Utilizing Deep Learning Models and Transfer Learning for COVID-19 Detection from X-Ray Images
COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for C...
        Saved in:
      
    
          | Published in | SN computer science Vol. 4; no. 4; p. 326 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Nature Singapore
    
        01.01.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2661-8907 2662-995X 2661-8907  | 
| DOI | 10.1007/s42979-022-01655-3 | 
Cover
| Abstract | COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50’s abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model’s explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model’s ability to generalize. The proposed model is intended to be deployed for free use. | 
    
|---|---|
| AbstractList | COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50’s abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model’s explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model’s ability to generalize. The proposed model is intended to be deployed for free use. COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50's abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model's explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model's ability to generalize. The proposed model is intended to be deployed for free use.COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50's abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model's explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model's ability to generalize. The proposed model is intended to be deployed for free use.  | 
    
| ArticleNumber | 326 | 
    
| Author | Patil, Nagamma Nara, Madhumitha Honnakasturi, Venkatesh Agrawal, Shubham  | 
    
| Author_xml | – sequence: 1 givenname: Shubham orcidid: 0000-0002-7017-5557 surname: Agrawal fullname: Agrawal, Shubham email: shubham050300@gmail.com organization: Department of Information Technology, National Institute of Technology Karnataka – sequence: 2 givenname: Venkatesh surname: Honnakasturi fullname: Honnakasturi, Venkatesh organization: Department of Information Technology, National Institute of Technology Karnataka – sequence: 3 givenname: Madhumitha surname: Nara fullname: Nara, Madhumitha organization: Department of Information Technology, National Institute of Technology Karnataka – sequence: 4 givenname: Nagamma surname: Patil fullname: Patil, Nagamma organization: Department of Information Technology, National Institute of Technology Karnataka  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37089895$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkU9v1DAQxS1UREvpF-CAInHhEhjbcRKfENryZ6VFlVCLuCDLccaLq6y9tRPQ8unxsgtbeqg42da835uZ58fkyAePhDyl8JICNK9SxWQjS2CsBFoLUfIH5ITVNS1bCc3RrfsxOUvpGgCYgKqqxSNyzBtoZSvFCfl6NbrB_XR-WZwjrosF6ui3r4-hxyEV2vfFZdQ-WYyHog2xmF18np-XVGZuRDO64Asbw6r4Un7Sm2K-0ktMT8hDq4eEZ_vzlFy9e3s5-1AuLt7PZ28WpeESeGnqTresrawFjbUE1A2rUNqeSWS2QmOqru06Y9AKA0Z0BnrTcaBWS6l5xU8J3_lOfq03P_QwqHV0Kx03ioLa5qV2eamcl_qdl-KZer2j1lO3wt6gH6M-kEE79W_Fu29qGb5nQwqCi23fF3uHGG4mTKNauWRwGLTHMCXFWhCCCqAiS5_fkV6HKfqcimKSUZbdmMyqZ7dH-jvLnw_LArYTmBhSimj_b9H2DmTcqLdfltdyw_3oPtmU-_glxsPY91C_AKOWym4 | 
    
| CitedBy_id | crossref_primary_10_1016_j_asoc_2024_112137 crossref_primary_10_1016_j_compbiomed_2023_107789 crossref_primary_10_1002_spy2_434 crossref_primary_10_1007_s13721_023_00423_4 crossref_primary_10_1007_s41939_023_00292_4 crossref_primary_10_1016_j_health_2023_100206 crossref_primary_10_1016_j_engappai_2024_108554 crossref_primary_10_1016_j_neucom_2025_129731 crossref_primary_10_1007_s42979_023_02573_8 crossref_primary_10_3390_diagnostics13172772 crossref_primary_10_1016_j_micpro_2024_105046 crossref_primary_10_1007_s11042_024_18924_3  | 
    
| Cites_doi | 10.1109/CVPR.2016.319 10.2807/1560-7917.ES.2020.25.3.2000045 10.1126/science.367.6475.234 10.1016/j.asoc.2021.107184 10.1148/radiol.2020200642 10.1002/bjs.11627 10.1109/ICCV.2017.74 10.1109/CVPR.2017.195 10.1109/CVPR.2017.243 10.1016/j.compbiomed.2022.105233 10.1016/j.chemolab.2020.104054 10.1148/radiol.2020200330 10.1016/j.ijid.2020.03.007 10.1148/radiol.2020200463 10.1016/j.media.2017.07.005 10.1016/j.mehy.2020.109761 10.1145/2939672.2939778 10.1561/2000000039 10.1016/j.cmpb.2020.105608 10.1038/s41598-019-56847-4 10.1109/CVPR.2015.7298594 10.1002/ima.22762 10.1056/NEJMoa2001316 10.1109/CVPR.2017.369 10.1016/j.asoc.2021.107160 10.1007/s11227-022-04561-w 10.1007/s13246-020-00865-4 10.1109/CVPR.2016.90 10.1109/ACCESS.2020.3005510 10.1145/3204949.3208129 10.1142/S0218126622503029 10.1109/CVPR.2018.00474 10.1007/s10916-018-1088-1 10.59275/j.melba.2020-48g7 10.1016/j.asoc.2020.106859 10.1016/j.compbiomed.2020.103792 10.1007/s42600-021-00132-9 10.1109/ICEIEC49280.2020.9152329 10.1117/1.JEI.31.4.041210  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.  | 
    
| DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s42979-022-01655-3 | 
    
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic Advanced Technologies & Aerospace Collection PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2661-8907 | 
    
| ExternalDocumentID | 10.1007/s42979-022-01655-3 PMC10105354 37089895 10_1007_s42979_022_01655_3  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 0R~ 406 AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABHQN ABJNI ABMQK ABTEG ABTKH ABWNU ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADYFF AEFQL AEMSY AESKC AFBBN AFKRA AFQWF AGMZJ AGQEE AGRTI AIGIU AILAN AJZVZ ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS BAPOH BENPR BGLVJ CCPQU DPUIP EBLON EBS FIGPU FNLPD GGCAI GNWQR HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM NPVJJ NQJWS OK1 PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW UOJIU UTJUX ZMTXR 2JN AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO BSONS EJD NPM 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3903-c6ba8284ff0ae690ea724e9fd29e2f4ecc4b8bbccef5c0c5bc0dcb301fa99a343 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2661-8907 2662-995X  | 
    
| IngestDate | Sun Oct 26 03:53:30 EDT 2025 Tue Sep 30 17:15:08 EDT 2025 Fri Sep 05 10:48:31 EDT 2025 Fri Jul 25 23:33:31 EDT 2025 Wed Feb 19 02:24:11 EST 2025 Wed Oct 01 03:59:11 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Fri Feb 21 02:43:28 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Deep learning Coronavirus (COVID-19) Chest X-ray LIME Grad-CAM Classification Heatmap  | 
    
| Language | English | 
    
| License | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. other-oa  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3903-c6ba8284ff0ae690ea724e9fd29e2f4ecc4b8bbccef5c0c5bc0dcb301fa99a343 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-7017-5557 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s42979-022-01655-3.pdf | 
    
| PMID | 37089895 | 
    
| PQID | 2921254329 | 
    
| PQPubID | 6623307 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s42979_022_01655_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10105354 proquest_miscellaneous_2805515015 proquest_journals_2921254329 pubmed_primary_37089895 crossref_primary_10_1007_s42979_022_01655_3 crossref_citationtrail_10_1007_s42979_022_01655_3 springer_journals_10_1007_s42979_022_01655_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230101 | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2023 text: 20230101 day: 1  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore – name: Kolkata  | 
    
| PublicationTitle | SN computer science | 
    
| PublicationTitleAbbrev | SN COMPUT. SCI | 
    
| PublicationTitleAlternate | SN Comput Sci | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Nature Singapore Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V  | 
    
| References | HuangPLiuTHuangLLiuHLeiMXuWHuXChenJLiuBUse of chest ct in combination with negative rt-pcr assay for the 2019 novel coronavirus but high clinical suspicionRadiology20202951222310.1148/radiol.2020200330 Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). Cohen J.P, Morrison P, Dao L, Roth K, Duong T.Q, Ghassemi M. Covid-19 image data collection: prospective predictions are the future.2020; arXiv 2006.11988 HuSGaoYNiuZJiangYLiLXiaoXWangMFangEFMenpes-SmithWXiaJWeakly supervised deep learning for covid-19 infection detection and classification from ct imagesIEEE Access2020811886911888310.1109/ACCESS.2020.3005510 Cheng X, Kadry S, Meqdad MN, Crespo RG. CNN supported framework for automatic extraction and evaluation of dermoscopy images. J Supercomput. 2022;78(15):17114–31. ZhangJ-FYanKYeH-HLinJZhengJ-JCaiTSars-cov-2 turned positive in a discharged patient with covid-19 arouses concern regarding the present standards for dischargeInt J Infect Dis.20209721221410.1016/j.ijid.2020.03.007 BruneseLMercaldoFReginelliASantoneAExplainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-raysComput Methods Programs Biomed.202019610.1016/j.cmpb.2020.105608 Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT press, (2016) DengLYuDDeep learning: methods and applicationsFoundations Trends Signal Proces.201473–4197387329555610.1561/20000000391315.68208 Huang G, Liu Z, Van Der Maaten L, Weinberger K.Q. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp. 4700–4708. Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp. 1251–1258. Wang N, Liu H, Xu C. Deep learning for the detection of covid-19 using transfer learning and model integration. In: 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2020; pp. 281–284. IEEE Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY, Xing X. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Eng J Med. 2020. Hicks S.A, Eskeland S, Lux M, de Lange T, Randel K.R, Jeppsson M, Pogorelov K, Halvorsen P, Riegler M. Mimir: an automatic reporting and reasoning system for deep learning based analysis in the medical domain. In: Proceedings of the 9th ACM Multimedia Systems Conference, 2018; pp. 369–374 KediaPKataryaRCovnet-19: A deep learning model for the detection and analysis of covid-19 patientsAppl Soft Comput202110410.1016/j.asoc.2021.107184 Cohen J, Normile D. New SARS-like virus in China triggers alarm. 2020. p. 234–5. AiTYangZHouHZhanCChenCLvWTaoQSunZXiaLCorrelation of chest ct and rt-pcr testing for coronavirus disease 2019 (covid-19) in china: a report of 1014 casesRadiology20202962324010.1148/radiol.2020200642 SamriyaJKTiwariRChengXSinghRKShankarAKumarMNetwork intrusion detection using aco-dnn model with dvfs based energy optimization in cloud frameworkSustainable Comput.202235 SpinelliAPellinoGCovid-19 pandemic: perspectives on an unfolding crisisJ Br Surg.2020107778578710.1002/bjs.11627 Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: Understanding transfer learning for medical imaging. arXiv preprint arXiv:1902.07208 (2019). WangWXuYGaoRLuRHanKWuGTanWDetection of sars-cov-2 in different types of clinical specimensJAMA20203231818431844 SharmaNGuptaSMehtaPChengXShankarASinghPNayakSROffline signature verification using deep neural network with application to computer visionJ Electron Imaging202231410.1117/1.JEI.31.4.041210 Ribeiro M.T, Singh S, Guestrin C. “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016; pp. 1135–1144. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X, Li K, Li S. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 2020;295(3):685–91. DemirFDeepcoronet: A deep lstm approach for automated detection of covid-19 cases from chest x-ray imagesAppl Soft Comput202110310.1016/j.asoc.2021.107160 ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med.202043263564010.1007/s13246-020-00865-4 GuptaAGuptaSKataryaRInstacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-rayAppl Soft Comput20219910.1016/j.asoc.2020.106859 Aghaei A, Ebrahimi Moghaddam M, Malek H. Interpretable ensemble deep learning model for early detection of Alzheimer's disease using local interpretable model‐agnostic explanations. Int J Imag Syst Technol. 2022;32(6):1889–902. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al. Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017) WangLLinZQWongACovid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray imagesSci Rep.2020101112 Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018; pp. 4510–4520. TuncerTDoganSOzyurtFAn automated residual exemplar local binary pattern and iterative relieff based covid-19 detection method using chest x-ray imageChemom Intell Lab Syst.202020310.1016/j.chemolab.2020.104054 Naeem H, Cheng X, Ullah F, Jabbar S, Dong S. A deep convolutional neural network stacked ensemble for malware threat classification in internet of things. J Circuit Syst Comput. 2022. BassiPRAttuxRA deep convolutional neural network for covid-19 detection using chest x-raysRes Biomed Eng.202238113914810.1007/s42600-021-00132-9 OzturkTTaloMYildirimcEBalogluUYildirimOAcharyaUAutomated detection of covid-19 cases using deep neural networks with x-ray imagesComput Biol Med.202010.1016/j.compbiomed.2020.103792 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016; pp. 770–778. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015; pp. 1–9. Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016; pp. 2921–2929. CormanVMLandtOKaiserMMolenkampRMeijerAChuDKBleickerTBrüninkSSchneiderJSchmidtMLDetection of 2019 novel coronavirus (2019-ncov) by real-time rt-pcrEurosurveillance2020253200004510.2807/1560-7917.ES.2020.25.3.2000045 Selvaraju R.R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, 2017; pp. 618–626. Subramanian N, Elharrouss O, Al-Maadeed S, Chowdhury M. A review of deep learning-based detection methods for COVID-19. Comput Biol Med. 2022;105233. LitjensGKooiTBejnordiBESetioAAACiompiFGhafoorianMVan Der LaakJAVan GinnekenBSánchezCIA survey on deep learning in medical image analysisMed Image Anal201742608810.1016/j.media.2017.07.005 AnwarSMMajidMQayyumAAwaisMAlnowamiMKhanMKMedical image analysis using convolutional neural networks: a reviewJ Med Syst.2018421111310.1007/s10916-018-1088-1 UcarFKorkmazDCovidiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray imagesMed Hypotheses202014010.1016/j.mehy.2020.109761 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). 1655_CR38 1655_CR17 1655_CR39 1655_CR9 S Hu (1655_CR11) 2020; 8 1655_CR36 1655_CR15 1655_CR37 1655_CR12 1655_CR34 1655_CR35 1655_CR33 A Spinelli (1655_CR10) 2020; 107 G Litjens (1655_CR19) 2017; 42 F Ucar (1655_CR28) 2020; 140 L Deng (1655_CR13) 2014; 7 JK Samriya (1655_CR14) 2022; 35 1655_CR1 1655_CR2 VM Corman (1655_CR4) 2020; 25 1655_CR7 1655_CR18 PR Bassi (1655_CR21) 2022; 38 L Brunese (1655_CR23) 2020; 196 T Tuncer (1655_CR24) 2020; 203 1655_CR25 P Kedia (1655_CR30) 2021; 104 1655_CR45 1655_CR43 1655_CR44 1655_CR41 1655_CR20 L Wang (1655_CR26) 2020; 10 1655_CR42 P Huang (1655_CR5) 2020; 295 1655_CR40 T Ai (1655_CR6) 2020; 296 J-F Zhang (1655_CR22) 2020; 97 T Ozturk (1655_CR32) 2020 A Gupta (1655_CR31) 2021; 99 SM Anwar (1655_CR8) 2018; 42 W Wang (1655_CR3) 2020; 323 F Demir (1655_CR29) 2021; 103 ID Apostolopoulos (1655_CR27) 2020; 43 N Sharma (1655_CR16) 2022; 31  | 
    
| References_xml | – reference: HuangPLiuTHuangLLiuHLeiMXuWHuXChenJLiuBUse of chest ct in combination with negative rt-pcr assay for the 2019 novel coronavirus but high clinical suspicionRadiology20202951222310.1148/radiol.2020200330 – reference: AnwarSMMajidMQayyumAAwaisMAlnowamiMKhanMKMedical image analysis using convolutional neural networks: a reviewJ Med Syst.2018421111310.1007/s10916-018-1088-1 – reference: OzturkTTaloMYildirimcEBalogluUYildirimOAcharyaUAutomated detection of covid-19 cases using deep neural networks with x-ray imagesComput Biol Med.202010.1016/j.compbiomed.2020.103792 – reference: Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). – reference: Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018; pp. 4510–4520. – reference: BassiPRAttuxRA deep convolutional neural network for covid-19 detection using chest x-raysRes Biomed Eng.202238113914810.1007/s42600-021-00132-9 – reference: KediaPKataryaRCovnet-19: A deep learning model for the detection and analysis of covid-19 patientsAppl Soft Comput202110410.1016/j.asoc.2021.107184 – reference: Cohen J.P, Morrison P, Dao L, Roth K, Duong T.Q, Ghassemi M. Covid-19 image data collection: prospective predictions are the future.2020; arXiv 2006.11988 – reference: Hicks S.A, Eskeland S, Lux M, de Lange T, Randel K.R, Jeppsson M, Pogorelov K, Halvorsen P, Riegler M. Mimir: an automatic reporting and reasoning system for deep learning based analysis in the medical domain. In: Proceedings of the 9th ACM Multimedia Systems Conference, 2018; pp. 369–374 – reference: WangWXuYGaoRLuRHanKWuGTanWDetection of sars-cov-2 in different types of clinical specimensJAMA20203231818431844 – reference: Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016; pp. 2921–2929. – reference: Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: Understanding transfer learning for medical imaging. arXiv preprint arXiv:1902.07208 (2019). – reference: Cohen J, Normile D. New SARS-like virus in China triggers alarm. 2020. p. 234–5. – reference: WangLLinZQWongACovid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray imagesSci Rep.2020101112 – reference: Ribeiro M.T, Singh S, Guestrin C. “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016; pp. 1135–1144. – reference: Wang N, Liu H, Xu C. Deep learning for the detection of covid-19 using transfer learning and model integration. In: 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2020; pp. 281–284. IEEE – reference: Naeem H, Cheng X, Ullah F, Jabbar S, Dong S. A deep convolutional neural network stacked ensemble for malware threat classification in internet of things. J Circuit Syst Comput. 2022. – reference: Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp. 1251–1258. – reference: DengLYuDDeep learning: methods and applicationsFoundations Trends Signal Proces.201473–4197387329555610.1561/20000000391315.68208 – reference: Aghaei A, Ebrahimi Moghaddam M, Malek H. Interpretable ensemble deep learning model for early detection of Alzheimer's disease using local interpretable model‐agnostic explanations. Int J Imag Syst Technol. 2022;32(6):1889–902. – reference: Cheng X, Kadry S, Meqdad MN, Crespo RG. CNN supported framework for automatic extraction and evaluation of dermoscopy images. J Supercomput. 2022;78(15):17114–31. – reference: Huang G, Liu Z, Van Der Maaten L, Weinberger K.Q. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp. 4700–4708. – reference: Selvaraju R.R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, 2017; pp. 618–626. – reference: CormanVMLandtOKaiserMMolenkampRMeijerAChuDKBleickerTBrüninkSSchneiderJSchmidtMLDetection of 2019 novel coronavirus (2019-ncov) by real-time rt-pcrEurosurveillance2020253200004510.2807/1560-7917.ES.2020.25.3.2000045 – reference: Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). – reference: Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X, Li K, Li S. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 2020;295(3):685–91. – reference: Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY, Xing X. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Eng J Med. 2020. – reference: Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT press, (2016) – reference: ZhangJ-FYanKYeH-HLinJZhengJ-JCaiTSars-cov-2 turned positive in a discharged patient with covid-19 arouses concern regarding the present standards for dischargeInt J Infect Dis.20209721221410.1016/j.ijid.2020.03.007 – reference: ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med.202043263564010.1007/s13246-020-00865-4 – reference: LitjensGKooiTBejnordiBESetioAAACiompiFGhafoorianMVan Der LaakJAVan GinnekenBSánchezCIA survey on deep learning in medical image analysisMed Image Anal201742608810.1016/j.media.2017.07.005 – reference: Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al. Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017) – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015; pp. 1–9. – reference: SamriyaJKTiwariRChengXSinghRKShankarAKumarMNetwork intrusion detection using aco-dnn model with dvfs based energy optimization in cloud frameworkSustainable Comput.202235 – reference: SharmaNGuptaSMehtaPChengXShankarASinghPNayakSROffline signature verification using deep neural network with application to computer visionJ Electron Imaging202231410.1117/1.JEI.31.4.041210 – reference: GuptaAGuptaSKataryaRInstacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-rayAppl Soft Comput20219910.1016/j.asoc.2020.106859 – reference: UcarFKorkmazDCovidiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray imagesMed Hypotheses202014010.1016/j.mehy.2020.109761 – reference: HuSGaoYNiuZJiangYLiLXiaoXWangMFangEFMenpes-SmithWXiaJWeakly supervised deep learning for covid-19 infection detection and classification from ct imagesIEEE Access2020811886911888310.1109/ACCESS.2020.3005510 – reference: AiTYangZHouHZhanCChenCLvWTaoQSunZXiaLCorrelation of chest ct and rt-pcr testing for coronavirus disease 2019 (covid-19) in china: a report of 1014 casesRadiology20202962324010.1148/radiol.2020200642 – reference: DemirFDeepcoronet: A deep lstm approach for automated detection of covid-19 cases from chest x-ray imagesAppl Soft Comput202110310.1016/j.asoc.2021.107160 – reference: SpinelliAPellinoGCovid-19 pandemic: perspectives on an unfolding crisisJ Br Surg.2020107778578710.1002/bjs.11627 – reference: TuncerTDoganSOzyurtFAn automated residual exemplar local binary pattern and iterative relieff based covid-19 detection method using chest x-ray imageChemom Intell Lab Syst.202020310.1016/j.chemolab.2020.104054 – reference: Subramanian N, Elharrouss O, Al-Maadeed S, Chowdhury M. A review of deep learning-based detection methods for COVID-19. Comput Biol Med. 2022;105233. – reference: BruneseLMercaldoFReginelliASantoneAExplainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-raysComput Methods Programs Biomed.202019610.1016/j.cmpb.2020.105608 – reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016; pp. 770–778. – ident: 1655_CR12 – ident: 1655_CR45 doi: 10.1109/CVPR.2016.319 – volume: 25 start-page: 2000045 issue: 3 year: 2020 ident: 1655_CR4 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2020.25.3.2000045 – ident: 1655_CR35 – volume: 323 start-page: 1843 issue: 18 year: 2020 ident: 1655_CR3 publication-title: JAMA – ident: 1655_CR2 doi: 10.1126/science.367.6475.234 – volume: 104 year: 2021 ident: 1655_CR30 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107184 – ident: 1655_CR9 – volume: 296 start-page: 32 issue: 2 year: 2020 ident: 1655_CR6 publication-title: Radiology doi: 10.1148/radiol.2020200642 – volume: 107 start-page: 785 issue: 7 year: 2020 ident: 1655_CR10 publication-title: J Br Surg. doi: 10.1002/bjs.11627 – ident: 1655_CR44 doi: 10.1109/ICCV.2017.74 – ident: 1655_CR41 doi: 10.1109/CVPR.2017.195 – ident: 1655_CR40 doi: 10.1109/CVPR.2017.243 – ident: 1655_CR20 doi: 10.1016/j.compbiomed.2022.105233 – volume: 203 year: 2020 ident: 1655_CR24 publication-title: Chemom Intell Lab Syst. doi: 10.1016/j.chemolab.2020.104054 – volume: 295 start-page: 22 issue: 1 year: 2020 ident: 1655_CR5 publication-title: Radiology doi: 10.1148/radiol.2020200330 – volume: 97 start-page: 212 year: 2020 ident: 1655_CR22 publication-title: Int J Infect Dis. doi: 10.1016/j.ijid.2020.03.007 – ident: 1655_CR7 doi: 10.1148/radiol.2020200463 – volume: 42 start-page: 60 year: 2017 ident: 1655_CR19 publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 35 year: 2022 ident: 1655_CR14 publication-title: Sustainable Comput. – volume: 140 year: 2020 ident: 1655_CR28 publication-title: Med Hypotheses doi: 10.1016/j.mehy.2020.109761 – ident: 1655_CR42 doi: 10.1145/2939672.2939778 – volume: 7 start-page: 197 issue: 3–4 year: 2014 ident: 1655_CR13 publication-title: Foundations Trends Signal Proces. doi: 10.1561/2000000039 – volume: 196 year: 2020 ident: 1655_CR23 publication-title: Comput Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105608 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 1655_CR26 publication-title: Sci Rep. doi: 10.1038/s41598-019-56847-4 – ident: 1655_CR37 doi: 10.1109/CVPR.2015.7298594 – ident: 1655_CR43 doi: 10.1002/ima.22762 – ident: 1655_CR1 doi: 10.1056/NEJMoa2001316 – ident: 1655_CR34 doi: 10.1109/CVPR.2017.369 – volume: 103 year: 2021 ident: 1655_CR29 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107160 – ident: 1655_CR18 doi: 10.1007/s11227-022-04561-w – volume: 43 start-page: 635 issue: 2 year: 2020 ident: 1655_CR27 publication-title: Phys Eng Sci Med. doi: 10.1007/s13246-020-00865-4 – ident: 1655_CR36 – ident: 1655_CR38 doi: 10.1109/CVPR.2016.90 – volume: 8 start-page: 118869 year: 2020 ident: 1655_CR11 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005510 – ident: 1655_CR17 doi: 10.1145/3204949.3208129 – ident: 1655_CR15 doi: 10.1142/S0218126622503029 – ident: 1655_CR39 doi: 10.1109/CVPR.2018.00474 – volume: 42 start-page: 1 issue: 11 year: 2018 ident: 1655_CR8 publication-title: J Med Syst. doi: 10.1007/s10916-018-1088-1 – ident: 1655_CR33 doi: 10.59275/j.melba.2020-48g7 – volume: 99 year: 2021 ident: 1655_CR31 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106859 – year: 2020 ident: 1655_CR32 publication-title: Comput Biol Med. doi: 10.1016/j.compbiomed.2020.103792 – volume: 38 start-page: 139 issue: 1 year: 2022 ident: 1655_CR21 publication-title: Res Biomed Eng. doi: 10.1007/s42600-021-00132-9 – ident: 1655_CR25 doi: 10.1109/ICEIEC49280.2020.9152329 – volume: 31 issue: 4 year: 2022 ident: 1655_CR16 publication-title: J Electron Imaging doi: 10.1117/1.JEI.31.4.041210  | 
    
| SSID | ssj0002504465 | 
    
| Score | 2.3702276 | 
    
| Snippet | COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 326 | 
    
| SubjectTerms | Accuracy Automation Cementing Classification Computed tomography Computer Imaging Computer Science Computer Systems Organization and Communication Networks Coronaviruses COVID-19 Data Structures and Information Theory Datasets Deep learning Disease transmission Enabling Innovative Computational Intelligence Technologies for IOT Feature selection Information Systems and Communication Service Literature reviews Machine learning Medical equipment Neural networks Original Research Pandemics Pattern Recognition and Graphics Pneumonia Software Engineering/Programming and Operating Systems Test equipment Vision X-rays  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48BCvQIuMxI26zcZ2Nj5W3VYth4IQi5YDimzHLiuCu-pmVbW_vuO8ylJUgbhFmrETO-OZz_Y8AN7K1HHBhKSjNFbh6EZTLVVBtebOaMWlbbwtjtPDCX8_FdM1GHexMLW3e3cl2cQ0hCxNvtqZF26nD3xDLTqSNHiih3AcQXFDWLg7sJ4KROQDWJ8cf9z9GurKofmhmayjpvE5oVKKaRs78-eOVu3TDdB503eyv0C9D3eXfq4uzlVZ_mKjDh6C7UbXuKb82F5Wettc_pb48X-H_wgetCCW7DZS9xjWrH8C3ybVrJxdYp9kbO2ctJlbT0got1YuiPIFqS2js2fXRMTMZO_Dl6MxHUpsV9WeYZ6EqBcypZ_UBTn6iSpv8RQmB_uf9w5pW7yBGiZjRk2qFe7muHOxsrgFt2qUcCtdkUibOI6Sw3WmtTHWCRMboU1cGI3qxikpFePsGQz8qbcvgMQCyRy1tsoU4h0lmcVNXKpTmYqhFjqCYffLctNmNg8FNsq8z8lcT1iOE5bXE5azCN71beZNXo9buTc6ScjbNb7IE4lmX3CWyAje9GRcneHKRXl7ukSeLEZIKhBzRfC8EZz-dWwUh9qdSMlWRKpnCJm_Vyl-9r3OAD4MdU2Z4BFsdcJy_V23DWOrl9C_GPXLf2N_BfcSRIDN-dQGDKqzpd1ExFbp1-2CvALhATV6 priority: 102 providerName: Unpaywall  | 
    
| Title | Utilizing Deep Learning Models and Transfer Learning for COVID-19 Detection from X-Ray Images | 
    
| URI | https://link.springer.com/article/10.1007/s42979-022-01655-3 https://www.ncbi.nlm.nih.gov/pubmed/37089895 https://www.proquest.com/docview/2921254329 https://www.proquest.com/docview/2805515015 https://pubmed.ncbi.nlm.nih.gov/PMC10105354 https://link.springer.com/content/pdf/10.1007/s42979-022-01655-3.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2661-8907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: AFBBN dateStart: 20190625 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2661-8907 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002504465 issn: 2661-8907 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61yQF6QEW8FtrISNyoxWZtb9YHhJK2oeWwVBVB4YBWttdLIy2b0CRC5dcz3leIKkWcchhbG9vj8Xg8830Ab2SYccGEpIPQVy50o6mWKqVa88xoxaWtsi3i8GLCP03FdA_iphbGpVU2NrE01OncuBj5u0CikRWcBfLD4hd1rFHudbWh0FA1tUL6voQY24du4JCxOtAdncdX123UxQF28ZJfEg-mgEoppnUlTVlPh8Z5IKlLcHdVPoKy7dPqngt6P5OyfU49gAfrYqHufqs8_-fEGh_Co9rVJMNKNx7Dni2ewPfJapbP_mBncmbtgtT4qj-II0XLl0QVKSnPr8zeboTo2ZLTz18vz2hfYr9Vmb9VEFebQqb0Wt2Ry59omJZPYTI-_3J6QWuKBWqY9Bk1oVZ45-JZ5iuLF2WrBgG3MksDaYOM4_pyHWltjM2E8Y3Qxk-NRqOQKSkV4-wZdIp5YV8A8QWKOdpWFSn0SpRkFq9aoQ5lKPpaaA_6zVQmpsYfdzQYedIiJ5fTn-D0J-X0J8yDt22fRYW-sbP1UbNCSb0Tl8lGbzx43YpxD7mHEVXY-RrbRD5qjUDPyIPn1YK2n2MD3zFsoiTaWuq2gcPn3pYUs5sSp7vv2EeZ4B6cNFqx-V-7hnHSas5_jPrl7lG_gocB-mVV1OgIOqvbtT1GP2qle7AfjT_2oDscj0Zxr94q-DuJr4bf_gLuBhso | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFTaQ-GAQLwWChgJTtRi48cmPlQImlYJLQFVDcoFLbbXC5GWTWgSVeHj-DbG-wpRpYhLz2Nv4vG8PQ-AlypKheRS0XYUah-6MdQonVBjRGqNFsqV2RaDqDcUH0ZytAV_6loYn1ZZy8RCUCcT62Pkb5hCISsFZ-rt9Bf1U6P862o9QkNXoxWSg6LFWFXYceKWl-jCzQ76XbzvV4wdH50f9mg1ZYBa9Pc5tZHR6HaINA21Q1_R6TYTTqUJU46lAo8oTMcYa10qbWilsWFiDfJFqpXSXHD87g3YEVwodP523h8NPp81UR7fIEwU8yxRETKqlBxVlTtF_R4qg7aiPqHeVxVJyte14xWT92rmZvN8ewt2F_lULy91lv2jIY_vwO3KtCXvSlq8C1suvwdfh_NxNv6Nm0nXuSmp-rl-J34IWzYjOk9IoS9Td7ECoiVNDj996XdpS-G-eZEvlhNfC0NG9EwvSf8nCsLZfRheC7IfwHY-yd0jIKFEsEBZrjsarSCtuEPXLjKRimTLSBNAq0ZlbKt-537sRhY3nZoL9MeI_rhAf8wDeN3smZbdPjau3qtvKK44fxav6DSAFw0YedY_xOjcTRa4phMilUq0xAJ4WF5o83O8HfqJngjprF11s8D3A1-H5OMfRV_wlp92yqUIYL-mitX_2nSM_YZy_uPUjzef-jns9s4_nsan_cHJE7jJ0CYsI1Z7sD2_WLinaMPNzbOKUQh8u27e_Av5gVb- | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48BCvQIuMxI26zcZ2Nj5W3VYth4IQi5YDimzHLiuCu-pmVbW_vuO8ylJUgbhFmrETO-OZz_Y8AN7K1HHBhKSjNFbh6EZTLVVBtebOaMWlbbwtjtPDCX8_FdM1GHexMLW3e3cl2cQ0hCxNvtqZF26nD3xDLTqSNHiih3AcQXFDWLg7sJ4KROQDWJ8cf9z9GurKofmhmayjpvE5oVKKaRs78-eOVu3TDdB503eyv0C9D3eXfq4uzlVZ_mKjDh6C7UbXuKb82F5Wettc_pb48X-H_wgetCCW7DZS9xjWrH8C3ybVrJxdYp9kbO2ctJlbT0got1YuiPIFqS2js2fXRMTMZO_Dl6MxHUpsV9WeYZ6EqBcypZ_UBTn6iSpv8RQmB_uf9w5pW7yBGiZjRk2qFe7muHOxsrgFt2qUcCtdkUibOI6Sw3WmtTHWCRMboU1cGI3qxikpFePsGQz8qbcvgMQCyRy1tsoU4h0lmcVNXKpTmYqhFjqCYffLctNmNg8FNsq8z8lcT1iOE5bXE5azCN71beZNXo9buTc6ScjbNb7IE4lmX3CWyAje9GRcneHKRXl7ukSeLEZIKhBzRfC8EZz-dWwUh9qdSMlWRKpnCJm_Vyl-9r3OAD4MdU2Z4BFsdcJy_V23DWOrl9C_GPXLf2N_BfcSRIDN-dQGDKqzpd1ExFbp1-2CvALhATV6 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Deep+Learning+Models+and+Transfer+Learning+for+COVID-19+Detection+from+X-Ray+Images&rft.jtitle=SN+computer+science&rft.au=Agrawal%2C+Shubham&rft.au=Honnakasturi%2C+Venkatesh&rft.au=Nara%2C+Madhumitha&rft.au=Patil%2C+Nagamma&rft.date=2023-01-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=4&rft.issue=4&rft.spage=326&rft_id=info:doi/10.1007%2Fs42979-022-01655-3&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon |