Wavelet transforms for detecting microcalcifications in mammograms
Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on...
Saved in:
| Published in | IEEE transactions on medical imaging Vol. 15; no. 2; pp. 218 - 229 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.1996
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0278-0062 1558-254X |
| DOI | 10.1109/42.491423 |
Cover
| Abstract | Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms. |
|---|---|
| AbstractList | Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms.Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms. Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size and shape variability and because the background mammogram texture is typically inhomogeneous. The authors develop a 2-stage method based on wavelet transforms for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling, so that the low-low (LL), low-high (LH), high-low (HL), and high-high (HH) sub-bands remain at full size. Detection takes place in HH and the combination LH+HL. Four octaves are computed with 2 inter-octave voices for finer scale resolution. By appropriate selection of the wavelet basis the detection of microcalcifications in the relevant size range can be nearly optimized. In fact, the filters which transform the input image into HH and LH+HL are closely related to prewhitening matched filters for detecting Gaussian objects (idealized microcalcifications) in 2 common forms of Markov (background) noise. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. Detected pixel sites in HH and LH+HL are dilated then weighted before computing the inverse wavelet transform. Individual microcalcifications are greatly enhanced in the output image, to the point where straightforward thresholding can be applied to segment them. FROG curves are computed from tests using a freely distributed database of digitized mammograms. A two-stage method based on wavelet transforms has been developed for detecting and segmenting calcifications. The first stage is based on an undecimated wavelet transform, which is simply the conventional filter bank implementation without downsampling. The second stage is designed to overcome the limitations of the simplistic Gaussian assumption and provides an accurate segmentation of calcification boundaries. |
| Author | Hee Il Hahn Strickland, R.N. |
| Author_xml | – sequence: 1 givenname: R.N. surname: Strickland fullname: Strickland, R.N. email: strickland@ece.arizona.edu organization: Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA – sequence: 2 surname: Hee Il Hahn fullname: Hee Il Hahn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18215904$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0T1LBDEQBuAgit6pha2FbKVYrOZzk5R6-AWCjaJdyGUnEtns6iYn-O9d3dNCRJtMkWeG4Z0pWm27FhDaIfiIEKyPOT3imnDKVtCECKFKKvjDKppgKlWJcUU30DSlJ4wJF1ivow2iKBEa8wk6vbev0EAucm_b5Ls-pmJ4ixoyuBzaxyIG13fONi744GwOXZuK0BbRxtg99jamLbTmbZNge1k30d352e3ssry-ubianVyXjimdSz-nTFLvpKcAc6WJItI6yb3ylR72wr4G4BjPNat4LSrJLAfwrmZeKEYrtokOxrnPffeygJRNDMlB09gWukUyknHKK6z1IPf_lFTJCleC_wuJkJQrxQa4t4SLeYTaPPch2v7NfAU5gOMRDGGl1IM3LuTPtIZgQ2MINh-nMpya8VRDx-GPju-hv9jd0QYA-HbLz3dbgZqR |
| CODEN | ITMID4 |
| CitedBy_id | crossref_primary_10_1109_42_802755 crossref_primary_10_6009_jjrt_KJ00001356825 crossref_primary_10_1007_s11042_020_09105_z crossref_primary_10_1109_TCSVT_2016_2592329 crossref_primary_10_1016_S0020_0255_02_00293_1 crossref_primary_10_1109_42_700727 crossref_primary_10_1109_TMI_2002_806569 crossref_primary_10_1016_S0010_4825_00_00014_7 crossref_primary_10_1109_TITB_2008_2009441 crossref_primary_10_1016_j_artmed_2010_04_007 crossref_primary_10_1016_j_ins_2015_02_015 crossref_primary_10_1016_j_compbiomed_2008_07_006 crossref_primary_10_1016_S0933_3657_02_00013_1 crossref_primary_10_1016_S0031_3203_03_00004_9 crossref_primary_10_1109_42_836371 crossref_primary_10_1118_1_598273 crossref_primary_10_1080_07038992_1998_10855248 crossref_primary_10_1109_72_761712 crossref_primary_10_1109_TBME_2021_3126281 crossref_primary_10_1118_1_598027 crossref_primary_10_1118_1_598302 crossref_primary_10_1109_TIP_2008_2004607 crossref_primary_10_1007_BF03167672 crossref_primary_10_1016_j_compmedimag_2006_12_003 crossref_primary_10_1007_BF02742937 crossref_primary_10_1109_10_959323 crossref_primary_10_1109_42_875197 crossref_primary_10_1016_S0167_8655_00_00083_0 crossref_primary_10_1109_42_764896 crossref_primary_10_4304_jcp_6_7_1319_1324 crossref_primary_10_1016_j_ultrasmedbio_2024_05_020 crossref_primary_10_1016_j_eswa_2010_10_061 crossref_primary_10_1002_ange_201913149 crossref_primary_10_1016_j_patcog_2003_03_001 crossref_primary_10_1118_1_3121511 crossref_primary_10_1002_ima_22074 crossref_primary_10_1111_j_1749_6632_2002_tb04890_x crossref_primary_10_1088_1748_0221_4_07_P07009 crossref_primary_10_26634_jdp_5_1_13526 crossref_primary_10_1016_j_compmedimag_2006_03_002 crossref_primary_10_1016_j_nima_2021_166062 crossref_primary_10_1118_1_598739 crossref_primary_10_1016_j_compmedimag_2005_01_001 crossref_primary_10_3233_XST_190583 crossref_primary_10_1016_j_compmedimag_2009_12_009 crossref_primary_10_1118_1_2733800 crossref_primary_10_1002_jmri_1125 crossref_primary_10_1016_j_patcog_2008_08_028 crossref_primary_10_1080_21642583_2023_2269183 crossref_primary_10_1016_j_asej_2019_01_009 crossref_primary_10_1016_j_medengphy_2003_11_009 crossref_primary_10_3923_jms_2015_110_121 crossref_primary_10_1016_j_jfranklin_2006_09_003 crossref_primary_10_1049_el_20020907 crossref_primary_10_1007_s10278_004_1020_8 crossref_primary_10_1155_2009_767805 crossref_primary_10_1118_1_4930246 crossref_primary_10_1146_annurev_bioeng_2_1_511 crossref_primary_10_1155_2021_6681202 crossref_primary_10_1016_j_procs_2010_11_035 crossref_primary_10_1016_S0010_4825_00_00004_4 crossref_primary_10_1016_j_compbiomed_2018_03_011 crossref_primary_10_1016_j_acra_2012_12_010 crossref_primary_10_1016_S0031_3203_03_00192_4 crossref_primary_10_1016_j_proeng_2012_06_077 crossref_primary_10_1016_j_clinimag_2012_09_024 crossref_primary_10_1109_83_923284 crossref_primary_10_1002_jmri_10259 crossref_primary_10_1109_TBME_2005_862536 crossref_primary_10_1109_TMI_2003_809632 crossref_primary_10_1155_2013_797924 crossref_primary_10_4236_ojmi_2013_31004 crossref_primary_10_1118_1_2991286 crossref_primary_10_1134_S1064226922020048 crossref_primary_10_2200_S00301ED1V01Y201010BME038 crossref_primary_10_1364_JOSAA_17_001160 crossref_primary_10_1002_anie_201913149 crossref_primary_10_1109_97_611278 crossref_primary_10_1109_TMI_2004_824240 crossref_primary_10_1118_1_598624 crossref_primary_10_1006_rtim_1999_0172 crossref_primary_10_1117_1_1612511 crossref_primary_10_1016_j_ejrnm_2016_08_020 crossref_primary_10_1118_1_3013555 crossref_primary_10_1109_TMI_2004_834601 crossref_primary_10_1117_1_3099710 crossref_primary_10_1117_1_482700 crossref_primary_10_1006_rtim_2001_0285 crossref_primary_10_2460_ajvr_2003_64_1376 crossref_primary_10_1109_TMI_2005_855435 crossref_primary_10_1109_83_568929 crossref_primary_10_1109_TSMCA_2012_2210208 crossref_primary_10_1088_0031_9155_56_1_001 crossref_primary_10_3923_jas_2009_3531_3538 crossref_primary_10_1016_j_compmedimag_2005_03_002 crossref_primary_10_1364_JOSAA_16_000006 crossref_primary_10_1016_j_neucom_2007_06_015 crossref_primary_10_1080_03772063_2015_1009394 crossref_primary_10_1142_S0219691310003754 crossref_primary_10_1007_s10278_009_9224_6 crossref_primary_10_1016_j_artmed_2004_10_001 crossref_primary_10_1016_j_compbiomed_2012_07_001 crossref_primary_10_3348_kjr_2014_15_3_305 crossref_primary_10_1016_S0169_2607_03_00023_3 crossref_primary_10_1016_j_proeng_2011_08_091 crossref_primary_10_1016_j_bspc_2010_10_003 crossref_primary_10_1002_mp_12316 crossref_primary_10_1109_42_640740 crossref_primary_10_1259_bjr_70_837_9486066 crossref_primary_10_1007_s11042_019_7726_x crossref_primary_10_1016_j_artmed_2006_03_002 crossref_primary_10_1117_1_482685 crossref_primary_10_1118_1_4938059 crossref_primary_10_1016_S0895_6111_00_00009_4 crossref_primary_10_1007_s10278_022_00751_3 crossref_primary_10_1016_S0262_8856_01_00053_1 crossref_primary_10_1117_1_482725 crossref_primary_10_1016_j_medengphy_2006_07_012 |
| Cites_doi | 10.1002/1097-0142(19880115)61:2<263::AID-CNCR2820610211>3.0.CO;2-Z 10.1016/S0033-8389(22)02489-7 10.1118/1.596065 10.1109/83.136597 10.1148/radiology.137.1.7422830 10.1007/BF00271628 10.1002/cpa.3160450502 10.1259/0007-1285-60-717-887 10.1097/00004424-199010000-00006 10.1109/78.157290 10.1007/BFb0033756 10.1117/12.148665 10.1109/ISCAS.1993.692591 10.1117/12.955926 10.3322/canjclin.40.1.9 10.1148/radiology.169.2.3174981 10.1142/S0218001493000698 10.1109/42.310880 10.1148/radiology.160.2.3523590 10.1109/TSMC.1976.4309486 10.1097/00004424-199009000-00002 10.1088/0031-9155/35/8/007 10.1038/bjc.1989.196 10.1148/radiology.165.1.3628795 10.1148/radiology.160.2.3726103 10.1109/18.119724 10.1117/12.130912 10.1364/AO.22.001462 10.1117/12.175126 10.1109/18.86995 10.1117/12.130911 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7QO 8FD FR3 P64 7SC 7U5 JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/42.491423 |
| DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database Engineering Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 229 |
| ExternalDocumentID | 18215904 10_1109_42_491423 491423 |
| Genre | orig-research Journal Article |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION NPM RIG 7QO 8FD FR3 P64 7SC 7U5 JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c389t-fb2372fc7f2eeb891817ac74f8f694500fdee400b9364d5673a4eefcd3f583263 |
| IEDL.DBID | RIE |
| ISSN | 0278-0062 |
| IngestDate | Wed Oct 01 12:50:06 EDT 2025 Sat Sep 27 21:13:05 EDT 2025 Mon Oct 06 18:05:44 EDT 2025 Mon Jul 21 06:00:00 EDT 2025 Thu Apr 24 23:10:52 EDT 2025 Wed Oct 01 03:55:09 EDT 2025 Wed Aug 27 02:29:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-fb2372fc7f2eeb891817ac74f8f694500fdee400b9364d5673a4eefcd3f583263 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PMID | 18215904 |
| PQID | 15724883 |
| PQPubID | 23462 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1109_42_491423 proquest_miscellaneous_734246099 crossref_primary_10_1109_42_491423 proquest_miscellaneous_28760654 ieee_primary_491423 proquest_miscellaneous_15724883 pubmed_primary_18215904 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 1900 |
| PublicationDate | 1996-04-01 |
| PublicationDateYYYYMMDD | 1996-04-01 |
| PublicationDate_xml | – month: 04 year: 1996 text: 1996-04-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 1996 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref34 ref12 ref37 ref36 ref14 ref31 ref32 ref10 barman (ref27) 1993 ref2 ref39 ref38 ref16 ref19 ref18 bassett (ref1) 1992; 30 lanyi (ref4) 1986 laine (ref25) 1992; 1768 karssemeijer (ref20) 1992 laine (ref26) 0 ref23 strickland (ref43) 1994 nishikawa (ref15) 1993 baines (ref7) 1986; 160 ref42 jain (ref33) 1989 ref21 richardson (ref24) 1992; 1768 ref29 ref8 chan (ref13) 1988; 23 reeves (ref22) 1992; 65 ref9 kegelmeyer (ref17) 1994 ref3 ref6 pratt (ref30) 1991 silverberg (ref11) 1990; 40 ref40 lopez (ref5) 1989; 106 quick (ref41) 1974; 16 qian (ref28) 1993; 1905 |
| References_xml | – start-page: 3 year: 1994 ident: ref17 article-title: dense feature maps for detection of microcalcifications publication-title: Proceedings Second International Workshop on Digital Mammography – ident: ref2 doi: 10.1002/1097-0142(19880115)61:2<263::AID-CNCR2820610211>3.0.CO;2-Z – start-page: 479 year: 1993 ident: ref27 article-title: using simple local fourier domain models for computer-aided analysis of mammograms publication-title: Proc 8th Scandinavian Conf Image Anal – volume: 30 start-page: 93 year: 1992 ident: ref1 article-title: mammographic analysis of calcifications publication-title: Radiol Clin No Amer doi: 10.1016/S0033-8389(22)02489-7 – ident: ref12 doi: 10.1118/1.596065 – year: 1991 ident: ref30 publication-title: Digital Image Processing – ident: ref40 doi: 10.1109/83.136597 – ident: ref3 doi: 10.1148/radiology.137.1.7422830 – volume: 16 start-page: 65 year: 1974 ident: ref41 article-title: a vector magnitude model of contrast detection publication-title: Kybernetic doi: 10.1007/BF00271628 – ident: ref36 doi: 10.1002/cpa.3160450502 – start-page: 472 year: 1992 ident: ref20 article-title: adaptive noise equalization and image analysis in mammography publication-title: 13th Int Conf Inform Processing Med Imag – ident: ref21 doi: 10.1259/0007-1285-60-717-887 – ident: ref14 doi: 10.1097/00004424-199010000-00006 – ident: ref37 doi: 10.1109/78.157290 – start-page: 442 year: 1993 ident: ref15 article-title: computer-aided detection and diagnosis of masses and clustered microcalcifications from digital mammograms publication-title: Biomedical Image Processing and Biomedical Visualization Proc SPIE 1905 – ident: ref19 doi: 10.1007/BFb0033756 – volume: 1905 start-page: 509 year: 1993 ident: ref28 article-title: tree-structured nonlinear filter and wavelet transform for microcalcification segmentation in mammography publication-title: Proc SPIE Biomedical Image Processing and Biomedical Visualization doi: 10.1117/12.148665 – volume: 106 start-page: 590 year: 1989 ident: ref5 article-title: breast cancer detected by screening: the importance of long-term follow-up publication-title: Surg – ident: ref35 doi: 10.1109/ISCAS.1993.692591 – ident: ref42 doi: 10.1117/12.955926 – volume: 40 start-page: 9 year: 1990 ident: ref11 article-title: cancer statistics, 1990 publication-title: Ca‐ A J Clinicians doi: 10.3322/canjclin.40.1.9 – start-page: 91 year: 0 ident: ref26 article-title: a framework for contrast enhancement by dyadic wavelet analysis publication-title: Proc 2nd Int Workshop on Digital Mammography – ident: ref18 doi: 10.1148/radiology.169.2.3174981 – ident: ref16 doi: 10.1142/S0218001493000698 – ident: ref31 doi: 10.1109/42.310880 – volume: 160 start-page: 295 year: 1986 ident: ref7 article-title: sensitivity and specificity of first screen mammography in the canadian national breast screening study publication-title: Radiol doi: 10.1148/radiology.160.2.3523590 – ident: ref32 doi: 10.1109/TSMC.1976.4309486 – year: 1994 ident: ref43 article-title: detection of microcalcifications using wavelets publication-title: Proc 2nd Int Workshop Dig Mammogr – ident: ref8 doi: 10.1097/00004424-199009000-00002 – ident: ref23 doi: 10.1088/0031-9155/35/8/007 – ident: ref10 doi: 10.1038/bjc.1989.196 – ident: ref9 doi: 10.1148/radiology.165.1.3628795 – ident: ref6 doi: 10.1148/radiology.160.2.3726103 – ident: ref38 doi: 10.1109/18.119724 – volume: 65 start-page: 96 year: 1992 ident: ref22 article-title: breast screening: deciphering the structure of mammographic microcalcification publication-title: British J Radiol – volume: 1768 start-page: 306 year: 1992 ident: ref25 article-title: multiscale wavelet representations for mammographic feature analysis publication-title: Proc SPIE Mathematical Methods Med Imag doi: 10.1117/12.130912 – start-page: 403 year: 1989 ident: ref33 publication-title: Fundamentals of Digital Image Processing – volume: 23 start-page: 664 year: 1988 ident: ref13 article-title: computer-aided detection of microcalcifications in mammograms: methodology and preliminary clinical study publication-title: Investigat Radiol – ident: ref34 doi: 10.1364/AO.22.001462 – ident: ref29 doi: 10.1117/12.175126 – ident: ref39 doi: 10.1109/18.86995 – volume: 1768 start-page: 293 year: 1992 ident: ref24 article-title: nonlinear filtering and multiscale texture discrimination for mammograms publication-title: Proc SPIE Mathematical Methods Med Imag doi: 10.1117/12.130911 – year: 1986 ident: ref4 publication-title: Diagnosis and Differential Diagnosis of Breast Calcifications |
| SSID | ssj0014509 |
| Score | 2.0290082 |
| Snippet | Clusters of fine, granular microcalcifications in mammograms may be an early sign of disease. Individual grains are difficult to detect and segment due to size... A two-stage method based on wavelet transforms has been developed for detecting and segmenting calcifications. The first stage is based on an undecimated... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 218 |
| SubjectTerms | Background noise Diseases Distributed computing Filter bank Gaussian noise Image segmentation Matched filters Object detection Shape Wavelet transforms |
| Title | Wavelet transforms for detecting microcalcifications in mammograms |
| URI | https://ieeexplore.ieee.org/document/491423 https://www.ncbi.nlm.nih.gov/pubmed/18215904 https://www.proquest.com/docview/15724883 https://www.proquest.com/docview/28760654 https://www.proquest.com/docview/734246099 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4BB9QeWti-tjxqoR56yZI4jh0fAYEQEj0VlVsU22OpaskiNnvh1zO2kwVVUPUSRdFESsZjz9jzzTcAX11ltXOqzWqndSa8kpkpOGZYaKzJ4VbGh43i5Xd5fiUurqvrgWc71sIgYgSf4Szcxly-m9tlOCo7FLog778O66qWqVRrlTAQVUJz8EAYm0s-kAgVuT4UfJZeDAShNbk4PXRlG71QbKvycoQZPc3Z21TCvYgEhQFg8nu27M3M3v9F3_ifP7EFb4aIkx0lE9mGNewm8PoJD-EENi-HDPs7OP7ZhlYUPevHiHbB6MochmwDSbObAOGjkY1gvnTex3517KYliw5Qr8V7uDo7_XFyng19FjJL4UqfecNLxb1VniOaWpPTV61VwtdealJs7h0izXWjSylcJVXZCkRvXekrWhBk-QE2unmHn4ApW2BR2jL31gshuKGAQxhHI59j7fJ6Ct9GvTd2ICEPvTD-NHEzkutG8CZpaAoHK9HbxLzxnNAkaHglMD79Mo5lQ7MlpEDaDufLRVNUitOS9Q8J2kHKUHA7BfaChCoFF5Ii6yl8THby-H2DeX1-9rN24FXCfAfczy5s9HdL3KOQpjf70ZgfAAMs8l8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkXgceCyv5VULceCSbeL4ER8BUS3Q7akVvUWxPZYQNIvY7IVfz9hOFoRaxCWKoomUzIw9Y8_nbwBeeemM97orGm9MIYJWha04FlgZbCjgShviQnF1rJan4uOZPBt5ttNZGERM4DNcxNtUy_drt41bZQfCVBT9r8I1KYSQ-bDWrmQgZMZz8EgZWyo-0ghVpTkQfJFfjRShDQU5M_Zlm-JQaqxyeY6ZYs3hnXyIe5MoCiPE5OtiO9iF-_kXgeN__sZduD3mnOxNdpJ7cAX7Gdz6g4lwBtdXY439Prz93MVmFAMbppx2w-jKPMZ6A0mz8wjiI9smOF_e8WNfenbekU9HsNfmAZwevj95tyzGTguFo4RlKILltebB6cARbWMo7OvOaRGaoAwptgwekUa7NbUSXipddwIxOF8HSVOCqh_CXr_u8TEw7SqsaleXwQWyEreUcgjryfYlNr5s5vB60nvrRhry2A3jW5uWI6VpBW-zhubwcif6PXNvXCQ0ixreCUxP9ydbtjReYhGk63G93bSV1JwmrX9I0BpSxSO3c2CXSOhacKEot57Do-wnv79vdK8nF37WPtxYnqyO2qMPx5-ews2MAI8ooGewN_zY4nNKcAb7Ijn2L9aa9aw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet+transforms+for+detecting+microcalcifications+in+mammograms&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Strickland%2C+R+N&rft.au=Hahn%2C+H+I&rft.date=1996-04-01&rft.issn=0278-0062&rft.volume=15&rft.issue=2&rft.spage=218&rft_id=info:doi/10.1109%2F42.491423&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |