Model‐based clustering of high‐dimensional longitudinal data via regularization
We propose a model‐based clustering method for high‐dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a coh...
Saved in:
| Published in | Biometrics Vol. 79; no. 2; pp. 761 - 774 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Blackwell Publishing Ltd
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0006-341X 1541-0420 1541-0420 |
| DOI | 10.1111/biom.13672 |
Cover
| Abstract | We propose a model‐based clustering method for high‐dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed‐effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large‐sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation‐Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects. |
|---|---|
| AbstractList | We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed-effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large-sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation-Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects. We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed-effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large-sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation-Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects.We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed-effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large-sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation-Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects. We propose a model‐based clustering method for high‐dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of Activity in Adolescent Girls (TAAG), which aimed to examine multilevel factors related to the change of physical activity by following up a cohort of 783 girls over 10 years from adolescence to early adulthood. Our goal is to identify the intrinsic grouping of subjects with similar patterns of physical activity trajectories and the most relevant predictors within each group. The previous analyses conducted clustering and variable selection in two steps, while our new method can perform the tasks simultaneously. Within each cluster, a linear mixed‐effects model (LMM) is fitted with a doubly penalized likelihood to induce sparsity for parameter estimation and effect selection. The large‐sample joint properties are established, allowing the dimensions of both fixed and random effects to increase at an exponential rate of the sample size, with a general class of penalty functions. Assuming subjects are drawn from a Gaussian mixture distribution, model effects and cluster labels are estimated via a coordinate descent algorithm nested inside the Expectation‐Maximization (EM) algorithm. Bayesian Information Criterion (BIC) is used to determine the optimal number of clusters and the values of tuning parameters. Our numerical studies show that the new method has satisfactory performance and is able to accommodate complex data with multilevel and/or longitudinal effects. |
| Author | Wu, Tong Tong Yang, Luoying |
| Author_xml | – sequence: 1 givenname: Luoying orcidid: 0000-0003-1653-8350 surname: Yang fullname: Yang, Luoying organization: University of Rochester Medical Center – sequence: 2 givenname: Tong Tong orcidid: 0000-0002-1175-9923 surname: Wu fullname: Wu, Tong Tong email: tongtong_wu@urmc.rochester.edu organization: University of Rochester Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35428983$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0ctKxDAUBuAgio6XjQ8gBTciVHPpJV2qeBkYcaGCu5Amp2MkbTRpFV35CD6jT2LG0Y2IZhMO-c4POWcVLXauA4Q2Cd4j8ezXxrV7hBUlXUAjkmckxRnFi2iEMS5SlpGbFbQawl0sqxzTZbTC8ozyirMRujx3Guz761stA-hE2SH04E03TVyT3JrpbXzSpoUuGNdJm1jXTU0_aDMrtOxl8mhk4mE6WOnNi-wjW0dLjbQBNr7uNXR9cnx1dJZOLk7HRweTVLEK01SzmlCguMINrWWTN6C1UoSXec2xJIyQgjKgjEeSA5UasiLPImdlXSoFbA3tzHPvvXsYIPSiNUGBtbIDNwRBeVZxXpCS_0-LnBQ85tNIt3_QOzf4-N1ZIC3jZCnOotr6UkPdghb33rTSP4vvyUaA50B5F4KHRijTf46n99JYQbCYLU_Mlic-lxdbdn-0fKf-iskcPxkLz39IcTi-OJ_3fAD5TKr1 |
| CitedBy_id | crossref_primary_10_1016_j_focus_2025_100322 crossref_primary_10_3390_genes15050582 crossref_primary_10_1371_journal_pcbi_1012143 crossref_primary_10_3390_genes14030641 crossref_primary_10_3390_math11092130 crossref_primary_10_1002_sim_10151 |
| Cites_doi | 10.1016/j.amepre.2018.11.021 10.1214/09-AOS720 10.1214/07-AOAS131 10.1111/j.1467-9868.2008.00693.x 10.1111/j.2517-6161.1996.tb02080.x 10.1198/016214506000000735 10.1093/biomet/asn034 10.1002/cjs.11192 10.1007/s10107-007-0170-0 10.1111/j.2517-6161.1977.tb01600.x 10.1111/j.1467-9868.2007.00627.x 10.1214/12-STS410 10.1016/j.jadohealth.2018.05.023 10.1214/009053607000000758 10.4310/SII.2018.v11.n4.a15 10.1214/09-AOS729 10.1001/jama.2018.14854 10.1093/bioinformatics/btm125 10.1214/12-STS392 10.1111/j.1467-9469.2011.00740.x 10.1111/biom.12280 10.1198/016214501753382273 10.1214/12-AOAS580 10.1214/07-AOAS147 10.1007/s00180-009-0178-4 10.1002/cjs.10047 10.1111/j.1541-0420.2010.01391.x |
| ContentType | Journal Article |
| Copyright | 2022 The International Biometric Society. 2023 The International Biometric Society. |
| Copyright_xml | – notice: 2022 The International Biometric Society. – notice: 2023 The International Biometric Society. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 |
| DOI | 10.1111/biom.13672 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA ProQuest Computer Science Collection CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology Mathematics |
| EISSN | 1541-0420 |
| EndPage | 774 |
| ExternalDocumentID | 35428983 10_1111_biom_13672 BIOM13672 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: National Heart, Lung, and Blood Institute funderid: NIH/R01HL119058 – fundername: National Science Foundation funderid: NSF‐CCF‐1934962 – fundername: NHLBI NIH HHS grantid: NIH/R01HL119058 |
| GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAXRX AAYCA AAZKR AAZSN ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVYC AFWVQ AFZJQ AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJAOE AJBDE AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABGNP ADNBA AEFGJ AEOTA AGXDD AIDQK AIDYY AJNCP CITATION ESTFP H13 AAWIL ABAWQ ACHJO AGLNM AGORE AGQPQ AHGBF AIHAF AJBYB CGR CUY CVF ECM EIF NPM PHGZM PHGZT PJZUB PPXIY PQGLB JQ2 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c3902-d3b12e2090f2baf5feddcc1875b80a1311623e2382095e2ade465409037b7cce3 |
| IEDL.DBID | DR2 |
| ISSN | 0006-341X 1541-0420 |
| IngestDate | Fri Oct 03 00:08:51 EDT 2025 Sun Sep 28 10:54:20 EDT 2025 Wed Aug 13 04:27:36 EDT 2025 Mon Jul 21 05:51:28 EDT 2025 Wed Oct 01 01:41:41 EDT 2025 Thu Apr 24 22:51:25 EDT 2025 Wed Jan 22 16:19:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | nonconcave penalty functions simultaneous effects selection linear mixed-effects models exponentially growing number of variables |
| Language | English |
| License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model 2022 The International Biometric Society. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3902-d3b12e2090f2baf5feddcc1875b80a1311623e2382095e2ade465409037b7cce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1653-8350 0000-0002-1175-9923 |
| PMID | 35428983 |
| PQID | 2827420204 |
| PQPubID | 35366 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2849886178 proquest_miscellaneous_2651684652 proquest_journals_2827420204 pubmed_primary_35428983 crossref_citationtrail_10_1111_biom_13672 crossref_primary_10_1111_biom_13672 wiley_primary_10_1111_biom_13672_BIOM13672 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-01 2023-Jun 20230601 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Washington |
| PublicationTitle | Biometrics |
| PublicationTitleAlternate | Biometrics |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2018; 320 2010; 38 2013; 28 2015; 71 2019; 56 2013; 41 2008; 36 2006 2018; 63 2013; 7 1996; 58 2008; 95 2011; 38 2008; 2 2008; 70 1999 2009; 117 2010; 66 2010; 25 2022 1977; 39 2009; 71 2019 1988; 83 2015 2012; 27 2007; 1 2018; 11 2007; 23 2006; 101 2001; 96 2009; 37 Tseng (2024011501231861900_biom13672-bib-0026) 2009; 117 Wu (2024011501231861900_biom13672-bib-0029) 2008; 2 Schelldorfer (2024011501231861900_biom13672-bib-0024) 2011; 38 Li (2024011501231861900_biom13672-bib-0017) 2018; 11 Young (2024011501231861900_biom13672-bib-0030) 2018; 63 cluster-splmm (2024011501231861900_biom13672-bib-0006) 2022 McNicholas (2024011501231861900_biom13672-bib-0019) 2010; 38 Komárek (2024011501231861900_biom13672-bib-0013) 2013; 7 Lam (2024011501231861900_biom13672-bib-0015) 2009; 37 Young (2024011501231861900_biom13672-bib-0031) 2019; 56 Bickel (2024011501231861900_biom13672-bib-0003) 2008; 36 Müller (2024011501231861900_biom13672-bib-0021) 2013; 28 Chen (2024011501231861900_biom13672-bib-0005) 2008; 95 Friedman (2024011501231861900_biom13672-bib-0010) 2007; 1 Wang (2024011501231861900_biom13672-bib-0028) 2007; 23 Du (2024011501231861900_biom13672-bib-0008) 2013; 41 Lindstrom (2024011501231861900_biom13672-bib-0018) 1988; 83 Bondell (2024011501231861900_biom13672-bib-0004) 2010; 66 Dempster (2024011501231861900_biom13672-bib-0007) 1977; 39 Bakin (2024011501231861900_biom13672-bib-0002) 1999 Zou (2024011501231861900_biom13672-bib-0033) 2006; 101 Meier (2024011501231861900_biom13672-bib-0020) 2008; 70 Arribas-Gil (2024011501231861900_biom13672-bib-0001) 2015; 71 Huang (2024011501231861900_biom13672-bib-0012) 2012; 27 Piercy (2024011501231861900_biom13672-bib-0022) 2018; 320 Genolini (2024011501231861900_biom13672-bib-0011) 2010; 25 Lan (2024011501231861900_biom13672-bib-0016) 2006 Wang (2024011501231861900_biom13672-bib-0027) 2009; 71 Proust-Lima (2024011501231861900_biom13672-bib-0023) 2015 Zhang (2024011501231861900_biom13672-bib-0032) 2010; 38 LaLonde (2024011501231861900_biom13672-bib-0014) 2019 Fan (2024011501231861900_biom13672-bib-0009) 2001; 96 Tibshirani (2024011501231861900_biom13672-bib-0025) 1996; 58 |
| References_xml | – volume: 28 start-page: 135 year: 2013 end-page: 167 article-title: Model selection in linear mixed models publication-title: Statistical Science – volume: 71 start-page: 671 year: 2009 end-page: 683 article-title: Shrinkage tuning parameter selection with a diverging number of parameters publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society Series B (Methodological) – volume: 56 start-page: 540 year: 2019 end-page: 547 article-title: Longitudinal sedentary time among females aged 17 to 23 years publication-title: American Journal of Preventive Medicine – volume: 1 start-page: 302 year: 2007 end-page: 332 article-title: Pathwise coordinate optimization publication-title: Annals of Applied Statistics – volume: 70 start-page: 53 year: 2008 end-page: 71 article-title: The group lasso for logistic regression publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 41 start-page: 596 year: 2013 end-page: 616 article-title: Simultaneous fixed and random effects selection in finite mixture of linear mixed‐effects models publication-title: Canadian Journal of Statistics – volume: 96 start-page: 1348 year: 2001 end-page: 1360 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: Journal of the American Statistical Association – volume: 95 start-page: 759 year: 2008 end-page: 771 article-title: Extended Bayesian information criteria for model selection with large model spaces publication-title: Biometrika – volume: 27 start-page: 481 year: 2012 end-page: 499 article-title: A selective review of group selection in high‐dimensional models publication-title: Statistical Science – volume: 320 start-page: 2020 year: 2018 end-page: 2028 article-title: The physical activity guidelines for Americans publication-title: Journal of the American Medical Association – volume: 38 start-page: 197 year: 2011 end-page: 214 article-title: Estimation for high‐dimensional linear mixed‐effects models using l1‐penalization publication-title: Scandinavian Journal of Statistics – volume: 38 start-page: 153 year: 2010 end-page: 168 article-title: Model‐based clustering of longitudinal data publication-title: Canadian Journal of Statistics – volume: 11 start-page: 721 year: 2018 end-page: 737 article-title: Doubly regularized estimation and selection in linear mixed‐effects models for high‐dimensional longitudinal data publication-title: Statistics and Its Interface – volume: 71 start-page: 333 year: 2015 end-page: 343 article-title: Classification of longitudinal data through a semiparametric mixed‐effects model based on lasso‐type estimators publication-title: Biometrics – volume: 63 start-page: 466 year: 2018 end-page: 473 article-title: Longitudinal associations of physical activity among females from adolescence to young adulthood publication-title: Journal of Adolescent Health – volume: 38 start-page: 894 year: 2010 end-page: 942 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Annals of Statistics – volume: 2 start-page: 224 year: 2008 end-page: 244 article-title: Coordinate descent algorithms for lasso penalized regression publication-title: Annals of Applied Statistics – volume: 25 start-page: 317 year: 2010 end-page: 328 article-title: KmL: k‐Means for longitudinal data publication-title: Computational Statistics – volume: 7 start-page: 177 year: 2013 end-page: 200 article-title: Clustering for multivariate continuous and discrete longitudinal data publication-title: Annals of Applied Statistics – volume: 117 start-page: 387 year: 2009 end-page: 423 article-title: A coordinate gradient descent method for nonsmooth separable minimization publication-title: Mathematical Programming – year: 2022 – year: 2006 article-title: Variable selection in linear mixed model for longitudinal data – volume: 23 start-page: 1486 year: 2007 end-page: 1494 article-title: Group SCAD regression analysis for microarray time course gene expression data publication-title: Bioinformatics – volume: 83 start-page: 1014 year: 1988 end-page: 1022 article-title: Newton‐Raphson and EM algorithms for linear mixed‐effects models for repeated‐measures data publication-title: Journal of the American Statistical Association – volume: 66 start-page: 1069 year: 2010 end-page: 1077 article-title: Joint variable selection for fixed and random effects in linear mixed‐effects models publication-title: Biometrics – volume: 36 start-page: 199 year: 2008 end-page: 227 article-title: Regularized estimation of large covariance matrices publication-title: Annals of Statistics – year: 2019 article-title: Clustering adolescent female physical activity levels with an infinite mixture model on random effects – volume: 37 start-page: 4254 year: 2009 end-page: 4278 article-title: Sparsistency and rates of convergence in large covariance matrix estimation publication-title: Annals of Statistics – volume: 101 start-page: 1418 year: 2006 end-page: 1429 article-title: The adaptive lasso and its oracle properties publication-title: Journal of the American Statistical Association – year: 2015 – year: 1999 – volume-title: Estimation of extended mixed models using latent classes and latent processes: the R package lcmm year: 2015 ident: 2024011501231861900_biom13672-bib-0023 – volume: 56 start-page: 540 year: 2019 ident: 2024011501231861900_biom13672-bib-0031 article-title: Longitudinal sedentary time among females aged 17 to 23 years publication-title: American Journal of Preventive Medicine doi: 10.1016/j.amepre.2018.11.021 – volume-title: Adaptive regression and model selection in data mining problems year: 1999 ident: 2024011501231861900_biom13672-bib-0002 – volume: 37 start-page: 4254 year: 2009 ident: 2024011501231861900_biom13672-bib-0015 article-title: Sparsistency and rates of convergence in large covariance matrix estimation publication-title: Annals of Statistics doi: 10.1214/09-AOS720 – volume: 1 start-page: 302 year: 2007 ident: 2024011501231861900_biom13672-bib-0010 article-title: Pathwise coordinate optimization publication-title: Annals of Applied Statistics doi: 10.1214/07-AOAS131 – volume: 71 start-page: 671 year: 2009 ident: 2024011501231861900_biom13672-bib-0027 article-title: Shrinkage tuning parameter selection with a diverging number of parameters publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2008.00693.x – volume: 58 start-page: 267 year: 1996 ident: 2024011501231861900_biom13672-bib-0025 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society: Series B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 101 start-page: 1418 year: 2006 ident: 2024011501231861900_biom13672-bib-0033 article-title: The adaptive lasso and its oracle properties publication-title: Journal of the American Statistical Association doi: 10.1198/016214506000000735 – volume-title: Manuscript year: 2019 ident: 2024011501231861900_biom13672-bib-0014 article-title: Clustering adolescent female physical activity levels with an infinite mixture model on random effects – volume: 95 start-page: 759 year: 2008 ident: 2024011501231861900_biom13672-bib-0005 article-title: Extended Bayesian information criteria for model selection with large model spaces publication-title: Biometrika doi: 10.1093/biomet/asn034 – volume: 41 start-page: 596 year: 2013 ident: 2024011501231861900_biom13672-bib-0008 article-title: Simultaneous fixed and random effects selection in finite mixture of linear mixed-effects models publication-title: Canadian Journal of Statistics doi: 10.1002/cjs.11192 – volume: 117 start-page: 387 year: 2009 ident: 2024011501231861900_biom13672-bib-0026 article-title: A coordinate gradient descent method for nonsmooth separable minimization publication-title: Mathematical Programming doi: 10.1007/s10107-007-0170-0 – volume: 39 start-page: 1 year: 1977 ident: 2024011501231861900_biom13672-bib-0007 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: Journal of the Royal Statistical Society Series B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 70 start-page: 53 year: 2008 ident: 2024011501231861900_biom13672-bib-0020 article-title: The group lasso for logistic regression publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2007.00627.x – volume: 28 start-page: 135 year: 2013 ident: 2024011501231861900_biom13672-bib-0021 article-title: Model selection in linear mixed models publication-title: Statistical Science doi: 10.1214/12-STS410 – volume: 63 start-page: 466 year: 2018 ident: 2024011501231861900_biom13672-bib-0030 article-title: Longitudinal associations of physical activity among females from adolescence to young adulthood publication-title: Journal of Adolescent Health doi: 10.1016/j.jadohealth.2018.05.023 – volume: 36 start-page: 199 year: 2008 ident: 2024011501231861900_biom13672-bib-0003 article-title: Regularized estimation of large covariance matrices publication-title: Annals of Statistics doi: 10.1214/009053607000000758 – volume: 11 start-page: 721 year: 2018 ident: 2024011501231861900_biom13672-bib-0017 article-title: Doubly regularized estimation and selection in linear mixed-effects models for high-dimensional longitudinal data publication-title: Statistics and Its Interface doi: 10.4310/SII.2018.v11.n4.a15 – volume: 38 start-page: 894 year: 2010 ident: 2024011501231861900_biom13672-bib-0032 article-title: Nearly unbiased variable selection under minimax concave penalty publication-title: Annals of Statistics doi: 10.1214/09-AOS729 – volume: 320 start-page: 2020 year: 2018 ident: 2024011501231861900_biom13672-bib-0022 article-title: The physical activity guidelines for Americans publication-title: Journal of the American Medical Association doi: 10.1001/jama.2018.14854 – volume: 83 start-page: 1014 year: 1988 ident: 2024011501231861900_biom13672-bib-0018 article-title: Newton-Raphson and EM algorithms for linear mixed-effects models for repeated-measures data publication-title: Journal of the American Statistical Association – volume: 23 start-page: 1486 year: 2007 ident: 2024011501231861900_biom13672-bib-0028 article-title: Group SCAD regression analysis for microarray time course gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm125 – volume-title: R package for clustering of high-dimensional longitudinal data based on simultaneously penalized linear mixed-effects models year: 2022 ident: 2024011501231861900_biom13672-bib-0006 – volume: 27 start-page: 481 year: 2012 ident: 2024011501231861900_biom13672-bib-0012 article-title: A selective review of group selection in high-dimensional models publication-title: Statistical Science doi: 10.1214/12-STS392 – volume: 38 start-page: 197 year: 2011 ident: 2024011501231861900_biom13672-bib-0024 article-title: Estimation for high-dimensional linear mixed-effects models using l1-penalization publication-title: Scandinavian Journal of Statistics doi: 10.1111/j.1467-9469.2011.00740.x – volume: 71 start-page: 333 year: 2015 ident: 2024011501231861900_biom13672-bib-0001 article-title: Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators publication-title: Biometrics doi: 10.1111/biom.12280 – volume: 96 start-page: 1348 year: 2001 ident: 2024011501231861900_biom13672-bib-0009 article-title: Variable selection via nonconcave penalized likelihood and its oracle properties publication-title: Journal of the American Statistical Association doi: 10.1198/016214501753382273 – volume: 7 start-page: 177 year: 2013 ident: 2024011501231861900_biom13672-bib-0013 article-title: Clustering for multivariate continuous and discrete longitudinal data publication-title: Annals of Applied Statistics doi: 10.1214/12-AOAS580 – volume: 2 start-page: 224 year: 2008 ident: 2024011501231861900_biom13672-bib-0029 article-title: Coordinate descent algorithms for lasso penalized regression publication-title: Annals of Applied Statistics doi: 10.1214/07-AOAS147 – volume: 25 start-page: 317 year: 2010 ident: 2024011501231861900_biom13672-bib-0011 article-title: KmL: k-Means for longitudinal data publication-title: Computational Statistics doi: 10.1007/s00180-009-0178-4 – volume-title: PhD thesis year: 2006 ident: 2024011501231861900_biom13672-bib-0016 article-title: Variable selection in linear mixed model for longitudinal data – volume: 38 start-page: 153 year: 2010 ident: 2024011501231861900_biom13672-bib-0019 article-title: Model-based clustering of longitudinal data publication-title: Canadian Journal of Statistics doi: 10.1002/cjs.10047 – volume: 66 start-page: 1069 year: 2010 ident: 2024011501231861900_biom13672-bib-0004 article-title: Joint variable selection for fixed and random effects in linear mixed-effects models publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01391.x |
| SSID | ssj0009502 |
| Score | 2.4276564 |
| Snippet | We propose a model‐based clustering method for high‐dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of... We propose a model-based clustering method for high-dimensional longitudinal data via regularization in this paper. This study was motivated by the Trial of... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 761 |
| SubjectTerms | adolescence Adolescent Adolescents Adult adulthood Algorithms Bayes Theorem Bayesian analysis Bayesian theory Cluster Analysis Clustering exponentially growing number of variables Female Humans linear mixed‐effects models Linear Models Longitudinal studies Mathematical models Multivariate analysis nonconcave penalty functions Normal Distribution Optimization Parameter estimation Penalty function Physical activity Regularization sample size simultaneous effects selection |
| Title | Model‐based clustering of high‐dimensional longitudinal data via regularization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbiom.13672 https://www.ncbi.nlm.nih.gov/pubmed/35428983 https://www.proquest.com/docview/2827420204 https://www.proquest.com/docview/2651684652 https://www.proquest.com/docview/2849886178 |
| Volume | 79 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1541-0420 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: ABDBF dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1541-0420 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0009502 issn: 0006-341X databaseCode: A8Z dateStart: 20030301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0006-341X databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1541-0420 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009502 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EKNiHas-2Rq-yxb60EEmy2XyAL60oKlwLbYV7KSH7kVI8Erm7CO1T_wT_Rv8SZ7JJvNMitE8J7AT2a3Z-s5n5DcBbYTyphFRuGvvaJX4SV6IldAMt0siIsOCG7jtGn6KT8_BsLMYrcNDlwlh-iP7CjTSjOa9JwXM5W1BySk-nIK2YDmB8Nv7Ul2CBcdezVOEU3BX645ablMJ47j5dtkYPIOYyYm1MzvE6fO86ayNNLvbrudxXv-_xOP7vaDbgWYtF2Qe7eZ7DiikH8MRWp_w1gKejntJ1NoA1gqWW1XkTvlIJtcnNn2sygpqpSU18C2gFWVUwYkDGJk11AyznB5tUVBap1lSCi1FQKrv6mbOp-UFBsG0m6As4Pz76dnjituUZXMVTPEc1l35gAi_1ikDmhSiM1kr56ADJxMuJxgehlUFIgCLCBLk2xN1G90KxjJUy_CWsllVptoChiBEe1SZL0FrmiGEiLXlccK3CNBGxA--6ZcpUy11OJTQmWefD0Pxlzfw5sNfLXlrGjr9KDbvVzlqtnWXofsZhQOnCDrzpm1Hf6CdKXpqqRplI-BGCNhE8IpNgrxNKvnTgld1JfVe4QIcvTbgD75v98Egfs4-nn0fN2_a_CO_AGo6B23i2IazOp7V5jchpLncbDbkFhOQVVA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS9xAFD4UpagP2q63VGtH9EUhkmQyuTy2pbJeVsEL7FvIXCLisivuRrBP_Qn9jf4Sz8lko9Yi6FsgJzDJzJnznck53wewKYwnlZDKTWNfu8RP4kqMhG6gRRoZERbc0HlH5yhqn4f7XdGta3OoF8byQzQHbuQZ1X5NDk4H0k-8nPrTqUorxh14MowwUSFMdBI84dz1LFk4lXeFfrdmJ6VCnsdnn8ejFyDzOWatgs7unFVWHVZchVRrcrVTjuSO-v0Pk-O73-cTzNZwlH236-czfDD9Fny0ApV3LZjpNKyuwxZMEzK1xM7zcEoqar37P38pDmqmeiVRLmAgZIOCEQky3tIkHWBpP1hvQMpIpSYVLkZ1qez2Mmc35oLqYOtm0AU43_119rPt1goNruIpbqWaSz8wgZd6RSDzQhRGa6V8zIFk4uXE5IPoyiAqQBNhglwbom-jo6FYxkoZvggT_UHfLANDEyM8kidLMGDmCGMiLXlccK3CNBGxA1vjecpUTV9OKhq9bJzG0PfLqu_nwEZje21JO_5rtTqe7qx23GGGGWgcBtQx7MB6cxtdjv6j5H0zKNEmEn6EuE0Er9gkOOqE-i8dWLJLqRkKF5jzpQl3YLtaEK-MMfuxd9yprr68xfgbTLXPOofZ4d7RwQpM4_twW962ChOjm9J8RSA1kmuVuzwA1HwZdQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bTtwwEB0hEBU8ULrlErq0rtoXkIKSOM7lkUtX0HZpRYu0b1F8CUKsdtHuBok-9RP4Rr6EmTibQqmQylskTyQ79niOnZlzAD4K40klpHLT2Ncu8ZO4EiOhG2iRRkaEBTd039E9jg5Pw8890atzc6gWxvJDNBdu5BnVfk0Obi51cc_LqT6dsrRi3IHnQpEmlNF3cBLc49z1LFk4pXeFfq9mJ6VEnj_vPoxHj0DmQ8xaBZ3OS6usOq64CinX5GKnnMgd9esvJsdnj2cZlmo4ynbt-nkFM2bQgnkrUHndgsVuw-o6bsECIVNL7PwafpCKWv_29w3FQc1UvyTKBQyEbFgwIkHGJk3SAZb2g_WHpIxUalLhYpSXyq7OczYyZ5QHWxeDrsBp59PP_UO3VmhwFU9xK9Vc-oEJvNQrApkXojBaK-XjGUgmXk5MPoiuDKICNBEmyLUh-ja6GoplrJThqzA7GA7MOjA0McIjebIEA2aOMCbSkscF1yrEqY0d2JrOU6Zq-nJS0ehn02MMfb-s-n4OfGhsLy1pxz-t2tPpzmrHHWd4Ao3DgCqGHXjfNKPL0X-UfGCGJdpEwo8Qt4ngCZsEe51Q_aUDa3YpNV3hAs98acId2K4WxBN9zPaOvnWrp43_MX4HL74fdLKvR8df3sACDofb7LY2zE5GpdlEHDWRbytvuQNacxj5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-Based+Clustering+of+High-Dimensional+Longitudinal+Data+via+Regularization&rft.jtitle=Biometrics&rft.au=Yang%2C+Luoying&rft.au=Wu%2C+Tong+Tong&rft.date=2023-06-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=79&rft.issue=2&rft.spage=761&rft.epage=774&rft_id=info:doi/10.1111%2Fbiom.13672&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_biom_13672 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |