The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications
The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) i...
Saved in:
Published in | RNA (Cambridge) Vol. 18; no. 10; pp. 1886 - 1896 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.10.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1355-8382 1469-9001 1469-9001 |
DOI | 10.1261/rna.033654.112 |
Cover
Abstract | The structural and functional integrity of tRNA is crucial for translation. In the yeast
Saccharomyces cerevisiae
, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5′-3′ exonucleolytic degradation by Rat1 and Xrn1. Thus,
trm8
-Δ
trm4
-Δ strains are temperature sensitive due to lack of m
7
G
46
and m
5
C and the consequent RTD of tRNA
Val(AAC)
, and
tan1
-Δ
trm44
-Δ strains are temperature sensitive due to lack of ac
4
C
12
and Um
44
and the consequent RTD of tRNA
Ser(CGA)
and tRNA
Ser(UGA)
. It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since
trm1
-Δ
trm4
-Δ mutants are subject to RTD of tRNA
Ser(CGA)
and tRNA
Ser(UGA)
due to lack of m
2,2
G
26
and m
5
C, and since
trm8
-Δ,
tan1
-Δ, and
trm1
-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs. |
---|---|
AbstractList | The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs.The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs. The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3' exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5'-3' exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8-Δ trm4-Δ strains are temperature sensitive due to lack of m(7)G(46) and m(5)C and the consequent RTD of tRNA(Val(AAC)), and tan1-Δ trm44-Δ strains are temperature sensitive due to lack of ac(4)C(12) and Um(44) and the consequent RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)). It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1-Δ trm4-Δ mutants are subject to RTD of tRNA(Ser(CGA)) and tRNA(Ser(UGA)) due to lack of m(2,2)G(26) and m(5)C, and since trm8-Δ, tan1-Δ, and trm1-Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs. The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5′-3′ exonucleolytic degradation by Rat1 and Xrn1. For example, trm8 -Δ trm4 -Δ strains are temperature sensitive due to lack of m 7 G 46 and m 5 C and the consequent RTD of tRNA Val(AAC) . It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. The authors provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD. The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5′-3′ exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8 -Δ trm4 -Δ strains are temperature sensitive due to lack of m 7 G 46 and m 5 C and the consequent RTD of tRNA Val(AAC) , and tan1 -Δ trm44 -Δ strains are temperature sensitive due to lack of ac 4 C 12 and Um 44 and the consequent RTD of tRNA Ser(CGA) and tRNA Ser(UGA) . It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1 -Δ trm4 -Δ mutants are subject to RTD of tRNA Ser(CGA) and tRNA Ser(UGA) due to lack of m 2,2 G 26 and m 5 C, and since trm8 -Δ, tan1 -Δ, and trm1 -Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs. The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae , certain aberrant pre-tRNA species are subject to nuclear surveillance, leading to 3′ exonucleolytic degradation, and certain mature tRNA species are subject to rapid tRNA decay (RTD) if they are appropriately hypomodified or bear specific destabilizing mutations, leading to 5′-3′ exonucleolytic degradation by Rat1 and Xrn1. Thus, trm8 -Δ trm4 -Δ strains are temperature sensitive due to lack of m 7 G 46 and m 5 C and the consequent RTD of tRNA Val(AAC) , and tan1 -Δ trm44 -Δ strains are temperature sensitive due to lack of ac 4 C 12 and Um 44 and the consequent RTD of tRNA Ser(CGA) and tRNA Ser(UGA) . It is unknown how the RTD pathway interacts with translation and other cellular processes, and how generally this pathway acts on hypomodified tRNAs. We provide evidence here that elongation factor 1A (EF-1A) competes with the RTD pathway for substrate tRNAs, since its overexpression suppresses the tRNA degradation and the growth defect of strains subject to RTD, whereas reduced levels of EF-1A have the opposite effect. We also provide evidence that RTD acts on a variety of tRNAs lacking one or more different modifications, since trm1 -Δ trm4 -Δ mutants are subject to RTD of tRNA Ser(CGA) and tRNA Ser(UGA) due to lack of m 2,2 G 26 and m 5 C, and since trm8 -Δ, tan1 -Δ, and trm1 -Δ single mutants are each subject to RTD. These results demonstrate that RTD interacts with the translation machinery and acts widely on hypomodified tRNAs. |
Author | Dewe, Joshua M. Whipple, Joseph M. Jaramillo, Laura N. Chernyakov, Irina Phizicky, Eric M. |
AuthorAffiliation | Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA |
AuthorAffiliation_xml | – name: Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA |
Author_xml | – sequence: 1 givenname: Joshua M. surname: Dewe fullname: Dewe, Joshua M. – sequence: 2 givenname: Joseph M. surname: Whipple fullname: Whipple, Joseph M. – sequence: 3 givenname: Irina surname: Chernyakov fullname: Chernyakov, Irina – sequence: 4 givenname: Laura N. surname: Jaramillo fullname: Jaramillo, Laura N. – sequence: 5 givenname: Eric M. surname: Phizicky fullname: Phizicky, Eric M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22895820$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1v1DAQtVAR_YArR-Qjlyy24zjOBWlV8SVVIKFythxnsmtI7GB7W-0_6c_tsFsqQOL07Jn33oz9zslJiAEIecnZigvF36RgV6yuVSNXnIsn5IxL1VUdY_wEz3XTVLrW4pSc5_wdizW2n5FTIXTXaMHOyN31FugebC402cUPtHz9vKYDOLuniy3bW0QX5wUKZHrry5bCFMPGFh8DHa0rMVG-piNC3vW5JFvg4JGpDQNFQqbIPFYm6374sMECUBTMMSGONMMNJDvhffCjdwfv_Jw8He2U4cUDXpBv799dX36srr58-HS5vqpc3bFSdQPjnXSqF0qJum9HCbxxA-i2b1TXWNb3YmTOWSmFblTfKz4OkrVaK93YTtUX5O3Rd9n1MwwOAr5hMkvys017E603f3eC35pNvDG1lKrlHA1ePxik-HMHuZjZZwfTZAPEXTacSc6lkG2L1Fd_znoc8jsOJKyOBJdizgnGRwpn5lfeBvM2x7wN5o0C-Y_A-XL4QNzVT_-T3QOsQ7En |
CitedBy_id | crossref_primary_10_1126_sciadv_ads2923 crossref_primary_10_1261_rna_079620_123 crossref_primary_10_1007_s11427_022_2295_0 crossref_primary_10_1038_s42003_024_06942_8 crossref_primary_10_3390_life6020016 crossref_primary_10_1021_acs_chemrev_7b00462 crossref_primary_10_1038_s41586_020_2418_2 crossref_primary_10_1261_rna_035808_112 crossref_primary_10_1261_rna_064642_117 crossref_primary_10_1002_wrna_1287 crossref_primary_10_1016_j_celrep_2024_115092 crossref_primary_10_1007_s12551_017_0322_2 crossref_primary_10_1016_j_ajhg_2022_02_001 crossref_primary_10_3390_jof9101030 crossref_primary_10_1038_s41467_024_52389_0 crossref_primary_10_3390_biom7010023 crossref_primary_10_1080_15476286_2024_2340297 crossref_primary_10_3390_biom11010076 crossref_primary_10_1128_MCB_00214_17 crossref_primary_10_1080_15476286_2020_1809197 crossref_primary_10_1038_s41467_024_49796_8 crossref_primary_10_1261_rna_079290_122 crossref_primary_10_1016_j_jbc_2023_105326 crossref_primary_10_1016_j_bbagrm_2017_12_003 crossref_primary_10_3390_genes15030374 crossref_primary_10_1093_bfgp_elaa027 crossref_primary_10_1146_annurev_genet_111523_102042 crossref_primary_10_1021_jacs_1c11985 crossref_primary_10_1093_nar_gkad722 crossref_primary_10_1016_j_gene_2013_04_021 crossref_primary_10_1038_s41580_021_00342_0 crossref_primary_10_1093_nar_gkx764 crossref_primary_10_1038_s41392_023_01480_x crossref_primary_10_3390_genes14020382 crossref_primary_10_1186_s13059_015_0779_x crossref_primary_10_3390_ijms16011873 crossref_primary_10_1021_acschembio_8b00951 crossref_primary_10_1007_s00109_019_01830_9 crossref_primary_10_1261_rna_080315_124 crossref_primary_10_3389_fgene_2014_00144 crossref_primary_10_1016_j_bbagen_2017_03_012 crossref_primary_10_1016_j_jbc_2023_104966 crossref_primary_10_3390_genes9120612 crossref_primary_10_1093_nar_gkae341 crossref_primary_10_1016_j_jbc_2024_107488 crossref_primary_10_1093_nar_gkac404 crossref_primary_10_1016_j_bbagrm_2012_11_004 crossref_primary_10_1038_nprot_2014_047 crossref_primary_10_1093_molbev_msab255 crossref_primary_10_1073_pnas_1316579110 crossref_primary_10_3390_genes9110537 crossref_primary_10_1042_BST20160062 crossref_primary_10_1534_genetics_117_203232 crossref_primary_10_1080_15476286_2015_1008360 crossref_primary_10_1093_nar_gky623 crossref_primary_10_1126_science_aaf4791 crossref_primary_10_3390_ijms151223975 crossref_primary_10_1371_journal_pgen_1005671 crossref_primary_10_1080_00439339_2022_2119916 crossref_primary_10_1016_j_bbagrm_2017_11_007 crossref_primary_10_1016_j_bbagrm_2018_11_007 crossref_primary_10_1021_acs_chemrev_4c00142 crossref_primary_10_1101_gad_245936_114 crossref_primary_10_1093_nar_gkv075 crossref_primary_10_1016_j_celrep_2022_111317 crossref_primary_10_1093_nar_gkab001 crossref_primary_10_1038_nchembio_2117 crossref_primary_10_1261_rna_073155_119 crossref_primary_10_1261_rna_079861_123 crossref_primary_10_1002_humu_23976 crossref_primary_10_1534_g3_113_005579 crossref_primary_10_1080_15476286_2015_1008358 crossref_primary_10_1534_genetics_112_147470 crossref_primary_10_1210_en_2019_00098 crossref_primary_10_1080_15476286_2019_1568819 crossref_primary_10_1186_s12917_024_04362_8 crossref_primary_10_1261_rna_048173_114 crossref_primary_10_1038_s41586_022_04677_2 crossref_primary_10_1073_pnas_1814130116 crossref_primary_10_1371_journal_pgen_1008893 crossref_primary_10_1038_s41392_022_01175_9 crossref_primary_10_1371_journal_pgen_1011146 crossref_primary_10_1371_journal_pgen_1010215 crossref_primary_10_1016_j_molcel_2023_08_015 crossref_primary_10_1016_j_molmed_2019_05_011 crossref_primary_10_1002_wrna_1190 crossref_primary_10_1016_j_pneurobio_2021_102118 |
Cites_doi | 10.1261/rna.485307 10.1016/0022-2836(85)90048-8 10.1128/MCB.01542-07 10.1128/jb.122.3.855-865.1975 10.1002/j.1460-2075.1991.tb07864.x 10.1038/nsmb866 10.1101/gad.1654308 10.1126/science.185.4149.435 10.1038/336179a0 10.1038/nature00935 10.1016/j.jmb.2009.01.021 10.1093/nar/gkn925 10.1101/gad.1183804 10.1038/nsmb.1581 10.1016/S0022-2836(76)80109-X 10.1093/emboj/16.23.7184 10.1016/j.cell.2009.01.036 10.1101/gad.1956510 10.1261/rna.2305406 10.1038/357513a0 10.1016/j.febslet.2009.11.049 10.1016/j.molcel.2005.10.036 10.1261/rna.808608 10.1038/nsb1003 10.1093/nar/26.22.5017 10.1016/j.cell.2005.04.029 10.1016/S0076-6879(02)50970-8 10.1101/gad.2050711 10.1093/nar/30.6.e23 10.1261/rna.811008 10.1016/j.molcel.2006.07.031 10.1016/j.molcel.2007.06.006 10.1101/gad.12.23.3650 10.1016/j.jmb.2006.11.046 10.1261/rna.1050408 10.1126/science.1111408 10.1371/journal.pbio.0030189 10.1261/rna.2201210 10.1016/S0021-9258(18)89476-5 10.1261/rna.2030705 10.1038/nsmb861 10.1126/science.1213671 10.1073/pnas.80.9.2432 10.1126/science.1064242 10.1261/rna.558707 10.1128/AAC.3.6.729 10.1101/gad.1362105 10.1074/jbc.M707245200 10.1261/rna.966208 10.1261/rna.2184703 10.1146/annurev.micro.091208.073210 10.1126/science.1179700 |
ContentType | Journal Article |
Copyright | Copyright © 2012 RNA Society 2012 |
Copyright_xml | – notice: Copyright © 2012 RNA Society 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1261/rna.033654.112 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
DocumentTitleAlternate | Dewe et al |
EISSN | 1469-9001 |
EndPage | 1896 |
ExternalDocumentID | PMC3446711 22895820 10_1261_rna_033654_112 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM052347 – fundername: NIGMS NIH HHS grantid: GM52347 – fundername: NIGMS NIH HHS grantid: T32 GM068411 – fundername: NIGMS NIH HHS grantid: 5T32 GM068411 |
GroupedDBID | --- .GJ 0VX 123 18M 29P 2WC 34G 39C 4.4 53G 5RE 5VS 8R4 8R5 AAYXX ABDIX ABDNZ ABGDZ ABVKB ACGFO ACLKE ACNCT ACQPF ACYGS ADBBV AEILP AENEX AFFNX AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CAG CITATION COF CS3 D0L DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE KQ8 MV1 OK1 P2P RCA RCX RHI RIG ROL RPM SJN TR2 W8F WOQ YKV ZGI ZWS CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c390t-9d0194c6b26623b7f4e15cde87b5695a0bb2f0cca442856bb61fd40788685a963 |
ISSN | 1355-8382 1469-9001 |
IngestDate | Thu Aug 21 18:17:43 EDT 2025 Fri Sep 05 04:24:16 EDT 2025 Mon Jul 21 05:43:14 EDT 2025 Tue Jul 01 01:14:34 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c390t-9d0194c6b26623b7f4e15cde87b5695a0bb2f0cca442856bb61fd40788685a963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA Present address: Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA |
OpenAccessLink | http://rnajournal.cshlp.org/content/18/10/1886.full.pdf |
PMID | 22895820 |
PQID | 1041142477 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3446711 proquest_miscellaneous_1041142477 pubmed_primary_22895820 crossref_primary_10_1261_rna_033654_112 crossref_citationtrail_10_1261_rna_033654_112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-10-00 2012-Oct 20121001 |
PublicationDateYYYYMMDD | 2012-10-01 |
PublicationDate_xml | – month: 10 year: 2012 text: 2012-10-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | RNA (Cambridge) |
PublicationTitleAlternate | RNA |
PublicationYear | 2012 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021112105524403000_18.10.1886.6 2021112105524403000_18.10.1886.7 2021112105524403000_18.10.1886.8 2021112105524403000_18.10.1886.1 2021112105524403000_18.10.1886.2 2021112105524403000_18.10.1886.3 2021112105524403000_18.10.1886.4 2021112105524403000_18.10.1886.36 2021112105524403000_18.10.1886.37 2021112105524403000_18.10.1886.38 2021112105524403000_18.10.1886.39 2021112105524403000_18.10.1886.9 2021112105524403000_18.10.1886.32 2021112105524403000_18.10.1886.33 2021112105524403000_18.10.1886.34 2021112105524403000_18.10.1886.35 2021112105524403000_18.10.1886.30 2021112105524403000_18.10.1886.31 2021112105524403000_18.10.1886.29 2021112105524403000_18.10.1886.25 2021112105524403000_18.10.1886.26 2021112105524403000_18.10.1886.27 2021112105524403000_18.10.1886.28 2021112105524403000_18.10.1886.21 2021112105524403000_18.10.1886.23 2021112105524403000_18.10.1886.24 2021112105524403000_18.10.1886.18 2021112105524403000_18.10.1886.19 2021112105524403000_18.10.1886.14 2021112105524403000_18.10.1886.15 2021112105524403000_18.10.1886.16 2021112105524403000_18.10.1886.17 2021112105524403000_18.10.1886.10 2021112105524403000_18.10.1886.11 2021112105524403000_18.10.1886.12 2021112105524403000_18.10.1886.13 2021112105524403000_18.10.1886.50 2021112105524403000_18.10.1886.51 2021112105524403000_18.10.1886.52 (2021112105524403000_18.10.1886.43) 1985; 260 (2021112105524403000_18.10.1886.5) 1991; 10 (2021112105524403000_18.10.1886.20) 1973; 3 (2021112105524403000_18.10.1886.22) 2002; 350 (2021112105524403000_18.10.1886.46) 1975; 122 2021112105524403000_18.10.1886.47 2021112105524403000_18.10.1886.48 2021112105524403000_18.10.1886.49 2021112105524403000_18.10.1886.44 2021112105524403000_18.10.1886.45 2021112105524403000_18.10.1886.40 2021112105524403000_18.10.1886.41 2021112105524403000_18.10.1886.42 9851972 - Genes Dev. 1998 Dec 1;12(23):3650-62 1608452 - Nature. 1992 Jun 11;357(6378):513-5 16322557 - Genes Dev. 2005 Dec 1;19(23):2816-26 18456844 - RNA. 2008 Jun;14(6):1214-27 17018299 - Mol Cell. 2006 Oct 6;24(1):139-48 9384595 - EMBO J. 1997 Dec 1;16(23):7184-95 3054566 - Nature. 1988 Nov 10;336(6195):179-81 17643380 - Mol Cell. 2007 Jul 20;27(2):324-31 11588263 - Science. 2001 Oct 5;294(5540):165-8 9801296 - Nucleic Acids Res. 1998 Nov 15;26(22):5017-35 18025252 - RNA. 2008 Jan;14(1):158-69 17449728 - RNA. 2007 Jun;13(6):835-40 15558052 - Nat Struct Mol Biol. 2004 Dec;11(12):1186-91 17187822 - J Mol Biol. 2007 Feb 9;366(1):1-13 18000032 - RNA. 2008 Jan;14(1):107-16 4597739 - Antimicrob Agents Chemother. 1973 Jun;3(6):729-38 15811913 - RNA. 2005 May;11(5):821-30 15935758 - Cell. 2005 Jun 3;121(5):713-24 19931536 - FEBS Lett. 2010 Jan 21;584(2):265-71 20651030 - RNA. 2010 Sep;16(9):1797-808 1915284 - EMBO J. 1991 Oct;10(10):3105-11 6189122 - Proc Natl Acad Sci U S A. 1983 May;80(9):2432-6 3897553 - J Mol Biol. 1985 Jul 5;184(1):119-45 19379069 - Annu Rev Microbiol. 2009;63:61-78 19305403 - Nat Struct Mol Biol. 2009 Apr;16(4):359-64 12140549 - Nature. 2002 Jul 25;418(6896):387-91 16431988 - RNA. 2006 Mar;12(3):508-21 4601792 - Science. 1974 Aug 2;185(4149):435-40 19452597 - J Mol Biol. 2009 Mar 13;386(5):1255-64 21632824 - Genes Dev. 2011 Jun 1;25(11):1173-84 15558050 - Nat Struct Mol Biol. 2004 Dec;11(12):1251-2 22076379 - Science. 2011 Nov 11;334(6057):817-21 15145828 - Genes Dev. 2004 Jun 1;18(11):1227-40 1097403 - J Bacteriol. 1975 Jun;122(3):855-65 17592039 - RNA. 2007 Aug;13(8):1245-55 15905403 - Science. 2005 May 20;308(5725):1178-80 19042972 - Nucleic Acids Res. 2009 Jan;37(1):298-308 19833920 - Science. 2009 Oct 30;326(5953):688-94 12649490 - RNA. 2003 Apr;9(4):384-5 14566331 - Nat Struct Biol. 2003 Nov;10(11):899-906 18314501 - RNA. 2008 Apr;14(4):666-74 18332122 - Mol Cell Biol. 2008 May;28(10):3301-12 19239893 - Cell. 2009 Feb 20;136(4):746-62 12073319 - Methods Enzymol. 2002;350:290-315 15828860 - PLoS Biol. 2005 Jun;3(6):e189 17925388 - J Biol Chem. 2007 Dec 7;282(49):35629-37 18443146 - Genes Dev. 2008 May 15;22(10):1369-80 3882705 - J Biol Chem. 1985 Mar 10;260(5):3084-9 11884642 - Nucleic Acids Res. 2002 Mar 15;30(6):e23 798036 - J Mol Biol. 1976 Dec 25;108(4):619-49 20810645 - Genes Dev. 2010 Sep 1;24(17):1832-60 16387656 - Mol Cell. 2006 Jan 6;21(1):87-96 |
References_xml | – ident: 2021112105524403000_18.10.1886.39 doi: 10.1261/rna.485307 – ident: 2021112105524403000_18.10.1886.48 doi: 10.1016/0022-2836(85)90048-8 – ident: 2021112105524403000_18.10.1886.21 doi: 10.1128/MCB.01542-07 – volume: 122 start-page: 855 year: 1975 ident: 2021112105524403000_18.10.1886.46 article-title: Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast publication-title: J Bacteriol doi: 10.1128/jb.122.3.855-865.1975 – volume: 10 start-page: 3105 year: 1991 ident: 2021112105524403000_18.10.1886.5 article-title: The 3 Å crystal structure of yeast initiator tRNA: Functional implications in initiator/elongator discrimination publication-title: EMBO J doi: 10.1002/j.1460-2075.1991.tb07864.x – ident: 2021112105524403000_18.10.1886.33 doi: 10.1038/nsmb866 – ident: 2021112105524403000_18.10.1886.7 doi: 10.1101/gad.1654308 – ident: 2021112105524403000_18.10.1886.25 doi: 10.1126/science.185.4149.435 – ident: 2021112105524403000_18.10.1886.32 doi: 10.1038/336179a0 – ident: 2021112105524403000_18.10.1886.14 doi: 10.1038/nature00935 – ident: 2021112105524403000_18.10.1886.42 doi: 10.1016/j.jmb.2009.01.021 – ident: 2021112105524403000_18.10.1886.36 doi: 10.1093/nar/gkn925 – ident: 2021112105524403000_18.10.1886.23 doi: 10.1101/gad.1183804 – ident: 2021112105524403000_18.10.1886.30 doi: 10.1038/nsmb.1581 – ident: 2021112105524403000_18.10.1886.19 doi: 10.1016/S0022-2836(76)80109-X – ident: 2021112105524403000_18.10.1886.10 doi: 10.1093/emboj/16.23.7184 – ident: 2021112105524403000_18.10.1886.52 doi: 10.1016/j.cell.2009.01.036 – ident: 2021112105524403000_18.10.1886.38 doi: 10.1101/gad.1956510 – ident: 2021112105524403000_18.10.1886.24 doi: 10.1261/rna.2305406 – ident: 2021112105524403000_18.10.1886.35 doi: 10.1038/357513a0 – ident: 2021112105524403000_18.10.1886.37 doi: 10.1016/j.febslet.2009.11.049 – ident: 2021112105524403000_18.10.1886.3 doi: 10.1016/j.molcel.2005.10.036 – ident: 2021112105524403000_18.10.1886.47 doi: 10.1261/rna.808608 – ident: 2021112105524403000_18.10.1886.44 doi: 10.1038/nsb1003 – ident: 2021112105524403000_18.10.1886.15 doi: 10.1093/nar/26.22.5017 – ident: 2021112105524403000_18.10.1886.28 doi: 10.1016/j.cell.2005.04.029 – volume: 350 start-page: 290 year: 2002 ident: 2021112105524403000_18.10.1886.22 article-title: Gene disruption publication-title: Methods Enzymol doi: 10.1016/S0076-6879(02)50970-8 – ident: 2021112105524403000_18.10.1886.49 doi: 10.1101/gad.2050711 – ident: 2021112105524403000_18.10.1886.17 doi: 10.1093/nar/30.6.e23 – ident: 2021112105524403000_18.10.1886.26 doi: 10.1261/rna.811008 – ident: 2021112105524403000_18.10.1886.12 doi: 10.1016/j.molcel.2006.07.031 – ident: 2021112105524403000_18.10.1886.41 doi: 10.1016/j.molcel.2007.06.006 – ident: 2021112105524403000_18.10.1886.4 doi: 10.1101/gad.12.23.3650 – ident: 2021112105524403000_18.10.1886.1 doi: 10.1016/j.jmb.2006.11.046 – ident: 2021112105524403000_18.10.1886.9 doi: 10.1261/rna.1050408 – ident: 2021112105524403000_18.10.1886.8 doi: 10.1126/science.1111408 – ident: 2021112105524403000_18.10.1886.45 doi: 10.1371/journal.pbio.0030189 – ident: 2021112105524403000_18.10.1886.27 doi: 10.1261/rna.2201210 – volume: 260 start-page: 3084 year: 1985 ident: 2021112105524403000_18.10.1886.43 article-title: Elongation factor 1α from Saccharomyces cerevisiae. Rapid large-scale purification and molecular characterization publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)89476-5 – ident: 2021112105524403000_18.10.1886.2 doi: 10.1261/rna.2030705 – ident: 2021112105524403000_18.10.1886.34 doi: 10.1038/nsmb861 – ident: 2021112105524403000_18.10.1886.50 doi: 10.1126/science.1213671 – ident: 2021112105524403000_18.10.1886.11 doi: 10.1073/pnas.80.9.2432 – ident: 2021112105524403000_18.10.1886.29 doi: 10.1126/science.1064242 – ident: 2021112105524403000_18.10.1886.6 doi: 10.1261/rna.558707 – volume: 3 start-page: 729 year: 1973 ident: 2021112105524403000_18.10.1886.20 article-title: Mode of action of thiolutin, an inhibitor of macromolecular synthesis in Saccharomyces cerevisiae publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.3.6.729 – ident: 2021112105524403000_18.10.1886.13 doi: 10.1101/gad.1362105 – ident: 2021112105524403000_18.10.1886.16 doi: 10.1074/jbc.M707245200 – ident: 2021112105524403000_18.10.1886.18 doi: 10.1261/rna.966208 – ident: 2021112105524403000_18.10.1886.51 doi: 10.1261/rna.2184703 – ident: 2021112105524403000_18.10.1886.31 doi: 10.1146/annurev.micro.091208.073210 – ident: 2021112105524403000_18.10.1886.40 doi: 10.1126/science.1179700 – reference: 16431988 - RNA. 2006 Mar;12(3):508-21 – reference: 4597739 - Antimicrob Agents Chemother. 1973 Jun;3(6):729-38 – reference: 15558052 - Nat Struct Mol Biol. 2004 Dec;11(12):1186-91 – reference: 19833920 - Science. 2009 Oct 30;326(5953):688-94 – reference: 1915284 - EMBO J. 1991 Oct;10(10):3105-11 – reference: 798036 - J Mol Biol. 1976 Dec 25;108(4):619-49 – reference: 11588263 - Science. 2001 Oct 5;294(5540):165-8 – reference: 12649490 - RNA. 2003 Apr;9(4):384-5 – reference: 18443146 - Genes Dev. 2008 May 15;22(10):1369-80 – reference: 17187822 - J Mol Biol. 2007 Feb 9;366(1):1-13 – reference: 9801296 - Nucleic Acids Res. 1998 Nov 15;26(22):5017-35 – reference: 14566331 - Nat Struct Biol. 2003 Nov;10(11):899-906 – reference: 12140549 - Nature. 2002 Jul 25;418(6896):387-91 – reference: 16322557 - Genes Dev. 2005 Dec 1;19(23):2816-26 – reference: 18314501 - RNA. 2008 Apr;14(4):666-74 – reference: 9851972 - Genes Dev. 1998 Dec 1;12(23):3650-62 – reference: 3897553 - J Mol Biol. 1985 Jul 5;184(1):119-45 – reference: 17449728 - RNA. 2007 Jun;13(6):835-40 – reference: 19239893 - Cell. 2009 Feb 20;136(4):746-62 – reference: 1097403 - J Bacteriol. 1975 Jun;122(3):855-65 – reference: 19931536 - FEBS Lett. 2010 Jan 21;584(2):265-71 – reference: 4601792 - Science. 1974 Aug 2;185(4149):435-40 – reference: 15905403 - Science. 2005 May 20;308(5725):1178-80 – reference: 17925388 - J Biol Chem. 2007 Dec 7;282(49):35629-37 – reference: 20810645 - Genes Dev. 2010 Sep 1;24(17):1832-60 – reference: 3054566 - Nature. 1988 Nov 10;336(6195):179-81 – reference: 16387656 - Mol Cell. 2006 Jan 6;21(1):87-96 – reference: 9384595 - EMBO J. 1997 Dec 1;16(23):7184-95 – reference: 19452597 - J Mol Biol. 2009 Mar 13;386(5):1255-64 – reference: 12073319 - Methods Enzymol. 2002;350:290-315 – reference: 17018299 - Mol Cell. 2006 Oct 6;24(1):139-48 – reference: 18456844 - RNA. 2008 Jun;14(6):1214-27 – reference: 18332122 - Mol Cell Biol. 2008 May;28(10):3301-12 – reference: 19042972 - Nucleic Acids Res. 2009 Jan;37(1):298-308 – reference: 22076379 - Science. 2011 Nov 11;334(6057):817-21 – reference: 3882705 - J Biol Chem. 1985 Mar 10;260(5):3084-9 – reference: 15558050 - Nat Struct Mol Biol. 2004 Dec;11(12):1251-2 – reference: 18025252 - RNA. 2008 Jan;14(1):158-69 – reference: 20651030 - RNA. 2010 Sep;16(9):1797-808 – reference: 15811913 - RNA. 2005 May;11(5):821-30 – reference: 17643380 - Mol Cell. 2007 Jul 20;27(2):324-31 – reference: 15145828 - Genes Dev. 2004 Jun 1;18(11):1227-40 – reference: 15828860 - PLoS Biol. 2005 Jun;3(6):e189 – reference: 11884642 - Nucleic Acids Res. 2002 Mar 15;30(6):e23 – reference: 17592039 - RNA. 2007 Aug;13(8):1245-55 – reference: 19379069 - Annu Rev Microbiol. 2009;63:61-78 – reference: 6189122 - Proc Natl Acad Sci U S A. 1983 May;80(9):2432-6 – reference: 18000032 - RNA. 2008 Jan;14(1):107-16 – reference: 1608452 - Nature. 1992 Jun 11;357(6378):513-5 – reference: 15935758 - Cell. 2005 Jun 3;121(5):713-24 – reference: 21632824 - Genes Dev. 2011 Jun 1;25(11):1173-84 – reference: 19305403 - Nat Struct Mol Biol. 2009 Apr;16(4):359-64 |
SSID | ssj0013146 |
Score | 2.384856 |
Snippet | The structural and functional integrity of tRNA is crucial for translation. In the yeast
Saccharomyces cerevisiae
, certain aberrant pre-tRNA species are... The structural and functional integrity of tRNA is crucial for translation. In the yeast Saccharomyces cerevisiae, certain aberrant pre-tRNA species are... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1886 |
SubjectTerms | Binding, Competitive - physiology Metabolic Networks and Pathways - genetics Metabolic Networks and Pathways - physiology Mutant Proteins - metabolism Mutant Proteins - physiology Organisms, Genetically Modified Peptide Elongation Factor 1 - genetics Peptide Elongation Factor 1 - metabolism Peptide Elongation Factor 1 - physiology Peptide Elongation Factors - genetics Peptide Elongation Factors - metabolism Peptide Elongation Factors - physiology Protein Binding RNA Processing, Post-Transcriptional - genetics RNA Processing, Post-Transcriptional - physiology RNA Stability - genetics RNA Stability - physiology RNA, Transfer - chemistry RNA, Transfer - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - physiology Substrate Specificity Transfection tRNA Methyltransferases - genetics tRNA Methyltransferases - metabolism Yeasts - genetics Yeasts - metabolism |
Title | The yeast rapid tRNA decay pathway competes with elongation factor 1A for substrate tRNAs and acts on tRNAs lacking one or more of several modifications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22895820 https://www.proquest.com/docview/1041142477 https://pubmed.ncbi.nlm.nih.gov/PMC3446711 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1469-9001 dateEnd: 20240929 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: HH5 dateStart: 19950101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1469-9001 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: KQ8 dateStart: 19950301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1469-9001 dateEnd: 20250329 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1469-9001 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central (WRLC) customDbUrl: eissn: 1469-9001 dateEnd: 20240929 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: RPM dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLaqQQguCGZYyiYjIThEKdmXYymgEWgqQDPS3Ko4cWhFJ626MCq_hH_Kle_ZTppSkGAuaep4afM-2-89v4Wx504hZOkHiS1FUNpBWWJKYV-2U5EKtwgyE_HmZBgdnwXvz8PzTudny2ppvRK9_Psf_UquQlWUga7kJfsflG06RQHuQV9cQWFc_5nGG0q-Yy2y-aSwVp-HfauQebaheKnjS3zmmi82TmxyOqu-GPNClWjHcvvK0HCJ9UPFqVV96LjNWW7OElQJKfqUhXRFqaAsss8lRhMbK2m1KKMOGR219H911G_8JDoprn3DWqqHN_LSaPCX43VmnfS2O8QEzHH9TM7HrWcDgKzaZF9n39TytjDpv3W8gAWpa_RhEjl8Z9aw11ZruF5jIGesi2ZT8NtKt0nuTJgPaKdmBZketM1TaNUG02Qnvs5i1JO6DHK_nTqmy72lft2Y0-qF203qiNzmq86zu7fBQOAEKgCAnuP7URiQC1a7IgAyv1Bw8yDKhonnbDfaxvzx48nAhxgek0_6NS-OIkq98eFT6_jLuMXV_8tEG8Xgr3aHpljWZpxdxmpPWvrd6LfFRZ3eZreM-MP7Gst3WEdWh-yoX-GFX2z4C64MktVJzyG7_rq-uzGo0xIesR8APVeg5wr0nODJFei5AT2vQc8J9HwLeq5Bz90-B-h5A3rVx5ID9JxAz1FTlxjQo0ByNCDQ81nJDej5DujvsrN3b08Hx7ZJL2Lnfuqs7LSAeBPkkQCP6vkiLgPphnkhk1iEURpmjhBe6WCFCyCih5EQkVsWdOydREmYYeO6xw4qjP-A8Vx4aZF7UR6DIwbPnohQRpSaofAzsoToMrumzSg3sfcpBcx0RDI4yDrCyx9pskImR_2XTf25jjrz15rPalKPQAg67csqOVsvUT8gP_kgjrvsviZ901eNmS6Ld0DRVKCg87tPqslYBZ83wH145ZaP2M3tfH_MDlaLtXwCxn4lnqpJ8AsSEfw2 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+yeast+rapid+tRNA+decay+pathway+competes+with+elongation+factor+1A+for+substrate+tRNAs+and+acts+on+tRNAs+lacking+one+or+more+of+several+modifications&rft.jtitle=RNA+%28Cambridge%29&rft.au=Dewe%2C+Joshua+M.&rft.au=Whipple%2C+Joseph+M.&rft.au=Chernyakov%2C+Irina&rft.au=Jaramillo%2C+Laura+N.&rft.date=2012-10-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=18&rft.issue=10&rft.spage=1886&rft.epage=1896&rft_id=info:doi/10.1261%2Frna.033654.112&rft_id=info%3Apmid%2F22895820&rft.externalDocID=PMC3446711 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon |