J9HwLeq5Bz90-B-h5A3rVx5ID9JxAz1FTlxjQo0ByNCDQ81nJDej5DujvsrN3b08Hx7ZJL2Lnfuqs7LSAeBPkkQCP6vkiLgPphnkhk1iEURpmjhBe6WCFCyCih5EQkVsWdOydREmYYeO6xw4qjP-A8Vx4aZF7UR6DIwbPnohQRpSaofAzsoToMrumzSg3sfcpBcx0RDI4yDrCyx9pskImR_2XTf25jjrz15rPalKPQAg67csqOVsvUT8gP_kgjrvsviZ901eNmS6Ld0DRVKCg87tPqslYBZ83wH145ZaP2M3tfH_MDlaLtXwCxn4lnqpJ8AsSEfw2
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yeast+rapid+tRNA+decay+pathway+competes+with+elongation+factor+1A+for+substrate+tRNAs+and+acts+on+tRNAs+lacking+one+or+more+of+several+modifications&rft.jtitle=RNA+%28Cambridge%29&rft.au=Dewe%2C+Joshua+M.&rft.au=Whipple%2C+Joseph+M.&rft.au=Chernyakov%2C+Irina&rft.au=Jaramillo%2C+Laura+N.&rft.date=2012-10-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=18&rft.issue=10&rft.spage=1886&rft.epage=1896&rft_id=info:doi/10.1261%2Frna.033654.112&rft_id=info%3Apmid%2F22895820&rft.externalDocID=PMC3446711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon