NREL’s Wind Turbine Drivetrain Condition Monitoring and Wind Plant Operation and Maintenance Research During the 2010s: A US Land-Based Perspective
The wind industry has seen tremendous growth during the past two decades, with the global cumulative installation capacity reaching more than 650 gigawatts by the end of 2019. Despite performance and reliability improvements of utility-scale wind turbines over the years, the industry still experienc...
        Saved in:
      
    
          | Published in | Acoustics Australia Vol. 49; no. 2; pp. 239 - 249 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Singapore
    
        01.06.2021
     Springer Nature B.V Springer Nature  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0814-6039 1839-2571 1839-2571  | 
| DOI | 10.1007/s40857-021-00223-8 | 
Cover
| Abstract | The wind industry has seen tremendous growth during the past two decades, with the global cumulative installation capacity reaching more than 650 gigawatts by the end of 2019. Despite performance and reliability improvements of utility-scale wind turbines over the years, the industry still experiences premature component failures, leading to increased operation and maintenance (O&M) costs. Among various turbine components, gearboxes—and, more broadly, drivetrains—have shown to be costly to maintain throughout the design life of a wind turbine. The problem of premature component failure is industry wide. As early as 2007, the US Department of Energy (DOE) started to address this challenge through the National Renewable Energy Laboratory’s (NREL’s) reliability initiative that first focused on gearboxes and more recently expanded to entire drivetrains. The wind turbine drivetrain condition monitoring and wind plant O&M research that is the subject of this paper is part of the NREL initiative and includes a few research and development (R&D) activities conducted during the 2010s. These activities included technology evaluation during the first few years; novel monitoring technique investigation (specifically, compact filter analysis) during the middle years; and data and physics domain modeling for fault detection and prediction in recent years. A high-level summary of these activities is provided in this paper along with some key observations from each activity. Most of the work discussed has been published and can be referred to for more information. They reflect the expected evolution of wind turbine condition monitoring and O&M in the US market—primarily, a land-based perspective. In addition, we have identified several R&D opportunities that can be picked up by the research community to help industry advance in related areas, making wind power more cost competitive in the future. | 
    
|---|---|
| AbstractList | The wind industry has seen tremendous growth during the past two decades, with the global cumulative installation capacity reaching more than 650 gigawatts by the end of 2019. Despite performance and reliability improvements of utility-scale wind turbines over the years, the industry still experiences premature component failures, leading to increased operation and maintenance (O&M) costs. Among various turbine components, gearboxes—and, more broadly, drivetrains—have shown to be costly to maintain throughout the design life of a wind turbine. The problem of premature component failure is industry wide. As early as 2007, the US Department of Energy (DOE) started to address this challenge through the National Renewable Energy Laboratory’s (NREL’s) reliability initiative that first focused on gearboxes and more recently expanded to entire drivetrains. The wind turbine drivetrain condition monitoring and wind plant O&M research that is the subject of this paper is part of the NREL initiative and includes a few research and development (R&D) activities conducted during the 2010s. These activities included technology evaluation during the first few years; novel monitoring technique investigation (specifically, compact filter analysis) during the middle years; and data and physics domain modeling for fault detection and prediction in recent years. A high-level summary of these activities is provided in this paper along with some key observations from each activity. Most of the work discussed has been published and can be referred to for more information. They reflect the expected evolution of wind turbine condition monitoring and O&M in the US market—primarily, a land-based perspective. In addition, we have identified several R&D opportunities that can be picked up by the research community to help industry advance in related areas, making wind power more cost competitive in the future. | 
    
| Author | Sheng, Shawn | 
    
| Author_xml | – sequence: 1 givenname: Shawn orcidid: 0000-0003-0134-0907 surname: Sheng fullname: Sheng, Shawn email: shawn.sheng@nrel.gov organization: National Renewable Energy Laboratory  | 
    
| BackLink | https://www.osti.gov/servlets/purl/1774831$$D View this record in Osti.gov | 
    
| BookMark | eNqNkc1uFSEYhompicfaG3BFdD3Kz_ww7upp_UlOraltXBKG-fDQjDAFRtOdN-HC2_NKZGaamLhoZMOC9_l4eXiMDpx3gNBTSl5QQpqXsSSiagrCaEEIY7wQD9CGCt4WrGroAdoQQcuiJrx9hI5ivCZ51ayuON-gnx8uTne_f_yK-LN1Pb6cQmcd4JNgv0EKyjq89a63yXqHz7yzyQfrvmCVswvwcVAu4fMRgloy88FZxhI45TTgC4iggt7jk2kB0x4wI5TEV_gYX33CuwwUr1WEPApCHEGnfPMT9NCoIcLR3X6Irt6cXm7fFbvzt--3x7tC85akoumbti6NAcP6kivdAc8mSF0Z1mnBtWmoELxpRdvyShtlCBO066tKCNLVWcAh4uvcyY3q9rsaBjkG-1WFW0mJnOXKVa7McuUiV4pMPVspH5OVUdsEeq-9c7m8pE1TCk5z6PkaGoO_mSAmee2n4PJrJKvKti1rXs2jxJrSwccYwMg8bTE5yx_ub8H-Qf-r-t2D4zh_B4S_re6h_gD9fLh5 | 
    
| CitedBy_id | crossref_primary_10_3390_pr11061690 | 
    
| Cites_doi | 10.36001/phmconf.2020.v12i1.1292 10.2172/1018489 10.1016/j.rser.2020.109888 10.1080/10402004.2015.1055621 10.1115/ES2011-54243 10.1109/ICPHM49022.2020.9187050 10.2172/1027157 10.1109/TEC.2013.2295301 10.1002/we.1725 10.2172/1314863 10.1109/ICPHM.2018.8448545 10.2172/1048981  | 
    
| ContentType | Journal Article | 
    
| Copyright | Australian Acoustical Society 2021 Australian Acoustical Society 2021.  | 
    
| Copyright_xml | – notice: Australian Acoustical Society 2021 – notice: Australian Acoustical Society 2021.  | 
    
| CorporateAuthor | National Renewable Energy Lab. (NREL), Golden, CO (United States) | 
    
| CorporateAuthor_xml | – name: National Renewable Energy Lab. (NREL), Golden, CO (United States) | 
    
| DBID | AAYXX CITATION OIOZB OTOTI ADTOC UNPAY  | 
    
| DOI | 10.1007/s40857-021-00223-8 | 
    
| DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics  | 
    
| EISSN | 1839-2571 | 
    
| EndPage | 249 | 
    
| ExternalDocumentID | oai:osti.gov:1774831 1774831 10_1007_s40857_021_00223_8  | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GrantInformation_xml | – fundername: U.S. Department of Energy funderid: http://dx.doi.org/10.13039/100000015  | 
    
| GroupedDBID | -EM 0R~ 203 23M 4.4 406 5GY AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAZMS ABAKF ABDBF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGXH AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFQWF AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAGR AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AVXWI AXYYD BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FERAY FIGPU FINBP FNLPD FRP FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD HRMNR IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV KPA KPS LLZTM M4Y NPVJJ NQJWS NU0 O9J OK1 PT4 RLLFE ROL RSV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AAFGU AAPBV ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OIOZB OTOTI ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c390t-7d7964ffef2d43acbe3085065f2bc83cf718837989935cfaf0281bd55880b6653 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0814-6039 1839-2571  | 
    
| IngestDate | Sun Oct 26 03:47:57 EDT 2025 Fri May 19 00:47:18 EDT 2023 Wed Sep 17 23:57:33 EDT 2025 Wed Oct 01 00:59:49 EDT 2025 Thu Apr 24 23:02:04 EDT 2025 Fri Feb 21 02:48:22 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Condition monitoring Drivetrain Data analytics Operation and maintenance Wind turbine Compact filter analysis  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c390t-7d7964ffef2d43acbe3085065f2bc83cf718837989935cfaf0281bd55880b6653 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 NREL/JA-5000-78628 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind Energy Technologies Office (EE-4W) AC36-08GO28308  | 
    
| ORCID | 0000-0003-0134-0907 0000000301340907  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1774831 | 
    
| PQID | 2549946358 | 
    
| PQPubID | 2044247 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s40857_021_00223_8 osti_scitechconnect_1774831 proquest_journals_2549946358 crossref_citationtrail_10_1007_s40857_021_00223_8 crossref_primary_10_1007_s40857_021_00223_8 springer_journals_10_1007_s40857_021_00223_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-06-01 | 
    
| PublicationDateYYYYMMDD | 2021-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore – name: Heidelberg – name: United States  | 
    
| PublicationTitle | Acoustics Australia | 
    
| PublicationTitleAbbrev | Acoust Aust | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer Singapore Springer Nature B.V Springer Nature  | 
    
| Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: Springer Nature  | 
    
| References | Musial, M., Butterfield, S., McNiff, B.: Improving Wind Turbine Gearbox Reliability. United States. https://www.osti.gov/servlets/purl/909663. Accessed on 23 Oct 2020 Sheng, S., Guo, Y.: A prognostics and health management framework for wind. In: ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition 2019, V009T48A013 (2019) Desai, A., Guo, Y., Sheng, S., Phillips, C., Williams, L. (2020) Prognosis of wind turbine gearbox bearing failures using SCADA and modeled data. PHM_CONF 12(1):10 ShengSRobertsDImproving the analysis of gear-oil debris with a compact filterWindpower Eng. Dev.201794446 Keller, J., Sheng, S., Cotrell, J., Greco, A.: Wind turbine drivetrain reliability collaborative workshop: a recap. In. (2016) Orozco, R., Sheng, S., Phillips, C.: Diagnostic models for wind turbine gearbox components using scada time series data. In: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), 11–13 June 2018, pp. 1–9 (2018) Sheng, S.: Investigation of various condition monitoring techniques based on a damaged wind turbine gearbox. In: Paper Presented at the International Workshop on Structural Health Monitoring, Stanford, California, September 13–15 (2011) Kim, K., Parthasarathy, G., Uluyol, O., Foslien, W., Sheng, S., Fleming, P.: Use of SCADA data for failure detection in wind turbines. In: ASME 2011 5th International Conference on Energy Sustainability 2011, pp. 2071–2079 (2011) ShengSMonitoring of wind turbine gearbox condition through oil and wear debris analysis: a full-scale testing perspectiveTribol Trans201659114916210.1080/10402004.2015.1055621 LinkHLaCavaWvan DamJMcNiffBShengSWallenRMcDadeMLambertSButterfieldSOyagueFGearbox reliability collaborative project report: findings from phase 1 and phase 2 testing2011GoldenNational Renewable Energy Laboratory10.2172/1018489 ShengSWind turbine condition monitoringWind Energy201417567167210.1002/we.1725 Sheng, S., Oyague, F., Butterfield, S.: Investigation of various wind turbine drive train condition monitoring techniques. In: Paper presented at the International Workshop on Structural Health Monitoring, Stanford, California, September 9–11 (2009) ShengSHalLWilliamLvan DamJMcNiffBVeersPKellerJButterfieldSOyagueFWind turbine drivetrain condition monitoring during gearbox reliability collaborative (GRC) phase 1 and phase 2 testing2011GoldenNational Renewable Energy Laboratory10.2172/1027157 Sheng, S., Herguth, W, Roberts, D.: Condition monitoring of wind turbine gearboxes through compact filter element analysis. In: Presented at the 2013 Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition, Detroit, MI, May 6–9 (2013) Williams, L., Phillips, C., Sheng, S., Dobos, A., Wei, X.: Scalable wind turbine generator bearing fault prediction using machine learning: a case study. In: 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, 2020, pp. 1–9 (2020). doi: https://doi.org/10.1109/ICPHM49022.2020.9187050 ShengSWind Turbine Gearbox Condition Monitoring Round Robin Study—Vibration Analysis2012GoldenNational Renewable Energy Laboratory10.2172/1048981 GuoYShengSPhillipsCKellerJVeersPWilliamsLA methodology for reliability assessment and prognosis of bearing axial cracking in wind turbine gearboxesRenew. Sustain. Energy Rev.202012710988810.1016/j.rser.2020.109888 YampikulsakulNEunshinBShuaiHShuangwenSMingdiYCondition monitoring of wind power system with nonparametric regression analysis. Energy conversionIEEE Trans.201429228829910.1109/TEC.2013.2295301 GWEC. Global wind report 2019. https://gwec.net/global-wind-report-2019/. Accessed on 23 Oct 2020 S Sheng (223_CR14) 2017; 9 S Sheng (223_CR11) 2012 223_CR15 S Sheng (223_CR12) 2014; 17 223_CR13 223_CR19 223_CR18 223_CR1 223_CR2 223_CR16 H Link (223_CR3) 2011 Y Guo (223_CR9) 2020; 127 S Sheng (223_CR7) 2016; 59 S Sheng (223_CR10) 2011 223_CR8 N Yampikulsakul (223_CR17) 2014; 29 223_CR4 223_CR5 223_CR6  | 
    
| References_xml | – reference: LinkHLaCavaWvan DamJMcNiffBShengSWallenRMcDadeMLambertSButterfieldSOyagueFGearbox reliability collaborative project report: findings from phase 1 and phase 2 testing2011GoldenNational Renewable Energy Laboratory10.2172/1018489 – reference: Keller, J., Sheng, S., Cotrell, J., Greco, A.: Wind turbine drivetrain reliability collaborative workshop: a recap. In. (2016) – reference: Orozco, R., Sheng, S., Phillips, C.: Diagnostic models for wind turbine gearbox components using scada time series data. In: 2018 IEEE International Conference on Prognostics and Health Management (ICPHM), 11–13 June 2018, pp. 1–9 (2018) – reference: ShengSWind Turbine Gearbox Condition Monitoring Round Robin Study—Vibration Analysis2012GoldenNational Renewable Energy Laboratory10.2172/1048981 – reference: YampikulsakulNEunshinBShuaiHShuangwenSMingdiYCondition monitoring of wind power system with nonparametric regression analysis. Energy conversionIEEE Trans.201429228829910.1109/TEC.2013.2295301 – reference: Musial, M., Butterfield, S., McNiff, B.: Improving Wind Turbine Gearbox Reliability. United States. https://www.osti.gov/servlets/purl/909663. Accessed on 23 Oct 2020 – reference: ShengSMonitoring of wind turbine gearbox condition through oil and wear debris analysis: a full-scale testing perspectiveTribol Trans201659114916210.1080/10402004.2015.1055621 – reference: GWEC. Global wind report 2019. https://gwec.net/global-wind-report-2019/. Accessed on 23 Oct 2020 – reference: Kim, K., Parthasarathy, G., Uluyol, O., Foslien, W., Sheng, S., Fleming, P.: Use of SCADA data for failure detection in wind turbines. In: ASME 2011 5th International Conference on Energy Sustainability 2011, pp. 2071–2079 (2011) – reference: Sheng, S., Oyague, F., Butterfield, S.: Investigation of various wind turbine drive train condition monitoring techniques. In: Paper presented at the International Workshop on Structural Health Monitoring, Stanford, California, September 9–11 (2009) – reference: ShengSHalLWilliamLvan DamJMcNiffBVeersPKellerJButterfieldSOyagueFWind turbine drivetrain condition monitoring during gearbox reliability collaborative (GRC) phase 1 and phase 2 testing2011GoldenNational Renewable Energy Laboratory10.2172/1027157 – reference: Sheng, S., Guo, Y.: A prognostics and health management framework for wind. In: ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition 2019, V009T48A013 (2019) – reference: Sheng, S., Herguth, W, Roberts, D.: Condition monitoring of wind turbine gearboxes through compact filter element analysis. In: Presented at the 2013 Society of Tribologists and Lubrication Engineers Annual Meeting and Exhibition, Detroit, MI, May 6–9 (2013) – reference: ShengSWind turbine condition monitoringWind Energy201417567167210.1002/we.1725 – reference: ShengSRobertsDImproving the analysis of gear-oil debris with a compact filterWindpower Eng. Dev.201794446 – reference: Sheng, S.: Investigation of various condition monitoring techniques based on a damaged wind turbine gearbox. In: Paper Presented at the International Workshop on Structural Health Monitoring, Stanford, California, September 13–15 (2011) – reference: GuoYShengSPhillipsCKellerJVeersPWilliamsLA methodology for reliability assessment and prognosis of bearing axial cracking in wind turbine gearboxesRenew. Sustain. Energy Rev.202012710988810.1016/j.rser.2020.109888 – reference: Desai, A., Guo, Y., Sheng, S., Phillips, C., Williams, L. (2020) Prognosis of wind turbine gearbox bearing failures using SCADA and modeled data. PHM_CONF 12(1):10 – reference: Williams, L., Phillips, C., Sheng, S., Dobos, A., Wei, X.: Scalable wind turbine generator bearing fault prediction using machine learning: a case study. In: 2020 IEEE International Conference on Prognostics and Health Management (ICPHM), Detroit, MI, 2020, pp. 1–9 (2020). doi: https://doi.org/10.1109/ICPHM49022.2020.9187050 – ident: 223_CR6 – ident: 223_CR19 doi: 10.36001/phmconf.2020.v12i1.1292 – volume-title: Gearbox reliability collaborative project report: findings from phase 1 and phase 2 testing year: 2011 ident: 223_CR3 doi: 10.2172/1018489 – ident: 223_CR5 – volume: 127 start-page: 109888 year: 2020 ident: 223_CR9 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109888 – volume: 59 start-page: 149 issue: 1 year: 2016 ident: 223_CR7 publication-title: Tribol Trans doi: 10.1080/10402004.2015.1055621 – ident: 223_CR2 – ident: 223_CR13 – ident: 223_CR1 – ident: 223_CR16 doi: 10.1115/ES2011-54243 – volume: 9 start-page: 44 year: 2017 ident: 223_CR14 publication-title: Windpower Eng. Dev. – ident: 223_CR18 doi: 10.1109/ICPHM49022.2020.9187050 – volume-title: Wind turbine drivetrain condition monitoring during gearbox reliability collaborative (GRC) phase 1 and phase 2 testing year: 2011 ident: 223_CR10 doi: 10.2172/1027157 – ident: 223_CR15 – volume: 29 start-page: 288 issue: 2 year: 2014 ident: 223_CR17 publication-title: IEEE Trans. doi: 10.1109/TEC.2013.2295301 – volume: 17 start-page: 671 issue: 5 year: 2014 ident: 223_CR12 publication-title: Wind Energy doi: 10.1002/we.1725 – ident: 223_CR4 doi: 10.2172/1314863 – ident: 223_CR8 doi: 10.1109/ICPHM.2018.8448545 – volume-title: Wind Turbine Gearbox Condition Monitoring Round Robin Study—Vibration Analysis year: 2012 ident: 223_CR11 doi: 10.2172/1048981  | 
    
| SSID | ssj0000626533 | 
    
| Score | 2.2096372 | 
    
| Snippet | The wind industry has seen tremendous growth during the past two decades, with the global cumulative installation capacity reaching more than 650 gigawatts by... | 
    
| SourceID | unpaywall osti proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 239 | 
    
| SubjectTerms | Acoustics Alternative energy sources compact filter analysis Condition monitoring data analytics drivetrain Engineering Engineering Acoustics Fault detection Gearboxes Maintenance Noise Control operation and maintenance Original Paper Powertrain R&D Reliability Research & development Technology assessment Turbines WIND ENERGY Wind power wind turbine Wind turbines  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLINK - Czech Republic Consortium dbid: AGYKE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6VRQg40JYWseUhH7gVo2SdbJLelrcoD6llBZysxLEvXe2uNlkhOPEnOPD3-CXMOI8FhFA5O3YcezLzjT3zDcCGE6CZ8GPDjRdTCbO0zZMw0jxwAnS4tECETkcDJ6ftw653dOlflklhWRXtXl1JWk1dJ7sRF1fAKaSADI_g4RRMW76tBkx3Dq5-T85WHETpflFFPnQ93nZEVObLvD3QC5vUGOC_9QJv1lek8zA77g_jm-u413tmhfY_Q7eafxF88m9rnCdb6vYVteNHP_ALLJSwlHUKOfoKn3R_EeafkRUuwowNFlXZN7g__bN3_Hj3kLEL9OjZ-XiE7rVmuyPUnLbkBNsZ0E04bjkrdAaNwGJ81nagQkk5OxvqQvpsw0lMxBXE_qFZFQ3Idm0OJUOMyug6PfvFOqz7lx1jB76N5heHmuSKfofu_t75ziEvyztwJSIn50FKabDGaNNKPRGrRAvLn-ebVqJCoQyaTXSfI_QIha9MbBAKuUnq-6hykjZu8BI0-oO-XgaWhi2jHZWi-0YU8V7kCe0EUSKEq1xfR01wqw2WquQ-p_XoyZq12S6-xMWXdvFl2ISfdZ9hwfzx7tMrJDcScQuR7yqKUlK5dBFdh8JtwmolTrLUEZm0rrmHgA87b1YSMWl-712btRj-x9R-fGz0FZhrWRmkk6ZVaOSjsV5D4JUn6-V_9gQ2Dh4S priority: 102 providerName: Springer Nature  | 
    
| Title | NREL’s Wind Turbine Drivetrain Condition Monitoring and Wind Plant Operation and Maintenance Research During the 2010s: A US Land-Based Perspective | 
    
| URI | https://link.springer.com/article/10.1007/s40857-021-00223-8 https://www.proquest.com/docview/2549946358 https://www.osti.gov/servlets/purl/1774831 https://www.osti.gov/biblio/1774831  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1839-2571 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000626533 issn: 0814-6039 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1839-2571 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0000626533 issn: 0814-6039 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1839-2571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000626533 issn: 0814-6039 databaseCode: AFBBN dateStart: 20150401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1839-2571 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000626533 issn: 0814-6039 databaseCode: AGYKE dateStart: 20150101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbhMxEB5ViRBw4B8RWipLcKMuu_F6f7glTUIFbUDQiPZkrb22VBElUbIRghMvwYHX40mY8e6mlEOB0x7WXnt3xp5v1jPfADwLEjQTMnfcRTmVMCtirtPM8iRI0OGyAhE6_Ro4HseHk-j1qTzdgqdNLgyFVc5RuX1MpT7X0_P5ixAhSkq50u1YIuBuQXsyftc78_gwjHgc-HphZOo5KmBYp8b4BDni70o4hSGQsRI8vWR-WjTSJWi5OQ29CdfXs0X-5XM-nf5mcEa3YdBMtYoz-bS_LvW--foHi-Nf3uUO3KoBJ-tVGnIXtuzsHlzzgZ9mdR--j98Pj35--7FiH9E7ZyfrJbrKlg2WuAv68hHsYE6n2ig-Vq1_mjnLsa3vQEWPSvZ2YStN8jeOcyKhICYPy5rIPjbw-ZAM8Sajo_HVS9Zjkw_sCDvwPppSfNRF3ucDmIyGJweHvC7VwI3IgpInBaW0Omddt4hEbrQVngtPuq42qTAOTSC6whl6d0IalzuENaEupMTtQ8exFA-hNZvP7CNgRdp1NjAFumJE9x5lkbBBkmkhQhNKm3UgbCSoTM1jTt9jqjYMzF7qCqWuvNRV2oHnmz6LisXjytbbJDaFGISIdA1FHJlS1aLrwE6jL6pe7yvl3ewIwRt23mt06OL2VWPtbfTsH6b2-P-ab8ONrld--mu0A61yubZPEESVehfavVG_P6brq7M3w916Uf0CNIsU9Q | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lc9MwEN4p6TBtDzwKHdIW0IEbVce27NjuLfQVaBJmIBnKSWPL0oVMkomdYeiJP8Ghf49fwq78SMswHXqWJcvSevdbafdbgDdOiGYiSAw3fkIlzLIOT6NY89AJ0eHSAhE6HQ0Mhp3e2P9wGVxWSWF5He1eX0laTd0kuxEXV8gppIAMj-DRA1j30UHxWrDePf96sTpbcRClB2UV-cj1eccRcZUv8--Bbtmk1gz_rVt4s7ki3YKN5XSe_PieTCY3rNDZYxjX8y-DT74dLov0UF39Re143w98Ao8qWMq6pRw9hTU93YatG2SF2_DQBouq_Bn8Gn467f_-eZ2zL-jRs9Fyge61ZicL1Jy25AQ7ntFNOG45K3UGjcASfNZ2oEJJBfs416X02YZBQsQVxP6hWR0NyE5sDiVDjMroOj0_Yl02_sz62IG_Q_OLQ61yRZ_D-Ox0dNzjVXkHrkTsFDzMKA3WGG28zBeJSrWw_HmB8VIVCWXQbKL7HKNHKAJlEoNQyE2zIECVk3Zwg3egNZ1N9QtgWeQZ7agM3TeiiPdjX2gnjFMhXOUGOm6DW2-wVBX3Oa3HRDaszXbxJS6-tIsvoza8bfrMS-aPO5_eI7mRiFuIfFdRlJIqpIvoOhJuG_ZrcZKVjsildc19BHzY-aCWiFXzXe86aMTwP6a2e7_RX8NGbzToy_774cUebHpWHunUaR9axWKpXyIIK9JX1T_3B5hRIPE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6BdHj0wKPAEFpAB25UrR3Zsc0tNA2FpoGBZlpOGlmWLmScTOIMAyf-BAf-Hr-EXfmRlGE6MJxtybb0WfuttPstwDMvQjMRKsttoKiEWdblaZwYHnkROlxGIEOnrYGTUfdoHLw5D8_XsvhdtHt9JFnmNJBKU17szzK73yS-kS5XxCm8gIyQ4PFV2EDXJEKkb_RefTxe7bN4yNjDsqJ87Ae864mkyp35c0cX7FNriv_ZBe7ZHJduwo1lPlNfPqvJZM0iDW6Dqr-lDET5tLcs0j399TeZx__52Dtwq6KrrFfi6y5cMfkWbK6JGG7BNRdEqhf34Pvo_eHw57cfC3aGnj47Xc7R7TasP8cV1ZWiYAdTOiFHKLByLaEemMJ7XQMqoFSwtzNTotJdOFEkaEGqIIbVUYKs73IrGXJXRsfsixesx8Yf2BAb8JdolrGrVQ7pfRgPDk8PjnhV9oFrkXgFjzJKj7XW2E4WCKVTI5yuXmg7qY6FtmhO0a1O0FMUobbKIkXy0ywMcSlKuzjZD6CVT3PzEFgWd6zxdIZuHUnHB0kgjBclqRC-9kOTtMGvJ1vqShOdxmMiGzVnN_gSB1-6wZdxG543bWalIsild28ThiTyGRLl1RS9pAvpI-uOhd-GnRpaslo7FtK57AESQWy8W6NjdfmyZ-02kPyLV3v0b70_hevv-gM5fD063oabHQdH2ozagVYxX5rHyM2K9En1-_0CCtAp1Q | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5VqRBwoBSoCH3IUrlRl914vQ9uadOqQm1A0IhystZeW6qIkijZCMGpf6IH_l5_SWe8u-njUOC89tq7M_Z8Y898A_A2SNBMyNxxF-VUwqyIuU4zy5MgQYfLCkTodDRw0o-PBtHHM3m2BNtNLgyFVY5RuX1MpT7Xw_Px-xAhSkq50suxRMDdguVB_3P3u8eHYcTjwNcLI1PPUQHDOjXGJ8gRf1fCKQyBjJXg6R3z06KR7kDLxW3oU3g8H03yXz_z4fCWwTlcgV4z1SrO5MfuvNS75vc9Fse_fMtzeFYDTtatNGQVluzoBTzygZ9m9hIu-18Ojq8u_szYN_TO2el8iq6yZb0p7oK-fATbH9OtNoqPVeufZs5ybOs7UNGjkn2a2EqT_IOTnEgoiMnDsiayj_V8PiRDvMnoanz2gXXZ4Cs7xg58D00pvuom7_MVDA4PTvePeF2qgRuRBSVPCkppdc66ThGJ3GgrPBeedB1tUmEcmkB0hTP07oQ0LncIa0JdSInbh45jKdagNRqP7GtgRdpxNjAFumJE9x5lkbBBkmkhQhNKm7UhbCSoTM1jTv9jqBYMzF7qCqWuvNRV2oZ3iz6TisXjwdbrJDaFGISIdA1FHJlS1aJrw0ajL6pe7zPl3ewIwRt23ml06ObxQ2PtLPTsH6b25v-ar8OTjld-OjXagFY5ndtNBFGl3qoX0TUCdBHl | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NREL%E2%80%99s+Wind+Turbine+Drivetrain+Condition+Monitoring+and+Wind+Plant+Operation+and+Maintenance+Research+During+the+2010s%3A+A+US+Land-Based+Perspective&rft.jtitle=Acoustics+Australia&rft.au=Sheng%2C+Shawn&rft.date=2021-06-01&rft.issn=0814-6039&rft.eissn=1839-2571&rft.volume=49&rft.issue=2&rft.spage=239&rft.epage=249&rft_id=info:doi/10.1007%2Fs40857-021-00223-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40857_021_00223_8 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0814-6039&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0814-6039&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0814-6039&client=summon |