Model‐based clustering of high‐dimensional longitudinal data via regularization

We propose a model‐based clustering method for high‐dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a coh...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 79; no. 2; pp. 761 - 774
Main Authors Yang, Luoying, Wu, Tong Tong
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2023
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/biom.13672

Cover

Abstract We propose a model‐based clustering method for high‐dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed‐effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large‐sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation‐Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects.
AbstractList We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed-effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large-sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation-Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects.
We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed-effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large-sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation-Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects.We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed-effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large-sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation-Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects.
We propose a model‐based clustering method for high‐dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed‐effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large‐sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation‐Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects.
Author Wu, Tong Tong
Yang, Luoying
Author_xml – sequence: 1
  givenname: Luoying
  orcidid: 0000-0003-1653-8350
  surname: Yang
  fullname: Yang, Luoying
  organization: University of Rochester Medical Center
– sequence: 2
  givenname: Tong Tong
  orcidid: 0000-0002-1175-9923
  surname: Wu
  fullname: Wu, Tong Tong
  email: tongtong_wu@urmc.rochester.edu
  organization: University of Rochester Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35428983$$D View this record in MEDLINE/PubMed
BookMark eNqF0ctKxDAUBuAgio6XjQ8gBTciVHPpJV2qeBkYcaGCu5Amp2MkbTRpFV35CD6jT2LG0Y2IZhMO-c4POWcVLXauA4Q2Cd4j8ezXxrV7hBUlXUAjkmckxRnFi2iEMS5SlpGbFbQawl0sqxzTZbTC8ozyirMRujx3Guz761stA-hE2SH04E03TVyT3JrpbXzSpoUuGNdJm1jXTU0_aDMrtOxl8mhk4mE6WOnNi-wjW0dLjbQBNr7uNXR9cnx1dJZOLk7HRweTVLEK01SzmlCguMINrWWTN6C1UoSXec2xJIyQgjKgjEeSA5UasiLPImdlXSoFbA3tzHPvvXsYIPSiNUGBtbIDNwRBeVZxXpCS_0-LnBQ85tNIt3_QOzf4-N1ZIC3jZCnOotr6UkPdghb33rTSP4vvyUaA50B5F4KHRijTf46n99JYQbCYLU_Mlic-lxdbdn-0fKf-iskcPxkLz39IcTi-OJ_3fAD5TKr1
CitedBy_id crossref_primary_10_1016_j_focus_2025_100322
crossref_primary_10_3390_genes15050582
crossref_primary_10_1371_journal_pcbi_1012143
crossref_primary_10_3390_genes14030641
crossref_primary_10_3390_math11092130
crossref_primary_10_1002_sim_10151
Cites_doi 10.1016/j.amepre.2018.11.021
10.1214/09-AOS720
10.1214/07-AOAS131
10.1111/j.1467-9868.2008.00693.x
10.1111/j.2517-6161.1996.tb02080.x
10.1198/016214506000000735
10.1093/biomet/asn034
10.1002/cjs.11192
10.1007/s10107-007-0170-0
10.1111/j.2517-6161.1977.tb01600.x
10.1111/j.1467-9868.2007.00627.x
10.1214/12-STS410
10.1016/j.jadohealth.2018.05.023
10.1214/009053607000000758
10.4310/SII.2018.v11.n4.a15
10.1214/09-AOS729
10.1001/jama.2018.14854
10.1093/bioinformatics/btm125
10.1214/12-STS392
10.1111/j.1467-9469.2011.00740.x
10.1111/biom.12280
10.1198/016214501753382273
10.1214/12-AOAS580
10.1214/07-AOAS147
10.1007/s00180-009-0178-4
10.1002/cjs.10047
10.1111/j.1541-0420.2010.01391.x
ContentType Journal Article
Copyright 2022 The International Biometric Society.
2023 The International Biometric Society.
Copyright_xml – notice: 2022 The International Biometric Society.
– notice: 2023 The International Biometric Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/biom.13672
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
ProQuest Computer Science Collection
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 774
ExternalDocumentID 35428983
10_1111_biom_13672
BIOM13672
Genre article
Journal Article
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  funderid: NIH/R01HL119058
– fundername: National Science Foundation
  funderid: NSF‐CCF‐1934962
– fundername: NHLBI NIH HHS
  grantid: NIH/R01HL119058
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAXRX
AAYCA
AAZKR
AAZSN
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVYC
AFWVQ
AFZJQ
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
ABGNP
ADNBA
AEFGJ
AEOTA
AGXDD
AIDQK
AIDYY
AJNCP
CITATION
ESTFP
H13
AAWIL
ABAWQ
ACHJO
AGLNM
AGORE
AGQPQ
AHGBF
AIHAF
AJBYB
CGR
CUY
CVF
ECM
EIF
NPM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c3902-d3b12e2090f2baf5feddcc1875b80a1311623e2382095e2ade465409037b7cce3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Oct 03 00:08:51 EDT 2025
Sun Sep 28 10:54:20 EDT 2025
Wed Aug 13 04:27:36 EDT 2025
Mon Jul 21 05:51:28 EDT 2025
Wed Oct 01 01:41:41 EDT 2025
Thu Apr 24 22:51:25 EDT 2025
Wed Jan 22 16:19:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords nonconcave penalty functions
simultaneous effects selection
linear mixed-effects models
exponentially growing number of variables
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
2022 The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3902-d3b12e2090f2baf5feddcc1875b80a1311623e2382095e2ade465409037b7cce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1653-8350
0000-0002-1175-9923
PMID 35428983
PQID 2827420204
PQPubID 35366
PageCount 14
ParticipantIDs proquest_miscellaneous_2849886178
proquest_miscellaneous_2651684652
proquest_journals_2827420204
pubmed_primary_35428983
crossref_citationtrail_10_1111_biom_13672
crossref_primary_10_1111_biom_13672
wiley_primary_10_1111_biom_13672_BIOM13672
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-01
2023-Jun
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 320
2010; 38
2013; 28
2015; 71
2019; 56
2013; 41
2008; 36
2006
2018; 63
2013; 7
1996; 58
2008; 95
2011; 38
2008; 2
2008; 70
1999
2009; 117
2010; 66
2010; 25
2022
1977; 39
2009; 71
2019
1988; 83
2015
2012; 27
2007; 1
2018; 11
2007; 23
2006; 101
2001; 96
2009; 37
Tseng (2024011501231861900_biom13672-bib-0026) 2009; 117
Wu (2024011501231861900_biom13672-bib-0029) 2008; 2
Schelldorfer (2024011501231861900_biom13672-bib-0024) 2011; 38
Li (2024011501231861900_biom13672-bib-0017) 2018; 11
Young (2024011501231861900_biom13672-bib-0030) 2018; 63
cluster-splmm (2024011501231861900_biom13672-bib-0006) 2022
McNicholas (2024011501231861900_biom13672-bib-0019) 2010; 38
Komárek (2024011501231861900_biom13672-bib-0013) 2013; 7
Lam (2024011501231861900_biom13672-bib-0015) 2009; 37
Young (2024011501231861900_biom13672-bib-0031) 2019; 56
Bickel (2024011501231861900_biom13672-bib-0003) 2008; 36
Müller (2024011501231861900_biom13672-bib-0021) 2013; 28
Chen (2024011501231861900_biom13672-bib-0005) 2008; 95
Friedman (2024011501231861900_biom13672-bib-0010) 2007; 1
Wang (2024011501231861900_biom13672-bib-0028) 2007; 23
Du (2024011501231861900_biom13672-bib-0008) 2013; 41
Lindstrom (2024011501231861900_biom13672-bib-0018) 1988; 83
Bondell (2024011501231861900_biom13672-bib-0004) 2010; 66
Dempster (2024011501231861900_biom13672-bib-0007) 1977; 39
Bakin (2024011501231861900_biom13672-bib-0002) 1999
Zou (2024011501231861900_biom13672-bib-0033) 2006; 101
Meier (2024011501231861900_biom13672-bib-0020) 2008; 70
Arribas-Gil (2024011501231861900_biom13672-bib-0001) 2015; 71
Huang (2024011501231861900_biom13672-bib-0012) 2012; 27
Piercy (2024011501231861900_biom13672-bib-0022) 2018; 320
Genolini (2024011501231861900_biom13672-bib-0011) 2010; 25
Lan (2024011501231861900_biom13672-bib-0016) 2006
Wang (2024011501231861900_biom13672-bib-0027) 2009; 71
Proust-Lima (2024011501231861900_biom13672-bib-0023) 2015
Zhang (2024011501231861900_biom13672-bib-0032) 2010; 38
LaLonde (2024011501231861900_biom13672-bib-0014) 2019
Fan (2024011501231861900_biom13672-bib-0009) 2001; 96
Tibshirani (2024011501231861900_biom13672-bib-0025) 1996; 58
References_xml – volume: 28
  start-page: 135
  year: 2013
  end-page: 167
  article-title: Model selection in linear mixed models
  publication-title: Statistical Science
– volume: 71
  start-page: 671
  year: 2009
  end-page: 683
  article-title: Shrinkage tuning parameter selection with a diverging number of parameters
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society Series B (Methodological)
– volume: 56
  start-page: 540
  year: 2019
  end-page: 547
  article-title: Longitudinal sedentary time among females aged 17 to 23 years
  publication-title: American Journal of Preventive Medicine
– volume: 1
  start-page: 302
  year: 2007
  end-page: 332
  article-title: Pathwise coordinate optimization
  publication-title: Annals of Applied Statistics
– volume: 70
  start-page: 53
  year: 2008
  end-page: 71
  article-title: The group lasso for logistic regression
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 41
  start-page: 596
  year: 2013
  end-page: 616
  article-title: Simultaneous fixed and random effects selection in finite mixture of linear mixed‐effects models
  publication-title: Canadian Journal of Statistics
– volume: 96
  start-page: 1348
  year: 2001
  end-page: 1360
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: Journal of the American Statistical Association
– volume: 95
  start-page: 759
  year: 2008
  end-page: 771
  article-title: Extended Bayesian information criteria for model selection with large model spaces
  publication-title: Biometrika
– volume: 27
  start-page: 481
  year: 2012
  end-page: 499
  article-title: A selective review of group selection in high‐dimensional models
  publication-title: Statistical Science
– volume: 320
  start-page: 2020
  year: 2018
  end-page: 2028
  article-title: The physical activity guidelines for Americans
  publication-title: Journal of the American Medical Association
– volume: 38
  start-page: 197
  year: 2011
  end-page: 214
  article-title: Estimation for high‐dimensional linear mixed‐effects models using l1‐penalization
  publication-title: Scandinavian Journal of Statistics
– volume: 38
  start-page: 153
  year: 2010
  end-page: 168
  article-title: Model‐based clustering of longitudinal data
  publication-title: Canadian Journal of Statistics
– volume: 11
  start-page: 721
  year: 2018
  end-page: 737
  article-title: Doubly regularized estimation and selection in linear mixed‐effects models for high‐dimensional longitudinal data
  publication-title: Statistics and Its Interface
– volume: 71
  start-page: 333
  year: 2015
  end-page: 343
  article-title: Classification of longitudinal data through a semiparametric mixed‐effects model based on lasso‐type estimators
  publication-title: Biometrics
– volume: 63
  start-page: 466
  year: 2018
  end-page: 473
  article-title: Longitudinal associations of physical activity among females from adolescence to young adulthood
  publication-title: Journal of Adolescent Health
– volume: 38
  start-page: 894
  year: 2010
  end-page: 942
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Annals of Statistics
– volume: 2
  start-page: 224
  year: 2008
  end-page: 244
  article-title: Coordinate descent algorithms for lasso penalized regression
  publication-title: Annals of Applied Statistics
– volume: 25
  start-page: 317
  year: 2010
  end-page: 328
  article-title: KmL: k‐Means for longitudinal data
  publication-title: Computational Statistics
– volume: 7
  start-page: 177
  year: 2013
  end-page: 200
  article-title: Clustering for multivariate continuous and discrete longitudinal data
  publication-title: Annals of Applied Statistics
– volume: 117
  start-page: 387
  year: 2009
  end-page: 423
  article-title: A coordinate gradient descent method for nonsmooth separable minimization
  publication-title: Mathematical Programming
– year: 2022
– year: 2006
  article-title: Variable selection in linear mixed model for longitudinal data
– volume: 23
  start-page: 1486
  year: 2007
  end-page: 1494
  article-title: Group SCAD regression analysis for microarray time course gene expression data
  publication-title: Bioinformatics
– volume: 83
  start-page: 1014
  year: 1988
  end-page: 1022
  article-title: Newton‐Raphson and EM algorithms for linear mixed‐effects models for repeated‐measures data
  publication-title: Journal of the American Statistical Association
– volume: 66
  start-page: 1069
  year: 2010
  end-page: 1077
  article-title: Joint variable selection for fixed and random effects in linear mixed‐effects models
  publication-title: Biometrics
– volume: 36
  start-page: 199
  year: 2008
  end-page: 227
  article-title: Regularized estimation of large covariance matrices
  publication-title: Annals of Statistics
– year: 2019
  article-title: Clustering adolescent female physical activity levels with an infinite mixture model on random effects
– volume: 37
  start-page: 4254
  year: 2009
  end-page: 4278
  article-title: Sparsistency and rates of convergence in large covariance matrix estimation
  publication-title: Annals of Statistics
– volume: 101
  start-page: 1418
  year: 2006
  end-page: 1429
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
– year: 2015
– year: 1999
– volume-title: Estimation of extended mixed models using latent classes and latent processes: the R package lcmm
  year: 2015
  ident: 2024011501231861900_biom13672-bib-0023
– volume: 56
  start-page: 540
  year: 2019
  ident: 2024011501231861900_biom13672-bib-0031
  article-title: Longitudinal sedentary time among females aged 17 to 23 years
  publication-title: American Journal of Preventive Medicine
  doi: 10.1016/j.amepre.2018.11.021
– volume-title: Adaptive regression and model selection in data mining problems
  year: 1999
  ident: 2024011501231861900_biom13672-bib-0002
– volume: 37
  start-page: 4254
  year: 2009
  ident: 2024011501231861900_biom13672-bib-0015
  article-title: Sparsistency and rates of convergence in large covariance matrix estimation
  publication-title: Annals of Statistics
  doi: 10.1214/09-AOS720
– volume: 1
  start-page: 302
  year: 2007
  ident: 2024011501231861900_biom13672-bib-0010
  article-title: Pathwise coordinate optimization
  publication-title: Annals of Applied Statistics
  doi: 10.1214/07-AOAS131
– volume: 71
  start-page: 671
  year: 2009
  ident: 2024011501231861900_biom13672-bib-0027
  article-title: Shrinkage tuning parameter selection with a diverging number of parameters
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2008.00693.x
– volume: 58
  start-page: 267
  year: 1996
  ident: 2024011501231861900_biom13672-bib-0025
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 101
  start-page: 1418
  year: 2006
  ident: 2024011501231861900_biom13672-bib-0033
  article-title: The adaptive lasso and its oracle properties
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000000735
– volume-title: Manuscript
  year: 2019
  ident: 2024011501231861900_biom13672-bib-0014
  article-title: Clustering adolescent female physical activity levels with an infinite mixture model on random effects
– volume: 95
  start-page: 759
  year: 2008
  ident: 2024011501231861900_biom13672-bib-0005
  article-title: Extended Bayesian information criteria for model selection with large model spaces
  publication-title: Biometrika
  doi: 10.1093/biomet/asn034
– volume: 41
  start-page: 596
  year: 2013
  ident: 2024011501231861900_biom13672-bib-0008
  article-title: Simultaneous fixed and random effects selection in finite mixture of linear mixed-effects models
  publication-title: Canadian Journal of Statistics
  doi: 10.1002/cjs.11192
– volume: 117
  start-page: 387
  year: 2009
  ident: 2024011501231861900_biom13672-bib-0026
  article-title: A coordinate gradient descent method for nonsmooth separable minimization
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-007-0170-0
– volume: 39
  start-page: 1
  year: 1977
  ident: 2024011501231861900_biom13672-bib-0007
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Society Series B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 70
  start-page: 53
  year: 2008
  ident: 2024011501231861900_biom13672-bib-0020
  article-title: The group lasso for logistic regression
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/j.1467-9868.2007.00627.x
– volume: 28
  start-page: 135
  year: 2013
  ident: 2024011501231861900_biom13672-bib-0021
  article-title: Model selection in linear mixed models
  publication-title: Statistical Science
  doi: 10.1214/12-STS410
– volume: 63
  start-page: 466
  year: 2018
  ident: 2024011501231861900_biom13672-bib-0030
  article-title: Longitudinal associations of physical activity among females from adolescence to young adulthood
  publication-title: Journal of Adolescent Health
  doi: 10.1016/j.jadohealth.2018.05.023
– volume: 36
  start-page: 199
  year: 2008
  ident: 2024011501231861900_biom13672-bib-0003
  article-title: Regularized estimation of large covariance matrices
  publication-title: Annals of Statistics
  doi: 10.1214/009053607000000758
– volume: 11
  start-page: 721
  year: 2018
  ident: 2024011501231861900_biom13672-bib-0017
  article-title: Doubly regularized estimation and selection in linear mixed-effects models for high-dimensional longitudinal data
  publication-title: Statistics and Its Interface
  doi: 10.4310/SII.2018.v11.n4.a15
– volume: 38
  start-page: 894
  year: 2010
  ident: 2024011501231861900_biom13672-bib-0032
  article-title: Nearly unbiased variable selection under minimax concave penalty
  publication-title: Annals of Statistics
  doi: 10.1214/09-AOS729
– volume: 320
  start-page: 2020
  year: 2018
  ident: 2024011501231861900_biom13672-bib-0022
  article-title: The physical activity guidelines for Americans
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.2018.14854
– volume: 83
  start-page: 1014
  year: 1988
  ident: 2024011501231861900_biom13672-bib-0018
  article-title: Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data
  publication-title: Journal of the American Statistical Association
– volume: 23
  start-page: 1486
  year: 2007
  ident: 2024011501231861900_biom13672-bib-0028
  article-title: Group SCAD regression analysis for microarray time course gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm125
– volume-title: R package for clustering of high-dimensional longitudinal data based on simultaneously penalized linear mixed-effects models
  year: 2022
  ident: 2024011501231861900_biom13672-bib-0006
– volume: 27
  start-page: 481
  year: 2012
  ident: 2024011501231861900_biom13672-bib-0012
  article-title: A selective review of group selection in high-dimensional models
  publication-title: Statistical Science
  doi: 10.1214/12-STS392
– volume: 38
  start-page: 197
  year: 2011
  ident: 2024011501231861900_biom13672-bib-0024
  article-title: Estimation for high-dimensional linear mixed-effects models using l1-penalization
  publication-title: Scandinavian Journal of Statistics
  doi: 10.1111/j.1467-9469.2011.00740.x
– volume: 71
  start-page: 333
  year: 2015
  ident: 2024011501231861900_biom13672-bib-0001
  article-title: Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators
  publication-title: Biometrics
  doi: 10.1111/biom.12280
– volume: 96
  start-page: 1348
  year: 2001
  ident: 2024011501231861900_biom13672-bib-0009
  article-title: Variable selection via nonconcave penalized likelihood and its oracle properties
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214501753382273
– volume: 7
  start-page: 177
  year: 2013
  ident: 2024011501231861900_biom13672-bib-0013
  article-title: Clustering for multivariate continuous and discrete longitudinal data
  publication-title: Annals of Applied Statistics
  doi: 10.1214/12-AOAS580
– volume: 2
  start-page: 224
  year: 2008
  ident: 2024011501231861900_biom13672-bib-0029
  article-title: Coordinate descent algorithms for lasso penalized regression
  publication-title: Annals of Applied Statistics
  doi: 10.1214/07-AOAS147
– volume: 25
  start-page: 317
  year: 2010
  ident: 2024011501231861900_biom13672-bib-0011
  article-title: KmL: k-Means for longitudinal data
  publication-title: Computational Statistics
  doi: 10.1007/s00180-009-0178-4
– volume-title: PhD thesis
  year: 2006
  ident: 2024011501231861900_biom13672-bib-0016
  article-title: Variable selection in linear mixed model for longitudinal data
– volume: 38
  start-page: 153
  year: 2010
  ident: 2024011501231861900_biom13672-bib-0019
  article-title: Model-based clustering of longitudinal data
  publication-title: Canadian Journal of Statistics
  doi: 10.1002/cjs.10047
– volume: 66
  start-page: 1069
  year: 2010
  ident: 2024011501231861900_biom13672-bib-0004
  article-title: Joint variable selection for fixed and random effects in linear mixed-effects models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01391.x
SSID ssj0009502
Score 2.4276564
Snippet We propose a model‐based clustering method for high‐dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of...
We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 761
SubjectTerms adolescence
Adolescent
Adolescents
Adult
adulthood
Algorithms
Bayes Theorem
Bayesian analysis
Bayesian theory
Cluster Analysis
Clustering
exponentially growing number of variables
Female
Humans
linear mixed‐effects models
Linear Models
Longitudinal studies
Mathematical models
Multivariate analysis
nonconcave penalty functions
Normal Distribution
Optimization
Parameter estimation
Penalty function
Physical activity
Regularization
sample size
simultaneous effects selection
Title Model‐based clustering of high‐dimensional longitudinal data via regularization
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13672
https://www.ncbi.nlm.nih.gov/pubmed/35428983
https://www.proquest.com/docview/2827420204
https://www.proquest.com/docview/2651684652
https://www.proquest.com/docview/2849886178
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1541-0420
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: ABDBF
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1541-0420
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0009502
  issn: 0006-341X
  databaseCode: A8Z
  dateStart: 20030301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0006-341X
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1541-0420
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009502
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EKNiHas-2Rq-yxb60EEmy2XyAL60oKlwLbYV7KSH7kVI8Erm7CO1T_wT_Rv8SZ7JJvNMitE8J7AT2a3Z-s5n5DcBbYTyphFRuGvvaJX4SV6IldAMt0siIsOCG7jtGn6KT8_BsLMYrcNDlwlh-iP7CjTSjOa9JwXM5W1BySk-nIK2YDmB8Nv7Ul2CBcdezVOEU3BX645ablMJ47j5dtkYPIOYyYm1MzvE6fO86ayNNLvbrudxXv-_xOP7vaDbgWYtF2Qe7eZ7DiikH8MRWp_w1gKejntJ1NoA1gqWW1XkTvlIJtcnNn2sygpqpSU18C2gFWVUwYkDGJk11AyznB5tUVBap1lSCi1FQKrv6mbOp-UFBsG0m6As4Pz76dnjituUZXMVTPEc1l35gAi_1ikDmhSiM1kr56ADJxMuJxgehlUFIgCLCBLk2xN1G90KxjJUy_CWsllVptoChiBEe1SZL0FrmiGEiLXlccK3CNBGxA--6ZcpUy11OJTQmWefD0Pxlzfw5sNfLXlrGjr9KDbvVzlqtnWXofsZhQOnCDrzpm1Hf6CdKXpqqRplI-BGCNhE8IpNgrxNKvnTgld1JfVe4QIcvTbgD75v98Egfs4-nn0fN2_a_CO_AGo6B23i2IazOp7V5jchpLncbDbkFhOQVVA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD4UpagP2q63VGtH9EUhkmQyuTy2pbJeVsEL7FvIXCLisivuRrBP_Qn9jf4Sz8lko9Yi6FsgJzDJzJnznck53wewKYwnlZDKTWNfu8RP4kqMhG6gRRoZERbc0HlH5yhqn4f7XdGta3OoF8byQzQHbuQZ1X5NDk4H0k-8nPrTqUorxh14MowwUSFMdBI84dz1LFk4lXeFfrdmJ6VCnsdnn8ejFyDzOWatgs7unFVWHVZchVRrcrVTjuSO-v0Pk-O73-cTzNZwlH236-czfDD9Fny0ApV3LZjpNKyuwxZMEzK1xM7zcEoqar37P38pDmqmeiVRLmAgZIOCEQky3tIkHWBpP1hvQMpIpSYVLkZ1qez2Mmc35oLqYOtm0AU43_119rPt1goNruIpbqWaSz8wgZd6RSDzQhRGa6V8zIFk4uXE5IPoyiAqQBNhglwbom-jo6FYxkoZvggT_UHfLANDEyM8kidLMGDmCGMiLXlccK3CNBGxA1vjecpUTV9OKhq9bJzG0PfLqu_nwEZje21JO_5rtTqe7qx23GGGGWgcBtQx7MB6cxtdjv6j5H0zKNEmEn6EuE0Er9gkOOqE-i8dWLJLqRkKF5jzpQl3YLtaEK-MMfuxd9yprr68xfgbTLXPOofZ4d7RwQpM4_twW962ChOjm9J8RSA1kmuVuzwA1HwZdQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bTtwwEB0hEBU8ULrlErq0rtoXkIKSOM7lkUtX0HZpRYu0b1F8CUKsdtHuBok-9RP4Rr6EmTibQqmQylskTyQ79niOnZlzAD4K40klpHLT2Ncu8ZO4EiOhG2iRRkaEBTd039E9jg5Pw8890atzc6gWxvJDNBdu5BnVfk0Obi51cc_LqT6dsrRi3IHnQpEmlNF3cBLc49z1LFk4pXeFfq9mJ6VEnj_vPoxHj0DmQ8xaBZ3OS6usOq64CinX5GKnnMgd9esvJsdnj2cZlmo4ynbt-nkFM2bQgnkrUHndgsVuw-o6bsECIVNL7PwafpCKWv_29w3FQc1UvyTKBQyEbFgwIkHGJk3SAZb2g_WHpIxUalLhYpSXyq7OczYyZ5QHWxeDrsBp59PP_UO3VmhwFU9xK9Vc-oEJvNQrApkXojBaK-XjGUgmXk5MPoiuDKICNBEmyLUh-ja6GoplrJThqzA7GA7MOjA0McIjebIEA2aOMCbSkscF1yrEqY0d2JrOU6Zq-nJS0ehn02MMfb-s-n4OfGhsLy1pxz-t2tPpzmrHHWd4Ao3DgCqGHXjfNKPL0X-UfGCGJdpEwo8Qt4ngCZsEe51Q_aUDa3YpNV3hAs98acId2K4WxBN9zPaOvnWrp43_MX4HL74fdLKvR8df3sACDofb7LY2zE5GpdlEHDWRbytvuQNacxj5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Clustering+of+High-Dimensional+Longitudinal+Data+via+Regularization&rft.jtitle=Biometrics&rft.au=Yang%2C+Luoying&rft.au=Wu%2C+Tong+Tong&rft.date=2023-06-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=79&rft.issue=2&rft.spage=761&rft.epage=774&rft_id=info:doi/10.1111%2Fbiom.13672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_biom_13672
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon