Automated seeded lesion segmentation on digital mammograms
Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 17; no. 4; pp. 510 - 517 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.08.1998
Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 |
| DOI | 10.1109/42.730396 |
Cover
| Abstract | Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). The authors tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in the authors' database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively. |
|---|---|
| AbstractList | Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. We have developed two novel lesion segmentation techniques - one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). We tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in our database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively. Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. We have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). We tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in our database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively.Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. We have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). We tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in our database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively. Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). The authors tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in the authors' database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). The authors tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in the authors' database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively. |
| Author | Kupinski, M.A. Giger, M.L. |
| Author_xml | – sequence: 1 givenname: M.A. surname: Kupinski fullname: Kupinski, M.A. organization: Dept. of Radiol., Chicago Univ., IL, USA – sequence: 2 givenname: M.L. surname: Giger fullname: Giger, M.L. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1620316$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/9845307$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctLxEAMxueg-Fg9eBUEDyJ46Jp5dGbqTRZfsOBFzyU7TZeRTrt22oP_vZWWFURYCHyE75dA8h2zvbqpibEzDnPOIbtVYm4kyEzvsSMQxiYAWhyy4xg_ALhKITtgB5lVqQRzxO7u-64J2FFxGYmKQSqKvqmHbh2o7rD7aYYq_Np3WF0GDKFZtxjiCdsvsYp0OumMvT8-vC2ek-Xr08vifpk4mUGXSA5FaguhJQlXAjhpEVOp0BZSZ04LcJnhaNFgyc1KOu3QrIRVhQYSaiVn7Hrcu2mbz55ilwcfHVUV1tT0MTfAgWec7wSF1VqBNbtBrkBwmQ7gxQT2q0BFvml9wPYrn943-FeTj9FhVbZYOx-3GB-Ok1wP2M2IubaJsaXyl4D8J7RciXwMbWBv_7DOjyl0Lfrq34nzccIT0XbzZH4DpzSgjw |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1007_s00500_021_06498_3 crossref_primary_10_1118_1_4928479 crossref_primary_10_1007_s10278_013_9652_1 crossref_primary_10_1016_j_acra_2005_08_035 crossref_primary_10_3233_XST_16212 crossref_primary_10_1118_1_2012967 crossref_primary_10_1118_1_2178450 crossref_primary_10_1177_153303460400300504 crossref_primary_10_1016_j_media_2016_07_007 crossref_primary_10_1016_j_compbiomed_2010_11_006 crossref_primary_10_1002_cyto_a_22017 crossref_primary_10_1109_42_974922 crossref_primary_10_1155_2012_919281 crossref_primary_10_1118_1_1485995 crossref_primary_10_1007_s11042_017_4751_5 crossref_primary_10_1016_j_patcog_2008_08_006 crossref_primary_10_1007_s42979_022_01071_7 crossref_primary_10_1118_1_3678991 crossref_primary_10_1016_j_patcog_2018_02_012 crossref_primary_10_1109_TIM_2006_870104 crossref_primary_10_2349_biij_6_3_e32 crossref_primary_10_1186_1687_6180_2013_157 crossref_primary_10_1007_s11548_011_0628_7 crossref_primary_10_1016_S1076_6332_03_80530_5 crossref_primary_10_1016_j_acra_2007_04_012 crossref_primary_10_1016_j_ijmedinf_2018_06_003 crossref_primary_10_1016_j_acra_2005_04_014 crossref_primary_10_1016_j_jbi_2014_01_010 crossref_primary_10_1118_1_1286720 crossref_primary_10_3390_cancers15194829 crossref_primary_10_3923_itj_2008_490_496 crossref_primary_10_1118_1_2790837 crossref_primary_10_1016_j_ics_2005_03_171 crossref_primary_10_1016_j_nima_2006_08_093 crossref_primary_10_1118_1_1386426 crossref_primary_10_1016_j_ultrasmedbio_2015_05_022 crossref_primary_10_1118_1_1631912 crossref_primary_10_1118_1_4803461 crossref_primary_10_1016_j_patcog_2010_08_002 crossref_primary_10_1118_1_3121511 crossref_primary_10_1016_j_compbiomed_2007_01_009 crossref_primary_10_1016_j_patrec_2007_03_012 crossref_primary_10_1148_radiol_2253011736 crossref_primary_10_1109_TMI_2002_808364 crossref_primary_10_1016_j_nima_2021_166062 crossref_primary_10_1590_2446_4740_180035 crossref_primary_10_1148_radiol_2373041418 crossref_primary_10_1002_ima_22516 crossref_primary_10_1007_s42600_020_00070_y crossref_primary_10_1118_1_3673067 crossref_primary_10_1088_1361_6560_ab5745 crossref_primary_10_1118_1_3267037 crossref_primary_10_1088_1742_6596_274_1_012045 crossref_primary_10_1118_1_2163390 crossref_primary_10_1088_0031_9155_56_4_003 crossref_primary_10_1118_1_4837196 crossref_primary_10_1002_mp_13054 crossref_primary_10_1016_j_cmpb_2018_05_017 crossref_primary_10_1111_jmi_12200 crossref_primary_10_1146_annurev_bioeng_071812_152416 crossref_primary_10_1016_j_artmed_2020_101880 crossref_primary_10_1016_j_neucom_2014_10_040 crossref_primary_10_1118_1_3005641 crossref_primary_10_1016_j_clinimag_2012_09_024 crossref_primary_10_1016_j_patcog_2014_01_009 crossref_primary_10_1016_j_asoc_2019_105547 crossref_primary_10_1259_bjr_20861881 crossref_primary_10_1118_1_2791034 crossref_primary_10_7498_aps_63_078703 crossref_primary_10_1109_TITB_2006_874197 crossref_primary_10_1016_j_acra_2008_11_014 crossref_primary_10_1016_j_bspc_2012_08_003 crossref_primary_10_1109_TMI_2013_2280901 crossref_primary_10_1118_1_3265959 crossref_primary_10_1140_epjp_i2017_11523_8 crossref_primary_10_1007_s12194_008_0022_5 crossref_primary_10_1007_s11548_013_0829_3 crossref_primary_10_1016_j_patcog_2005_07_006 crossref_primary_10_1053_j_sult_2004_07_003 crossref_primary_10_48175_IJARSCT_8607 crossref_primary_10_1016_j_ijleo_2014_08_123 crossref_primary_10_1118_1_2820630 crossref_primary_10_1118_1_4921753 crossref_primary_10_1109_TITB_2009_2033269 crossref_primary_10_1148_radiol_2482071778 crossref_primary_10_1118_1_1688039 crossref_primary_10_1007_s42979_022_01451_z crossref_primary_10_1148_radiol_2533090280 crossref_primary_10_1016_j_ultrasmedbio_2004_01_002 crossref_primary_10_1118_1_1339884 crossref_primary_10_1016_j_neucom_2015_04_121 crossref_primary_10_3390_sym9110277 crossref_primary_10_1118_1_3013555 crossref_primary_10_1109_42_921478 crossref_primary_10_1109_42_993133 crossref_primary_10_1016_j_cviu_2007_07_004 crossref_primary_10_1117_1_1579017 crossref_primary_10_1177_153303460500400205 crossref_primary_10_1016_j_artmed_2020_101980 crossref_primary_10_1080_10255842_2011_639015 crossref_primary_10_1016_j_acra_2004_07_011 crossref_primary_10_1007_BF03168394 crossref_primary_10_1118_1_3490477 crossref_primary_10_1016_j_acra_2010_04_015 crossref_primary_10_1016_j_microrel_2012_07_018 crossref_primary_10_1118_1_1781551 crossref_primary_10_1088_0031_9155_59_14_3697 crossref_primary_10_1002_mp_12214 crossref_primary_10_1088_0031_9155_57_13_4425 crossref_primary_10_1142_S1469026811003033 crossref_primary_10_1118_1_598895 crossref_primary_10_1118_1_2897950 crossref_primary_10_1002_mp_12291 crossref_primary_10_1109_10_923789 crossref_primary_10_1016_j_compbiomed_2017_05_015 crossref_primary_10_1016_j_eswa_2016_01_053 crossref_primary_10_1186_1687_6180_2013_172 crossref_primary_10_2174_1573405614666180718123533 crossref_primary_10_1109_TMI_2008_928178 crossref_primary_10_1109_TIP_2008_2011168 crossref_primary_10_1007_s42600_019_00008_z crossref_primary_10_1016_S1076_6332_03_00723_2 crossref_primary_10_1109_TMI_2007_895460 crossref_primary_10_1016_j_ics_2004_03_172 crossref_primary_10_1016_S0895_6111_00_00009_4 crossref_primary_10_1088_1361_6560_ac8964 crossref_primary_10_1088_0031_9155_55_18_004 crossref_primary_10_1631_jzus_C1200052 crossref_primary_10_1016_j_acra_2008_05_004 crossref_primary_10_1016_j_compbiomed_2009_05_002 crossref_primary_10_1080_17455030_2023_2189485 crossref_primary_10_1364_BOE_1_000825 |
| Cites_doi | 10.1118/1.597626 10.1118/1.597756 10.1118/1.596610 10.1097/00004424-199208000-00006 10.1109/42.414622 10.1148/radiographics.13.3.8316671 |
| ContentType | Journal Article |
| Copyright | 1999 INIST-CNRS |
| Copyright_xml | – notice: 1999 INIST-CNRS |
| DBID | RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/42.730396 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EndPage | 517 |
| ExternalDocumentID | 368634 9845307 1620316 10_1109_42_730396 730396 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Journal Article |
| GrantInformation_xml | – fundername: NCRR NIH HHS grantid: RR11459 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION IQODW RIG AAYOK CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7U5 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c390t-310d58d263e2cf00c38aa534a8d369c620c971a8a7af17b3c6ca7b284d60e24b3 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 |
| IngestDate | Sun Sep 28 06:14:02 EDT 2025 Sun Sep 28 08:28:48 EDT 2025 Thu Oct 02 05:34:38 EDT 2025 Wed Feb 19 01:19:10 EST 2025 Mon Jul 21 09:16:00 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Wed Oct 01 03:55:11 EDT 2025 Tue Aug 26 21:00:19 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Human Radiodiagnosis Segmentation Image processing Mammography Digital image Malignant tumor Medical screening Automated processing Mammary gland diseases Radial gradient Female Mammary gland Computer aid |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c390t-310d58d263e2cf00c38aa534a8d369c620c971a8a7af17b3c6ca7b284d60e24b3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 9845307 |
| PQID | 21402135 |
| PQPubID | 23462 |
| PageCount | 8 |
| ParticipantIDs | pascalfrancis_primary_1620316 proquest_miscellaneous_70101911 crossref_citationtrail_10_1109_42_730396 ieee_primary_730396 crossref_primary_10_1109_42_730396 pubmed_primary_9845307 proquest_miscellaneous_28664087 proquest_miscellaneous_21402135 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1998-08-01 |
| PublicationDateYYYYMMDD | 1998-08-01 |
| PublicationDate_xml | – month: 08 year: 1998 text: 1998-08-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 1998 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | russ (ref9) 1992 ref11 comer (ref6) 1996 ref10 kupinski (ref4) 1995; 2434 hastie (ref13) 1990 ref2 giger (ref14) 1996 ref7 ref3 ref5 bick (ref12) 1995 giger (ref1) 1991; 1445 sameti (ref8) 1996 |
| References_xml | – start-page: 471 year: 1996 ident: ref8 article-title: a fuzzy segmentation algorithm for mammogram partitioning publication-title: Digital Mammography – ident: ref11 doi: 10.1118/1.597626 – volume: 2434 start-page: 598 year: 1995 ident: ref4 article-title: computerized detection of mammographic lesions: performance of artificial neural network with enhanced feature extraction publication-title: SPIE – ident: ref5 doi: 10.1118/1.597756 – start-page: 357 year: 1995 ident: ref12 article-title: a new single-image method for computer-aided detection of small mammographic masses publication-title: Proc CAR 95 Int Symp Computer and Communication Systems for Image Guided Diagnosis and Therapy – start-page: 53 year: 1996 ident: ref14 article-title: current issues in cad for mammography publication-title: Digital Mammography – volume: 1445 start-page: 101 year: 1991 ident: ref1 article-title: development of a "smart" workstation for use in mammography publication-title: SPIE – ident: ref3 doi: 10.1118/1.596610 – year: 1990 ident: ref13 publication-title: Generalized Additive Models – start-page: 471 year: 1996 ident: ref6 article-title: statistical segmentation of mammograms publication-title: Digital Mammography – year: 1992 ident: ref9 publication-title: The Image Processing Handbook – ident: ref10 doi: 10.1097/00004424-199208000-00006 – ident: ref7 doi: 10.1109/42.414622 – ident: ref2 doi: 10.1148/radiographics.13.3.8316671 |
| SSID | ssj0014509 |
| Score | 2.06539 |
| Snippet | Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel... Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. We have developed two novel lesion... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 510 |
| SubjectTerms | Algorithm design and analysis Algorithms Biological and medical sciences Breast Neoplasms - diagnostic imaging Computer aided diagnosis Data mining Database systems Digital signal processing Genital system. Mammary gland Humans Image segmentation Investigative techniques, diagnostic techniques (general aspects) Lesions Mammography - methods Medical sciences Partitioning algorithms Performance analysis Probability distribution Probability distributions Radiodiagnosis. Nmr imagery. Nmr spectrometry Radiographic Image Enhancement - methods Radiology Shape Testing |
| Title | Automated seeded lesion segmentation on digital mammograms |
| URI | https://ieeexplore.ieee.org/document/730396 https://www.ncbi.nlm.nih.gov/pubmed/9845307 https://www.proquest.com/docview/21402135 https://www.proquest.com/docview/28664087 https://www.proquest.com/docview/70101911 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) issn: 0278-0062 databaseCode: RIE dateStart: 19820101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://ieeexplore.ieee.org/ omitProxy: false ssIdentifier: ssj0014509 providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BEhU9FLoFddtCo6qHXnZxbMeP3hACISR6KhK3yK-gCshWTXLpr-_Yzm5pBQgpUl5jxRlPMmPPzDcAnwNaycQbPvPa6hlvdIS89QxnKWj7o_pzOgHPX3wTZ5f8_Kq6GnG2Uy5MCCEFn4V5PEy-fL9wQ1wqO0RpZFqsw7pUIqdqrRwGvMrRHDQCxhJBRxChkuhDTue54RZsasUrFkvH3lNCqapKjIk0HbKlyfUsHjc4k-I53c4Z3V3CK4zxJjfzobdz9_s_NMdnvtMOvBoN0OIoS8xrWAvtBF7egyWcwIuL0eH-Br4eDf0Cjdrgiw71HO5uQ1xfw7PruzFtqS1w8z-uY_mR4s6gYMeIr24XLk9Pvh-fzcZyCzPHNOnxb0x8pTwVLFDXEOKYMqZi3CjPhHY4pk7L0igjTVNKy5xwRlpUb16QQLlle7DRLtrwFgpZWWt906Duxwmc9MqbRlJfel4G0pRhCl-W_K_diEUeS2Lc1mlOQnTNaZ05M4VPK9KfGYDjIaJJ5OyKYHl1_58x_dse34WVeP_jcoxr_Kiip8S0YTF0NcVe05JVT1AoIThR8nEKGdH7UJVMYS-Lz-rxoxC-e7DT72Erpz3GGMMPsNH_GsI-2j29PUgS_wdpvf21 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEVAOPBYqFiiNEAcuu3X8jLlViGqBbk-t1FvkVypEm0UkufDrGdvZpaAWIUXKa6w440lm7Jn5BuBtQCuZeMNnXls9442OkLee4SwFbX9Uf04n4PnlsVyc8s9n4mzE2U65MCGEFHwW5vEw-fL9yg1xqWwfpZFpeRvuCM65yMlaG5cBFzmeg0bIWCLpCCNUEr3P6Tw33Ya7uuKCxeKxV9RQqqsSoyJNh4xpckWLm03OpHoOH-Wc7i4hFsaIk2_zobdz9_MvPMf_fKvH8HA0QYuDLDNP4FZoJ_DgCjDhBO4tR5f7U3h_MPQrNGuDLzrUdLi7CHGFDc_OL8fEpbbAzX89jwVIikuDoh1jvrpncHr48eTDYjYWXJg5pkmP_2PiReWpZIG6hhDHKmME46byTGqHo-q0Kk1llGlKZZmTziiLCs5LEii3bAe22lUbnkOhhLXWNw1qf5zCKV950yjqS8_LQJoyTOHdmv-1G9HIY1GMizrNSoiuOa0zZ6bwZkP6PUNwXEc0iZzdEKyv7v4xpr_b47uwEu_vrce4xs8q-kpMG1ZDV1PsNS2Z-AdFJSUnlbqZQkX8PlQmU9jJ4rN5_CiEL67t9B7cX5wsj-qjT8dfXsJ2ToKMEYevYKv_MYRdtIJ6-zpJ_y_RaQER |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+seeded+lesion+segmentation+on+digital+mammograms&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kupinski%2C+M+A&rft.au=Giger%2C+M+L&rft.date=1998-08-01&rft.issn=0278-0062&rft.volume=17&rft.issue=4&rft.spage=510&rft_id=info:doi/10.1109%2F42.730396&rft_id=info%3Apmid%2F9845307&rft.externalDocID=9845307 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |