Utilizing Deep Learning Models and Transfer Learning for COVID-19 Detection from X-Ray Images

COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for C...

Full description

Saved in:
Bibliographic Details
Published inSN computer science Vol. 4; no. 4; p. 326
Main Authors Agrawal, Shubham, Honnakasturi, Venkatesh, Nara, Madhumitha, Patil, Nagamma
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2661-8907
2662-995X
2661-8907
DOI10.1007/s42979-022-01655-3

Cover

Abstract COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50’s abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model’s explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model’s ability to generalize. The proposed model is intended to be deployed for free use.
AbstractList COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50’s abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model’s explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model’s ability to generalize. The proposed model is intended to be deployed for free use.
COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50's abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model's explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model's ability to generalize. The proposed model is intended to be deployed for free use.COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical personnel with expertise. There is a need to automate and aid the detection process. Several diagnostic tools are currently being used for COVID-19, including X-Rays and CT-scans. This study focuses on detecting COVID-19 from X-Rays. We pursue two types of problems: binary classification (COVID-19 and No COVID-19) and multi-class classification (COVID-19, No COVID-19 and Pneumonia). We examine and evaluate several classic models, namely VGG19, ResNet50, MobileNetV2, InceptionV3, Xception, DenseNet121, and specialized models such as DarkCOVIDNet and COVID-Net and prove that ResNet50 models perform best. We also propose a simple modification to the ResNet50 model, which gives a binary classification accuracy of 99.20% and a multi-class classification accuracy of 86.13%, hence cementing the ResNet50's abilities for COVID-19 detection and ability to differentiate pneumonia and COVID-19. The proposed model's explanations were interpreted via LIME which provides contours, and Grad-CAM, which provides heat-maps over the area(s) of interest of the classifier, i.e., COVID-19 concentrated regions in the lungs, and realize that LIME explains the results better. These explanations support our model's ability to generalize. The proposed model is intended to be deployed for free use.
ArticleNumber 326
Author Patil, Nagamma
Nara, Madhumitha
Honnakasturi, Venkatesh
Agrawal, Shubham
Author_xml – sequence: 1
  givenname: Shubham
  orcidid: 0000-0002-7017-5557
  surname: Agrawal
  fullname: Agrawal, Shubham
  email: shubham050300@gmail.com
  organization: Department of Information Technology, National Institute of Technology Karnataka
– sequence: 2
  givenname: Venkatesh
  surname: Honnakasturi
  fullname: Honnakasturi, Venkatesh
  organization: Department of Information Technology, National Institute of Technology Karnataka
– sequence: 3
  givenname: Madhumitha
  surname: Nara
  fullname: Nara, Madhumitha
  organization: Department of Information Technology, National Institute of Technology Karnataka
– sequence: 4
  givenname: Nagamma
  surname: Patil
  fullname: Patil, Nagamma
  organization: Department of Information Technology, National Institute of Technology Karnataka
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37089895$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1UREvpF-CAInHhEhjbcRKfENryZ6VFlVCLuCDLccaLq6y9tRPQ8unxsgtbeqg42da835uZ58fkyAePhDyl8JICNK9SxWQjS2CsBFoLUfIH5ITVNS1bCc3RrfsxOUvpGgCYgKqqxSNyzBtoZSvFCfl6NbrB_XR-WZwjrosF6ui3r4-hxyEV2vfFZdQ-WYyHog2xmF18np-XVGZuRDO64Asbw6r4Un7Sm2K-0ktMT8hDq4eEZ_vzlFy9e3s5-1AuLt7PZ28WpeESeGnqTresrawFjbUE1A2rUNqeSWS2QmOqru06Y9AKA0Z0BnrTcaBWS6l5xU8J3_lOfq03P_QwqHV0Kx03ioLa5qV2eamcl_qdl-KZer2j1lO3wt6gH6M-kEE79W_Fu29qGb5nQwqCi23fF3uHGG4mTKNauWRwGLTHMCXFWhCCCqAiS5_fkV6HKfqcimKSUZbdmMyqZ7dH-jvLnw_LArYTmBhSimj_b9H2DmTcqLdfltdyw_3oPtmU-_glxsPY91C_AKOWym4
CitedBy_id crossref_primary_10_1016_j_asoc_2024_112137
crossref_primary_10_1016_j_compbiomed_2023_107789
crossref_primary_10_1002_spy2_434
crossref_primary_10_1007_s13721_023_00423_4
crossref_primary_10_1007_s41939_023_00292_4
crossref_primary_10_1016_j_health_2023_100206
crossref_primary_10_1016_j_engappai_2024_108554
crossref_primary_10_1016_j_neucom_2025_129731
crossref_primary_10_1007_s42979_023_02573_8
crossref_primary_10_3390_diagnostics13172772
crossref_primary_10_1016_j_micpro_2024_105046
crossref_primary_10_1007_s11042_024_18924_3
Cites_doi 10.1109/CVPR.2016.319
10.2807/1560-7917.ES.2020.25.3.2000045
10.1126/science.367.6475.234
10.1016/j.asoc.2021.107184
10.1148/radiol.2020200642
10.1002/bjs.11627
10.1109/ICCV.2017.74
10.1109/CVPR.2017.195
10.1109/CVPR.2017.243
10.1016/j.compbiomed.2022.105233
10.1016/j.chemolab.2020.104054
10.1148/radiol.2020200330
10.1016/j.ijid.2020.03.007
10.1148/radiol.2020200463
10.1016/j.media.2017.07.005
10.1016/j.mehy.2020.109761
10.1145/2939672.2939778
10.1561/2000000039
10.1016/j.cmpb.2020.105608
10.1038/s41598-019-56847-4
10.1109/CVPR.2015.7298594
10.1002/ima.22762
10.1056/NEJMoa2001316
10.1109/CVPR.2017.369
10.1016/j.asoc.2021.107160
10.1007/s11227-022-04561-w
10.1007/s13246-020-00865-4
10.1109/CVPR.2016.90
10.1109/ACCESS.2020.3005510
10.1145/3204949.3208129
10.1142/S0218126622503029
10.1109/CVPR.2018.00474
10.1007/s10916-018-1088-1
10.59275/j.melba.2020-48g7
10.1016/j.asoc.2020.106859
10.1016/j.compbiomed.2020.103792
10.1007/s42600-021-00132-9
10.1109/ICEIEC49280.2020.9152329
10.1117/1.JEI.31.4.041210
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s42979-022-01655-3
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Advanced Technologies & Aerospace Collection
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2661-8907
ExternalDocumentID 10.1007/s42979-022-01655-3
PMC10105354
37089895
10_1007_s42979_022_01655_3
Genre Journal Article
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABECU
ABHQN
ABJNI
ABMQK
ABTEG
ABTKH
ABWNU
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFKRA
AFQWF
AGMZJ
AGQEE
AGRTI
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
BAPOH
BENPR
BGLVJ
CCPQU
DPUIP
EBLON
EBS
FIGPU
FNLPD
GGCAI
GNWQR
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
NPVJJ
NQJWS
OK1
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
2JN
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
BSONS
EJD
NPM
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c3903-c6ba8284ff0ae690ea724e9fd29e2f4ecc4b8bbccef5c0c5bc0dcb301fa99a343
IEDL.DBID BENPR
ISSN 2661-8907
2662-995X
IngestDate Sun Oct 26 03:53:30 EDT 2025
Tue Sep 30 17:15:08 EDT 2025
Fri Sep 05 10:48:31 EDT 2025
Fri Jul 25 23:33:31 EDT 2025
Wed Feb 19 02:24:11 EST 2025
Wed Oct 01 03:59:11 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Fri Feb 21 02:43:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Coronavirus (COVID-19)
Chest X-ray
LIME
Grad-CAM
Classification
Heatmap
Language English
License The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3903-c6ba8284ff0ae690ea724e9fd29e2f4ecc4b8bbccef5c0c5bc0dcb301fa99a343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7017-5557
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s42979-022-01655-3.pdf
PMID 37089895
PQID 2921254329
PQPubID 6623307
ParticipantIDs unpaywall_primary_10_1007_s42979_022_01655_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10105354
proquest_miscellaneous_2805515015
proquest_journals_2921254329
pubmed_primary_37089895
crossref_primary_10_1007_s42979_022_01655_3
crossref_citationtrail_10_1007_s42979_022_01655_3
springer_journals_10_1007_s42979_022_01655_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230101
  day: 1
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Kolkata
PublicationTitle SN computer science
PublicationTitleAbbrev SN COMPUT. SCI
PublicationTitleAlternate SN Comput Sci
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
References HuangPLiuTHuangLLiuHLeiMXuWHuXChenJLiuBUse of chest ct in combination with negative rt-pcr assay for the 2019 novel coronavirus but high clinical suspicionRadiology20202951222310.1148/radiol.2020200330
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).
Cohen J.P, Morrison P, Dao L, Roth K, Duong T.Q, Ghassemi M. Covid-19 image data collection: prospective predictions are the future.2020; arXiv 2006.11988
HuSGaoYNiuZJiangYLiLXiaoXWangMFangEFMenpes-SmithWXiaJWeakly supervised deep learning for covid-19 infection detection and classification from ct imagesIEEE Access2020811886911888310.1109/ACCESS.2020.3005510
Cheng X, Kadry S, Meqdad MN, Crespo RG. CNN supported framework for automatic extraction and evaluation of dermoscopy images. J Supercomput. 2022;78(15):17114–31.
ZhangJ-FYanKYeH-HLinJZhengJ-JCaiTSars-cov-2 turned positive in a discharged patient with covid-19 arouses concern regarding the present standards for dischargeInt J Infect Dis.20209721221410.1016/j.ijid.2020.03.007
BruneseLMercaldoFReginelliASantoneAExplainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-raysComput Methods Programs Biomed.202019610.1016/j.cmpb.2020.105608
Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT press, (2016)
DengLYuDDeep learning: methods and applicationsFoundations Trends Signal Proces.201473–4197387329555610.1561/20000000391315.68208
Huang G, Liu Z, Van Der Maaten L, Weinberger K.Q. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp. 4700–4708.
Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp. 1251–1258.
Wang N, Liu H, Xu C. Deep learning for the detection of covid-19 using transfer learning and model integration. In: 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2020; pp. 281–284. IEEE
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY, Xing X. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Eng J Med. 2020.
Hicks S.A, Eskeland S, Lux M, de Lange T, Randel K.R, Jeppsson M, Pogorelov K, Halvorsen P, Riegler M. Mimir: an automatic reporting and reasoning system for deep learning based analysis in the medical domain. In: Proceedings of the 9th ACM Multimedia Systems Conference, 2018; pp. 369–374
KediaPKataryaRCovnet-19: A deep learning model for the detection and analysis of covid-19 patientsAppl Soft Comput202110410.1016/j.asoc.2021.107184
Cohen J, Normile D. New SARS-like virus in China triggers alarm. 2020. p. 234–5.
AiTYangZHouHZhanCChenCLvWTaoQSunZXiaLCorrelation of chest ct and rt-pcr testing for coronavirus disease 2019 (covid-19) in china: a report of 1014 casesRadiology20202962324010.1148/radiol.2020200642
SamriyaJKTiwariRChengXSinghRKShankarAKumarMNetwork intrusion detection using aco-dnn model with dvfs based energy optimization in cloud frameworkSustainable Comput.202235
SpinelliAPellinoGCovid-19 pandemic: perspectives on an unfolding crisisJ Br Surg.2020107778578710.1002/bjs.11627
Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: Understanding transfer learning for medical imaging. arXiv preprint arXiv:1902.07208 (2019).
WangWXuYGaoRLuRHanKWuGTanWDetection of sars-cov-2 in different types of clinical specimensJAMA20203231818431844
SharmaNGuptaSMehtaPChengXShankarASinghPNayakSROffline signature verification using deep neural network with application to computer visionJ Electron Imaging202231410.1117/1.JEI.31.4.041210
Ribeiro M.T, Singh S, Guestrin C. “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016; pp. 1135–1144.
Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X, Li K, Li S. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 2020;295(3):685–91.
DemirFDeepcoronet: A deep lstm approach for automated detection of covid-19 cases from chest x-ray imagesAppl Soft Comput202110310.1016/j.asoc.2021.107160
ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med.202043263564010.1007/s13246-020-00865-4
GuptaAGuptaSKataryaRInstacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-rayAppl Soft Comput20219910.1016/j.asoc.2020.106859
Aghaei A, Ebrahimi Moghaddam M, Malek H. Interpretable ensemble deep learning model for early detection of Alzheimer's disease using local interpretable model‐agnostic explanations. Int J Imag Syst Technol. 2022;32(6):1889–902.
Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al. Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)
WangLLinZQWongACovid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray imagesSci Rep.2020101112
Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018; pp. 4510–4520.
TuncerTDoganSOzyurtFAn automated residual exemplar local binary pattern and iterative relieff based covid-19 detection method using chest x-ray imageChemom Intell Lab Syst.202020310.1016/j.chemolab.2020.104054
Naeem H, Cheng X, Ullah F, Jabbar S, Dong S. A deep convolutional neural network stacked ensemble for malware threat classification in internet of things. J Circuit Syst Comput. 2022.
BassiPRAttuxRA deep convolutional neural network for covid-19 detection using chest x-raysRes Biomed Eng.202238113914810.1007/s42600-021-00132-9
OzturkTTaloMYildirimcEBalogluUYildirimOAcharyaUAutomated detection of covid-19 cases using deep neural networks with x-ray imagesComput Biol Med.202010.1016/j.compbiomed.2020.103792
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016; pp. 770–778.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015; pp. 1–9.
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016; pp. 2921–2929.
CormanVMLandtOKaiserMMolenkampRMeijerAChuDKBleickerTBrüninkSSchneiderJSchmidtMLDetection of 2019 novel coronavirus (2019-ncov) by real-time rt-pcrEurosurveillance2020253200004510.2807/1560-7917.ES.2020.25.3.2000045
Selvaraju R.R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, 2017; pp. 618–626.
Subramanian N, Elharrouss O, Al-Maadeed S, Chowdhury M. A review of deep learning-based detection methods for COVID-19. Comput Biol Med. 2022;105233.
LitjensGKooiTBejnordiBESetioAAACiompiFGhafoorianMVan Der LaakJAVan GinnekenBSánchezCIA survey on deep learning in medical image analysisMed Image Anal201742608810.1016/j.media.2017.07.005
AnwarSMMajidMQayyumAAwaisMAlnowamiMKhanMKMedical image analysis using convolutional neural networks: a reviewJ Med Syst.2018421111310.1007/s10916-018-1088-1
UcarFKorkmazDCovidiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray imagesMed Hypotheses202014010.1016/j.mehy.2020.109761
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
1655_CR38
1655_CR17
1655_CR39
1655_CR9
S Hu (1655_CR11) 2020; 8
1655_CR36
1655_CR15
1655_CR37
1655_CR12
1655_CR34
1655_CR35
1655_CR33
A Spinelli (1655_CR10) 2020; 107
G Litjens (1655_CR19) 2017; 42
F Ucar (1655_CR28) 2020; 140
L Deng (1655_CR13) 2014; 7
JK Samriya (1655_CR14) 2022; 35
1655_CR1
1655_CR2
VM Corman (1655_CR4) 2020; 25
1655_CR7
1655_CR18
PR Bassi (1655_CR21) 2022; 38
L Brunese (1655_CR23) 2020; 196
T Tuncer (1655_CR24) 2020; 203
1655_CR25
P Kedia (1655_CR30) 2021; 104
1655_CR45
1655_CR43
1655_CR44
1655_CR41
1655_CR20
L Wang (1655_CR26) 2020; 10
1655_CR42
P Huang (1655_CR5) 2020; 295
1655_CR40
T Ai (1655_CR6) 2020; 296
J-F Zhang (1655_CR22) 2020; 97
T Ozturk (1655_CR32) 2020
A Gupta (1655_CR31) 2021; 99
SM Anwar (1655_CR8) 2018; 42
W Wang (1655_CR3) 2020; 323
F Demir (1655_CR29) 2021; 103
ID Apostolopoulos (1655_CR27) 2020; 43
N Sharma (1655_CR16) 2022; 31
References_xml – reference: HuangPLiuTHuangLLiuHLeiMXuWHuXChenJLiuBUse of chest ct in combination with negative rt-pcr assay for the 2019 novel coronavirus but high clinical suspicionRadiology20202951222310.1148/radiol.2020200330
– reference: AnwarSMMajidMQayyumAAwaisMAlnowamiMKhanMKMedical image analysis using convolutional neural networks: a reviewJ Med Syst.2018421111310.1007/s10916-018-1088-1
– reference: OzturkTTaloMYildirimcEBalogluUYildirimOAcharyaUAutomated detection of covid-19 cases using deep neural networks with x-ray imagesComput Biol Med.202010.1016/j.compbiomed.2020.103792
– reference: Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
– reference: Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018; pp. 4510–4520.
– reference: BassiPRAttuxRA deep convolutional neural network for covid-19 detection using chest x-raysRes Biomed Eng.202238113914810.1007/s42600-021-00132-9
– reference: KediaPKataryaRCovnet-19: A deep learning model for the detection and analysis of covid-19 patientsAppl Soft Comput202110410.1016/j.asoc.2021.107184
– reference: Cohen J.P, Morrison P, Dao L, Roth K, Duong T.Q, Ghassemi M. Covid-19 image data collection: prospective predictions are the future.2020; arXiv 2006.11988
– reference: Hicks S.A, Eskeland S, Lux M, de Lange T, Randel K.R, Jeppsson M, Pogorelov K, Halvorsen P, Riegler M. Mimir: an automatic reporting and reasoning system for deep learning based analysis in the medical domain. In: Proceedings of the 9th ACM Multimedia Systems Conference, 2018; pp. 369–374
– reference: WangWXuYGaoRLuRHanKWuGTanWDetection of sars-cov-2 in different types of clinical specimensJAMA20203231818431844
– reference: Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016; pp. 2921–2929.
– reference: Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: Understanding transfer learning for medical imaging. arXiv preprint arXiv:1902.07208 (2019).
– reference: Cohen J, Normile D. New SARS-like virus in China triggers alarm. 2020. p. 234–5.
– reference: WangLLinZQWongACovid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray imagesSci Rep.2020101112
– reference: Ribeiro M.T, Singh S, Guestrin C. “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016; pp. 1135–1144.
– reference: Wang N, Liu H, Xu C. Deep learning for the detection of covid-19 using transfer learning and model integration. In: 2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC), 2020; pp. 281–284. IEEE
– reference: Naeem H, Cheng X, Ullah F, Jabbar S, Dong S. A deep convolutional neural network stacked ensemble for malware threat classification in internet of things. J Circuit Syst Comput. 2022.
– reference: Chollet F. Xception: Deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp. 1251–1258.
– reference: DengLYuDDeep learning: methods and applicationsFoundations Trends Signal Proces.201473–4197387329555610.1561/20000000391315.68208
– reference: Aghaei A, Ebrahimi Moghaddam M, Malek H. Interpretable ensemble deep learning model for early detection of Alzheimer's disease using local interpretable model‐agnostic explanations. Int J Imag Syst Technol. 2022;32(6):1889–902.
– reference: Cheng X, Kadry S, Meqdad MN, Crespo RG. CNN supported framework for automatic extraction and evaluation of dermoscopy images. J Supercomput. 2022;78(15):17114–31.
– reference: Huang G, Liu Z, Van Der Maaten L, Weinberger K.Q. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017; pp. 4700–4708.
– reference: Selvaraju R.R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, 2017; pp. 618–626.
– reference: CormanVMLandtOKaiserMMolenkampRMeijerAChuDKBleickerTBrüninkSSchneiderJSchmidtMLDetection of 2019 novel coronavirus (2019-ncov) by real-time rt-pcrEurosurveillance2020253200004510.2807/1560-7917.ES.2020.25.3.2000045
– reference: Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).
– reference: Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, Diao K, Lin B, Zhu X, Li K, Li S. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology 2020;295(3):685–91.
– reference: Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KS, Lau EH, Wong JY, Xing X. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Eng J Med. 2020.
– reference: Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT press, (2016)
– reference: ZhangJ-FYanKYeH-HLinJZhengJ-JCaiTSars-cov-2 turned positive in a discharged patient with covid-19 arouses concern regarding the present standards for dischargeInt J Infect Dis.20209721221410.1016/j.ijid.2020.03.007
– reference: ApostolopoulosIDMpesianaTACovid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networksPhys Eng Sci Med.202043263564010.1007/s13246-020-00865-4
– reference: LitjensGKooiTBejnordiBESetioAAACiompiFGhafoorianMVan Der LaakJAVan GinnekenBSánchezCIA survey on deep learning in medical image analysisMed Image Anal201742608810.1016/j.media.2017.07.005
– reference: Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al. Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015; pp. 1–9.
– reference: SamriyaJKTiwariRChengXSinghRKShankarAKumarMNetwork intrusion detection using aco-dnn model with dvfs based energy optimization in cloud frameworkSustainable Comput.202235
– reference: SharmaNGuptaSMehtaPChengXShankarASinghPNayakSROffline signature verification using deep neural network with application to computer visionJ Electron Imaging202231410.1117/1.JEI.31.4.041210
– reference: GuptaAGuptaSKataryaRInstacovnet-19: A deep learning classification model for the detection of covid-19 patients using chest x-rayAppl Soft Comput20219910.1016/j.asoc.2020.106859
– reference: UcarFKorkmazDCovidiagnosis-net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (covid-19) from x-ray imagesMed Hypotheses202014010.1016/j.mehy.2020.109761
– reference: HuSGaoYNiuZJiangYLiLXiaoXWangMFangEFMenpes-SmithWXiaJWeakly supervised deep learning for covid-19 infection detection and classification from ct imagesIEEE Access2020811886911888310.1109/ACCESS.2020.3005510
– reference: AiTYangZHouHZhanCChenCLvWTaoQSunZXiaLCorrelation of chest ct and rt-pcr testing for coronavirus disease 2019 (covid-19) in china: a report of 1014 casesRadiology20202962324010.1148/radiol.2020200642
– reference: DemirFDeepcoronet: A deep lstm approach for automated detection of covid-19 cases from chest x-ray imagesAppl Soft Comput202110310.1016/j.asoc.2021.107160
– reference: SpinelliAPellinoGCovid-19 pandemic: perspectives on an unfolding crisisJ Br Surg.2020107778578710.1002/bjs.11627
– reference: TuncerTDoganSOzyurtFAn automated residual exemplar local binary pattern and iterative relieff based covid-19 detection method using chest x-ray imageChemom Intell Lab Syst.202020310.1016/j.chemolab.2020.104054
– reference: Subramanian N, Elharrouss O, Al-Maadeed S, Chowdhury M. A review of deep learning-based detection methods for COVID-19. Comput Biol Med. 2022;105233.
– reference: BruneseLMercaldoFReginelliASantoneAExplainable deep learning for pulmonary disease and coronavirus covid-19 detection from x-raysComput Methods Programs Biomed.202019610.1016/j.cmpb.2020.105608
– reference: He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016; pp. 770–778.
– ident: 1655_CR12
– ident: 1655_CR45
  doi: 10.1109/CVPR.2016.319
– volume: 25
  start-page: 2000045
  issue: 3
  year: 2020
  ident: 1655_CR4
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.3.2000045
– ident: 1655_CR35
– volume: 323
  start-page: 1843
  issue: 18
  year: 2020
  ident: 1655_CR3
  publication-title: JAMA
– ident: 1655_CR2
  doi: 10.1126/science.367.6475.234
– volume: 104
  year: 2021
  ident: 1655_CR30
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107184
– ident: 1655_CR9
– volume: 296
  start-page: 32
  issue: 2
  year: 2020
  ident: 1655_CR6
  publication-title: Radiology
  doi: 10.1148/radiol.2020200642
– volume: 107
  start-page: 785
  issue: 7
  year: 2020
  ident: 1655_CR10
  publication-title: J Br Surg.
  doi: 10.1002/bjs.11627
– ident: 1655_CR44
  doi: 10.1109/ICCV.2017.74
– ident: 1655_CR41
  doi: 10.1109/CVPR.2017.195
– ident: 1655_CR40
  doi: 10.1109/CVPR.2017.243
– ident: 1655_CR20
  doi: 10.1016/j.compbiomed.2022.105233
– volume: 203
  year: 2020
  ident: 1655_CR24
  publication-title: Chemom Intell Lab Syst.
  doi: 10.1016/j.chemolab.2020.104054
– volume: 295
  start-page: 22
  issue: 1
  year: 2020
  ident: 1655_CR5
  publication-title: Radiology
  doi: 10.1148/radiol.2020200330
– volume: 97
  start-page: 212
  year: 2020
  ident: 1655_CR22
  publication-title: Int J Infect Dis.
  doi: 10.1016/j.ijid.2020.03.007
– ident: 1655_CR7
  doi: 10.1148/radiol.2020200463
– volume: 42
  start-page: 60
  year: 2017
  ident: 1655_CR19
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2017.07.005
– volume: 35
  year: 2022
  ident: 1655_CR14
  publication-title: Sustainable Comput.
– volume: 140
  year: 2020
  ident: 1655_CR28
  publication-title: Med Hypotheses
  doi: 10.1016/j.mehy.2020.109761
– ident: 1655_CR42
  doi: 10.1145/2939672.2939778
– volume: 7
  start-page: 197
  issue: 3–4
  year: 2014
  ident: 1655_CR13
  publication-title: Foundations Trends Signal Proces.
  doi: 10.1561/2000000039
– volume: 196
  year: 2020
  ident: 1655_CR23
  publication-title: Comput Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105608
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 1655_CR26
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-56847-4
– ident: 1655_CR37
  doi: 10.1109/CVPR.2015.7298594
– ident: 1655_CR43
  doi: 10.1002/ima.22762
– ident: 1655_CR1
  doi: 10.1056/NEJMoa2001316
– ident: 1655_CR34
  doi: 10.1109/CVPR.2017.369
– volume: 103
  year: 2021
  ident: 1655_CR29
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107160
– ident: 1655_CR18
  doi: 10.1007/s11227-022-04561-w
– volume: 43
  start-page: 635
  issue: 2
  year: 2020
  ident: 1655_CR27
  publication-title: Phys Eng Sci Med.
  doi: 10.1007/s13246-020-00865-4
– ident: 1655_CR36
– ident: 1655_CR38
  doi: 10.1109/CVPR.2016.90
– volume: 8
  start-page: 118869
  year: 2020
  ident: 1655_CR11
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005510
– ident: 1655_CR17
  doi: 10.1145/3204949.3208129
– ident: 1655_CR15
  doi: 10.1142/S0218126622503029
– ident: 1655_CR39
  doi: 10.1109/CVPR.2018.00474
– volume: 42
  start-page: 1
  issue: 11
  year: 2018
  ident: 1655_CR8
  publication-title: J Med Syst.
  doi: 10.1007/s10916-018-1088-1
– ident: 1655_CR33
  doi: 10.59275/j.melba.2020-48g7
– volume: 99
  year: 2021
  ident: 1655_CR31
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106859
– year: 2020
  ident: 1655_CR32
  publication-title: Comput Biol Med.
  doi: 10.1016/j.compbiomed.2020.103792
– volume: 38
  start-page: 139
  issue: 1
  year: 2022
  ident: 1655_CR21
  publication-title: Res Biomed Eng.
  doi: 10.1007/s42600-021-00132-9
– ident: 1655_CR25
  doi: 10.1109/ICEIEC49280.2020.9152329
– volume: 31
  issue: 4
  year: 2022
  ident: 1655_CR16
  publication-title: J Electron Imaging
  doi: 10.1117/1.JEI.31.4.041210
SSID ssj0002504465
Score 2.3702276
Snippet COVID-19 has been a global pandemic. Flattening the curve requires intensive testing, and the world has been facing a shortage of testing equipment and medical...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 326
SubjectTerms Accuracy
Automation
Cementing
Classification
Computed tomography
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Coronaviruses
COVID-19
Data Structures and Information Theory
Datasets
Deep learning
Disease transmission
Enabling Innovative Computational Intelligence Technologies for IOT
Feature selection
Information Systems and Communication Service
Literature reviews
Machine learning
Medical equipment
Neural networks
Original Research
Pandemics
Pattern Recognition and Graphics
Pneumonia
Software Engineering/Programming and Operating Systems
Test equipment
Vision
X-rays
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48BCvQIuMxI26zcZ2Nj5W3VYth4IQi5YDimzHLiuCu-pmVbW_vuO8ylJUgbhFmrETO-OZz_Y8AN7K1HHBhKSjNFbh6EZTLVVBtebOaMWlbbwtjtPDCX8_FdM1GHexMLW3e3cl2cQ0hCxNvtqZF26nD3xDLTqSNHiih3AcQXFDWLg7sJ4KROQDWJ8cf9z9GurKofmhmayjpvE5oVKKaRs78-eOVu3TDdB503eyv0C9D3eXfq4uzlVZ_mKjDh6C7UbXuKb82F5Wettc_pb48X-H_wgetCCW7DZS9xjWrH8C3ybVrJxdYp9kbO2ctJlbT0got1YuiPIFqS2js2fXRMTMZO_Dl6MxHUpsV9WeYZ6EqBcypZ_UBTn6iSpv8RQmB_uf9w5pW7yBGiZjRk2qFe7muHOxsrgFt2qUcCtdkUibOI6Sw3WmtTHWCRMboU1cGI3qxikpFePsGQz8qbcvgMQCyRy1tsoU4h0lmcVNXKpTmYqhFjqCYffLctNmNg8FNsq8z8lcT1iOE5bXE5azCN71beZNXo9buTc6ScjbNb7IE4lmX3CWyAje9GRcneHKRXl7ukSeLEZIKhBzRfC8EZz-dWwUh9qdSMlWRKpnCJm_Vyl-9r3OAD4MdU2Z4BFsdcJy_V23DWOrl9C_GPXLf2N_BfcSRIDN-dQGDKqzpd1ExFbp1-2CvALhATV6
  priority: 102
  providerName: Unpaywall
Title Utilizing Deep Learning Models and Transfer Learning for COVID-19 Detection from X-Ray Images
URI https://link.springer.com/article/10.1007/s42979-022-01655-3
https://www.ncbi.nlm.nih.gov/pubmed/37089895
https://www.proquest.com/docview/2921254329
https://www.proquest.com/docview/2805515015
https://pubmed.ncbi.nlm.nih.gov/PMC10105354
https://link.springer.com/content/pdf/10.1007/s42979-022-01655-3.pdf
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2661-8907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: AFBBN
  dateStart: 20190625
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2661-8907
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002504465
  issn: 2661-8907
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61yQF6QEW8FtrISNyoxWZtb9YHhJK2oeWwVBVB4YBWttdLIy2b0CRC5dcz3leIKkWcchhbG9vj8Xg8830Ab2SYccGEpIPQVy50o6mWKqVa88xoxaWtsi3i8GLCP03FdA_iphbGpVU2NrE01OncuBj5u0CikRWcBfLD4hd1rFHudbWh0FA1tUL6voQY24du4JCxOtAdncdX123UxQF28ZJfEg-mgEoppnUlTVlPh8Z5IKlLcHdVPoKy7dPqngt6P5OyfU49gAfrYqHufqs8_-fEGh_Co9rVJMNKNx7Dni2ewPfJapbP_mBncmbtgtT4qj-II0XLl0QVKSnPr8zeboTo2ZLTz18vz2hfYr9Vmb9VEFebQqb0Wt2Ry59omJZPYTI-_3J6QWuKBWqY9Bk1oVZ45-JZ5iuLF2WrBgG3MksDaYOM4_pyHWltjM2E8Y3Qxk-NRqOQKSkV4-wZdIp5YV8A8QWKOdpWFSn0SpRkFq9aoQ5lKPpaaA_6zVQmpsYfdzQYedIiJ5fTn-D0J-X0J8yDt22fRYW-sbP1UbNCSb0Tl8lGbzx43YpxD7mHEVXY-RrbRD5qjUDPyIPn1YK2n2MD3zFsoiTaWuq2gcPn3pYUs5sSp7vv2EeZ4B6cNFqx-V-7hnHSas5_jPrl7lG_gocB-mVV1OgIOqvbtT1GP2qle7AfjT_2oDscj0Zxr94q-DuJr4bf_gLuBhso
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbhMxcFTaQ-GAQLwWChgJTtRi48cmPlQImlYJLQFVDcoFLbbXC5GWTWgSVeHj-DbG-wpRpYhLz2Nv4vG8PQ-AlypKheRS0XYUah-6MdQonVBjRGqNFsqV2RaDqDcUH0ZytAV_6loYn1ZZy8RCUCcT62Pkb5hCISsFZ-rt9Bf1U6P862o9QkNXoxWSg6LFWFXYceKWl-jCzQ76XbzvV4wdH50f9mg1ZYBa9Pc5tZHR6HaINA21Q1_R6TYTTqUJU46lAo8oTMcYa10qbWilsWFiDfJFqpXSXHD87g3YEVwodP523h8NPp81UR7fIEwU8yxRETKqlBxVlTtF_R4qg7aiPqHeVxVJyte14xWT92rmZvN8ewt2F_lULy91lv2jIY_vwO3KtCXvSlq8C1suvwdfh_NxNv6Nm0nXuSmp-rl-J34IWzYjOk9IoS9Td7ECoiVNDj996XdpS-G-eZEvlhNfC0NG9EwvSf8nCsLZfRheC7IfwHY-yd0jIKFEsEBZrjsarSCtuEPXLjKRimTLSBNAq0ZlbKt-537sRhY3nZoL9MeI_rhAf8wDeN3smZbdPjau3qtvKK44fxav6DSAFw0YedY_xOjcTRa4phMilUq0xAJ4WF5o83O8HfqJngjprF11s8D3A1-H5OMfRV_wlp92yqUIYL-mitX_2nSM_YZy_uPUjzef-jns9s4_nsan_cHJE7jJ0CYsI1Z7sD2_WLinaMPNzbOKUQh8u27e_Av5gVb-
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48BCvQIuMxI26zcZ2Nj5W3VYth4IQi5YDimzHLiuCu-pmVbW_vuO8ylJUgbhFmrETO-OZz_Y8AN7K1HHBhKSjNFbh6EZTLVVBtebOaMWlbbwtjtPDCX8_FdM1GHexMLW3e3cl2cQ0hCxNvtqZF26nD3xDLTqSNHiih3AcQXFDWLg7sJ4KROQDWJ8cf9z9GurKofmhmayjpvE5oVKKaRs78-eOVu3TDdB503eyv0C9D3eXfq4uzlVZ_mKjDh6C7UbXuKb82F5Wettc_pb48X-H_wgetCCW7DZS9xjWrH8C3ybVrJxdYp9kbO2ctJlbT0got1YuiPIFqS2js2fXRMTMZO_Dl6MxHUpsV9WeYZ6EqBcypZ_UBTn6iSpv8RQmB_uf9w5pW7yBGiZjRk2qFe7muHOxsrgFt2qUcCtdkUibOI6Sw3WmtTHWCRMboU1cGI3qxikpFePsGQz8qbcvgMQCyRy1tsoU4h0lmcVNXKpTmYqhFjqCYffLctNmNg8FNsq8z8lcT1iOE5bXE5azCN71beZNXo9buTc6ScjbNb7IE4lmX3CWyAje9GRcneHKRXl7ukSeLEZIKhBzRfC8EZz-dWwUh9qdSMlWRKpnCJm_Vyl-9r3OAD4MdU2Z4BFsdcJy_V23DWOrl9C_GPXLf2N_BfcSRIDN-dQGDKqzpd1ExFbp1-2CvALhATV6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Utilizing+Deep+Learning+Models+and+Transfer+Learning+for+COVID-19+Detection+from+X-Ray+Images&rft.jtitle=SN+computer+science&rft.au=Agrawal%2C+Shubham&rft.au=Honnakasturi%2C+Venkatesh&rft.au=Nara%2C+Madhumitha&rft.au=Patil%2C+Nagamma&rft.date=2023-01-01&rft.issn=2661-8907&rft.eissn=2661-8907&rft.volume=4&rft.issue=4&rft.spage=326&rft_id=info:doi/10.1007%2Fs42979-022-01655-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2661-8907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2661-8907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2661-8907&client=summon