Automated seeded lesion segmentation on digital mammograms

Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 17; no. 4; pp. 510 - 517
Main Authors Kupinski, M.A., Giger, M.L.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.1998
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0062
DOI10.1109/42.730396

Cover

Abstract Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). The authors tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in the authors' database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively.
AbstractList Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. We have developed two novel lesion segmentation techniques - one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). We tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in our database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively.
Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. We have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). We tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in our database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively.Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. We have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). We tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in our database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively.
Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). The authors tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in the authors' database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively
Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel lesion segmentation techniques-one based on a single feature called the radial gradient index (RGI) and one based on simple probabilistic models to segment mass lesions, or other similar nodular structures, from surrounding background. In both methods a series of image partitions is created using gray-level information as well as prior knowledge of the shape of typical mass lesions. With the former method the partition that maximizes the RGI is selected. In the latter method, probability distributions for gray-levels inside and outside the partitions are estimated, and subsequently used to determine the probability that the image occurred for each given partition. The partition that maximizes this probability is selected as the final lesion partition (contour). The authors tested these methods against a conventional region growing algorithm using a database of biopsy-proven, malignant lesions and found that the new lesion segmentation algorithms more closely match radiologists' outlines of these lesions. At an overlap threshold of 0.30, gray level region growing correctly delineates 62% of the lesions in the authors' database while the RGI and probabilistic segmentation algorithms correctly segment 92% and 96% of the lesions, respectively.
Author Kupinski, M.A.
Giger, M.L.
Author_xml – sequence: 1
  givenname: M.A.
  surname: Kupinski
  fullname: Kupinski, M.A.
  organization: Dept. of Radiol., Chicago Univ., IL, USA
– sequence: 2
  givenname: M.L.
  surname: Giger
  fullname: Giger, M.L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1620316$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/9845307$$D View this record in MEDLINE/PubMed
BookMark eNqFkctLxEAMxueg-Fg9eBUEDyJ46Jp5dGbqTRZfsOBFzyU7TZeRTrt22oP_vZWWFURYCHyE75dA8h2zvbqpibEzDnPOIbtVYm4kyEzvsSMQxiYAWhyy4xg_ALhKITtgB5lVqQRzxO7u-64J2FFxGYmKQSqKvqmHbh2o7rD7aYYq_Np3WF0GDKFZtxjiCdsvsYp0OumMvT8-vC2ek-Xr08vifpk4mUGXSA5FaguhJQlXAjhpEVOp0BZSZ04LcJnhaNFgyc1KOu3QrIRVhQYSaiVn7Hrcu2mbz55ilwcfHVUV1tT0MTfAgWec7wSF1VqBNbtBrkBwmQ7gxQT2q0BFvml9wPYrn943-FeTj9FhVbZYOx-3GB-Ok1wP2M2IubaJsaXyl4D8J7RciXwMbWBv_7DOjyl0Lfrq34nzccIT0XbzZH4DpzSgjw
CODEN ITMID4
CitedBy_id crossref_primary_10_1007_s00500_021_06498_3
crossref_primary_10_1118_1_4928479
crossref_primary_10_1007_s10278_013_9652_1
crossref_primary_10_1016_j_acra_2005_08_035
crossref_primary_10_3233_XST_16212
crossref_primary_10_1118_1_2012967
crossref_primary_10_1118_1_2178450
crossref_primary_10_1177_153303460400300504
crossref_primary_10_1016_j_media_2016_07_007
crossref_primary_10_1016_j_compbiomed_2010_11_006
crossref_primary_10_1002_cyto_a_22017
crossref_primary_10_1109_42_974922
crossref_primary_10_1155_2012_919281
crossref_primary_10_1118_1_1485995
crossref_primary_10_1007_s11042_017_4751_5
crossref_primary_10_1016_j_patcog_2008_08_006
crossref_primary_10_1007_s42979_022_01071_7
crossref_primary_10_1118_1_3678991
crossref_primary_10_1016_j_patcog_2018_02_012
crossref_primary_10_1109_TIM_2006_870104
crossref_primary_10_2349_biij_6_3_e32
crossref_primary_10_1186_1687_6180_2013_157
crossref_primary_10_1007_s11548_011_0628_7
crossref_primary_10_1016_S1076_6332_03_80530_5
crossref_primary_10_1016_j_acra_2007_04_012
crossref_primary_10_1016_j_ijmedinf_2018_06_003
crossref_primary_10_1016_j_acra_2005_04_014
crossref_primary_10_1016_j_jbi_2014_01_010
crossref_primary_10_1118_1_1286720
crossref_primary_10_3390_cancers15194829
crossref_primary_10_3923_itj_2008_490_496
crossref_primary_10_1118_1_2790837
crossref_primary_10_1016_j_ics_2005_03_171
crossref_primary_10_1016_j_nima_2006_08_093
crossref_primary_10_1118_1_1386426
crossref_primary_10_1016_j_ultrasmedbio_2015_05_022
crossref_primary_10_1118_1_1631912
crossref_primary_10_1118_1_4803461
crossref_primary_10_1016_j_patcog_2010_08_002
crossref_primary_10_1118_1_3121511
crossref_primary_10_1016_j_compbiomed_2007_01_009
crossref_primary_10_1016_j_patrec_2007_03_012
crossref_primary_10_1148_radiol_2253011736
crossref_primary_10_1109_TMI_2002_808364
crossref_primary_10_1016_j_nima_2021_166062
crossref_primary_10_1590_2446_4740_180035
crossref_primary_10_1148_radiol_2373041418
crossref_primary_10_1002_ima_22516
crossref_primary_10_1007_s42600_020_00070_y
crossref_primary_10_1118_1_3673067
crossref_primary_10_1088_1361_6560_ab5745
crossref_primary_10_1118_1_3267037
crossref_primary_10_1088_1742_6596_274_1_012045
crossref_primary_10_1118_1_2163390
crossref_primary_10_1088_0031_9155_56_4_003
crossref_primary_10_1118_1_4837196
crossref_primary_10_1002_mp_13054
crossref_primary_10_1016_j_cmpb_2018_05_017
crossref_primary_10_1111_jmi_12200
crossref_primary_10_1146_annurev_bioeng_071812_152416
crossref_primary_10_1016_j_artmed_2020_101880
crossref_primary_10_1016_j_neucom_2014_10_040
crossref_primary_10_1118_1_3005641
crossref_primary_10_1016_j_clinimag_2012_09_024
crossref_primary_10_1016_j_patcog_2014_01_009
crossref_primary_10_1016_j_asoc_2019_105547
crossref_primary_10_1259_bjr_20861881
crossref_primary_10_1118_1_2791034
crossref_primary_10_7498_aps_63_078703
crossref_primary_10_1109_TITB_2006_874197
crossref_primary_10_1016_j_acra_2008_11_014
crossref_primary_10_1016_j_bspc_2012_08_003
crossref_primary_10_1109_TMI_2013_2280901
crossref_primary_10_1118_1_3265959
crossref_primary_10_1140_epjp_i2017_11523_8
crossref_primary_10_1007_s12194_008_0022_5
crossref_primary_10_1007_s11548_013_0829_3
crossref_primary_10_1016_j_patcog_2005_07_006
crossref_primary_10_1053_j_sult_2004_07_003
crossref_primary_10_48175_IJARSCT_8607
crossref_primary_10_1016_j_ijleo_2014_08_123
crossref_primary_10_1118_1_2820630
crossref_primary_10_1118_1_4921753
crossref_primary_10_1109_TITB_2009_2033269
crossref_primary_10_1148_radiol_2482071778
crossref_primary_10_1118_1_1688039
crossref_primary_10_1007_s42979_022_01451_z
crossref_primary_10_1148_radiol_2533090280
crossref_primary_10_1016_j_ultrasmedbio_2004_01_002
crossref_primary_10_1118_1_1339884
crossref_primary_10_1016_j_neucom_2015_04_121
crossref_primary_10_3390_sym9110277
crossref_primary_10_1118_1_3013555
crossref_primary_10_1109_42_921478
crossref_primary_10_1109_42_993133
crossref_primary_10_1016_j_cviu_2007_07_004
crossref_primary_10_1117_1_1579017
crossref_primary_10_1177_153303460500400205
crossref_primary_10_1016_j_artmed_2020_101980
crossref_primary_10_1080_10255842_2011_639015
crossref_primary_10_1016_j_acra_2004_07_011
crossref_primary_10_1007_BF03168394
crossref_primary_10_1118_1_3490477
crossref_primary_10_1016_j_acra_2010_04_015
crossref_primary_10_1016_j_microrel_2012_07_018
crossref_primary_10_1118_1_1781551
crossref_primary_10_1088_0031_9155_59_14_3697
crossref_primary_10_1002_mp_12214
crossref_primary_10_1088_0031_9155_57_13_4425
crossref_primary_10_1142_S1469026811003033
crossref_primary_10_1118_1_598895
crossref_primary_10_1118_1_2897950
crossref_primary_10_1002_mp_12291
crossref_primary_10_1109_10_923789
crossref_primary_10_1016_j_compbiomed_2017_05_015
crossref_primary_10_1016_j_eswa_2016_01_053
crossref_primary_10_1186_1687_6180_2013_172
crossref_primary_10_2174_1573405614666180718123533
crossref_primary_10_1109_TMI_2008_928178
crossref_primary_10_1109_TIP_2008_2011168
crossref_primary_10_1007_s42600_019_00008_z
crossref_primary_10_1016_S1076_6332_03_00723_2
crossref_primary_10_1109_TMI_2007_895460
crossref_primary_10_1016_j_ics_2004_03_172
crossref_primary_10_1016_S0895_6111_00_00009_4
crossref_primary_10_1088_1361_6560_ac8964
crossref_primary_10_1088_0031_9155_55_18_004
crossref_primary_10_1631_jzus_C1200052
crossref_primary_10_1016_j_acra_2008_05_004
crossref_primary_10_1016_j_compbiomed_2009_05_002
crossref_primary_10_1080_17455030_2023_2189485
crossref_primary_10_1364_BOE_1_000825
Cites_doi 10.1118/1.597626
10.1118/1.597756
10.1118/1.596610
10.1097/00004424-199208000-00006
10.1109/42.414622
10.1148/radiographics.13.3.8316671
ContentType Journal Article
Copyright 1999 INIST-CNRS
Copyright_xml – notice: 1999 INIST-CNRS
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/42.730396
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EndPage 517
ExternalDocumentID 368634
9845307
1620316
10_1109_42_730396
730396
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: RR11459
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c390t-310d58d263e2cf00c38aa534a8d369c620c971a8a7af17b3c6ca7b284d60e24b3
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Sun Sep 28 06:14:02 EDT 2025
Sun Sep 28 08:28:48 EDT 2025
Thu Oct 02 05:34:38 EDT 2025
Wed Feb 19 01:19:10 EST 2025
Mon Jul 21 09:16:00 EDT 2025
Thu Apr 24 22:56:08 EDT 2025
Wed Oct 01 03:55:11 EDT 2025
Tue Aug 26 21:00:19 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Human
Radiodiagnosis
Segmentation
Image processing
Mammography
Digital image
Malignant tumor
Medical screening
Automated processing
Mammary gland diseases
Radial gradient
Female
Mammary gland
Computer aid
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c390t-310d58d263e2cf00c38aa534a8d369c620c971a8a7af17b3c6ca7b284d60e24b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 9845307
PQID 21402135
PQPubID 23462
PageCount 8
ParticipantIDs pascalfrancis_primary_1620316
proquest_miscellaneous_70101911
crossref_citationtrail_10_1109_42_730396
ieee_primary_730396
crossref_primary_10_1109_42_730396
pubmed_primary_9845307
proquest_miscellaneous_28664087
proquest_miscellaneous_21402135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1998-08-01
PublicationDateYYYYMMDD 1998-08-01
PublicationDate_xml – month: 08
  year: 1998
  text: 1998-08-01
  day: 01
PublicationDecade 1990
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 1998
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References russ (ref9) 1992
ref11
comer (ref6) 1996
ref10
kupinski (ref4) 1995; 2434
hastie (ref13) 1990
ref2
giger (ref14) 1996
ref7
ref3
ref5
bick (ref12) 1995
giger (ref1) 1991; 1445
sameti (ref8) 1996
References_xml – start-page: 471
  year: 1996
  ident: ref8
  article-title: a fuzzy segmentation algorithm for mammogram partitioning
  publication-title: Digital Mammography
– ident: ref11
  doi: 10.1118/1.597626
– volume: 2434
  start-page: 598
  year: 1995
  ident: ref4
  article-title: computerized detection of mammographic lesions: performance of artificial neural network with enhanced feature extraction
  publication-title: SPIE
– ident: ref5
  doi: 10.1118/1.597756
– start-page: 357
  year: 1995
  ident: ref12
  article-title: a new single-image method for computer-aided detection of small mammographic masses
  publication-title: Proc CAR 95 Int Symp Computer and Communication Systems for Image Guided Diagnosis and Therapy
– start-page: 53
  year: 1996
  ident: ref14
  article-title: current issues in cad for mammography
  publication-title: Digital Mammography
– volume: 1445
  start-page: 101
  year: 1991
  ident: ref1
  article-title: development of a "smart" workstation for use in mammography
  publication-title: SPIE
– ident: ref3
  doi: 10.1118/1.596610
– year: 1990
  ident: ref13
  publication-title: Generalized Additive Models
– start-page: 471
  year: 1996
  ident: ref6
  article-title: statistical segmentation of mammograms
  publication-title: Digital Mammography
– year: 1992
  ident: ref9
  publication-title: The Image Processing Handbook
– ident: ref10
  doi: 10.1097/00004424-199208000-00006
– ident: ref7
  doi: 10.1109/42.414622
– ident: ref2
  doi: 10.1148/radiographics.13.3.8316671
SSID ssj0014509
Score 2.06539
Snippet Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. The authors have developed two novel...
Segmenting lesions is a vital step in many computerized mass-detection schemes for digital (or digitized) mammograms. We have developed two novel lesion...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 510
SubjectTerms Algorithm design and analysis
Algorithms
Biological and medical sciences
Breast Neoplasms - diagnostic imaging
Computer aided diagnosis
Data mining
Database systems
Digital signal processing
Genital system. Mammary gland
Humans
Image segmentation
Investigative techniques, diagnostic techniques (general aspects)
Lesions
Mammography - methods
Medical sciences
Partitioning algorithms
Performance analysis
Probability distribution
Probability distributions
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Radiographic Image Enhancement - methods
Radiology
Shape
Testing
Title Automated seeded lesion segmentation on digital mammograms
URI https://ieeexplore.ieee.org/document/730396
https://www.ncbi.nlm.nih.gov/pubmed/9845307
https://www.proquest.com/docview/21402135
https://www.proquest.com/docview/28664087
https://www.proquest.com/docview/70101911
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0014509
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BEhU9FLoFddtCo6qHXnZxbMeP3hACISR6KhK3yK-gCshWTXLpr-_Yzm5pBQgpUl5jxRlPMmPPzDcAnwNaycQbPvPa6hlvdIS89QxnKWj7o_pzOgHPX3wTZ5f8_Kq6GnG2Uy5MCCEFn4V5PEy-fL9wQ1wqO0RpZFqsw7pUIqdqrRwGvMrRHDQCxhJBRxChkuhDTue54RZsasUrFkvH3lNCqapKjIk0HbKlyfUsHjc4k-I53c4Z3V3CK4zxJjfzobdz9_s_NMdnvtMOvBoN0OIoS8xrWAvtBF7egyWcwIuL0eH-Br4eDf0Cjdrgiw71HO5uQ1xfw7PruzFtqS1w8z-uY_mR4s6gYMeIr24XLk9Pvh-fzcZyCzPHNOnxb0x8pTwVLFDXEOKYMqZi3CjPhHY4pk7L0igjTVNKy5xwRlpUb16QQLlle7DRLtrwFgpZWWt906Duxwmc9MqbRlJfel4G0pRhCl-W_K_diEUeS2Lc1mlOQnTNaZ05M4VPK9KfGYDjIaJJ5OyKYHl1_58x_dse34WVeP_jcoxr_Kiip8S0YTF0NcVe05JVT1AoIThR8nEKGdH7UJVMYS-Lz-rxoxC-e7DT72Erpz3GGMMPsNH_GsI-2j29PUgS_wdpvf21
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BEVAOPBYqFiiNEAcuu3X8jLlViGqBbk-t1FvkVypEm0UkufDrGdvZpaAWIUXKa6w440lm7Jn5BuBtQCuZeMNnXls9442OkLee4SwFbX9Uf04n4PnlsVyc8s9n4mzE2U65MCGEFHwW5vEw-fL9yg1xqWwfpZFpeRvuCM65yMlaG5cBFzmeg0bIWCLpCCNUEr3P6Tw33Ya7uuKCxeKxV9RQqqsSoyJNh4xpckWLm03OpHoOH-Wc7i4hFsaIk2_zobdz9_MvPMf_fKvH8HA0QYuDLDNP4FZoJ_DgCjDhBO4tR5f7U3h_MPQrNGuDLzrUdLi7CHGFDc_OL8fEpbbAzX89jwVIikuDoh1jvrpncHr48eTDYjYWXJg5pkmP_2PiReWpZIG6hhDHKmME46byTGqHo-q0Kk1llGlKZZmTziiLCs5LEii3bAe22lUbnkOhhLXWNw1qf5zCKV950yjqS8_LQJoyTOHdmv-1G9HIY1GMizrNSoiuOa0zZ6bwZkP6PUNwXEc0iZzdEKyv7v4xpr_b47uwEu_vrce4xs8q-kpMG1ZDV1PsNS2Z-AdFJSUnlbqZQkX8PlQmU9jJ4rN5_CiEL67t9B7cX5wsj-qjT8dfXsJ2ToKMEYevYKv_MYRdtIJ6-zpJ_y_RaQER
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+seeded+lesion+segmentation+on+digital+mammograms&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Kupinski%2C+M+A&rft.au=Giger%2C+M+L&rft.date=1998-08-01&rft.issn=0278-0062&rft.volume=17&rft.issue=4&rft.spage=510&rft_id=info:doi/10.1109%2F42.730396&rft_id=info%3Apmid%2F9845307&rft.externalDocID=9845307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon