Wavelet transforms for detecting microcalcifications in mammograms

Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 15; no. 2; pp. 218 - 229
Main Authors Strickland, R.N., Hee Il Hahn
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.1996
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
DOI10.1109/42.491423

Cover

Abstract Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms.
AbstractList Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms.Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms.
Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms
Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms.
A two-stage method based on wavelet transforms has been developed for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries.
Author Hee Il Hahn
Strickland, R.N.
Author_xml – sequence: 1
  givenname: R.N.
  surname: Strickland
  fullname: Strickland, R.N.
  email: strickland@ece.arizona.edu
  organization: Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA
– sequence: 2
  surname: Hee Il Hahn
  fullname: Hee Il Hahn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18215904$$D View this record in MEDLINE/PubMed
BookMark eNqF0T1LBDEQBuAgit6pha2FbKVYrOZzk5R6-AWCjaJdyGUnEtns6iYn-O9d3dNCRJtMkWeG4Z0pWm27FhDaIfiIEKyPOT3imnDKVtCECKFKKvjDKppgKlWJcUU30DSlJ4wJF1ivow2iKBEa8wk6vbev0EAucm_b5Ls-pmJ4ixoyuBzaxyIG13fONi744GwOXZuK0BbRxtg99jamLbTmbZNge1k30d352e3ssry-ubianVyXjimdSz-nTFLvpKcAc6WJItI6yb3ylR72wr4G4BjPNat4LSrJLAfwrmZeKEYrtokOxrnPffeygJRNDMlB09gWukUyknHKK6z1IPf_lFTJCleC_wuJkJQrxQa4t4SLeYTaPPch2v7NfAU5gOMRDGGl1IM3LuTPtIZgQ2MINh-nMpya8VRDx-GPju-hv9jd0QYA-HbLz3dbgZqR
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_42_802755
crossref_primary_10_6009_jjrt_KJ00001356825
crossref_primary_10_1007_s11042_020_09105_z
crossref_primary_10_1109_TCSVT_2016_2592329
crossref_primary_10_1016_S0020_0255_02_00293_1
crossref_primary_10_1109_42_700727
crossref_primary_10_1109_TMI_2002_806569
crossref_primary_10_1016_S0010_4825_00_00014_7
crossref_primary_10_1109_TITB_2008_2009441
crossref_primary_10_1016_j_artmed_2010_04_007
crossref_primary_10_1016_j_ins_2015_02_015
crossref_primary_10_1016_j_compbiomed_2008_07_006
crossref_primary_10_1016_S0933_3657_02_00013_1
crossref_primary_10_1016_S0031_3203_03_00004_9
crossref_primary_10_1109_42_836371
crossref_primary_10_1118_1_598273
crossref_primary_10_1080_07038992_1998_10855248
crossref_primary_10_1109_72_761712
crossref_primary_10_1109_TBME_2021_3126281
crossref_primary_10_1118_1_598027
crossref_primary_10_1118_1_598302
crossref_primary_10_1109_TIP_2008_2004607
crossref_primary_10_1007_BF03167672
crossref_primary_10_1016_j_compmedimag_2006_12_003
crossref_primary_10_1007_BF02742937
crossref_primary_10_1109_10_959323
crossref_primary_10_1109_42_875197
crossref_primary_10_1016_S0167_8655_00_00083_0
crossref_primary_10_1109_42_764896
crossref_primary_10_4304_jcp_6_7_1319_1324
crossref_primary_10_1016_j_ultrasmedbio_2024_05_020
crossref_primary_10_1016_j_eswa_2010_10_061
crossref_primary_10_1002_ange_201913149
crossref_primary_10_1016_j_patcog_2003_03_001
crossref_primary_10_1118_1_3121511
crossref_primary_10_1002_ima_22074
crossref_primary_10_1111_j_1749_6632_2002_tb04890_x
crossref_primary_10_1088_1748_0221_4_07_P07009
crossref_primary_10_26634_jdp_5_1_13526
crossref_primary_10_1016_j_compmedimag_2006_03_002
crossref_primary_10_1016_j_nima_2021_166062
crossref_primary_10_1118_1_598739
crossref_primary_10_1016_j_compmedimag_2005_01_001
crossref_primary_10_3233_XST_190583
crossref_primary_10_1016_j_compmedimag_2009_12_009
crossref_primary_10_1118_1_2733800
crossref_primary_10_1002_jmri_1125
crossref_primary_10_1016_j_patcog_2008_08_028
crossref_primary_10_1080_21642583_2023_2269183
crossref_primary_10_1016_j_asej_2019_01_009
crossref_primary_10_1016_j_medengphy_2003_11_009
crossref_primary_10_3923_jms_2015_110_121
crossref_primary_10_1016_j_jfranklin_2006_09_003
crossref_primary_10_1049_el_20020907
crossref_primary_10_1007_s10278_004_1020_8
crossref_primary_10_1155_2009_767805
crossref_primary_10_1118_1_4930246
crossref_primary_10_1146_annurev_bioeng_2_1_511
crossref_primary_10_1155_2021_6681202
crossref_primary_10_1016_j_procs_2010_11_035
crossref_primary_10_1016_S0010_4825_00_00004_4
crossref_primary_10_1016_j_compbiomed_2018_03_011
crossref_primary_10_1016_j_acra_2012_12_010
crossref_primary_10_1016_S0031_3203_03_00192_4
crossref_primary_10_1016_j_proeng_2012_06_077
crossref_primary_10_1016_j_clinimag_2012_09_024
crossref_primary_10_1109_83_923284
crossref_primary_10_1002_jmri_10259
crossref_primary_10_1109_TBME_2005_862536
crossref_primary_10_1109_TMI_2003_809632
crossref_primary_10_1155_2013_797924
crossref_primary_10_4236_ojmi_2013_31004
crossref_primary_10_1118_1_2991286
crossref_primary_10_1134_S1064226922020048
crossref_primary_10_2200_S00301ED1V01Y201010BME038
crossref_primary_10_1364_JOSAA_17_001160
crossref_primary_10_1002_anie_201913149
crossref_primary_10_1109_97_611278
crossref_primary_10_1109_TMI_2004_824240
crossref_primary_10_1118_1_598624
crossref_primary_10_1006_rtim_1999_0172
crossref_primary_10_1117_1_1612511
crossref_primary_10_1016_j_ejrnm_2016_08_020
crossref_primary_10_1118_1_3013555
crossref_primary_10_1109_TMI_2004_834601
crossref_primary_10_1117_1_3099710
crossref_primary_10_1117_1_482700
crossref_primary_10_1006_rtim_2001_0285
crossref_primary_10_2460_ajvr_2003_64_1376
crossref_primary_10_1109_TMI_2005_855435
crossref_primary_10_1109_83_568929
crossref_primary_10_1109_TSMCA_2012_2210208
crossref_primary_10_1088_0031_9155_56_1_001
crossref_primary_10_3923_jas_2009_3531_3538
crossref_primary_10_1016_j_compmedimag_2005_03_002
crossref_primary_10_1364_JOSAA_16_000006
crossref_primary_10_1016_j_neucom_2007_06_015
crossref_primary_10_1080_03772063_2015_1009394
crossref_primary_10_1142_S0219691310003754
crossref_primary_10_1007_s10278_009_9224_6
crossref_primary_10_1016_j_artmed_2004_10_001
crossref_primary_10_1016_j_compbiomed_2012_07_001
crossref_primary_10_3348_kjr_2014_15_3_305
crossref_primary_10_1016_S0169_2607_03_00023_3
crossref_primary_10_1016_j_proeng_2011_08_091
crossref_primary_10_1016_j_bspc_2010_10_003
crossref_primary_10_1002_mp_12316
crossref_primary_10_1109_42_640740
crossref_primary_10_1259_bjr_70_837_9486066
crossref_primary_10_1007_s11042_019_7726_x
crossref_primary_10_1016_j_artmed_2006_03_002
crossref_primary_10_1117_1_482685
crossref_primary_10_1118_1_4938059
crossref_primary_10_1016_S0895_6111_00_00009_4
crossref_primary_10_1007_s10278_022_00751_3
crossref_primary_10_1016_S0262_8856_01_00053_1
crossref_primary_10_1117_1_482725
crossref_primary_10_1016_j_medengphy_2006_07_012
Cites_doi 10.1002/1097-0142(19880115)61:2<263::AID-CNCR2820610211>3.0.CO;2-Z
10.1016/S0033-8389(22)02489-7
10.1118/1.596065
10.1109/83.136597
10.1148/radiology.137.1.7422830
10.1007/BF00271628
10.1002/cpa.3160450502
10.1259/0007-1285-60-717-887
10.1097/00004424-199010000-00006
10.1109/78.157290
10.1007/BFb0033756
10.1117/12.148665
10.1109/ISCAS.1993.692591
10.1117/12.955926
10.3322/canjclin.40.1.9
10.1148/radiology.169.2.3174981
10.1142/S0218001493000698
10.1109/42.310880
10.1148/radiology.160.2.3523590
10.1109/TSMC.1976.4309486
10.1097/00004424-199009000-00002
10.1088/0031-9155/35/8/007
10.1038/bjc.1989.196
10.1148/radiology.165.1.3628795
10.1148/radiology.160.2.3726103
10.1109/18.119724
10.1117/12.130912
10.1364/AO.22.001462
10.1117/12.175126
10.1109/18.86995
10.1117/12.130911
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7QO
8FD
FR3
P64
7SC
7U5
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/42.491423
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Technology Research Database

Engineering Research Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 229
ExternalDocumentID 18215904
10_1109_42_491423
491423
Genre orig-research
Journal Article
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
NPM
RIG
7QO
8FD
FR3
P64
7SC
7U5
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c389t-fb2372fc7f2eeb891817ac74f8f694500fdee400b9364d5673a4eefcd3f583263
IEDL.DBID RIE
ISSN 0278-0062
IngestDate Wed Oct 01 12:50:06 EDT 2025
Sat Sep 27 21:13:05 EDT 2025
Mon Oct 06 18:05:44 EDT 2025
Mon Jul 21 06:00:00 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
Wed Oct 01 03:55:09 EDT 2025
Wed Aug 27 02:29:47 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-fb2372fc7f2eeb891817ac74f8f694500fdee400b9364d5673a4eefcd3f583263
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 18215904
PQID 15724883
PQPubID 23462
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_42_491423
proquest_miscellaneous_734246099
crossref_primary_10_1109_42_491423
proquest_miscellaneous_28760654
ieee_primary_491423
proquest_miscellaneous_15724883
pubmed_primary_18215904
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1996-04-01
PublicationDateYYYYMMDD 1996-04-01
PublicationDate_xml – month: 04
  year: 1996
  text: 1996-04-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 1996
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref34
ref12
ref37
ref36
ref14
ref31
ref32
ref10
barman (ref27) 1993
ref2
ref39
ref38
ref16
ref19
ref18
bassett (ref1) 1992; 30
lanyi (ref4) 1986
laine (ref25) 1992; 1768
karssemeijer (ref20) 1992
laine (ref26) 0
ref23
strickland (ref43) 1994
nishikawa (ref15) 1993
baines (ref7) 1986; 160
ref42
jain (ref33) 1989
ref21
richardson (ref24) 1992; 1768
ref29
ref8
chan (ref13) 1988; 23
reeves (ref22) 1992; 65
ref9
kegelmeyer (ref17) 1994
ref3
ref6
pratt (ref30) 1991
silverberg (ref11) 1990; 40
ref40
lopez (ref5) 1989; 106
quick (ref41) 1974; 16
qian (ref28) 1993; 1905
References_xml – start-page: 3
  year: 1994
  ident: ref17
  article-title: dense feature maps for detection of microcalcifications
  publication-title: Proceedings Second International Workshop on Digital Mammography
– ident: ref2
  doi: 10.1002/1097-0142(19880115)61:2<263::AID-CNCR2820610211>3.0.CO;2-Z
– start-page: 479
  year: 1993
  ident: ref27
  article-title: using simple local fourier domain models for computer-aided analysis of mammograms
  publication-title: Proc 8th Scandinavian Conf Image Anal
– volume: 30
  start-page: 93
  year: 1992
  ident: ref1
  article-title: mammographic analysis of calcifications
  publication-title: Radiol Clin No Amer
  doi: 10.1016/S0033-8389(22)02489-7
– ident: ref12
  doi: 10.1118/1.596065
– year: 1991
  ident: ref30
  publication-title: Digital Image Processing
– ident: ref40
  doi: 10.1109/83.136597
– ident: ref3
  doi: 10.1148/radiology.137.1.7422830
– volume: 16
  start-page: 65
  year: 1974
  ident: ref41
  article-title: a vector magnitude model of contrast detection
  publication-title: Kybernetic
  doi: 10.1007/BF00271628
– ident: ref36
  doi: 10.1002/cpa.3160450502
– start-page: 472
  year: 1992
  ident: ref20
  article-title: adaptive noise equalization and image analysis in mammography
  publication-title: 13th Int Conf Inform Processing Med Imag
– ident: ref21
  doi: 10.1259/0007-1285-60-717-887
– ident: ref14
  doi: 10.1097/00004424-199010000-00006
– ident: ref37
  doi: 10.1109/78.157290
– start-page: 442
  year: 1993
  ident: ref15
  article-title: computer-aided detection and diagnosis of masses and clustered microcalcifications from digital mammograms
  publication-title: Biomedical Image Processing and Biomedical Visualization Proc SPIE 1905
– ident: ref19
  doi: 10.1007/BFb0033756
– volume: 1905
  start-page: 509
  year: 1993
  ident: ref28
  article-title: tree-structured nonlinear filter and wavelet transform for microcalcification segmentation in mammography
  publication-title: Proc SPIE Biomedical Image Processing and Biomedical Visualization
  doi: 10.1117/12.148665
– volume: 106
  start-page: 590
  year: 1989
  ident: ref5
  article-title: breast cancer detected by screening: the importance of long-term follow-up
  publication-title: Surg
– ident: ref35
  doi: 10.1109/ISCAS.1993.692591
– ident: ref42
  doi: 10.1117/12.955926
– volume: 40
  start-page: 9
  year: 1990
  ident: ref11
  article-title: cancer statistics, 1990
  publication-title: Ca&#x2010 A J Clinicians
  doi: 10.3322/canjclin.40.1.9
– start-page: 91
  year: 0
  ident: ref26
  article-title: a framework for contrast enhancement by dyadic wavelet analysis
  publication-title: Proc 2nd Int Workshop on Digital Mammography
– ident: ref18
  doi: 10.1148/radiology.169.2.3174981
– ident: ref16
  doi: 10.1142/S0218001493000698
– ident: ref31
  doi: 10.1109/42.310880
– volume: 160
  start-page: 295
  year: 1986
  ident: ref7
  article-title: sensitivity and specificity of first screen mammography in the canadian national breast screening study
  publication-title: Radiol
  doi: 10.1148/radiology.160.2.3523590
– ident: ref32
  doi: 10.1109/TSMC.1976.4309486
– year: 1994
  ident: ref43
  article-title: detection of microcalcifications using wavelets
  publication-title: Proc 2nd Int Workshop Dig Mammogr
– ident: ref8
  doi: 10.1097/00004424-199009000-00002
– ident: ref23
  doi: 10.1088/0031-9155/35/8/007
– ident: ref10
  doi: 10.1038/bjc.1989.196
– ident: ref9
  doi: 10.1148/radiology.165.1.3628795
– ident: ref6
  doi: 10.1148/radiology.160.2.3726103
– ident: ref38
  doi: 10.1109/18.119724
– volume: 65
  start-page: 96
  year: 1992
  ident: ref22
  article-title: breast screening: deciphering the structure of mammographic microcalcification
  publication-title: British J Radiol
– volume: 1768
  start-page: 306
  year: 1992
  ident: ref25
  article-title: multiscale wavelet representations for mammographic feature analysis
  publication-title: Proc SPIE Mathematical Methods Med Imag
  doi: 10.1117/12.130912
– start-page: 403
  year: 1989
  ident: ref33
  publication-title: Fundamentals of Digital Image Processing
– volume: 23
  start-page: 664
  year: 1988
  ident: ref13
  article-title: computer-aided detection of microcalcifications in mammograms: methodology and preliminary clinical study
  publication-title: Investigat Radiol
– ident: ref34
  doi: 10.1364/AO.22.001462
– ident: ref29
  doi: 10.1117/12.175126
– ident: ref39
  doi: 10.1109/18.86995
– volume: 1768
  start-page: 293
  year: 1992
  ident: ref24
  article-title: nonlinear filtering and multiscale texture discrimination for mammograms
  publication-title: Proc SPIE Mathematical Methods Med Imag
  doi: 10.1117/12.130911
– year: 1986
  ident: ref4
  publication-title: Diagnosis and Differential Diagnosis of Breast Calcifications
SSID ssj0014509
Score 2.0290082
Snippet Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size...
A two-stage method based on wavelet transforms has been developed for detecting and segmenting calcifications. The first stage is based on an undecimated...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 218
SubjectTerms Background noise
Diseases
Distributed computing
Filter bank
Gaussian noise
Image segmentation
Matched filters
Object detection
Shape
Wavelet transforms
Title Wavelet transforms for detecting microcalcifications in mammograms
URI https://ieeexplore.ieee.org/document/491423
https://www.ncbi.nlm.nih.gov/pubmed/18215904
https://www.proquest.com/docview/15724883
https://www.proquest.com/docview/28760654
https://www.proquest.com/docview/734246099
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB9QeWti-tjxqoR56yZI4jh0fAYEQEj0VlVsU22OpaskiNnvh1zO2kwVVUPUSRdFESsZjz9jzzTcAX11ltXOqzWqndSa8kpkpOGZYaKzJ4VbGh43i5Xd5fiUurqvrgWc71sIgYgSf4Szcxly-m9tlOCo7FLog778O66qWqVRrlTAQVUJz8EAYm0s-kAgVuT4UfJZeDAShNbk4PXRlG71QbKvycoQZPc3Z21TCvYgEhQFg8nu27M3M3v9F3_ifP7EFb4aIkx0lE9mGNewm8PoJD-EENi-HDPs7OP7ZhlYUPevHiHbB6MochmwDSbObAOGjkY1gvnTex3517KYliw5Qr8V7uDo7_XFyng19FjJL4UqfecNLxb1VniOaWpPTV61VwtdealJs7h0izXWjSylcJVXZCkRvXekrWhBk-QE2unmHn4ApW2BR2jL31gshuKGAQxhHI59j7fJ6Ct9GvTd2ICEPvTD-NHEzkutG8CZpaAoHK9HbxLzxnNAkaHglMD79Mo5lQ7MlpEDaDufLRVNUitOS9Q8J2kHKUHA7BfaChCoFF5Ii6yl8THby-H2DeX1-9rN24FXCfAfczy5s9HdL3KOQpjf70ZgfAAMs8l8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkXgceCyv5VULceCSbeL4ER8BUS3Q7akVvUWxPZYQNIvY7IVfz9hOFoRaxCWKoomUzIw9Y8_nbwBeeemM97orGm9MIYJWha04FlgZbCjgShviQnF1rJan4uOZPBt5ttNZGERM4DNcxNtUy_drt41bZQfCVBT9r8I1KYSQ-bDWrmQgZMZz8EgZWyo-0ghVpTkQfJFfjRShDQU5M_Zlm-JQaqxyeY6ZYs3hnXyIe5MoCiPE5OtiO9iF-_kXgeN__sZduD3mnOxNdpJ7cAX7Gdz6g4lwBtdXY439Prz93MVmFAMbppx2w-jKPMZ6A0mz8wjiI9smOF_e8WNfenbekU9HsNfmAZwevj95tyzGTguFo4RlKILltebB6cARbWMo7OvOaRGaoAwptgwekUa7NbUSXipddwIxOF8HSVOCqh_CXr_u8TEw7SqsaleXwQWyEreUcgjryfYlNr5s5vB60nvrRhry2A3jW5uWI6VpBW-zhubwcif6PXNvXCQ0ixreCUxP9ydbtjReYhGk63G93bSV1JwmrX9I0BpSxSO3c2CXSOhacKEot57Do-wnv79vdK8nF37WPtxYnqyO2qMPx5-ews2MAI8ooGewN_zY4nNKcAb7Ijn2L9aa9aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet+transforms+for+detecting+microcalcifications+in+mammograms&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Strickland%2C+R+N&rft.au=Hahn%2C+H+I&rft.date=1996-04-01&rft.issn=0278-0062&rft.volume=15&rft.issue=2&rft.spage=218&rft_id=info:doi/10.1109%2F42.491423&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon