Quantile regression for survival data with covariates subject to detection limits
With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in...
Saved in:
Published in | Biometrics Vol. 77; no. 2; pp. 610 - 621 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 1541-0420 |
DOI | 10.1111/biom.13309 |
Cover
Abstract | With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis. |
---|---|
AbstractList | With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis. With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis. With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time (AFT) models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite-sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis. With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite-sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite-sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis. |
Author | Wang, Huixia Judy Xiang, Liming Yu, Tonghui |
Author_xml | – sequence: 1 givenname: Tonghui orcidid: 0000-0002-9271-2819 surname: Yu fullname: Yu, Tonghui organization: Nanyang Technological University – sequence: 2 givenname: Liming orcidid: 0000-0003-0698-5173 surname: Xiang fullname: Xiang, Liming email: lmxiang@ntu.edu.sg organization: Nanyang Technological University – sequence: 3 givenname: Huixia Judy orcidid: 0000-0002-5195-8564 surname: Wang fullname: Wang, Huixia Judy organization: George Washington University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32453884$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFLHTEQx0Ox1Kf24geQhV6KsDbJJPuSo0prBYsIFXoL2eys5rG70ST7xG_fvD69SGnnMjPM7z8w898jO1OYkJBDRk9YiS-tD-MJA6D6HVkwKVhNBac7ZEEpbWoQ7Ncu2UtpVVotKf9AdoELCUqJBbm5me2U_YBVxLuIKfkwVX2IVZrj2q_tUHU22-rJ5_vKhbWN3mZMZdqu0OUqh6rDXKqNbPCjz-mAvO_tkPDjS94nt9--_jz_Xl9dX1yen17VDjTVNVqlNfQNAHeuYy2VWjO1BCUct-BaaBTSHiTrlv2y0dgDb8HJpmOomGw17JPP270PMTzOmLIZfXI4DHbCMCfDG2gEAy3o_1FBl8BAKF7QT2_QVZjjVA4xXAoQVNJGFerohZrbETvzEP1o47N5_WsB6BZwMaQUsTfOZ7v5Uo7WD4ZRs7HObKwzf6wrkuM3ktetf4XZFn4q1j3_gzRnl9c_tprfkN6n-A |
CitedBy_id | crossref_primary_10_1186_s12889_021_12487_w crossref_primary_10_1080_00031305_2023_2282629 crossref_primary_10_4103_ijcm_ijcm_119_22 |
Cites_doi | 10.1186/cc7028 10.1080/01621459.2011.643198 10.1086/315214 10.1002/sim.3285 10.1001/archinte.167.15.1655 10.1198/016214508000000355 10.1111/1469-0691.12717 10.1093/biomet/ass007 10.1198/jasa.2009.0104 10.3982/ECTA7880 10.2307/2290664 10.1056/NEJMra1108296 10.3150/11-BEJ388 10.1198/016214503000000954 10.1371/journal.pone.0013852 10.1080/10543406.2014.920859 10.1155/2013/490346 10.1080/01621459.1995.10476500 10.4161/viru.27372 10.1007/978-0-387-84858-7 10.1016/j.jclinepi.2006.01.009 10.1198/jasa.2009.tm08230 10.1016/j.csda.2013.07.027 |
ContentType | Journal Article |
Copyright | 2020 The International Biometric Society This article is protected by copyright. All rights reserved. 2021 The International Biometric Society 2020 The International Biometric Society. |
Copyright_xml | – notice: 2020 The International Biometric Society – notice: This article is protected by copyright. All rights reserved. – notice: 2021 The International Biometric Society – notice: 2020 The International Biometric Society. |
DBID | AAYXX CITATION NPM JQ2 7X8 7S9 L.6 |
DOI | 10.1111/biom.13309 |
DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA PubMed ProQuest Computer Science Collection MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 621 |
ExternalDocumentID | 32453884 10_1111_biom_13309 BIOM13309 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: DMS‐1712760 – fundername: Singapore Ministry of Education Academic Research Fund funderid: Tier 1 grant RG134/17 (S) |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFWVQ AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAWIL AAYXX ABAWQ ABGNP ACHJO ADNBA AEFGJ AEOTA AGLNM AGQPQ AGXDD AHGBF AIDQK AIDYY AIHAF AJBYB AJNCP CITATION ESTFP H13 PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM AGORE JQ2 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c3909-ea8993f6332ccd1b0599187384c2a3cb368e0f351d7f769ef32b3c56d1e815b93 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Sep 05 17:20:04 EDT 2025 Sun Sep 28 02:31:16 EDT 2025 Wed Aug 13 04:46:04 EDT 2025 Wed Feb 19 02:30:20 EST 2025 Thu Apr 24 23:06:20 EDT 2025 Wed Oct 01 01:41:39 EDT 2025 Wed Jan 22 16:30:07 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | quantile regression survival data multiple imputation censoring detection limit shrinkage |
Language | English |
License | This article is protected by copyright. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3909-ea8993f6332ccd1b0599187384c2a3cb368e0f351d7f769ef32b3c56d1e815b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0698-5173 0000-0002-9271-2819 0000-0002-5195-8564 |
PMID | 32453884 |
PQID | 2543405068 |
PQPubID | 35366 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2636413940 proquest_miscellaneous_2407313482 proquest_journals_2543405068 pubmed_primary_32453884 crossref_citationtrail_10_1111_biom_13309 crossref_primary_10_1111_biom_13309 wiley_primary_10_1111_biom_13309_BIOM13309 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2010; 78 2013; 19 2007; 167 2015; 25 2014; 5 2012; 366 1995; 90 2013; 2013 2008; 27 2006; 59 2009 2014; 69 2008; 12 2008; 103 1992; 87 2010; 5 2012; 99 2012; 107 2009; 104 2003; 98 2000; 181 2014; 20 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_22_1 e_1_2_9_10_1 e_1_2_9_21_1 e_1_2_9_13_1 e_1_2_9_24_1 e_1_2_9_12_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 |
References_xml | – volume: 59 start-page: 1092 issue: 10 year: 2006 end-page: 1101 article-title: Using the outcome for imputation of missing predictor values was preferred publication-title: Journal of Clinical Epidemiology – volume: 99 start-page: 423 issue: 2 year: 2012 end-page: 438 article-title: Multiple imputation in quantile regression publication-title: Biometrika – volume: 366 start-page: 454 issue: 5 year: 2012 end-page: 461 article-title: The perpetual challenge of infectious diseases publication-title: New England Journal of Medicine – volume: 181 start-page: 176 issue: 1 year: 2000 end-page: 180 article-title: Pro‐versus anti‐inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options publication-title: The Journal of Infectious Diseases – year: 2009 – volume: 5 issue: 11 year: 2010 article-title: The effects of age on inflammatory and coagulation‐fibrinolysis response in patients hospitalized for pneumonia publication-title: PLoS One – volume: 27 start-page: 4502 issue: 22 year: 2008 end-page: 4514 article-title: An index approach for the Cox model with left censored covariates publication-title: Statistics in Medicine – volume: 69 start-page: 81 year: 2014 end-page: 91 article-title: Flexible modeling of survival data with covariates subject to detection limits via multiple imputation publication-title: Computational Statistics & Data Analysis – volume: 78 start-page: 1093 issue: 3 year: 2010 end-page: 1125 article-title: Quantile and probability curves without crossing publication-title: Econometrica – volume: 167 start-page: 1655 issue: 15 year: 2007 end-page: 1663 article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the genetic and inflammatory markers of sepsis (genims) study publication-title: Archives of Internal Medicine – volume: 12 start-page: S5 issue: Suppl 6 year: 2008 article-title: The role of biomarkers in community‐acquired pneumonia: predicting mortality and response to adjunctive therapy publication-title: Critical Care – volume: 20 start-page: 1183 issue: 11 year: 2014 end-page: 1188 article-title: The effect of age on the systemic inflammatory response in patients with community‐acquired pneumonia publication-title: Clinical Microbiology and Infection – volume: 25 start-page: 459 issue: 3 year: 2015 end-page: 473 article-title: Estimation of c‐index for Cox proportional hazards model with censored biomarker covariate subject to limits of detection publication-title: Journal of Biopharmaceutical Statistics – volume: 98 start-page: 1001 issue: 464 year: 2003 end-page: 1012 article-title: Censored regression quantiles publication-title: Journal of the American Statistical Association – volume: 104 start-page: 1117 issue: 487 year: 2009 end-page: 1128 article-title: Locally weighted censored quantile regression publication-title: Journal of the American Statistical Association – volume: 104 start-page: 220 issue: 485 year: 2009 end-page: 233 article-title: Shrinkage estimators for robust and efficient inference in haplotype‐based case‐control studies publication-title: Journal of the American Statistical Association – volume: 5 start-page: 4 issue: 1 year: 2014 end-page: 11 article-title: Epidemiology of severe sepsis publication-title: Virulence – volume: 107 start-page: 194 issue: 497 year: 2012 end-page: 204 article-title: Multiple imputation for m‐regression with censored covariates publication-title: Journal of the American Statistical Association – volume: 103 start-page: 637 issue: 482 year: 2008 end-page: 649 article-title: Survival analysis with quantile regression models publication-title: Journal of the American Statistical Association – volume: 2013 year: 2013 article-title: Overview of community‐acquired pneumonia and the role of inflammatory mechanisms in the immunopathogenesis of severe pneumococcal disease publication-title: Mediators of Inflammation – volume: 87 start-page: 1227 issue: 420 year: 1992 end-page: 1237 article-title: Regression with missing x's: a review publication-title: Journal of the American Statistical Association – volume: 19 start-page: 344 issue: 1 year: 2013 end-page: 361 article-title: A quantile regression estimator for censored data publication-title: Bernoulli – volume: 90 start-page: 178 issue: 429 year: 1995 end-page: 184 article-title: Survival analysis with median regression models publication-title: Journal of the American Statistical Association – ident: e_1_2_9_15_1 doi: 10.1186/cc7028 – ident: e_1_2_9_21_1 doi: 10.1080/01621459.2011.643198 – ident: e_1_2_9_7_1 doi: 10.1086/315214 – ident: e_1_2_9_5_1 doi: 10.1002/sim.3285 – ident: e_1_2_9_10_1 doi: 10.1001/archinte.167.15.1655 – ident: e_1_2_9_17_1 doi: 10.1198/016214508000000355 – ident: e_1_2_9_20_1 doi: 10.1111/1469-0691.12717 – ident: e_1_2_9_23_1 doi: 10.1093/biomet/ass007 – ident: e_1_2_9_3_1 doi: 10.1198/jasa.2009.0104 – ident: e_1_2_9_4_1 doi: 10.3982/ECTA7880 – ident: e_1_2_9_13_1 doi: 10.2307/2290664 – ident: e_1_2_9_6_1 doi: 10.1056/NEJMra1108296 – ident: e_1_2_9_12_1 doi: 10.3150/11-BEJ388 – ident: e_1_2_9_18_1 doi: 10.1198/016214503000000954 – ident: e_1_2_9_9_1 doi: 10.1371/journal.pone.0013852 – ident: e_1_2_9_11_1 doi: 10.1080/10543406.2014.920859 – ident: e_1_2_9_19_1 doi: 10.1155/2013/490346 – ident: e_1_2_9_24_1 doi: 10.1080/01621459.1995.10476500 – ident: e_1_2_9_14_1 doi: 10.4161/viru.27372 – ident: e_1_2_9_8_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_2_9_16_1 doi: 10.1016/j.jclinepi.2006.01.009 – ident: e_1_2_9_22_1 doi: 10.1198/jasa.2009.tm08230 – ident: e_1_2_9_2_1 doi: 10.1016/j.csda.2013.07.027 |
SSID | ssj0009502 |
Score | 2.3658378 |
Snippet | With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 610 |
SubjectTerms | Biomarkers biomedical research censoring detection limit Failure times Inflammation Mathematical models Medical prognosis Medical research multiple imputation quantile regression Quantiles regression analysis Regression coefficients Sepsis shrinkage Statistical analysis Statistical inference Statistical models Survival survival data |
Title | Quantile regression for survival data with covariates subject to detection limits |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13309 https://www.ncbi.nlm.nih.gov/pubmed/32453884 https://www.proquest.com/docview/2543405068 https://www.proquest.com/docview/2407313482 https://www.proquest.com/docview/2636413940 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CoLA59LFN2m23RaW9JODFsmTZhl7a0pAWNiUhgb0EY8lyDg3eEtuF9td3RrKdVwm0N4NGeCxpPN-MRp8A3qHP4SqOZJAgWA2kqWxQmKoIEJynkmuVWHfZxPJQHZzKr6t4tQHvh7Mwnh9iTLiRZbj_NRl4oZtrRk7H0xcYYbnTe1zEbo_2OLrGuBt6qnAq7pJ81XOTUhnPVdeb3ugOxLyJWJ3L2X8EZ4OyvtLk-6Jr9cL8vsXj-L9f8xge9liUffCL5wls2HoKD_ztlL-msLUcKV2bKUwIlnpW56dwdNThjOCL2KU995W0NUP4y5oOfz24eBlVnjJK8jKz_onxOEFabNWU9mHtmpW2dUVgNbugI1bNNpzufz75dBD0lzMERmRhFtgCIzVRKSEiY0quieeFp4lIpYkKYbRQqQ0rEfMyqRKV2UpEWphYldymPNaZ2IHNel3b58AiJUphs1KlFbGSFhmXSVQoZTAcxF7hDHaHScpNz1xOF2hc5EMEQ6OXu9GbwdtR9ofn6_ir1HyY67y32SYnWgCEr6FKZ_BmbEZroy2UorbrDmUw_hWcCIHukVFCITTIJCr-zK-jURWEr-hhUjmDPbca7tEx__jl29I9vfgX4ZcwiajsxiWK5rDZXnb2FeKmVr929vEH-jIRjQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VraqWAy0Lhe0DXMEFpKzi2HGSI9BW28cWFbXS3qLEcXpglUVNUgl-fWfsbGgBVYJbJI8Vx_bE34xnvgF4h2cOV2EgvQjBqid1abxMl5mH4DyWPFeRscUmJudqfCVPpuG0i82hXBjHD9E73Egz7P-aFJwc0ve0nPLTR2hiUfreCl3QkV4efA3uce76jiycwrskn3bspBTI86vvw_PoD5D5ELPaQ-dow1VWrS1XIcWafBu1TT7SP39jcvzv79mEpx0cZR_d_nkGS6YawKorUPljAE8mPatrPYB1QqaO2Pk5XFy0uCj4JnZjrl0wbcUQAbO6xb8P7l9GwaeM_LxMz2_RJCdUi605eX5YM2eFaWwcWMVmlGVVv4Cro8PLz2Ovq8_gaZH4iWcyNNZEqYQItC54TlQvPI5ELHWQCZ0LFRu_FCEvojJSiSlFkAsdqoKbmId5IrZguZpX5hWwQIlCmKRQcUnEpFnCZRRkSmm0CLGXP4T3i1VKdUdeTjU0ZunCiKHZS-3sDeFtL_vdUXb8VWp3sdhpp7Z1SswAiGB9FQ9hv29GhaNblKwy8xZl0AQWnDiBHpFRQiE6SCQO_KXbSP1QEMHiIRPLIXyw2-GRMaafjr9M7NP2vwi_gbXx5eQsPTs-P92B9YCicKzfaBeWm5vW7CGMavLXVlnuAAkfFak |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9RAEJ4QiAYfUM9fB6hL5EWTXrrd7bZNfAH1AsohGEnuhTTtduuDpEe4lkT_emZ22wpCSOCtyc6m092dnW-ms98CbKLP4SoMpBchWPWkLo2X6TLzEJzHkucqMvayicm-2jmSX6fhdAE-dmdhHD9En3Ajy7D7NRn4aVFeMnI6nj7CCItO7y1JheEVQaIfwSXKXd9xhVN1l-TTlpyU6nj-9b3qjq5hzKuQ1fqc8WM47rR1pSa_R02dj_Tf_4gc7_s5T2ClBaNsy62ep7BgqgE8cNdT_hnAo0nP6TofwDLhUkfr_AwODxucEnwROzO_XCltxRD_snmDew-uXkalp4yyvEzPzjEgJ0yLrTnlfVg9Y4WpbRVYxU7ojNX8ORyNv_z8tOO1tzN4WiR-4pkMQzVRKiECrQueE9ELjyMRSx1kQudCxcYvRciLqIxUYkoR5EKHquAm5mGeiBewWM0q8wpYoEQhTFKouCRa0izhMgoypTTGg9jLH8L7bpJS3VKX0w0aJ2kXwtDopXb0hvCulz11hB03Sq13c522RjtPiRcA8auv4iFs9M1obvQPJavMrEEZDIAFJ0agW2SUUIgNEomKv3TrqFcF8Su6mFgO4YNdDbfomG7vfp_Yp9W7CL-Fhwefx-ne7v63NVgOqATHJo3WYbE-a8xrxFB1_saaygW2hxRY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantile+regression+for+survival+data+with+covariates+subject+to+detection+limits&rft.jtitle=Biometrics&rft.au=Yu%2C+Tonghui&rft.au=Xiang%2C+Liming&rft.au=Wang%2C+Huixia+Judy&rft.date=2021-06-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=77&rft.issue=2&rft.spage=610&rft.epage=621&rft_id=info:doi/10.1111%2Fbiom.13309&rft.externalDBID=10.1111%252Fbiom.13309&rft.externalDocID=BIOM13309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |