Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres
Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extensi...
Saved in:
Published in | Genes & development Vol. 34; no. 9-10; pp. 650 - 662 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.05.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-9369 1549-5477 1549-5477 |
DOI | 10.1101/gad.333963.119 |
Cover
Abstract | Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity. |
---|---|
AbstractList | Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs' role in localizing the BLM-TOP3A-RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity.Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs' role in localizing the BLM-TOP3A-RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity. In this study, Loe et al. sought to understand ALT-associated PML bodies (APBs) and their function in the alternative lengthening of telomeres (ALT) pathway, a telomerase-independent mechanism of telomere extension that some cancer cells that use. Using CRISPR/Cas9 to delete PML and APB components from ALT-positive cells, they found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity. Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity. Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat lengths by using the enzyme telomerase, although there are some cancer cells that use a telomerase-independent mechanism of telomere extension, termed alternative lengthening of telomeres (ALT). Cells that use ALT are characterized, in part, by the presence of specialized PML nuclear bodies called ALT-associated PML bodies (APBs). APBs localize to and cluster telomeric ends together with telomeric and DNA damage factors, which led to the proposal that these bodies act as a platform on which ALT can occur. However, the necessity of APBs and their function in the ALT pathway has remained unclear. Here, we used CRISPR/Cas9 to delete PML and APB components from ALT-positive cells to cleanly define the function of APBs in ALT. We found that PML is required for the ALT mechanism, and that this necessity stems from APBs’ role in localizing the BLM–TOP3A–RMI (BTR) complex to ALT telomere ends. Strikingly, recruitment of the BTR complex to telomeres in a PML-independent manner bypasses the need for PML in the ALT pathway, suggesting that BTR localization to telomeres is sufficient to sustain ALT activity. |
Author | Denchi, Eros Lazzerini Azeroglu, Benura Li, Julia Su Zhou Boddy, Michael Nicholas Loe, Taylor K. Zhang, Yuxiang |
AuthorAffiliation | 2 Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA 3 Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA 1 Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, USA – name: 2 Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA – name: 3 Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA |
Author_xml | – sequence: 1 givenname: Taylor K. surname: Loe fullname: Loe, Taylor K. – sequence: 2 givenname: Julia Su Zhou surname: Li fullname: Li, Julia Su Zhou – sequence: 3 givenname: Yuxiang surname: Zhang fullname: Zhang, Yuxiang – sequence: 4 givenname: Benura surname: Azeroglu fullname: Azeroglu, Benura – sequence: 5 givenname: Michael Nicholas surname: Boddy fullname: Boddy, Michael Nicholas – sequence: 6 givenname: Eros Lazzerini surname: Denchi fullname: Denchi, Eros Lazzerini |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32217664$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1PGzEQtSpQCbTXHpGPXDa1117v-lIJEP2QgkAoPVte72xi5LXTtYNIf30dEipA4mBZTzPvQ2-O0YEPHhD6QsmUUkK_LnQ3ZYxJwTKWH9CEVlwWFa_rAzQhjSSFZEIeoeMY7wkhggjxER2xsqS1EHyCHubgwgAjYAd-kZZ4CQnGsAAPNm2w9fh8NscGnIvYRjxo61N-0OF2g2-vZ0UHK_Ad-IRdMNrZvzrZ4HHocVoCvpjfYROGlYNHnAJOe7P4CR322kX4vP9P0O_vV_PLn8Xs5sevy_NZYZgkqWBt2-u-4SWvO0m6tuLAuwoaI2XNRMkqbmTfG1ELJts6A9KWoukrnkktMQ07Qd92uqt1O0Bncs5RO7Ua7aDHjQraqtcTb5dqER5UTbMDl1ngbC8whj9riEkNNm7r0B7COqqSNZzmNFzk1dOXXv9NnsvOC3y3YMYQ4wi9MjY91ZWtrVOUqO1NVb6p2t00422E6Rvas_I7hH-MlqWf |
CitedBy_id | crossref_primary_10_1016_j_celrep_2021_110088 crossref_primary_10_1016_j_dnarep_2020_102875 crossref_primary_10_3390_ijms22105391 crossref_primary_10_1016_j_isci_2023_108655 crossref_primary_10_1007_s12032_025_02627_2 crossref_primary_10_1016_j_tcb_2021_07_005 crossref_primary_10_3390_genes14040790 crossref_primary_10_1016_j_jmb_2025_168951 crossref_primary_10_1093_nar_gkae251 crossref_primary_10_15252_embj_2020106355 crossref_primary_10_7554_eLife_60264 crossref_primary_10_1038_s41467_022_29629_2 crossref_primary_10_1016_j_molcel_2024_03_011 crossref_primary_10_15252_emmm_202215859 crossref_primary_10_1016_j_celrep_2024_114964 crossref_primary_10_1016_j_tcb_2021_06_002 crossref_primary_10_1038_s41594_023_00932_w crossref_primary_10_3390_cancers17020257 crossref_primary_10_1186_s43556_021_00055_y crossref_primary_10_1186_s12885_024_13146_0 crossref_primary_10_3390_cancers13102384 crossref_primary_10_1016_j_isci_2023_106405 crossref_primary_10_1073_pnas_2318438121 crossref_primary_10_3390_cancers15071945 crossref_primary_10_1091_mbc_E19_10_0589 crossref_primary_10_1101_cshperspect_a041690 crossref_primary_10_1073_pnas_2419712122 crossref_primary_10_1016_j_dnarep_2022_103342 crossref_primary_10_1016_j_xgen_2024_100588 crossref_primary_10_1093_nar_gkae389 crossref_primary_10_15252_embr_202050803 crossref_primary_10_1016_j_trecan_2020_05_005 crossref_primary_10_1016_j_celrep_2023_113656 crossref_primary_10_1016_j_semcdb_2020_08_010 crossref_primary_10_1007_s11060_023_04387_3 crossref_primary_10_1038_s41467_023_44287_8 crossref_primary_10_3389_fcell_2022_837406 crossref_primary_10_1186_s13578_025_01372_3 crossref_primary_10_1038_s41467_023_42831_0 crossref_primary_10_1016_j_dnarep_2024_103701 crossref_primary_10_1016_j_molcel_2024_07_018 crossref_primary_10_1093_nar_gkaa828 crossref_primary_10_1016_j_dnarep_2023_103591 crossref_primary_10_15252_embj_2020106336 crossref_primary_10_1016_j_molcel_2020_12_030 crossref_primary_10_1016_j_wneu_2024_08_060 crossref_primary_10_3390_cancers14092194 crossref_primary_10_3390_biology11020185 crossref_primary_10_1016_j_celrep_2024_115114 crossref_primary_10_1038_s41467_022_33428_0 crossref_primary_10_1093_nar_gkad742 crossref_primary_10_1016_j_tibs_2022_02_002 crossref_primary_10_1080_19491034_2024_2321265 crossref_primary_10_1042_BST20230265 crossref_primary_10_3389_fgene_2021_634789 crossref_primary_10_1016_j_semcdb_2023_11_001 crossref_primary_10_1038_s41467_021_23806_5 crossref_primary_10_1038_s41467_021_22543_z crossref_primary_10_1002_bies_202100038 crossref_primary_10_1016_j_celrep_2022_111081 crossref_primary_10_1038_s41580_022_00452_3 crossref_primary_10_3389_fgene_2021_718890 crossref_primary_10_3390_cancers13215369 crossref_primary_10_1016_j_celrep_2020_107983 crossref_primary_10_1016_j_dnarep_2022_103319 crossref_primary_10_1093_nar_gkad150 crossref_primary_10_3390_biomedicines8120588 crossref_primary_10_1016_j_jbc_2023_104665 crossref_primary_10_1016_j_biomaterials_2024_122777 |
Cites_doi | 10.1242/jcs.084681 10.1038/nbt.1587 10.1038/emboj.2009.42 10.1016/j.cell.2016.06.010 10.1038/nsmb.2754 10.1073/pnas.061579598 10.1101/gad.319723.118 10.1016/j.celrep.2017.05.087 10.1016/j.cell.2014.08.030 10.1006/bbrc.1998.8875 10.1038/sj.emboj.7600622 10.1038/nrg2763 10.15252/embj.201796889 10.1242/jcs.148296 10.1038/nature20099 10.1038/s41598-019-55537-5 10.1038/sj.onc.1203367 10.4161/nucl.20326 10.1073/pnas.1708065114 10.1016/j.ccell.2015.08.003 10.1074/jbc.275.13.9636 10.1016/j.celrep.2016.04.008 10.1038/82586 10.1083/jcb.201109038 10.1016/S0092-8674(01)80006-4 10.4161/cc.19632 10.1128/MCB.19.12.8083 10.1038/ncomms8538 10.1016/j.celrep.2018.12.102 10.1083/jcb.201410061 10.1006/excr.1995.1306 10.1126/science.aah6752 10.1158/0008-5472.CAN-04-2888 10.1146/annurev.genet.41.110306.130350 10.1016/0092-8674(89)90132-3 10.3389/fonc.2013.00125 10.1016/j.dnarep.2009.04.013 10.1038/emboj.2009.275 10.1038/nature06047 10.1093/nar/gks407 10.1093/nar/gkx149 10.1016/j.molcel.2019.06.043 10.1158/0008-5472.CAN-04-2881 10.1016/S0960-9822(01)00021-5 10.1101/gad.251611.114 10.1101/gad.1708608 10.1158/0008-5472.CAN-03-4035 10.1016/j.cell.2004.10.011 10.1128/MCB.00603-08 10.1093/emboj/20.4.905 10.1006/bbrc.1998.8876 10.1038/nm1197-1271 10.1128/MCB.24.22.9948-9957.2004 10.1101/gad.324905.119 10.18632/oncotarget.24745 10.1126/science.7605428 10.1038/sj.onc.1205058 10.1038/nsmb1259 10.1038/s41467-019-10180-6 10.1038/sj.onc.1208934 10.1002/jcb.24050 10.1093/hmg/11.25.3135 10.1006/excr.1995.1213 10.1038/s41467-019-10179-z 10.1038/ncomms6220 10.1371/journal.pbio.1000252 10.1016/j.cell.2009.06.021 10.1182/blood.V95.9.2748.009k31a_2748_2752 |
ContentType | Journal Article |
Copyright | 2020 Loe et al.; Published by Cold Spring Harbor Laboratory Press. 2020 |
Copyright_xml | – notice: 2020 Loe et al.; Published by Cold Spring Harbor Laboratory Press. – notice: 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1101/gad.333963.119 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Loe et al |
EISSN | 1549-5477 |
EndPage | 662 |
ExternalDocumentID | PMC7197349 32217664 10_1101_gad_333963_119 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM122987 – fundername: NIGMS NIH HHS grantid: R01 GM068608 – fundername: Ruth L. Kirschstein grantid: Individual National Research Service Award – fundername: NIH grantid: GM122987; GM068608 |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB W8F WH7 WOQ X7M XSW YBU YHG YKV YSK NPM RHF VQA 7X8 5PM |
ID | FETCH-LOGICAL-c390t-3bbfaf84247d90db54e4d5e8c997362354c9ffc67639b74c90b268f54af8b0c83 |
ISSN | 0890-9369 1549-5477 |
IngestDate | Thu Aug 21 18:26:45 EDT 2025 Fri Sep 05 07:11:50 EDT 2025 Wed Feb 19 02:31:15 EST 2025 Tue Jul 01 01:12:10 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-10 |
Keywords | ALT BLM PML telomere length telomere |
Language | English |
License | 2020 Loe et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c390t-3bbfaf84247d90db54e4d5e8c997362354c9ffc67639b74c90b268f54af8b0c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7197349 |
PMID | 32217664 |
PQID | 2384199746 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7197349 proquest_miscellaneous_2384199746 pubmed_primary_32217664 crossref_citationtrail_10_1101_gad_333963_119 crossref_primary_10_1101_gad_333963_119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 2020-May-01 20200501 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2020 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111620170808000_34.9-10.650.10 2021111620170808000_34.9-10.650.54 2021111620170808000_34.9-10.650.53 2021111620170808000_34.9-10.650.52 2021111620170808000_34.9-10.650.51 2021111620170808000_34.9-10.650.50 (2021111620170808000_34.9-10.650.28) 2000; 60 2021111620170808000_34.9-10.650.19 2021111620170808000_34.9-10.650.18 2021111620170808000_34.9-10.650.17 2021111620170808000_34.9-10.650.16 2021111620170808000_34.9-10.650.15 2021111620170808000_34.9-10.650.59 2021111620170808000_34.9-10.650.14 2021111620170808000_34.9-10.650.58 2021111620170808000_34.9-10.650.13 2021111620170808000_34.9-10.650.57 (2021111620170808000_34.9-10.650.64) 1999; 59 2021111620170808000_34.9-10.650.12 2021111620170808000_34.9-10.650.56 2021111620170808000_34.9-10.650.11 2021111620170808000_34.9-10.650.55 2021111620170808000_34.9-10.650.3 2021111620170808000_34.9-10.650.21 2021111620170808000_34.9-10.650.65 2021111620170808000_34.9-10.650.2 2021111620170808000_34.9-10.650.20 2021111620170808000_34.9-10.650.1 2021111620170808000_34.9-10.650.63 2021111620170808000_34.9-10.650.62 2021111620170808000_34.9-10.650.7 2021111620170808000_34.9-10.650.61 2021111620170808000_34.9-10.650.6 2021111620170808000_34.9-10.650.60 2021111620170808000_34.9-10.650.5 2021111620170808000_34.9-10.650.4 2021111620170808000_34.9-10.650.9 2021111620170808000_34.9-10.650.8 2021111620170808000_34.9-10.650.29 2021111620170808000_34.9-10.650.27 2021111620170808000_34.9-10.650.26 2021111620170808000_34.9-10.650.25 2021111620170808000_34.9-10.650.69 2021111620170808000_34.9-10.650.24 2021111620170808000_34.9-10.650.68 2021111620170808000_34.9-10.650.23 2021111620170808000_34.9-10.650.67 2021111620170808000_34.9-10.650.22 2021111620170808000_34.9-10.650.66 2021111620170808000_34.9-10.650.32 2021111620170808000_34.9-10.650.31 2021111620170808000_34.9-10.650.30 2021111620170808000_34.9-10.650.70 2021111620170808000_34.9-10.650.39 2021111620170808000_34.9-10.650.38 2021111620170808000_34.9-10.650.37 2021111620170808000_34.9-10.650.36 2021111620170808000_34.9-10.650.35 2021111620170808000_34.9-10.650.34 2021111620170808000_34.9-10.650.33 2021111620170808000_34.9-10.650.43 2021111620170808000_34.9-10.650.42 2021111620170808000_34.9-10.650.41 2021111620170808000_34.9-10.650.40 2021111620170808000_34.9-10.650.49 2021111620170808000_34.9-10.650.48 2021111620170808000_34.9-10.650.47 2021111620170808000_34.9-10.650.46 2021111620170808000_34.9-10.650.45 2021111620170808000_34.9-10.650.44 |
References_xml | – ident: 2021111620170808000_34.9-10.650.13 doi: 10.1242/jcs.084681 – ident: 2021111620170808000_34.9-10.650.25 doi: 10.1038/nbt.1587 – ident: 2021111620170808000_34.9-10.650.50 doi: 10.1038/emboj.2009.42 – ident: 2021111620170808000_34.9-10.650.4 doi: 10.1016/j.cell.2016.06.010 – ident: 2021111620170808000_34.9-10.650.43 doi: 10.1038/nsmb.2754 – ident: 2021111620170808000_34.9-10.650.17 doi: 10.1073/pnas.061579598 – ident: 2021111620170808000_34.9-10.650.60 doi: 10.1101/gad.319723.118 – ident: 2021111620170808000_34.9-10.650.18 doi: 10.1016/j.celrep.2017.05.087 – ident: 2021111620170808000_34.9-10.650.12 doi: 10.1016/j.cell.2014.08.030 – ident: 2021111620170808000_34.9-10.650.41 doi: 10.1006/bbrc.1998.8875 – ident: 2021111620170808000_34.9-10.650.66 doi: 10.1038/sj.emboj.7600622 – ident: 2021111620170808000_34.9-10.650.11 doi: 10.1038/nrg2763 – ident: 2021111620170808000_34.9-10.650.56 doi: 10.15252/embj.201796889 – volume: 59 start-page: 4175 year: 1999 ident: 2021111620170808000_34.9-10.650.64 article-title: Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body publication-title: Cancer Res – ident: 2021111620170808000_34.9-10.650.42 doi: 10.1242/jcs.148296 – ident: 2021111620170808000_34.9-10.650.20 doi: 10.1038/nature20099 – ident: 2021111620170808000_34.9-10.650.48 doi: 10.1038/s41598-019-55537-5 – ident: 2021111620170808000_34.9-10.650.68 doi: 10.1038/sj.onc.1203367 – ident: 2021111620170808000_34.9-10.650.14 doi: 10.4161/nucl.20326 – ident: 2021111620170808000_34.9-10.650.47 doi: 10.1073/pnas.1708065114 – ident: 2021111620170808000_34.9-10.650.52 doi: 10.1016/j.ccell.2015.08.003 – volume: 60 start-page: 1162 year: 2000 ident: 2021111620170808000_34.9-10.650.28 article-title: Association of the Bloom syndrome protein with topoisomerase IIIα in somatic and meiotic cells publication-title: Cancer Res – ident: 2021111620170808000_34.9-10.650.62 doi: 10.1074/jbc.275.13.9636 – ident: 2021111620170808000_34.9-10.650.15 doi: 10.1016/j.celrep.2016.04.008 – ident: 2021111620170808000_34.9-10.650.22 doi: 10.1038/82586 – ident: 2021111620170808000_34.9-10.650.26 doi: 10.1083/jcb.201109038 – ident: 2021111620170808000_34.9-10.650.7 doi: 10.1016/S0092-8674(01)80006-4 – ident: 2021111620170808000_34.9-10.650.49 doi: 10.4161/cc.19632 – ident: 2021111620170808000_34.9-10.650.58 doi: 10.1128/MCB.19.12.8083 – ident: 2021111620170808000_34.9-10.650.16 doi: 10.1038/ncomms8538 – ident: 2021111620170808000_34.9-10.650.67 doi: 10.1016/j.celrep.2018.12.102 – ident: 2021111620170808000_34.9-10.650.21 doi: 10.1083/jcb.201410061 – ident: 2021111620170808000_34.9-10.650.2 doi: 10.1006/excr.1995.1306 – ident: 2021111620170808000_34.9-10.650.31 doi: 10.1126/science.aah6752 – ident: 2021111620170808000_34.9-10.650.36 doi: 10.1158/0008-5472.CAN-04-2888 – ident: 2021111620170808000_34.9-10.650.46 doi: 10.1146/annurev.genet.41.110306.130350 – ident: 2021111620170808000_34.9-10.650.34 doi: 10.1016/0092-8674(89)90132-3 – ident: 2021111620170808000_34.9-10.650.40 doi: 10.3389/fonc.2013.00125 – ident: 2021111620170808000_34.9-10.650.19 doi: 10.1016/j.dnarep.2009.04.013 – ident: 2021111620170808000_34.9-10.650.53 doi: 10.1038/emboj.2009.275 – ident: 2021111620170808000_34.9-10.650.35 doi: 10.1038/nature06047 – ident: 2021111620170808000_34.9-10.650.5 doi: 10.1093/nar/gks407 – ident: 2021111620170808000_34.9-10.650.37 doi: 10.1093/nar/gkx149 – ident: 2021111620170808000_34.9-10.650.6 doi: 10.1016/j.molcel.2019.06.043 – ident: 2021111620170808000_34.9-10.650.23 doi: 10.1158/0008-5472.CAN-04-2881 – ident: 2021111620170808000_34.9-10.650.27 doi: 10.1016/S0960-9822(01)00021-5 – ident: 2021111620170808000_34.9-10.650.70 doi: 10.1101/gad.251611.114 – ident: 2021111620170808000_34.9-10.650.63 doi: 10.1101/gad.1708608 – ident: 2021111620170808000_34.9-10.650.32 doi: 10.1158/0008-5472.CAN-03-4035 – ident: 2021111620170808000_34.9-10.650.61 doi: 10.1016/j.cell.2004.10.011 – ident: 2021111620170808000_34.9-10.650.39 doi: 10.1128/MCB.00603-08 – ident: 2021111620170808000_34.9-10.650.29 doi: 10.1093/emboj/20.4.905 – ident: 2021111620170808000_34.9-10.650.59 doi: 10.1006/bbrc.1998.8876 – ident: 2021111620170808000_34.9-10.650.8 doi: 10.1038/nm1197-1271 – ident: 2021111620170808000_34.9-10.650.10 doi: 10.1128/MCB.24.22.9948-9957.2004 – ident: 2021111620170808000_34.9-10.650.38 doi: 10.1101/gad.324905.119 – ident: 2021111620170808000_34.9-10.650.45 doi: 10.18632/oncotarget.24745 – ident: 2021111620170808000_34.9-10.650.30 doi: 10.1126/science.7605428 – ident: 2021111620170808000_34.9-10.650.24 doi: 10.1038/sj.onc.1205058 – ident: 2021111620170808000_34.9-10.650.51 doi: 10.1038/nsmb1259 – ident: 2021111620170808000_34.9-10.650.33 doi: 10.1038/s41467-019-10180-6 – ident: 2021111620170808000_34.9-10.650.9 doi: 10.1038/sj.onc.1208934 – ident: 2021111620170808000_34.9-10.650.65 doi: 10.1002/jcb.24050 – ident: 2021111620170808000_34.9-10.650.57 doi: 10.1093/hmg/11.25.3135 – ident: 2021111620170808000_34.9-10.650.1 doi: 10.1006/excr.1995.1213 – ident: 2021111620170808000_34.9-10.650.55 doi: 10.1038/s41467-019-10179-z – ident: 2021111620170808000_34.9-10.650.3 doi: 10.1038/ncomms6220 – ident: 2021111620170808000_34.9-10.650.44 doi: 10.1371/journal.pbio.1000252 – ident: 2021111620170808000_34.9-10.650.54 doi: 10.1016/j.cell.2009.06.021 – ident: 2021111620170808000_34.9-10.650.69 doi: 10.1182/blood.V95.9.2748.009k31a_2748_2752 |
SSID | ssj0006066 |
Score | 2.5807257 |
Snippet | Telomeres consist of TTAGGG repeats bound by protein complexes that serve to protect the natural end of linear chromosomes. Most cells maintain telomere repeat... In this study, Loe et al. sought to understand ALT-associated PML bodies (APBs) and their function in the alternative lengthening of telomeres (ALT) pathway, a... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 650 |
SubjectTerms | Research Paper |
Title | Telomere length heterogeneity in ALT cells is maintained by PML-dependent localization of the BTR complex to telomeres |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32217664 https://www.proquest.com/docview/2384199746 https://pubmed.ncbi.nlm.nih.gov/PMC7197349 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviDtlgIyExEOVkYsTx48IbZqgGxelUuElihNnrdQlaEnGtl_P8SU3OqTBS5Q4rtP6fD3n88nxOQi9ETwIfJYDcwtpbhEgsBZYucDiKQlZnjpOoPLMHh0HhwvycekvJ5Nfw90lNd9Lr67dV_I_UoU2kKvcJfsPku0GhQY4B_nCESQMx5vJWGzKU3EmZrIcSr0C1gezVEJ3Ibm19GTMo5l0zVeybvlpsi6kI0Bzzi9Hc6utgFvPlEkzWzK7sIHom444FxeKoZqHVUM-K7NWVwo-WR991AX56DBD7RTo_anzdbsxOwG9NfuxKpst9_X35gJwe9LB8Ur-rk2j0CjLfSVDb4Vr97GBrYIlzPKJKd0irmkzWtm4ODX6mGViX7WWDXSu2m3tr6oOnCTZnud5oFmghfV2rn23f_w5PljM53G0v4xuodsuper9_qevfZp5uapTiXbNFzPZPmH8d-PRx2xma4nyZ6TtgLpE99E9s-bA7zWAHqCJKB6iO7oK6eUjdN7CCGsY4RGM8LrAACOsYITXFe5hhPklHsEID2GEyxwDjDDACBsY4brEHYweo8XBfvTh0DLlOKzUY3ZteZznSR4Sl9CM2Rn3iSCZL8KUMQo0yPNJyvI8DcBiMU7hwuZuEOY-gQ9xOw29J2inKAvxDGHhuK7wbEEdzgi3w8RzgpTa1M0IF0AFpshqpzVOTa56WTJlE6s1q-3EIIZYiwGu2RS97fr_1Fla_trzdSulGBSpnLukEGVTxcBdiYy6IsEUPdVS68YCqycTqZIpoiN5dh1kkvbxnWK9UsnaqQOzQ9jzGzx3F93t_zIv0E591oiXQHlr_krB8zd4v69P |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Telomere+length+heterogeneity+in+ALT+cells+is+maintained+by+PML-dependent+localization+of+the+BTR+complex+to+telomeres&rft.jtitle=Genes+%26+development&rft.au=Loe%2C+Taylor+K&rft.au=Li%2C+Julia+Su+Zhou&rft.au=Zhang%2C+Yuxiang&rft.au=Azeroglu%2C+Benura&rft.date=2020-05-01&rft.issn=1549-5477&rft.eissn=1549-5477&rft.volume=34&rft.issue=9-10&rft.spage=650&rft_id=info:doi/10.1101%2Fgad.333963.119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |