NREL’s Wind Turbine Drivetrain Condition Monitoring and Wind Plant Operation and Maintenance Research During the 2010s: A US Land-Based Perspective

The wind industry has seen tremendous growth during the past two decades, with the global cumulative installation capacity reaching more than 650 gigawatts by the end of 2019. Despite performance and reliability improvements of utility-scale wind turbines over the years, the industry still experienc...

Full description

Saved in:
Bibliographic Details
Published inAcoustics Australia Vol. 49; no. 2; pp. 239 - 249
Main Author Sheng, Shawn
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.06.2021
Springer Nature B.V
Springer Nature
Subjects
Online AccessGet full text
ISSN0814-6039
1839-2571
1839-2571
DOI10.1007/s40857-021-00223-8

Cover

Abstract The wind industry has seen tremendous growth during the past two decades, with the global cumulative installation capacity reaching more than 650 gigawatts by the end of 2019. Despite performance and reliability improvements of utility-scale wind turbines over the years, the industry still experiences premature component failures, leading to increased operation and maintenance (O&M) costs. Among various turbine components, gearboxes—and, more broadly, drivetrains—have shown to be costly to maintain throughout the design life of a wind turbine. The problem of premature component failure is industry wide. As early as 2007, the US Department of Energy (DOE) started to address this challenge through the National Renewable Energy Laboratory’s (NREL’s) reliability initiative that first focused on gearboxes and more recently expanded to entire drivetrains. The wind turbine drivetrain condition monitoring and wind plant O&M research that is the subject of this paper is part of the NREL initiative and includes a few research and development (R&D) activities conducted during the 2010s. These activities included technology evaluation during the first few years; novel monitoring technique investigation (specifically, compact filter analysis) during the middle years; and data and physics domain modeling for fault detection and prediction in recent years. A high-level summary of these activities is provided in this paper along with some key observations from each activity. Most of the work discussed has been published and can be referred to for more information. They reflect the expected evolution of wind turbine condition monitoring and O&M in the US market—primarily, a land-based perspective. In addition, we have identified several R&D opportunities that can be picked up by the research community to help industry advance in related areas, making wind power more cost competitive in the future.
AbstractList The wind industry has seen tremendous growth during the past two decades, with the global cumulative installation capacity reaching more than 650 gigawatts by the end of 2019. Despite performance and reliability improvements of utility-scale wind turbines over the years, the industry still experiences premature component failures, leading to increased operation and maintenance (O&M) costs. Among various turbine components, gearboxes—and, more broadly, drivetrains—have shown to be costly to maintain throughout the design life of a wind turbine. The problem of premature component failure is industry wide. As early as 2007, the US Department of Energy (DOE) started to address this challenge through the National Renewable Energy Laboratory’s (NREL’s) reliability initiative that first focused on gearboxes and more recently expanded to entire drivetrains. The wind turbine drivetrain condition monitoring and wind plant O&M research that is the subject of this paper is part of the NREL initiative and includes a few research and development (R&D) activities conducted during the 2010s. These activities included technology evaluation during the first few years; novel monitoring technique investigation (specifically, compact filter analysis) during the middle years; and data and physics domain modeling for fault detection and prediction in recent years. A high-level summary of these activities is provided in this paper along with some key observations from each activity. Most of the work discussed has been published and can be referred to for more information. They reflect the expected evolution of wind turbine condition monitoring and O&M in the US market—primarily, a land-based perspective. In addition, we have identified several R&D opportunities that can be picked up by the research community to help industry advance in related areas, making wind power more cost competitive in the future.
Author Sheng, Shawn
Author_xml – sequence: 1
  givenname: Shawn
  orcidid: 0000-0003-0134-0907
  surname: Sheng
  fullname: Sheng, Shawn
  email: shawn.sheng@nrel.gov
  organization: National Renewable Energy Laboratory
BackLink https://www.osti.gov/servlets/purl/1774831$$D View this record in Osti.gov
BookMark eNqNkc1uFSEYhompicfaG3BFdD3Kz_ww7upp_UlOraltXBKG-fDQjDAFRtOdN-HC2_NKZGaamLhoZMOC9_l4eXiMDpx3gNBTSl5QQpqXsSSiagrCaEEIY7wQD9CGCt4WrGroAdoQQcuiJrx9hI5ivCZ51ayuON-gnx8uTne_f_yK-LN1Pb6cQmcd4JNgv0EKyjq89a63yXqHz7yzyQfrvmCVswvwcVAu4fMRgloy88FZxhI45TTgC4iggt7jk2kB0x4wI5TEV_gYX33CuwwUr1WEPApCHEGnfPMT9NCoIcLR3X6Irt6cXm7fFbvzt--3x7tC85akoumbti6NAcP6kivdAc8mSF0Z1mnBtWmoELxpRdvyShtlCBO066tKCNLVWcAh4uvcyY3q9rsaBjkG-1WFW0mJnOXKVa7McuUiV4pMPVspH5OVUdsEeq-9c7m8pE1TCk5z6PkaGoO_mSAmee2n4PJrJKvKti1rXs2jxJrSwccYwMg8bTE5yx_ub8H-Qf-r-t2D4zh_B4S_re6h_gD9fLh5
CitedBy_id crossref_primary_10_3390_pr11061690
Cites_doi 10.36001/phmconf.2020.v12i1.1292
10.2172/1018489
10.1016/j.rser.2020.109888
10.1080/10402004.2015.1055621
10.1115/ES2011-54243
10.1109/ICPHM49022.2020.9187050
10.2172/1027157
10.1109/TEC.2013.2295301
10.1002/we.1725
10.2172/1314863
10.1109/ICPHM.2018.8448545
10.2172/1048981
ContentType Journal Article
Copyright Australian Acoustical Society 2021
Australian Acoustical Society 2021.
Copyright_xml – notice: Australian Acoustical Society 2021
– notice: Australian Acoustical Society 2021.
CorporateAuthor National Renewable Energy Lab. (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Lab. (NREL), Golden, CO (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1007/s40857-021-00223-8
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1839-2571
EndPage 249
ExternalDocumentID oai:osti.gov:1774831
1774831
10_1007_s40857_021_00223_8
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: U.S. Department of Energy
  funderid: http://dx.doi.org/10.13039/100000015
GroupedDBID -EM
0R~
203
23M
4.4
406
5GY
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFQWF
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AVXWI
AXYYD
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FERAY
FIGPU
FINBP
FNLPD
FRP
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HRMNR
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
KPA
KPS
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
RLLFE
ROL
RSV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AAFGU
AAPBV
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OIOZB
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c390t-7d7964ffef2d43acbe3085065f2bc83cf718837989935cfaf0281bd55880b6653
IEDL.DBID UNPAY
ISSN 0814-6039
1839-2571
IngestDate Sun Oct 26 03:47:57 EDT 2025
Fri May 19 00:47:18 EDT 2023
Wed Sep 17 23:57:33 EDT 2025
Wed Oct 01 00:59:49 EDT 2025
Thu Apr 24 23:02:04 EDT 2025
Fri Feb 21 02:48:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Condition monitoring
Drivetrain
Data analytics
Operation and maintenance
Wind turbine
Compact filter analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-7d7964ffef2d43acbe3085065f2bc83cf718837989935cfaf0281bd55880b6653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
NREL/JA-5000-78628
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind Energy Technologies Office (EE-4W)
AC36-08GO28308
ORCID 0000-0003-0134-0907
0000000301340907
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1774831
PQID 2549946358
PQPubID 2044247
PageCount 11
ParticipantIDs unpaywall_primary_10_1007_s40857_021_00223_8
osti_scitechconnect_1774831
proquest_journals_2549946358
crossref_citationtrail_10_1007_s40857_021_00223_8
crossref_primary_10_1007_s40857_021_00223_8
springer_journals_10_1007_s40857_021_00223_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Heidelberg
– name: United States
PublicationTitle Acoustics Australia
PublicationTitleAbbrev Acoust Aust
PublicationYear 2021
Publisher Springer Singapore
Springer Nature B.V
Springer Nature
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: Springer Nature
References Musial, M., Butterfield, S., McNiff, B.: Improving Wind Turbine Gearbox Reliability. United States. https://www.osti.gov/servlets/purl/909663. Accessed on 23 Oct 2020
Sheng, S., Guo, Y.: A prognostics and health management framework for wind. In: ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition 2019, V009T48A013 (2019)
Desai, A., Guo, Y., Sheng, S., Phillips, C., Williams, L. (2020) Prognosis of wind turbine gearbox bearing failures using SCADA and modeled data. PHM_CONF 12(1):10
ShengSRobertsDImproving the analysis of gear-oil debris with a compact filterWindpower Eng. Dev.201794446
Keller, J., Sheng, S., Cotrell, J., Greco, A.: Wind turbine drivetrain reliability collaborative workshop: a recap. In. (2016)
Orozco, R., Sheng, S., Phillips, C.: Diagnostic models for wind turbine gearbox components using scada time series data. In: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), 11–13 June 2018, pp. 1–9 (2018)
Sheng, S.: Investigation of various condition monitoring techniques based on a damaged wind turbine gearbox. In: Paper Presented at the International Workshop on Structural Health Monitoring, Stanford, California, September 13–15 (2011)
Kim, K., Parthasarathy, G., Uluyol, O., Foslien, W., Sheng, S., Fleming, P.: Use of SCADA data for failure detection in wind turbines. In: ASME 2011 5th International Conference on Energy Sustainability 2011, pp. 2071–2079 (2011)
ShengSMonitoring of wind turbine gearbox condition through oil and wear debris analysis: a full-scale testing perspectiveTribol Trans201659114916210.1080/10402004.2015.1055621
LinkHLaCavaWvan DamJMcNiffBShengSWallenRMcDadeMLambertSButterfieldSOyagueFGearbox reliability collaborative project report: findings from phase 1 and phase 2 testing2011GoldenNational Renewable Energy Laboratory10.2172/1018489
ShengSWind turbine condition monitoringWind Energy201417567167210.1002/we.1725
Sheng, S., Oyague, F., Butterfield, S.: Investigation of various wind turbine drive train condition monitoring techniques. In: Paper presented at the International Workshop on Structural Health Monitoring, Stanford, California, September 9–11 (2009)
ShengSHalLWilliamLvan DamJMcNiffBVeersPKellerJButterfieldSOyagueFWind turbine drivetrain condition monitoring during gearbox reliability collaborative (GRC) phase 1 and phase 2 testing2011GoldenNational Renewable Energy Laboratory10.2172/1027157
Sheng, S., Herguth, W, Roberts, D.: Condition monitoring of wind turbine gearboxes through compact filter element analysis. In: Presented at the 2013 Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition, Detroit, MI, May 6–9 (2013)
Williams, L., Phillips, C., Sheng, S., Dobos, A., Wei, X.: Scalable wind turbine generator bearing fault prediction using machine learning: a case study. In: 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, 2020, pp. 1–9 (2020). doi: https://doi.org/10.1109/ICPHM49022.2020.9187050
ShengSWind Turbine Gearbox Condition Monitoring Round Robin Study—Vibration Analysis2012GoldenNational Renewable Energy Laboratory10.2172/1048981
GuoYShengSPhillipsCKellerJVeersPWilliamsLA methodology for reliability assessment and prognosis of bearing axial cracking in wind turbine gearboxesRenew. Sustain. Energy Rev.202012710988810.1016/j.rser.2020.109888
YampikulsakulNEunshinBShuaiHShuangwenSMingdiYCondition monitoring of wind power system with nonparametric regression analysis. Energy conversionIEEE Trans.201429228829910.1109/TEC.2013.2295301
GWEC. Global wind report 2019. https://gwec.net/global-wind-report-2019/. Accessed on 23 Oct 2020
S Sheng (223_CR14) 2017; 9
S Sheng (223_CR11) 2012
223_CR15
S Sheng (223_CR12) 2014; 17
223_CR13
223_CR19
223_CR18
223_CR1
223_CR2
223_CR16
H Link (223_CR3) 2011
Y Guo (223_CR9) 2020; 127
S Sheng (223_CR7) 2016; 59
S Sheng (223_CR10) 2011
223_CR8
N Yampikulsakul (223_CR17) 2014; 29
223_CR4
223_CR5
223_CR6
References_xml – reference: LinkHLaCavaWvan DamJMcNiffBShengSWallenRMcDadeMLambertSButterfieldSOyagueFGearbox reliability collaborative project report: findings from phase 1 and phase 2 testing2011GoldenNational Renewable Energy Laboratory10.2172/1018489
– reference: Keller, J., Sheng, S., Cotrell, J., Greco, A.: Wind turbine drivetrain reliability collaborative workshop: a recap. In. (2016)
– reference: Orozco, R., Sheng, S., Phillips, C.: Diagnostic models for wind turbine gearbox components using scada time series data. In: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), 11–13 June 2018, pp. 1–9 (2018)
– reference: ShengSWind Turbine Gearbox Condition Monitoring Round Robin Study—Vibration Analysis2012GoldenNational Renewable Energy Laboratory10.2172/1048981
– reference: YampikulsakulNEunshinBShuaiHShuangwenSMingdiYCondition monitoring of wind power system with nonparametric regression analysis. Energy conversionIEEE Trans.201429228829910.1109/TEC.2013.2295301
– reference: Musial, M., Butterfield, S., McNiff, B.: Improving Wind Turbine Gearbox Reliability. United States. https://www.osti.gov/servlets/purl/909663. Accessed on 23 Oct 2020
– reference: ShengSMonitoring of wind turbine gearbox condition through oil and wear debris analysis: a full-scale testing perspectiveTribol Trans201659114916210.1080/10402004.2015.1055621
– reference: GWEC. Global wind report 2019. https://gwec.net/global-wind-report-2019/. Accessed on 23 Oct 2020
– reference: Kim, K., Parthasarathy, G., Uluyol, O., Foslien, W., Sheng, S., Fleming, P.: Use of SCADA data for failure detection in wind turbines. In: ASME 2011 5th International Conference on Energy Sustainability 2011, pp. 2071–2079 (2011)
– reference: Sheng, S., Oyague, F., Butterfield, S.: Investigation of various wind turbine drive train condition monitoring techniques. In: Paper presented at the International Workshop on Structural Health Monitoring, Stanford, California, September 9–11 (2009)
– reference: ShengSHalLWilliamLvan DamJMcNiffBVeersPKellerJButterfieldSOyagueFWind turbine drivetrain condition monitoring during gearbox reliability collaborative (GRC) phase 1 and phase 2 testing2011GoldenNational Renewable Energy Laboratory10.2172/1027157
– reference: Sheng, S., Guo, Y.: A prognostics and health management framework for wind. In: ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition 2019, V009T48A013 (2019)
– reference: Sheng, S., Herguth, W, Roberts, D.: Condition monitoring of wind turbine gearboxes through compact filter element analysis. In: Presented at the 2013 Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition, Detroit, MI, May 6–9 (2013)
– reference: ShengSWind turbine condition monitoringWind Energy201417567167210.1002/we.1725
– reference: ShengSRobertsDImproving the analysis of gear-oil debris with a compact filterWindpower Eng. Dev.201794446
– reference: Sheng, S.: Investigation of various condition monitoring techniques based on a damaged wind turbine gearbox. In: Paper Presented at the International Workshop on Structural Health Monitoring, Stanford, California, September 13–15 (2011)
– reference: GuoYShengSPhillipsCKellerJVeersPWilliamsLA methodology for reliability assessment and prognosis of bearing axial cracking in wind turbine gearboxesRenew. Sustain. Energy Rev.202012710988810.1016/j.rser.2020.109888
– reference: Desai, A., Guo, Y., Sheng, S., Phillips, C., Williams, L. (2020) Prognosis of wind turbine gearbox bearing failures using SCADA and modeled data. PHM_CONF 12(1):10
– reference: Williams, L., Phillips, C., Sheng, S., Dobos, A., Wei, X.: Scalable wind turbine generator bearing fault prediction using machine learning: a case study. In: 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, 2020, pp. 1–9 (2020). doi: https://doi.org/10.1109/ICPHM49022.2020.9187050
– ident: 223_CR6
– ident: 223_CR19
  doi: 10.36001/phmconf.2020.v12i1.1292
– volume-title: Gearbox reliability collaborative project report: findings from phase 1 and phase 2 testing
  year: 2011
  ident: 223_CR3
  doi: 10.2172/1018489
– ident: 223_CR5
– volume: 127
  start-page: 109888
  year: 2020
  ident: 223_CR9
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109888
– volume: 59
  start-page: 149
  issue: 1
  year: 2016
  ident: 223_CR7
  publication-title: Tribol Trans
  doi: 10.1080/10402004.2015.1055621
– ident: 223_CR2
– ident: 223_CR13
– ident: 223_CR1
– ident: 223_CR16
  doi: 10.1115/ES2011-54243
– volume: 9
  start-page: 44
  year: 2017
  ident: 223_CR14
  publication-title: Windpower Eng. Dev.
– ident: 223_CR18
  doi: 10.1109/ICPHM49022.2020.9187050
– volume-title: Wind turbine drivetrain condition monitoring during gearbox reliability collaborative (GRC) phase 1 and phase 2 testing
  year: 2011
  ident: 223_CR10
  doi: 10.2172/1027157
– ident: 223_CR15
– volume: 29
  start-page: 288
  issue: 2
  year: 2014
  ident: 223_CR17
  publication-title: IEEE Trans.
  doi: 10.1109/TEC.2013.2295301
– volume: 17
  start-page: 671
  issue: 5
  year: 2014
  ident: 223_CR12
  publication-title: Wind Energy
  doi: 10.1002/we.1725
– ident: 223_CR4
  doi: 10.2172/1314863
– ident: 223_CR8
  doi: 10.1109/ICPHM.2018.8448545
– volume-title: Wind Turbine Gearbox Condition Monitoring Round Robin Study—Vibration Analysis
  year: 2012
  ident: 223_CR11
  doi: 10.2172/1048981
SSID ssj0000626533
Score 2.2096372
Snippet The wind industry has seen tremendous growth during the past two decades, with the global cumulative installation capacity reaching more than 650 gigawatts by...
SourceID unpaywall
osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 239
SubjectTerms Acoustics
Alternative energy sources
compact filter analysis
Condition monitoring
data analytics
drivetrain
Engineering
Engineering Acoustics
Fault detection
Gearboxes
Maintenance
Noise Control
operation and maintenance
Original Paper
Powertrain
R&D
Reliability
Research & development
Technology assessment
Turbines
WIND ENERGY
Wind power
wind turbine
Wind turbines
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VRQg40JYWseUhH7gVo2SdbJLelrcoD6llBZysxLEvXe2uNlkhOPEnOPD3-CXMOI8FhFA5O3YcezLzjT3zDcCGE6CZ8GPDjRdTCbO0zZMw0jxwAnS4tECETkcDJ6ftw653dOlflklhWRXtXl1JWk1dJ7sRF1fAKaSADI_g4RRMW76tBkx3Dq5-T85WHETpflFFPnQ93nZEVObLvD3QC5vUGOC_9QJv1lek8zA77g_jm-u413tmhfY_Q7eafxF88m9rnCdb6vYVteNHP_ALLJSwlHUKOfoKn3R_EeafkRUuwowNFlXZN7g__bN3_Hj3kLEL9OjZ-XiE7rVmuyPUnLbkBNsZ0E04bjkrdAaNwGJ81nagQkk5OxvqQvpsw0lMxBXE_qFZFQ3Idm0OJUOMyug6PfvFOqz7lx1jB76N5heHmuSKfofu_t75ziEvyztwJSIn50FKabDGaNNKPRGrRAvLn-ebVqJCoQyaTXSfI_QIha9MbBAKuUnq-6hykjZu8BI0-oO-XgaWhi2jHZWi-0YU8V7kCe0EUSKEq1xfR01wqw2WquQ-p_XoyZq12S6-xMWXdvFl2ISfdZ9hwfzx7tMrJDcScQuR7yqKUlK5dBFdh8JtwmolTrLUEZm0rrmHgA87b1YSMWl-712btRj-x9R-fGz0FZhrWRmkk6ZVaOSjsV5D4JUn6-V_9gQ2Dh4S
  priority: 102
  providerName: Springer Nature
Title NREL’s Wind Turbine Drivetrain Condition Monitoring and Wind Plant Operation and Maintenance Research During the 2010s: A US Land-Based Perspective
URI https://link.springer.com/article/10.1007/s40857-021-00223-8
https://www.proquest.com/docview/2549946358
https://www.osti.gov/servlets/purl/1774831
https://www.osti.gov/biblio/1774831
UnpaywallVersion submittedVersion
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1839-2571
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000626533
  issn: 0814-6039
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1839-2571
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0000626533
  issn: 0814-6039
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1839-2571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000626533
  issn: 0814-6039
  databaseCode: AFBBN
  dateStart: 20150401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1839-2571
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000626533
  issn: 0814-6039
  databaseCode: AGYKE
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB5ViRBw4B8RWipLcKMuu_F6f7glTUIFbUDQiPZkrb22VBElUbIRghMvwYHX40mY8e6mlEOB0x7WXnt3xp5v1jPfADwLEjQTMnfcRTmVMCtirtPM8iRI0OGyAhE6_Ro4HseHk-j1qTzdgqdNLgyFVc5RuX1MpT7X0_P5ixAhSkq50u1YIuBuQXsyftc78_gwjHgc-HphZOo5KmBYp8b4BDni70o4hSGQsRI8vWR-WjTSJWi5OQ29CdfXs0X-5XM-nf5mcEa3YdBMtYoz-bS_LvW--foHi-Nf3uUO3KoBJ-tVGnIXtuzsHlzzgZ9mdR--j98Pj35--7FiH9E7ZyfrJbrKlg2WuAv68hHsYE6n2ig-Vq1_mjnLsa3vQEWPSvZ2YStN8jeOcyKhICYPy5rIPjbw-ZAM8Sajo_HVS9Zjkw_sCDvwPppSfNRF3ucDmIyGJweHvC7VwI3IgpInBaW0Omddt4hEbrQVngtPuq42qTAOTSC6whl6d0IalzuENaEupMTtQ8exFA-hNZvP7CNgRdp1NjAFumJE9x5lkbBBkmkhQhNKm3UgbCSoTM1jTt9jqjYMzF7qCqWuvNRV2oHnmz6LisXjytbbJDaFGISIdA1FHJlS1aLrwE6jL6pe7yvl3ewIwRt23mt06OL2VWPtbfTsH6b2-P-ab8ONrld--mu0A61yubZPEESVehfavVG_P6brq7M3w916Uf0CNIsU9Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN4p6TBtDzwKHdIW0IEbVce27NjuLfQVaBJmIBnKSWPL0oVMkomdYeiJP8Ghf49fwq78SMswHXqWJcvSevdbafdbgDdOiGYiSAw3fkIlzLIOT6NY89AJ0eHSAhE6HQ0Mhp3e2P9wGVxWSWF5He1eX0laTd0kuxEXV8gppIAMj-DRA1j30UHxWrDePf96sTpbcRClB2UV-cj1eccRcZUv8--Bbtmk1gz_rVt4s7ki3YKN5XSe_PieTCY3rNDZYxjX8y-DT74dLov0UF39Re143w98Ao8qWMq6pRw9hTU93YatG2SF2_DQBouq_Bn8Gn467f_-eZ2zL-jRs9Fyge61ZicL1Jy25AQ7ntFNOG45K3UGjcASfNZ2oEJJBfs416X02YZBQsQVxP6hWR0NyE5sDiVDjMroOj0_Yl02_sz62IG_Q_OLQ61yRZ_D-Ox0dNzjVXkHrkTsFDzMKA3WGG28zBeJSrWw_HmB8VIVCWXQbKL7HKNHKAJlEoNQyE2zIECVk3Zwg3egNZ1N9QtgWeQZ7agM3TeiiPdjX2gnjFMhXOUGOm6DW2-wVBX3Oa3HRDaszXbxJS6-tIsvoza8bfrMS-aPO5_eI7mRiFuIfFdRlJIqpIvoOhJuG_ZrcZKVjsildc19BHzY-aCWiFXzXe86aMTwP6a2e7_RX8NGbzToy_774cUebHpWHunUaR9axWKpXyIIK9JX1T_3B5hRIPE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6BdHj0wKPAEFpAB25UrR3Zsc0tNA2FpoGBZlpOGlmWLmScTOIMAyf-BAf-Hr-EXfmRlGE6MJxtybb0WfuttPstwDMvQjMRKsttoKiEWdblaZwYHnkROlxGIEOnrYGTUfdoHLw5D8_XsvhdtHt9JFnmNJBKU17szzK73yS-kS5XxCm8gIyQ4PFV2EDXJEKkb_RefTxe7bN4yNjDsqJ87Ae864mkyp35c0cX7FNriv_ZBe7ZHJduwo1lPlNfPqvJZM0iDW6Dqr-lDET5tLcs0j399TeZx__52Dtwq6KrrFfi6y5cMfkWbK6JGG7BNRdEqhf34Pvo_eHw57cfC3aGnj47Xc7R7TasP8cV1ZWiYAdTOiFHKLByLaEemMJ7XQMqoFSwtzNTotJdOFEkaEGqIIbVUYKs73IrGXJXRsfsixesx8Yf2BAb8JdolrGrVQ7pfRgPDk8PjnhV9oFrkXgFjzJKj7XW2E4WCKVTI5yuXmg7qY6FtmhO0a1O0FMUobbKIkXy0ywMcSlKuzjZD6CVT3PzEFgWd6zxdIZuHUnHB0kgjBclqRC-9kOTtMGvJ1vqShOdxmMiGzVnN_gSB1-6wZdxG543bWalIsild28ThiTyGRLl1RS9pAvpI-uOhd-GnRpaslo7FtK57AESQWy8W6NjdfmyZ-02kPyLV3v0b70_hevv-gM5fD063oabHQdH2ozagVYxX5rHyM2K9En1-_0CCtAp1Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5VqRBwoBSoCH3IUrlRl914vQ9uadOqQm1A0IhystZeW6qIkijZCMGpf6IH_l5_SWe8u-njUOC89tq7M_Z8Y898A_A2SNBMyNxxF-VUwqyIuU4zy5MgQYfLCkTodDRw0o-PBtHHM3m2BNtNLgyFVY5RuX1MpT7Xw_Px-xAhSkq50suxRMDdguVB_3P3u8eHYcTjwNcLI1PPUQHDOjXGJ8gRf1fCKQyBjJXg6R3z06KR7kDLxW3oU3g8H03yXz_z4fCWwTlcgV4z1SrO5MfuvNS75vc9Fse_fMtzeFYDTtatNGQVluzoBTzygZ9m9hIu-18Ojq8u_szYN_TO2el8iq6yZb0p7oK-fATbH9OtNoqPVeufZs5ybOs7UNGjkn2a2EqT_IOTnEgoiMnDsiayj_V8PiRDvMnoanz2gXXZ4Cs7xg58D00pvuom7_MVDA4PTvePeF2qgRuRBSVPCkppdc66ThGJ3GgrPBeedB1tUmEcmkB0hTP07oQ0LncIa0JdSInbh45jKdagNRqP7GtgRdpxNjAFumJE9x5lkbBBkmkhQhNKm7UhbCSoTM1jTv9jqBYMzF7qCqWuvNRV2oZ3iz6TisXjwdbrJDaFGISIdA1FHJlS1aJrw0ajL6pe7zPl3ewIwRt23ml06ObxQ2PtLPTsH6b25v-ar8OTjld-OjXagFY5ndtNBFGl3qoX0TUCdBHl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NREL%E2%80%99s+Wind+Turbine+Drivetrain+Condition+Monitoring+and+Wind+Plant+Operation+and+Maintenance+Research+During+the+2010s%3A+A+US+Land-Based+Perspective&rft.jtitle=Acoustics+Australia&rft.au=Sheng%2C+Shawn&rft.date=2021-06-01&rft.issn=0814-6039&rft.eissn=1839-2571&rft.volume=49&rft.issue=2&rft.spage=239&rft.epage=249&rft_id=info:doi/10.1007%2Fs40857-021-00223-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40857_021_00223_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0814-6039&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0814-6039&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0814-6039&client=summon