Quantile regression for survival data with covariates subject to detection limits

With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 77; no. 2; pp. 610 - 621
Main Authors Yu, Tonghui, Xiang, Liming, Wang, Huixia Judy
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2021
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.13309

Cover

Abstract With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
AbstractList With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time (AFT) models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite-sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite-sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite-sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
Author Wang, Huixia Judy
Xiang, Liming
Yu, Tonghui
Author_xml – sequence: 1
  givenname: Tonghui
  orcidid: 0000-0002-9271-2819
  surname: Yu
  fullname: Yu, Tonghui
  organization: Nanyang Technological University
– sequence: 2
  givenname: Liming
  orcidid: 0000-0003-0698-5173
  surname: Xiang
  fullname: Xiang, Liming
  email: lmxiang@ntu.edu.sg
  organization: Nanyang Technological University
– sequence: 3
  givenname: Huixia Judy
  orcidid: 0000-0002-5195-8564
  surname: Wang
  fullname: Wang, Huixia Judy
  organization: George Washington University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32453884$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFLHTEQx0Ox1Kf24geQhV6KsDbJJPuSo0prBYsIFXoL2eys5rG70ST7xG_fvD69SGnnMjPM7z8w898jO1OYkJBDRk9YiS-tD-MJA6D6HVkwKVhNBac7ZEEpbWoQ7Ncu2UtpVVotKf9AdoELCUqJBbm5me2U_YBVxLuIKfkwVX2IVZrj2q_tUHU22-rJ5_vKhbWN3mZMZdqu0OUqh6rDXKqNbPCjz-mAvO_tkPDjS94nt9--_jz_Xl9dX1yen17VDjTVNVqlNfQNAHeuYy2VWjO1BCUct-BaaBTSHiTrlv2y0dgDb8HJpmOomGw17JPP270PMTzOmLIZfXI4DHbCMCfDG2gEAy3o_1FBl8BAKF7QT2_QVZjjVA4xXAoQVNJGFerohZrbETvzEP1o47N5_WsB6BZwMaQUsTfOZ7v5Uo7WD4ZRs7HObKwzf6wrkuM3ktetf4XZFn4q1j3_gzRnl9c_tprfkN6n-A
CitedBy_id crossref_primary_10_1186_s12889_021_12487_w
crossref_primary_10_1080_00031305_2023_2282629
crossref_primary_10_4103_ijcm_ijcm_119_22
Cites_doi 10.1186/cc7028
10.1080/01621459.2011.643198
10.1086/315214
10.1002/sim.3285
10.1001/archinte.167.15.1655
10.1198/016214508000000355
10.1111/1469-0691.12717
10.1093/biomet/ass007
10.1198/jasa.2009.0104
10.3982/ECTA7880
10.2307/2290664
10.1056/NEJMra1108296
10.3150/11-BEJ388
10.1198/016214503000000954
10.1371/journal.pone.0013852
10.1080/10543406.2014.920859
10.1155/2013/490346
10.1080/01621459.1995.10476500
10.4161/viru.27372
10.1007/978-0-387-84858-7
10.1016/j.jclinepi.2006.01.009
10.1198/jasa.2009.tm08230
10.1016/j.csda.2013.07.027
ContentType Journal Article
Copyright 2020 The International Biometric Society
This article is protected by copyright. All rights reserved.
2021 The International Biometric Society
2020 The International Biometric Society.
Copyright_xml – notice: 2020 The International Biometric Society
– notice: This article is protected by copyright. All rights reserved.
– notice: 2021 The International Biometric Society
– notice: 2020 The International Biometric Society.
DBID AAYXX
CITATION
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13309
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 621
ExternalDocumentID 32453884
10_1111_biom_13309
BIOM13309
Genre article
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS‐1712760
– fundername: Singapore Ministry of Education Academic Research Fund
  funderid: Tier 1 grant RG134/17 (S)
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAWIL
AAYXX
ABAWQ
ABGNP
ACHJO
ADNBA
AEFGJ
AEOTA
AGLNM
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AIHAF
AJBYB
AJNCP
CITATION
ESTFP
H13
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
AGORE
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c3909-ea8993f6332ccd1b0599187384c2a3cb368e0f351d7f769ef32b3c56d1e815b93
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Sep 05 17:20:04 EDT 2025
Sun Sep 28 02:31:16 EDT 2025
Wed Aug 13 04:46:04 EDT 2025
Wed Feb 19 02:30:20 EST 2025
Thu Apr 24 23:06:20 EDT 2025
Wed Oct 01 01:41:39 EDT 2025
Wed Jan 22 16:30:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords quantile regression
survival data
multiple imputation
censoring
detection limit
shrinkage
Language English
License This article is protected by copyright. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3909-ea8993f6332ccd1b0599187384c2a3cb368e0f351d7f769ef32b3c56d1e815b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0698-5173
0000-0002-9271-2819
0000-0002-5195-8564
PMID 32453884
PQID 2543405068
PQPubID 35366
PageCount 12
ParticipantIDs proquest_miscellaneous_2636413940
proquest_miscellaneous_2407313482
proquest_journals_2543405068
pubmed_primary_32453884
crossref_citationtrail_10_1111_biom_13309
crossref_primary_10_1111_biom_13309
wiley_primary_10_1111_biom_13309_BIOM13309
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 78
2013; 19
2007; 167
2015; 25
2014; 5
2012; 366
1995; 90
2013; 2013
2008; 27
2006; 59
2009
2014; 69
2008; 12
2008; 103
1992; 87
2010; 5
2012; 99
2012; 107
2009; 104
2003; 98
2000; 181
2014; 20
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_24_1
e_1_2_9_12_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – volume: 59
  start-page: 1092
  issue: 10
  year: 2006
  end-page: 1101
  article-title: Using the outcome for imputation of missing predictor values was preferred
  publication-title: Journal of Clinical Epidemiology
– volume: 99
  start-page: 423
  issue: 2
  year: 2012
  end-page: 438
  article-title: Multiple imputation in quantile regression
  publication-title: Biometrika
– volume: 366
  start-page: 454
  issue: 5
  year: 2012
  end-page: 461
  article-title: The perpetual challenge of infectious diseases
  publication-title: New England Journal of Medicine
– volume: 181
  start-page: 176
  issue: 1
  year: 2000
  end-page: 180
  article-title: Pro‐versus anti‐inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options
  publication-title: The Journal of Infectious Diseases
– year: 2009
– volume: 5
  issue: 11
  year: 2010
  article-title: The effects of age on inflammatory and coagulation‐fibrinolysis response in patients hospitalized for pneumonia
  publication-title: PLoS One
– volume: 27
  start-page: 4502
  issue: 22
  year: 2008
  end-page: 4514
  article-title: An index approach for the Cox model with left censored covariates
  publication-title: Statistics in Medicine
– volume: 69
  start-page: 81
  year: 2014
  end-page: 91
  article-title: Flexible modeling of survival data with covariates subject to detection limits via multiple imputation
  publication-title: Computational Statistics & Data Analysis
– volume: 78
  start-page: 1093
  issue: 3
  year: 2010
  end-page: 1125
  article-title: Quantile and probability curves without crossing
  publication-title: Econometrica
– volume: 167
  start-page: 1655
  issue: 15
  year: 2007
  end-page: 1663
  article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the genetic and inflammatory markers of sepsis (genims) study
  publication-title: Archives of Internal Medicine
– volume: 12
  start-page: S5
  issue: Suppl 6
  year: 2008
  article-title: The role of biomarkers in community‐acquired pneumonia: predicting mortality and response to adjunctive therapy
  publication-title: Critical Care
– volume: 20
  start-page: 1183
  issue: 11
  year: 2014
  end-page: 1188
  article-title: The effect of age on the systemic inflammatory response in patients with community‐acquired pneumonia
  publication-title: Clinical Microbiology and Infection
– volume: 25
  start-page: 459
  issue: 3
  year: 2015
  end-page: 473
  article-title: Estimation of c‐index for Cox proportional hazards model with censored biomarker covariate subject to limits of detection
  publication-title: Journal of Biopharmaceutical Statistics
– volume: 98
  start-page: 1001
  issue: 464
  year: 2003
  end-page: 1012
  article-title: Censored regression quantiles
  publication-title: Journal of the American Statistical Association
– volume: 104
  start-page: 1117
  issue: 487
  year: 2009
  end-page: 1128
  article-title: Locally weighted censored quantile regression
  publication-title: Journal of the American Statistical Association
– volume: 104
  start-page: 220
  issue: 485
  year: 2009
  end-page: 233
  article-title: Shrinkage estimators for robust and efficient inference in haplotype‐based case‐control studies
  publication-title: Journal of the American Statistical Association
– volume: 5
  start-page: 4
  issue: 1
  year: 2014
  end-page: 11
  article-title: Epidemiology of severe sepsis
  publication-title: Virulence
– volume: 107
  start-page: 194
  issue: 497
  year: 2012
  end-page: 204
  article-title: Multiple imputation for m‐regression with censored covariates
  publication-title: Journal of the American Statistical Association
– volume: 103
  start-page: 637
  issue: 482
  year: 2008
  end-page: 649
  article-title: Survival analysis with quantile regression models
  publication-title: Journal of the American Statistical Association
– volume: 2013
  year: 2013
  article-title: Overview of community‐acquired pneumonia and the role of inflammatory mechanisms in the immunopathogenesis of severe pneumococcal disease
  publication-title: Mediators of Inflammation
– volume: 87
  start-page: 1227
  issue: 420
  year: 1992
  end-page: 1237
  article-title: Regression with missing x's: a review
  publication-title: Journal of the American Statistical Association
– volume: 19
  start-page: 344
  issue: 1
  year: 2013
  end-page: 361
  article-title: A quantile regression estimator for censored data
  publication-title: Bernoulli
– volume: 90
  start-page: 178
  issue: 429
  year: 1995
  end-page: 184
  article-title: Survival analysis with median regression models
  publication-title: Journal of the American Statistical Association
– ident: e_1_2_9_15_1
  doi: 10.1186/cc7028
– ident: e_1_2_9_21_1
  doi: 10.1080/01621459.2011.643198
– ident: e_1_2_9_7_1
  doi: 10.1086/315214
– ident: e_1_2_9_5_1
  doi: 10.1002/sim.3285
– ident: e_1_2_9_10_1
  doi: 10.1001/archinte.167.15.1655
– ident: e_1_2_9_17_1
  doi: 10.1198/016214508000000355
– ident: e_1_2_9_20_1
  doi: 10.1111/1469-0691.12717
– ident: e_1_2_9_23_1
  doi: 10.1093/biomet/ass007
– ident: e_1_2_9_3_1
  doi: 10.1198/jasa.2009.0104
– ident: e_1_2_9_4_1
  doi: 10.3982/ECTA7880
– ident: e_1_2_9_13_1
  doi: 10.2307/2290664
– ident: e_1_2_9_6_1
  doi: 10.1056/NEJMra1108296
– ident: e_1_2_9_12_1
  doi: 10.3150/11-BEJ388
– ident: e_1_2_9_18_1
  doi: 10.1198/016214503000000954
– ident: e_1_2_9_9_1
  doi: 10.1371/journal.pone.0013852
– ident: e_1_2_9_11_1
  doi: 10.1080/10543406.2014.920859
– ident: e_1_2_9_19_1
  doi: 10.1155/2013/490346
– ident: e_1_2_9_24_1
  doi: 10.1080/01621459.1995.10476500
– ident: e_1_2_9_14_1
  doi: 10.4161/viru.27372
– ident: e_1_2_9_8_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_9_16_1
  doi: 10.1016/j.jclinepi.2006.01.009
– ident: e_1_2_9_22_1
  doi: 10.1198/jasa.2009.tm08230
– ident: e_1_2_9_2_1
  doi: 10.1016/j.csda.2013.07.027
SSID ssj0009502
Score 2.3658378
Snippet With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 610
SubjectTerms Biomarkers
biomedical research
censoring
detection limit
Failure times
Inflammation
Mathematical models
Medical prognosis
Medical research
multiple imputation
quantile regression
Quantiles
regression analysis
Regression coefficients
Sepsis
shrinkage
Statistical analysis
Statistical inference
Statistical models
Survival
survival data
Title Quantile regression for survival data with covariates subject to detection limits
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13309
https://www.ncbi.nlm.nih.gov/pubmed/32453884
https://www.proquest.com/docview/2543405068
https://www.proquest.com/docview/2407313482
https://www.proquest.com/docview/2636413940
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoLA59LFN2m23RaW9JODFsmTZhl7a0pAWNiUhgb0EY8lyDg3eEtuF9td3RrKdVwm0N4NGeCxpPN-MRp8A3qHP4SqOZJAgWA2kqWxQmKoIEJynkmuVWHfZxPJQHZzKr6t4tQHvh7Mwnh9iTLiRZbj_NRl4oZtrRk7H0xcYYbnTe1zEbo_2OLrGuBt6qnAq7pJ81XOTUhnPVdeb3ugOxLyJWJ3L2X8EZ4OyvtLk-6Jr9cL8vsXj-L9f8xge9liUffCL5wls2HoKD_ztlL-msLUcKV2bKUwIlnpW56dwdNThjOCL2KU995W0NUP4y5oOfz24eBlVnjJK8jKz_onxOEFabNWU9mHtmpW2dUVgNbugI1bNNpzufz75dBD0lzMERmRhFtgCIzVRKSEiY0quieeFp4lIpYkKYbRQqQ0rEfMyqRKV2UpEWphYldymPNaZ2IHNel3b58AiJUphs1KlFbGSFhmXSVQoZTAcxF7hDHaHScpNz1xOF2hc5EMEQ6OXu9GbwdtR9ofn6_ir1HyY67y32SYnWgCEr6FKZ_BmbEZroy2UorbrDmUw_hWcCIHukVFCITTIJCr-zK-jURWEr-hhUjmDPbca7tEx__jl29I9vfgX4ZcwiajsxiWK5rDZXnb2FeKmVr929vEH-jIRjQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VraqWAy0Lhe0DXMEFpKzi2HGSI9BW28cWFbXS3qLEcXpglUVNUgl-fWfsbGgBVYJbJI8Vx_bE34xnvgF4h2cOV2EgvQjBqid1abxMl5mH4DyWPFeRscUmJudqfCVPpuG0i82hXBjHD9E73Egz7P-aFJwc0ve0nPLTR2hiUfreCl3QkV4efA3uce76jiycwrskn3bspBTI86vvw_PoD5D5ELPaQ-dow1VWrS1XIcWafBu1TT7SP39jcvzv79mEpx0cZR_d_nkGS6YawKorUPljAE8mPatrPYB1QqaO2Pk5XFy0uCj4JnZjrl0wbcUQAbO6xb8P7l9GwaeM_LxMz2_RJCdUi605eX5YM2eFaWwcWMVmlGVVv4Cro8PLz2Ovq8_gaZH4iWcyNNZEqYQItC54TlQvPI5ELHWQCZ0LFRu_FCEvojJSiSlFkAsdqoKbmId5IrZguZpX5hWwQIlCmKRQcUnEpFnCZRRkSmm0CLGXP4T3i1VKdUdeTjU0ZunCiKHZS-3sDeFtL_vdUXb8VWp3sdhpp7Z1SswAiGB9FQ9hv29GhaNblKwy8xZl0AQWnDiBHpFRQiE6SCQO_KXbSP1QEMHiIRPLIXyw2-GRMaafjr9M7NP2vwi_gbXx5eQsPTs-P92B9YCicKzfaBeWm5vW7CGMavLXVlnuAAkfFak
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEJ4QiAYfUM9fB6hL5EWTXrrd7bZNfAH1AsohGEnuhTTtduuDpEe4lkT_emZ22wpCSOCtyc6m092dnW-ms98CbKLP4SoMpBchWPWkLo2X6TLzEJzHkucqMvayicm-2jmSX6fhdAE-dmdhHD9En3Ajy7D7NRn4aVFeMnI6nj7CCItO7y1JheEVQaIfwSXKXd9xhVN1l-TTlpyU6nj-9b3qjq5hzKuQ1fqc8WM47rR1pSa_R02dj_Tf_4gc7_s5T2ClBaNsy62ep7BgqgE8cNdT_hnAo0nP6TofwDLhUkfr_AwODxucEnwROzO_XCltxRD_snmDew-uXkalp4yyvEzPzjEgJ0yLrTnlfVg9Y4WpbRVYxU7ojNX8ORyNv_z8tOO1tzN4WiR-4pkMQzVRKiECrQueE9ELjyMRSx1kQudCxcYvRciLqIxUYkoR5EKHquAm5mGeiBewWM0q8wpYoEQhTFKouCRa0izhMgoypTTGg9jLH8L7bpJS3VKX0w0aJ2kXwtDopXb0hvCulz11hB03Sq13c522RjtPiRcA8auv4iFs9M1obvQPJavMrEEZDIAFJ0agW2SUUIgNEomKv3TrqFcF8Su6mFgO4YNdDbfomG7vfp_Yp9W7CL-Fhwefx-ne7v63NVgOqATHJo3WYbE-a8xrxFB1_saaygW2hxRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantile+regression+for+survival+data+with+covariates+subject+to+detection+limits&rft.jtitle=Biometrics&rft.au=Yu%2C+Tonghui&rft.au=Xiang%2C+Liming&rft.au=Wang%2C+Huixia+Judy&rft.date=2021-06-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=77&rft.issue=2&rft.spage=610&rft.epage=621&rft_id=info:doi/10.1111%2Fbiom.13309&rft.externalDBID=10.1111%252Fbiom.13309&rft.externalDocID=BIOM13309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon