A review of unsupervised feature learning and deep learning for time-series modeling

This paper gives a review of the recent developments in deep learning and unsupervised feature learning for time-series problems. While these techniques have shown promise for modeling static data, such as computer vision, applying them to time-series data is gaining increasing attention. This paper...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 42; no. 1; pp. 11 - 24
Main Authors Längkvist, Martin, Karlsson, Lars, Loutfi, Amy
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2014
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
1872-7344
DOI10.1016/j.patrec.2014.01.008

Cover

Abstract This paper gives a review of the recent developments in deep learning and unsupervised feature learning for time-series problems. While these techniques have shown promise for modeling static data, such as computer vision, applying them to time-series data is gaining increasing attention. This paper overviews the particular challenges present in time-series data and provides a review of the works that have either applied time-series data to unsupervised feature learning algorithms or alternatively have contributed to modifications of feature learning algorithms to take into account the challenges present in time-series data.
AbstractList This paper gives a review of the recent developments in deep learning and unsupervised feature learning for time-series problems. While these techniques have shown promise for modeling static data, such as computer vision, applying them to time-series data is gaining increasing attention. This paper overviews the particular challenges present in time-series data and provides a review of the works that have either applied time-series data to unsupervised feature learning algorithms or alternatively have contributed to modifications of feature learning algorithms to take into account the challenges present in time-series data.
Author Loutfi, Amy
Längkvist, Martin
Karlsson, Lars
Author_xml – sequence: 1
  givenname: Martin
  surname: Längkvist
  fullname: Längkvist, Martin
  email: martin.langkvist@oru.se
– sequence: 2
  givenname: Lars
  surname: Karlsson
  fullname: Karlsson, Lars
  email: lars.karlsson@oru.se
– sequence: 3
  givenname: Amy
  surname: Loutfi
  fullname: Loutfi, Amy
  email: amy.loutfi@oru.se
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-34597$$DView record from Swedish Publication Index
BookMark eNqNkctKAzEUhoNUsFbfwEUewBmTuWZcCKVeoeCmug2ZzElJmSZDMtPStzdlRMGFugiBc_7vJHznHE2MNYDQFSUxJbS42cSd6B3IOCE0iwmNCWEnaEpZmURlmmUTNA2xMmJFnp-hc-83hJAirdgUrebYwU7DHluFB-OHDtxOe2iwAtEPDnALwhlt1liYBjcA3XdFWYd7vYXIg9Pg8dY20IbGBTpVovVw-XnP0Nvjw2rxHC1fn14W82UkU1b1EaiyrhgomYIkOaGJyGkKrCA0VERdAyM1rau6rBjLaaESxSCXMqtoFSAl0hnKx7mD6cRhL9qWd05vhTtwSvhRDd_wUQ0_quGE8qAmcNcj5_fQDfUXZIXm9_p9zq1bhzPwNMurMsRvx7h01nsHikvdi15b0zuh27_eyn7A__zi3YhB8Bf247iXGoyERodozxurfx_wAVHxp7o
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108459
crossref_primary_10_1080_01932691_2023_2178453
crossref_primary_10_1016_j_asoc_2017_06_046
crossref_primary_10_1109_ACCESS_2024_3413948
crossref_primary_10_1155_2019_9240317
crossref_primary_10_1109_TNNLS_2022_3149091
crossref_primary_10_1016_j_asoc_2022_109726
crossref_primary_10_1109_JBHI_2020_2977937
crossref_primary_10_1166_jmihi_2021_3471
crossref_primary_10_1038_s41598_024_56674_2
crossref_primary_10_1080_14697688_2019_1634277
crossref_primary_10_1002_gdj3_281
crossref_primary_10_1016_j_eswa_2016_02_006
crossref_primary_10_1088_2057_1976_ad7bc0
crossref_primary_10_32604_iasc_2024_055133
crossref_primary_10_1002_rse2_141
crossref_primary_10_1016_j_eswa_2023_120619
crossref_primary_10_1109_TKDE_2019_2954510
crossref_primary_10_1016_j_neucom_2018_05_090
crossref_primary_10_1109_ACCESS_2024_3384066
crossref_primary_10_1145_3533382
crossref_primary_10_1007_s11269_016_1474_8
crossref_primary_10_1186_s13635_019_0090_6
crossref_primary_10_2339_politeknik_620613
crossref_primary_10_1016_j_eswa_2016_10_010
crossref_primary_10_1016_j_knosys_2018_06_026
crossref_primary_10_1016_j_enconman_2018_04_082
crossref_primary_10_1002_ente_202401696
crossref_primary_10_3390_en11082008
crossref_primary_10_1007_s11377_020_00494_z
crossref_primary_10_1016_j_eswa_2017_04_028
crossref_primary_10_3390_rs15194665
crossref_primary_10_3390_w15213779
crossref_primary_10_1016_j_future_2019_05_074
crossref_primary_10_31466_kfbd_1434595
crossref_primary_10_1016_j_apenergy_2017_03_064
crossref_primary_10_1109_JPROC_2023_3309299
crossref_primary_10_1109_TCYB_2016_2533545
crossref_primary_10_2118_221461_PA
crossref_primary_10_1016_j_eswa_2017_04_030
crossref_primary_10_1109_TITS_2018_2797943
crossref_primary_10_1142_S1469026821500103
crossref_primary_10_1007_s12559_023_10122_x
crossref_primary_10_3390_s17071564
crossref_primary_10_1016_j_energy_2022_125826
crossref_primary_10_3390_rs12244172
crossref_primary_10_1016_j_agsy_2021_103208
crossref_primary_10_1016_j_trf_2017_11_021
crossref_primary_10_1007_s10142_023_01064_6
crossref_primary_10_1364_OE_27_037150
crossref_primary_10_1007_s00500_023_08571_5
crossref_primary_10_3389_fenrg_2020_00179
crossref_primary_10_1109_JBHI_2020_2984128
crossref_primary_10_1002_eng2_12589
crossref_primary_10_3390_aerospace6110117
crossref_primary_10_3390_s24092833
crossref_primary_10_1155_2017_7259762
crossref_primary_10_1155_2019_2985014
crossref_primary_10_1527_tjsai_35_5_B_K33
crossref_primary_10_3390_buildings13030627
crossref_primary_10_1016_j_knosys_2019_105022
crossref_primary_10_1038_s41598_020_61173_1
crossref_primary_10_1016_j_neucom_2021_04_051
crossref_primary_10_1109_TVT_2019_2949954
crossref_primary_10_2166_hydro_2023_170
crossref_primary_10_1007_s40436_024_00526_9
crossref_primary_10_1109_ACCESS_2021_3079447
crossref_primary_10_1080_08982112_2022_2087041
crossref_primary_10_1109_ACCESS_2019_2941799
crossref_primary_10_1364_AO_58_000164
crossref_primary_10_1016_j_artmed_2022_102486
crossref_primary_10_1109_TMM_2019_2895505
crossref_primary_10_3390_w14050763
crossref_primary_10_1007_s11336_022_09858_6
crossref_primary_10_1109_ACCESS_2021_3076281
crossref_primary_10_3390_s23010062
crossref_primary_10_1109_TIM_2016_2573078
crossref_primary_10_3390_s19092201
crossref_primary_10_3390_electronics11152280
crossref_primary_10_1016_j_cma_2024_117399
crossref_primary_10_1088_1757_899X_1238_1_012065
crossref_primary_10_1016_j_procir_2021_11_261
crossref_primary_10_3390_s21020603
crossref_primary_10_1016_j_apacoust_2019_107141
crossref_primary_10_3390_f16030449
crossref_primary_10_1016_j_eswa_2020_113271
crossref_primary_10_3390_ijms20112656
crossref_primary_10_1016_j_heliyon_2022_e08803
crossref_primary_10_1016_j_bspc_2017_06_012
crossref_primary_10_1016_j_ins_2014_05_029
crossref_primary_10_1109_ACCESS_2020_3029202
crossref_primary_10_3233_AF_180235
crossref_primary_10_1016_j_isatra_2020_07_039
crossref_primary_10_1016_j_optlastec_2023_109807
crossref_primary_10_1002_cpe_4403
crossref_primary_10_3389_fbioe_2024_1351485
crossref_primary_10_1109_TBDATA_2019_2918807
crossref_primary_10_1007_s12145_020_00462_9
crossref_primary_10_1061__ASCE_HE_1943_5584_0001694
crossref_primary_10_1016_j_cj_2019_06_005
crossref_primary_10_1088_1741_2552_abd461
crossref_primary_10_1016_j_patrec_2016_12_018
crossref_primary_10_1007_s12652_018_0867_3
crossref_primary_10_3233_JIFS_221188
crossref_primary_10_3389_frobt_2016_00076
crossref_primary_10_1016_j_eswa_2022_119152
crossref_primary_10_1371_journal_pone_0175025
crossref_primary_10_1016_j_eswa_2020_113562
crossref_primary_10_1016_j_scitotenv_2020_140338
crossref_primary_10_1371_journal_pone_0212137
crossref_primary_10_5194_essd_17_1173_2025
crossref_primary_10_1016_j_neucom_2021_10_010
crossref_primary_10_1109_ACCESS_2018_2877097
crossref_primary_10_3390_mi13030363
crossref_primary_10_1038_s41598_019_48874_y
crossref_primary_10_1007_s10479_024_06056_8
crossref_primary_10_1016_j_yebeh_2018_11_011
crossref_primary_10_1007_s11063_020_10248_1
crossref_primary_10_1016_j_jvcir_2018_06_030
crossref_primary_10_1080_15376494_2023_2253548
crossref_primary_10_1061_JBENF2_BEENG_6012
crossref_primary_10_1016_j_enconman_2018_03_098
crossref_primary_10_1016_j_eswa_2020_113337
crossref_primary_10_1049_cmu2_12783
crossref_primary_10_1080_08839514_2020_1713454
crossref_primary_10_1515_comp_2022_0236
crossref_primary_10_3390_s20010168
crossref_primary_10_1016_j_neucom_2020_07_108
crossref_primary_10_1016_j_bspc_2024_105971
crossref_primary_10_1007_s11277_017_5086_2
crossref_primary_10_1016_j_ymssp_2020_107072
crossref_primary_10_1109_ACCESS_2023_3235619
crossref_primary_10_1109_COMST_2022_3232576
crossref_primary_10_1016_j_patrec_2017_06_008
crossref_primary_10_1007_s00607_024_01370_2
crossref_primary_10_1109_JBHI_2017_2727218
crossref_primary_10_1016_j_jbi_2020_103565
crossref_primary_10_1016_j_future_2017_08_031
crossref_primary_10_3390_s20030903
crossref_primary_10_3390_s19112429
crossref_primary_10_3233_KES220010
crossref_primary_10_1007_s42979_022_01161_6
crossref_primary_10_3390_electronics10222851
crossref_primary_10_1109_TIM_2020_3017246
crossref_primary_10_24012_dumf_1079230
crossref_primary_10_1007_s13369_024_09818_5
crossref_primary_10_1016_j_eswa_2020_113463
crossref_primary_10_1175_JTECH_D_18_0141_1
crossref_primary_10_1016_j_cnsns_2019_105139
crossref_primary_10_1109_ACCESS_2020_3047186
crossref_primary_10_1109_ACCESS_2020_2995198
crossref_primary_10_1002_eng2_12541
crossref_primary_10_3390_electronics12051188
crossref_primary_10_1051_shsconf_202419703002
crossref_primary_10_3390_ijerph191912528
crossref_primary_10_2139_ssrn_3165408
crossref_primary_10_1109_JPROC_2015_2491979
crossref_primary_10_1186_s12911_024_02474_7
crossref_primary_10_1061_JWRMD5_WRENG_5444
crossref_primary_10_1016_j_bir_2024_01_011
crossref_primary_10_1016_j_cma_2019_05_052
crossref_primary_10_3233_ICA_210650
crossref_primary_10_1063_5_0024890
crossref_primary_10_1016_j_inffus_2018_09_001
crossref_primary_10_1007_s10489_022_03761_4
crossref_primary_10_1016_j_ribaf_2020_101291
crossref_primary_10_1016_j_jksuci_2019_02_001
crossref_primary_10_1016_j_jwpe_2024_105831
crossref_primary_10_1016_j_knosys_2017_03_027
crossref_primary_10_3390_s20144026
crossref_primary_10_1117_1_JRS_11_042609
crossref_primary_10_1002_nme_6918
crossref_primary_10_1007_s10618_019_00619_1
crossref_primary_10_1088_1742_6596_1496_1_012002
crossref_primary_10_1109_ACCESS_2021_3050836
crossref_primary_10_3390_s23115013
crossref_primary_10_1016_j_engappai_2023_106440
crossref_primary_10_3390_su10103498
crossref_primary_10_1007_s12206_018_1205_6
crossref_primary_10_1142_S1793545816300111
crossref_primary_10_1002_adma_201905522
crossref_primary_10_1016_j_neunet_2022_12_004
crossref_primary_10_1109_JBHI_2018_2879381
crossref_primary_10_1016_j_compind_2021_103421
crossref_primary_10_36558_22372903_2019V9N1_P3
crossref_primary_10_1016_j_knosys_2020_106551
crossref_primary_10_1016_j_conb_2018_12_010
crossref_primary_10_1097_PCC_0000000000001666
crossref_primary_10_3390_s21227620
crossref_primary_10_1007_s12046_023_02086_3
crossref_primary_10_1016_j_arcontrol_2019_07_003
crossref_primary_10_1109_TNNLS_2020_3017200
crossref_primary_10_1088_1361_6579_aad5bd
crossref_primary_10_1142_S0218001418500118
crossref_primary_10_1016_j_arr_2024_102651
crossref_primary_10_2139_ssrn_3394704
crossref_primary_10_1016_j_jksuci_2023_101820
crossref_primary_10_1016_j_knosys_2023_110660
crossref_primary_10_3390_e24020141
crossref_primary_10_1007_s00521_021_06212_2
crossref_primary_10_1007_s11036_020_01647_8
crossref_primary_10_1109_TKDE_2018_2863705
crossref_primary_10_1016_j_neucom_2022_03_014
crossref_primary_10_3390_app11199243
crossref_primary_10_1016_j_ndteint_2022_102756
crossref_primary_10_1109_OJITS_2022_3177007
crossref_primary_10_3390_s23229099
crossref_primary_10_3390_sym13101942
crossref_primary_10_1016_j_knosys_2014_12_003
crossref_primary_10_1007_s40747_021_00637_x
crossref_primary_10_1088_1757_899X_981_2_022021
crossref_primary_10_7717_peerj_cs_514
crossref_primary_10_1109_ACCESS_2019_2959022
crossref_primary_10_7717_peerj_cs_638
crossref_primary_10_1007_s00521_017_3324_x
crossref_primary_10_1021_acs_chemrestox_0c00316
crossref_primary_10_1088_1742_6596_1028_1_012212
crossref_primary_10_3389_fvets_2019_00153
crossref_primary_10_1109_JIOT_2024_3383512
crossref_primary_10_1103_PhysRevE_100_032410
crossref_primary_10_1007_s10489_021_02416_0
crossref_primary_10_1109_TIM_2021_3068180
crossref_primary_10_1016_j_compag_2025_110147
crossref_primary_10_1109_ACCESS_2019_2916793
crossref_primary_10_3390_diagnostics13243673
crossref_primary_10_1109_TNSRE_2022_3216528
crossref_primary_10_1080_0951192X_2022_2025623
crossref_primary_10_1016_j_chemolab_2020_103932
crossref_primary_10_1016_j_neucom_2021_02_046
crossref_primary_10_3390_s21165386
crossref_primary_10_1016_j_apenergy_2017_12_005
crossref_primary_10_1142_S1469026816500218
crossref_primary_10_1016_j_asoc_2024_111749
crossref_primary_10_1007_s00521_022_07328_9
crossref_primary_10_1088_2634_4386_ac734a
crossref_primary_10_2139_ssrn_4102488
crossref_primary_10_1109_ACCESS_2020_3025808
crossref_primary_10_1016_j_ast_2024_109760
crossref_primary_10_1007_s10489_019_01552_y
crossref_primary_10_1142_S0129183120501387
crossref_primary_10_3390_app14135658
crossref_primary_10_1097_CCM_0000000000003854
crossref_primary_10_1007_s10618_024_01018_x
crossref_primary_10_3390_s19184009
crossref_primary_10_1016_j_knosys_2020_105596
crossref_primary_10_3390_en13205504
crossref_primary_10_1007_s00521_020_05262_2
crossref_primary_10_1109_TIM_2020_3026497
crossref_primary_10_1177_0954406219834048
crossref_primary_10_1007_s11852_024_01038_1
crossref_primary_10_1016_j_neucom_2016_03_057
crossref_primary_10_1007_s11071_023_08251_x
crossref_primary_10_1016_j_jbi_2020_103627
crossref_primary_10_7717_peerj_8207
crossref_primary_10_1016_j_ijhydene_2024_05_338
crossref_primary_10_1007_s10489_023_05079_1
crossref_primary_10_3390_s23020826
crossref_primary_10_1093_mnras_stab3043
crossref_primary_10_1177_00202940221099064
crossref_primary_10_1155_2022_2897672
crossref_primary_10_1007_s42979_023_02159_4
crossref_primary_10_1016_j_ecoinf_2014_08_009
crossref_primary_10_1016_j_procs_2023_01_116
crossref_primary_10_1109_ACCESS_2021_3099111
crossref_primary_10_1109_TIE_2017_2767540
crossref_primary_10_1109_RBME_2017_2757953
crossref_primary_10_26599_BDMA_2023_9020028
crossref_primary_10_54097_jceim_v10i1_5763
crossref_primary_10_1016_j_geoen_2023_212528
crossref_primary_10_1159_000501735
crossref_primary_10_1109_LSENS_2018_2884735
crossref_primary_10_1177_09544054241229495
crossref_primary_10_1016_j_measurement_2019_106857
crossref_primary_10_1109_ACCESS_2022_3221436
crossref_primary_10_1109_TIA_2020_2976722
crossref_primary_10_1016_j_talanta_2021_122195
crossref_primary_10_1016_j_ipm_2023_103579
crossref_primary_10_1007_s11709_023_0942_5
crossref_primary_10_1109_TGRS_2017_2692281
crossref_primary_10_1155_2020_6518147
crossref_primary_10_1016_j_neucom_2018_09_082
crossref_primary_10_1109_ACCESS_2024_3516215
crossref_primary_10_1016_j_knosys_2017_09_023
crossref_primary_10_1007_s10489_023_05155_6
crossref_primary_10_1080_10106049_2021_1926555
crossref_primary_10_1016_j_neucom_2023_126435
crossref_primary_10_3103_S0747923918010073
crossref_primary_10_1051_wujns_2022276521
crossref_primary_10_1016_j_engappai_2022_105591
crossref_primary_10_3390_rs10030452
crossref_primary_10_1016_j_bspc_2016_11_013
crossref_primary_10_1016_j_cmpb_2018_04_005
crossref_primary_10_1049_iet_spr_2020_0154
crossref_primary_10_1177_1475921720942836
crossref_primary_10_1007_s11071_015_2571_6
crossref_primary_10_3390_s22093468
crossref_primary_10_1007_s42488_019_00004_z
crossref_primary_10_1016_j_cie_2023_109701
crossref_primary_10_1038_s42003_021_01699_w
crossref_primary_10_26599_TST_2023_9010056
crossref_primary_10_1007_s00103_019_03080_z
crossref_primary_10_1080_1051712X_2024_2397542
crossref_primary_10_3390_s23198330
crossref_primary_10_1109_ACCESS_2021_3112397
crossref_primary_10_3390_electronics9122207
crossref_primary_10_1016_j_patcog_2019_107122
crossref_primary_10_3389_fenvs_2023_1187201
crossref_primary_10_1007_s12598_024_02766_x
crossref_primary_10_1109_ACCESS_2019_2938227
crossref_primary_10_1016_j_bspc_2022_103557
crossref_primary_10_1109_JBHI_2018_2871678
crossref_primary_10_1016_j_jhydrol_2015_11_011
crossref_primary_10_1007_s00521_018_3895_1
crossref_primary_10_1088_1757_899X_646_1_012027
crossref_primary_10_1159_000501951
crossref_primary_10_1016_j_eswa_2014_11_069
crossref_primary_10_1016_j_knosys_2020_106527
crossref_primary_10_1145_3605775
crossref_primary_10_1007_s00521_024_09587_0
crossref_primary_10_1016_j_psep_2024_08_055
crossref_primary_10_1007_s13042_018_0847_0
crossref_primary_10_3390_app12146883
crossref_primary_10_1007_s12204_023_2609_8
crossref_primary_10_3390_su141912232
crossref_primary_10_1155_2022_7682274
crossref_primary_10_1007_s10846_015_0213_3
crossref_primary_10_7717_peerj_cs_982
crossref_primary_10_1109_ACCESS_2022_3141767
crossref_primary_10_1109_JSEN_2018_2871599
crossref_primary_10_1016_j_gpb_2017_07_003
crossref_primary_10_1109_ACCESS_2020_2976601
crossref_primary_10_1287_isre_2021_1072
crossref_primary_10_1007_s00477_021_02161_3
crossref_primary_10_1016_j_dcan_2022_06_019
crossref_primary_10_1007_s10479_016_2308_z
crossref_primary_10_1109_ACCESS_2022_3211306
crossref_primary_10_1109_TSMC_2017_2705582
crossref_primary_10_5194_hess_26_1727_2022
crossref_primary_10_1016_j_isprsjprs_2021_02_008
crossref_primary_10_3390_app9152980
crossref_primary_10_1016_j_isatra_2022_02_018
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1016_j_rse_2019_111599
crossref_primary_10_1145_3649448
crossref_primary_10_1016_j_enbuild_2020_110520
crossref_primary_10_1016_j_asoc_2014_12_034
crossref_primary_10_1016_j_engfailanal_2022_106791
crossref_primary_10_14778_3342263_3342648
crossref_primary_10_1364_OE_389231
crossref_primary_10_1109_TIE_2018_2851977
crossref_primary_10_1016_j_eswa_2019_113119
crossref_primary_10_1016_j_trac_2024_117656
crossref_primary_10_1007_s13369_024_09821_w
crossref_primary_10_1007_s11548_018_1860_1
crossref_primary_10_1016_j_asoc_2023_110314
crossref_primary_10_3390_s17020403
crossref_primary_10_1177_0309524X221076976
crossref_primary_10_1007_s10723_020_09510_6
crossref_primary_10_2200_S00914ED2V01Y201904SPR017
crossref_primary_10_1093_sleep_zsae184
crossref_primary_10_3390_s20030874
crossref_primary_10_1109_ACCESS_2019_2949740
crossref_primary_10_1109_TIV_2019_2960946
crossref_primary_10_1155_2020_1496973
crossref_primary_10_1587_transcom_2017EBP3219
crossref_primary_10_3390_math9202574
crossref_primary_10_1109_ACCESS_2021_3064854
crossref_primary_10_1002_cpe_4184
crossref_primary_10_1016_j_asoc_2018_04_024
crossref_primary_10_1007_s11332_019_00557_x
crossref_primary_10_3390_app9081526
crossref_primary_10_1142_S0218539319500293
crossref_primary_10_1049_itr2_12570
crossref_primary_10_1007_s00466_023_02403_x
crossref_primary_10_1016_j_procs_2017_09_066
crossref_primary_10_1088_1757_899X_383_1_012018
crossref_primary_10_1016_j_neucom_2021_07_054
crossref_primary_10_1002_isaf_1488
crossref_primary_10_1016_j_eswa_2018_03_056
crossref_primary_10_1155_2021_5360828
crossref_primary_10_1016_j_psep_2021_10_036
crossref_primary_10_1093_forestry_cpy034
crossref_primary_10_1109_TSMC_2020_2964519
crossref_primary_10_1109_TCYB_2024_3498100
crossref_primary_10_2355_isijinternational_ISIJINT_2024_098
crossref_primary_10_57062_ijpem_st_2023_0115
crossref_primary_10_3390_info11010002
crossref_primary_10_1016_j_buildenv_2021_108498
crossref_primary_10_1109_MAP_2020_3043469
crossref_primary_10_1109_TII_2022_3172902
crossref_primary_10_1016_j_cie_2021_107371
crossref_primary_10_3390_en16052153
crossref_primary_10_1155_2021_8829403
crossref_primary_10_1109_TCSVT_2020_3035824
crossref_primary_10_3390_en11051040
crossref_primary_10_1016_j_eswa_2018_11_023
crossref_primary_10_1007_s10844_019_00582_9
crossref_primary_10_1016_j_ymssp_2020_107322
crossref_primary_10_1016_j_aej_2020_05_037
crossref_primary_10_3390_s17020319
crossref_primary_10_1016_j_eswa_2022_117704
crossref_primary_10_1155_2016_5642856
crossref_primary_10_1007_s10064_024_03941_1
crossref_primary_10_1016_j_resourpol_2021_102189
crossref_primary_10_1109_ACCESS_2021_3053864
crossref_primary_10_1002_cite_202200224
crossref_primary_10_1007_s11783_024_1768_7
crossref_primary_10_1186_s13673_019_0177_6
crossref_primary_10_1016_j_apenergy_2020_115402
crossref_primary_10_1016_j_trc_2020_102763
crossref_primary_10_1080_02664763_2021_1936468
crossref_primary_10_3390_rs8040329
crossref_primary_10_3390_s22197177
crossref_primary_10_3390_su151310543
crossref_primary_10_1080_24725854_2019_1632502
crossref_primary_10_1016_j_medengphy_2016_12_011
crossref_primary_10_1177_1932296819881452
crossref_primary_10_1145_3478088
crossref_primary_10_1016_j_eswa_2020_114095
crossref_primary_10_1109_ACCESS_2019_2898028
crossref_primary_10_1109_TGRS_2019_2945719
crossref_primary_10_3390_s21196666
crossref_primary_10_1016_j_engappai_2017_07_007
crossref_primary_10_3390_s19061333
crossref_primary_10_7717_peerj_cs_1076
crossref_primary_10_1002_nme_6593
crossref_primary_10_1061__ASCE_EM_1943_7889_0001556
crossref_primary_10_1155_2019_7816154
crossref_primary_10_3390_e26040311
crossref_primary_10_3390_app9020226
crossref_primary_10_1016_j_eswa_2019_113042
crossref_primary_10_1155_2019_7410701
crossref_primary_10_1155_2022_7025338
crossref_primary_10_1016_j_patcog_2020_107298
crossref_primary_10_3390_a15070252
crossref_primary_10_1016_j_imavis_2019_06_010
crossref_primary_10_1016_j_neuri_2021_100037
crossref_primary_10_29375_25392115_3718
crossref_primary_10_3390_a9040070
crossref_primary_10_1016_j_oceaneng_2021_109559
crossref_primary_10_1109_TAFFC_2021_3114365
crossref_primary_10_1016_j_neucom_2015_07_113
crossref_primary_10_1051_matecconf_202030903037
crossref_primary_10_1093_plphys_kiab322
crossref_primary_10_1109_TKDE_2020_3035685
crossref_primary_10_1007_s43069_021_00079_8
crossref_primary_10_1142_S2424786322500141
crossref_primary_10_34133_2020_4261965
crossref_primary_10_1093_cercor_bhac155
crossref_primary_10_1016_j_snb_2019_126690
crossref_primary_10_1520_SSMS20190039
crossref_primary_10_1088_1741_2552_aaf12e
crossref_primary_10_1109_TSG_2023_3237011
crossref_primary_10_1109_ACCESS_2019_2936564
crossref_primary_10_3390_s19051223
crossref_primary_10_3390_app11136238
crossref_primary_10_1016_j_advwatres_2020_103622
crossref_primary_10_1016_j_asoc_2019_105970
crossref_primary_10_1016_j_eswa_2022_118962
crossref_primary_10_1016_j_patcog_2018_03_026
crossref_primary_10_1016_j_energy_2021_120100
crossref_primary_10_1016_j_ast_2018_07_024
crossref_primary_10_1016_j_enbuild_2022_112242
crossref_primary_10_1002_cepa_2184
crossref_primary_10_1038_s41598_019_55320_6
crossref_primary_10_1007_s11276_020_02250_1
crossref_primary_10_1016_j_comcom_2021_10_036
crossref_primary_10_3390_su12083103
crossref_primary_10_1016_j_neucom_2016_12_039
crossref_primary_10_1007_s00500_019_03856_0
crossref_primary_10_1016_j_compchemeng_2019_05_011
crossref_primary_10_1016_j_ijleo_2019_163675
crossref_primary_10_1038_s41698_019_0104_3
crossref_primary_10_1002_cjoc_202000393
crossref_primary_10_1177_0361198119849059
crossref_primary_10_3390_jmse8090713
crossref_primary_10_1016_j_ins_2018_10_026
crossref_primary_10_1021_acs_jpclett_2c00576
crossref_primary_10_1007_s13246_021_01013_2
crossref_primary_10_1007_s13278_021_00805_4
crossref_primary_10_1016_j_apmrv_2023_09_001
crossref_primary_10_1051_ro_2023029
crossref_primary_10_1007_s00740_021_00424_x
crossref_primary_10_1155_2019_6862031
crossref_primary_10_1016_j_patrec_2019_03_018
crossref_primary_10_3390_app8081286
crossref_primary_10_1117_1_JMI_7_1_012706
crossref_primary_10_3390_s19122690
crossref_primary_10_1109_TMM_2020_2987693
crossref_primary_10_1002_sta4_294
crossref_primary_10_1016_j_heliyon_2024_e27860
crossref_primary_10_1007_s10515_021_00319_5
crossref_primary_10_1007_s11704_019_8395_7
crossref_primary_10_1016_j_compchemeng_2022_107884
crossref_primary_10_1109_JBHI_2020_2991043
crossref_primary_10_1109_TNNLS_2016_2551940
crossref_primary_10_1063_1_5095060
crossref_primary_10_1016_j_asoc_2020_106068
crossref_primary_10_1016_j_neunet_2023_03_038
crossref_primary_10_1002_isaf_1404
crossref_primary_10_1007_s00521_023_08798_1
crossref_primary_10_1016_j_ic_2024_105209
crossref_primary_10_1042_BCJ20210535
crossref_primary_10_1002_isaf_1408
crossref_primary_10_1021_acs_chemrev_2c00061
crossref_primary_10_1007_s00170_021_07784_y
crossref_primary_10_1109_ACCESS_2018_2872796
crossref_primary_10_1109_ACCESS_2020_3011060
crossref_primary_10_1016_j_comnet_2019_01_019
crossref_primary_10_1007_s10614_024_10583_8
crossref_primary_10_1016_j_jprocont_2022_08_003
crossref_primary_10_1016_j_neucom_2018_03_074
crossref_primary_10_4258_hir_2018_24_3_170
crossref_primary_10_1080_10705511_2023_2169698
crossref_primary_10_47000_tjmcs_897631
crossref_primary_10_54097_ijeh_v9i2_9584
crossref_primary_10_1016_j_patrec_2020_06_006
crossref_primary_10_1109_JSTARS_2016_2608358
crossref_primary_10_1155_2018_1350692
crossref_primary_10_1016_j_asoc_2017_12_022
crossref_primary_10_1016_j_asoc_2021_107443
crossref_primary_10_1007_s00117_019_00624_x
crossref_primary_10_1109_ACCESS_2020_3038314
crossref_primary_10_1016_j_future_2017_10_004
crossref_primary_10_1109_TBME_2019_2898871
crossref_primary_10_1007_s11227_020_03603_5
crossref_primary_10_1109_JIOT_2023_3243391
crossref_primary_10_1016_j_compchemeng_2025_109097
crossref_primary_10_1016_j_neunet_2023_06_033
crossref_primary_10_1016_j_cmpb_2021_106116
crossref_primary_10_1002_int_22370
crossref_primary_10_1073_pnas_2403771121
crossref_primary_10_1109_ACCESS_2020_3041600
crossref_primary_10_1016_j_neucom_2020_03_009
crossref_primary_10_1109_ACCESS_2021_3131274
crossref_primary_10_4316_AECE_2020_02005
crossref_primary_10_1016_j_ins_2016_01_082
crossref_primary_10_1038_s41598_018_35044_9
crossref_primary_10_1016_j_artmed_2020_101999
crossref_primary_10_3390_electronics8030292
crossref_primary_10_1007_s11042_019_08453_9
crossref_primary_10_1049_iet_cvi_2016_0355
crossref_primary_10_3934_mbe_2023046
crossref_primary_10_1016_j_ymssp_2020_107181
crossref_primary_10_4236_jdaip_2020_83012
crossref_primary_10_1002_widm_1430
crossref_primary_10_1016_j_cageo_2020_104461
crossref_primary_10_1016_j_ins_2021_12_061
crossref_primary_10_1063_1_5088533
crossref_primary_10_1016_j_patcog_2017_10_017
crossref_primary_10_1016_j_apergo_2021_103574
crossref_primary_10_1021_acs_jcim_9b00266
crossref_primary_10_3390_s20041158
crossref_primary_10_3390_app10072522
crossref_primary_10_3233_JIFS_169527
crossref_primary_10_1016_j_eswa_2020_114527
crossref_primary_10_1145_3450963
crossref_primary_10_1016_j_artint_2019_103176
crossref_primary_10_1109_THMS_2019_2938156
crossref_primary_10_1063_5_0134464
crossref_primary_10_1016_j_cmpb_2021_106121
crossref_primary_10_1016_j_eswa_2019_112896
crossref_primary_10_1016_j_mlwa_2023_100517
crossref_primary_10_1111_mice_13311
crossref_primary_10_1016_j_optlastec_2025_112450
crossref_primary_10_1007_s10462_023_10443_1
crossref_primary_10_1016_j_cogr_2021_07_001
crossref_primary_10_1016_j_ijmedinf_2023_105004
crossref_primary_10_3389_fnhum_2020_00365
crossref_primary_10_1007_s10586_024_04684_0
crossref_primary_10_1115_1_4037435
crossref_primary_10_1002_er_4855
crossref_primary_10_3390_w15193427
crossref_primary_10_1016_j_patcog_2021_108490
crossref_primary_10_1016_j_patcog_2019_106973
crossref_primary_10_1016_j_coisb_2021_04_009
crossref_primary_10_3389_fphys_2019_01554
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1016_j_ecoinf_2021_101237
crossref_primary_10_1007_s12028_022_01449_8
crossref_primary_10_1016_j_jclepro_2024_144287
crossref_primary_10_1109_TETC_2022_3143154
crossref_primary_10_1038_s41598_020_76129_8
crossref_primary_10_1371_journal_pone_0119044
crossref_primary_10_1109_ACCESS_2019_2910239
crossref_primary_10_1109_JIOT_2022_3213892
crossref_primary_10_1186_s12918_018_0626_2
crossref_primary_10_3390_su15010272
crossref_primary_10_1115_1_4056287
crossref_primary_10_1109_TEVC_2019_2925722
crossref_primary_10_1061__ASCE_CP_1943_5487_0000797
crossref_primary_10_3390_jlpea13020039
crossref_primary_10_1109_ACCESS_2020_3035347
crossref_primary_10_1109_ACCESS_2021_3097614
crossref_primary_10_1016_j_actaastro_2022_06_026
crossref_primary_10_1016_j_ijcce_2023_02_002
crossref_primary_10_1002_eng2_12739
crossref_primary_10_1109_ACCESS_2021_3064819
crossref_primary_10_1016_j_eswa_2021_114800
crossref_primary_10_3390_forecast5010017
crossref_primary_10_3233_IDA_240002
crossref_primary_10_3390_mi11070642
crossref_primary_10_1109_TR_2019_2907402
crossref_primary_10_1155_2018_8125126
crossref_primary_10_1109_TIM_2022_3212547
crossref_primary_10_1016_j_icheatmasstransfer_2016_05_031
crossref_primary_10_1007_s00034_019_01103_3
crossref_primary_10_1061__ASCE_ST_1943_541X_0002535
crossref_primary_10_1007_s11269_021_02990_5
crossref_primary_10_1007_s10586_018_2385_7
crossref_primary_10_1016_j_eswa_2020_113609
crossref_primary_10_1016_j_compag_2020_105888
crossref_primary_10_1016_j_neunet_2021_01_001
crossref_primary_10_1109_LCOMM_2020_2968902
crossref_primary_10_1007_s10489_019_01526_0
crossref_primary_10_1016_j_patrec_2020_05_019
crossref_primary_10_1109_ACCESS_2019_2942040
crossref_primary_10_1016_j_chaos_2018_06_015
crossref_primary_10_1016_j_procir_2019_03_012
crossref_primary_10_1016_j_finel_2019_103377
crossref_primary_10_1016_j_asoc_2024_112116
crossref_primary_10_3390_w12020440
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_1111_epi_13907
crossref_primary_10_3390_app9153041
crossref_primary_10_1016_j_engappai_2024_109740
crossref_primary_10_35234_fumbd_1425635
crossref_primary_10_3233_IDA_184403
crossref_primary_10_1007_s12652_022_03910_0
crossref_primary_10_3389_fenvs_2024_1445967
crossref_primary_10_1007_s10596_020_10005_2
crossref_primary_10_1186_s13073_016_0319_7
crossref_primary_10_1016_j_cogsys_2020_04_003
crossref_primary_10_1177_1687814017704146
crossref_primary_10_1016_j_jbi_2021_103694
crossref_primary_10_1016_j_knosys_2020_106081
crossref_primary_10_1080_0952813X_2022_2093407
crossref_primary_10_1109_TCSVT_2020_3042559
crossref_primary_10_1016_j_sna_2017_12_011
crossref_primary_10_1016_j_ocemod_2023_102232
crossref_primary_10_1038_s41598_024_58680_w
crossref_primary_10_1016_j_knosys_2017_05_026
crossref_primary_10_3390_s18092809
crossref_primary_10_3390_make2040027
crossref_primary_10_1007_s41060_019_00177_1
crossref_primary_10_1109_ACCESS_2024_3358452
crossref_primary_10_3390_su10010085
crossref_primary_10_1002_smsc_202300306
crossref_primary_10_1016_j_ymssp_2024_111347
crossref_primary_10_1016_j_rser_2018_04_013
crossref_primary_10_2166_ws_2020_277
crossref_primary_10_2355_tetsutohagane_TETSU_2022_098
crossref_primary_10_1016_j_asoc_2017_05_011
crossref_primary_10_1016_j_neucom_2016_09_064
crossref_primary_10_1109_ACCESS_2020_3015529
crossref_primary_10_1080_17517575_2016_1218055
Cites_doi 10.1145/1553374.1553505
10.1145/1553374.1553475
10.3390/s130201578
10.1109/29.21701
10.1016/j.snb.2012.06.070
10.1145/775047.775062
10.1145/1081870.1081883
10.1364/JOSAA.20.001237
10.1007/978-3-642-21735-7_6
10.1016/j.eswa.2008.09.049
10.1007/978-3-642-04174-7_9
10.1109/JSEN.2002.800688
10.1016/S0925-4005(00)00482-2
10.1257/089533003321164958
10.1109/TKDE.2009.191
10.1088/1741-2560/8/3/036015
10.7551/mitpress/7503.003.0173
10.1162/089976602760128018
10.1162/089976602317318938
10.1016/j.snb.2007.12.032
10.1145/959242.959248
10.1109/ICASSP.2010.5495651
10.1109/ICASSP.1996.543213
10.1086/294743
10.1142/S0219622006002258
10.1016/j.jocs.2010.12.007
10.1080/10867651.1998.10487493
10.1109/72.536317
10.1016/j.conb.2005.10.011
10.1162/neco.2006.18.7.1527
10.1109/IJCNN.1999.836246
10.1162/089976600300015015
10.1145/345370.345409
10.1109/ISCAS.1991.176402
10.1145/1273496.1273619
10.1109/MSP.2012.2205597
10.1145/1273496.1273592
10.1109/TASL.2011.2109382
10.1016/S0925-2312(00)00358-1
10.1007/978-3-642-21735-7_7
10.1016/S0925-2312(98)00018-6
10.1049/ip-cds:19990670
10.1109/CVPR.2005.177
10.1162/neco.2008.04-07-510
10.1016/j.asoc.2010.09.007
10.1109/CVPR.2011.5995496
10.1126/science.1127647
10.1145/1553374.1553453
10.1016/j.eswa.2008.07.006
10.1109/ICASSP.2012.6288282
10.1109/CVPR.2010.5539773
10.1109/TSA.2004.828699
10.1109/TBME.2010.2049492
10.1016/S0925-2312(01)00706-8
10.1007/s10844-013-0248-5
10.1016/j.snb.2004.02.024
10.1007/978-3-642-15567-3_11
10.1007/s00217-005-0144-5
10.1016/j.snb.2006.12.039
10.1161/01.CIR.101.23.e215
10.1016/j.eswa.2007.06.023
10.1016/j.dss.2010.08.028
10.1109/ICCV.1999.790410
10.1162/neco.1997.9.8.1735
10.1109/TASL.2011.2134090
10.1016/S0925-4005(00)00548-7
10.1109/ICASSP.2013.6638947
10.1109/72.279181
10.1109/MASSP.1986.1165342
10.1109/CVPR.2010.5539962
10.1016/j.neuroimage.2009.08.028
10.1109/ROBOT.2001.933245
10.1162/neco.2010.01-09-953
10.1049/el:20010985
10.1016/S0925-4005(03)00574-4
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
AABEP
ADTPV
AOWAS
D8T
D91
ZZAVC
ADTOC
UNPAY
DOI 10.1016/j.patrec.2014.01.008
DatabaseName CrossRef
SWEPUB Örebro universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Örebro universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 24
ExternalDocumentID oai:DiVA.org:oru-34597
oai_DiVA_org_oru_34597
10_1016_j_patrec_2014_01_008
S0167865514000221
GroupedDBID --M
.DC
.~1
0R~
123
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
WH7
XPP
ZMT
~G-
--K
1B1
29O
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADMXK
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
IHE
R2-
RPZ
SBC
SDS
SEW
VOH
WUQ
Y6R
~HD
AABEP
ADTPV
AGCQF
AOWAS
D8T
D91
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c389t-ef7b98efc3ec05012a513e8601c3eabbe80b1b9b7988516f2f8e5cc4919efcfa3
IEDL.DBID .~1
ISSN 0167-8655
1872-7344
IngestDate Sun Oct 26 04:02:47 EDT 2025
Tue Sep 09 22:59:52 EDT 2025
Wed Oct 01 06:31:39 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Fri Feb 23 02:26:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Unsupervised feature learning
Deep learning
Time-series
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-ef7b98efc3ec05012a513e8601c3eabbe80b1b9b7988516f2f8e5cc4919efcfa3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-34597
PageCount 14
ParticipantIDs unpaywall_primary_10_1016_j_patrec_2014_01_008
swepub_primary_oai_DiVA_org_oru_34597
crossref_citationtrail_10_1016_j_patrec_2014_01_008
crossref_primary_10_1016_j_patrec_2014_01_008
elsevier_sciencedirect_doi_10_1016_j_patrec_2014_01_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Pattern recognition letters
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Ma (b0395) 2010; vol. 01
H. Kamyshanska, R. Memisevic, On autoencoder scoring, in: Proceedings of the 30th International Conference on Machine Learning (ICML-13), JMLR Workshop and Conference Proceedings, 2013, pp. 720–728.
Dahl, Ranzato, Mohamed, Hinton (b0115) 2010; 23
Nanopoulos, Alcock, Manolopoulos (b0485) 2001; 10
Yamazaki, Ludermir, De Souto (b0650) 2001; 37
E. Keogh, S. Kasetty, On the need for time series data mining benchmarks: a survey and empirical demonstration, in: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002, pp. 102–111.
J. Nam, J. Herrera, M. Slaney, J.O. Smith, Learning sparse feature representations for music annotation and retrieval, in: The International Society for Music Information Retrieval (ISMIR), 2012, pp. 565–570.
M. Ranzato, G. Hinton, Modeling pixel means and covariances using factorized third-order Boltzmann machines, in: Proceedings of Computer Vision and Pattern Recognition Conference (CVPR 2010), 2010.
G.W. Taylor, Composable, distributed-state models for high-dimensional time series (Ph.D. thesis), Department of Computer Science, University of Toronto, 2009.
Osuna, Nagle, Kermani, Schiffman (b0495) 2003
D. Stavens, S. Thrun, Unsupervised learning of invariant features using video, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 1649–1656.
Wulsin, Gupta, Mani, Blanco, Litt (b0645) 2011; 8
M. Ranzato, A. Krizhevsky, G. Hinton, Factored 3-way restricted Boltzmann machines for modeling natural images, in: Proceedings of the International Conference on Artificial Intelligence and Statistics, 2010.
Vito, Castaldo, Loffredo, Massera, Polichetti, Nasti, Vacca, Quercia, Francia (b0620) 2007; 124
S. Dieleman, P. Brakel, B. Schrauwen, Audio-based music classification with a pretrained convolutional network, in: The International Society for Music Information Retrieval (ISMIR), 2011.
K. Chang, J. Jang, C. Iliopoulos, Music genre classification via compressive sampling, in: Proceedings of the 11th International Conference on Music Information Retrieval (ISMIR), 2010, pp. 387–392.
Mirowski, LeCun, Madhavan, Kuzniecky (b0460) 2008
Sutskever, Hinton, Taylor (b0575) 2008
transform toolbox for music processing, in: Seventh Sound and Music Computing Conference, 2010.
A. Saxe, P. Koh, Z. Chen, M. Bhand, B. Suresh, A.Y. Ng, On random weights and unsupervised feature learning, in: Proceedings of the 28th International Conference on Machine Learning, 2011.
Dahl, Yu, Deng, Acero (b0110) 2012; 20
Jaitly, Hinton (b0305) 2011
.
Atsalakis, Valavanis (b0015) 2009; 36
Lafferty, McCallum, Pereira (b0340) 2001
R. Pascanu, T. Mikolov, Y. Bengio, Understanding the exploding gradient problem, Computing Research Repository (CoRR) abs/1211.5063, 2012.
Hinton (b0250) 2002; 14
J. Nam, Learning feature representations for music classification (Ph.D. thesis), Stanford University, 2012.
T. Duckett, M. Axelsson, A. Saffiotti, Learning to locate an odour source with a mobile robot, in: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, 2001, pp. 4017–4022.
LeCun, Kavukvuoglu, Farabet (b0375) 2010
Hinton, Osindero, Teh (b0265) 2006; 18
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b0195) 2000; 101
Zhang, Balaban, Principe (b0665) 2003; 96
W. Pan, L. Torresani, Unsupervised hierarchical modeling of locomotion styles, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 785–792.
Trincavelli, Coradeschi, Loutfi, Söderquist, Thunberg (b0600) 2010; 57
Bengio, Lamblin, Popovici, Larochelle (b0035) 2007; 19
Kavukcuoglu, Ranzato, Fergus, Le-Cun (b0325) 2009
I. Sutskever, Training recurrent neural networks (Ph.D. thesis), University of Toronto, 2012.
Pan, Yang (b0310) 2010; 22
Längkvist, Coradeschi, Loutfi, Rayappan (b0345) 2013; 13
W.Y. Zou, A.Y. Ng, K. Yu, Unsupervised learning of visual invariance with temporal coherence, in: NIPS 2011 Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
Carmona, Martinez, Zalacain, Rodriguez-Mendez, de Saja, Alonso (b0085) 2006; 223
Hyvärinen, Ramkumar, Parkkonen, Hari (b0295) 2010; 49
Memisevic, Hinton (b0440) 2007
Bennetts, Lilienthal, Neumann, Trincavelli (b0055) 2011; 4
Gleicher (b0190) 2000; 33
Luenberger (b0410) 1979
Furui, Kikuchi, Shinnaka, Hori (b0160) 2004; 12
Gers, Schmidhuber, Cummins (b0185) 2000; 12
Hinton, Salakhutdinov (b0245) 2006; 313
Kim (b0335) 1998; 20
C. Tucker, Self-organizing maps for time series analysis of electromyographic data, in: International Joint Conference on Neural Networks, 1999. IJCNN ’99, 1999, pp. 3577–3580.
E. Parris, M. Carey, Language independent gender identification, in: 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings, vol. 2, 1996, pp. 685–688.
Humphrey, Bello, LeCun (b0280) 2013; 41
M. Sugiyama, H. Sawai, A. Waibel, Review of tdnn (time delay neural network) architectures for speech recognition, in: IEEE International Sympoisum on Circuits and Systems, vol. 1, 1991, pp. 582–585.
Gärtner (b0180) 2003; 5
Hines, Llobet, Gardner (b0235) 1999; 146
Grassia (b0200) 1998; 3
T. van Kasteren, A. Noulas, B. Kröse, Conditional random fields versus hidden markov models for activity recognition in temporal sensor data, in: Proceedings of the 14th Annual Conference of the Advanced School for Computing and Imaging (ASCI’08), The Netherlands, 2008.
M. Längkvist, A. Loutfi, Not all signals are created equal: dynamic objective auto-encoder for multivariate data, in: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2012.
Hsieh, Hsiao, Yeh (b0275) 2011; 11
D. Lowe, Object recognition from local scale-invariant features, in: ICCV, 1999.
Hyvèarinen, Hurri, Hoyer (b0300) 2009; vol. 39
Lütkepohl (b0415) 2005
Zampolli, Elmi, Ahmed, Passini, Cardinali, Nicoletti, Dori (b0660) 2004; 101
R. Grosse, R. Raina, H. Kwong, A.Y. Ng, Shift-invariant sparse coding for audio classification, in: Conference on Uncertainty in Artificial Intelligence (UAI), 2007.
G. Taylor, G. Hinton, Factored conditional restricted Boltzmann machines for modeling motion style, in: Proceedings of the 26th International Conference on Machine Learning (ICML), 2009.
Q.V. Le, W.Y. Zou, S.Y. Yeung, A.Y. Ng, Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis, in: Computer Vision and Pattern Recognition (CVPR), 2011.
Gardner, Shin, Hines (b0170) 2000; 70
K. Markov, T. Matsui, Music genre classification using self-taught learning via sparse coding, in: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 1929–1932.
Yang, Wu (b0655) 2006; 05
Dutta, Hines, Gardner, Boilot (b0140) 2002; 1
Mirowski, LeCun (b0450) 2009
Agrawal, Chourasia, Mittra (b0005) 2013; 2
Martens, Sutskever (b0430) 2012; vol. 7700
Hyvärinen, Hurri, Väyrynen (b0290) 2003; 20
Rabiner, Juang (b0515) 1986; 3
M. Henaff, K. Jarrett, K. Kavukcuoglu, Y. LeCun, Unsupervised learning of sparse features for scalable audio classification, in: Proceedings of International Symposium on Music, Information Retrieval (ISMIR’11), 2011.
N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: CVPR, 2005.
Y. Bengio, A. Courville, P. Vincent, Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives. Technical Report, U. Montreal, 2012. Available from
P. Mirowski, D. Madhavan, Y. LeCun, Time-delay neural networks and independent component analysis for eeg-based prediction of epileptic seizures propagation, in: Association for the Advancement of Artificial Intelligence Conference, 2007.
G.E. Hinton, A. Krizhevsky, S.D. Wang, Transforming auto-encoders, in: Proceedings of the 21th International Conference on Artificial Neural Networks, vol. Part I, 2011, pp. 44–51.
Y. Bengio, L. Yao, G. Alain, P. Vincent, Generalized denoising auto-encoders as generative models. CoRR abs/1305.6663, 2013.
Lee, Largman, Pham, Ng (b0390) 2009; 22
Gardner, Bartlett (b0165) 1999
A. Graves, A. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013.
Bengio, LeCun (b0040) 2007
P. Hamel, D. Eck, Learning features from music audio with deep belief networks, in: 11th International Society for Music Information Retrieval Conference (ISMIR), 2010.
A. Mohamed, G. Hinton, Phone recognition using restricted Boltzmann machines, in: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2010, pp. 4354–4357.
G. Taylor, G.E. Hinton, S. Roweis, Modeling human motion using binary latent variables, in: Advances in Neural Information Processing Systems, 2007.
Tsai, Hsiao (b0605) 2010; 50
H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: 26th International Conference on Machine Learning, 2009.
J.M. Wang, D.J. Fleet, A. Hertzmann, Multi-factor Gaussian process models for style-content separation, in: International Conference of Machine Learning (ICML), 2007, pp. 975–982.
Hüsken, Stagge (b0285) 2003; 50
Gardner, Shin, Hines, Dow (b0175) 2000; 69
Bhattacharya, Tudu, Jana, Ghosh, Bandhopadhyaya, Bhuyan (b0060) 2008; 131
Memisevic, Hinton (b0445) 2010; 22
R. Raina, A. Battle, H. Lee, B. Packer, A.Y. Ng, Self-taught learning: transfer learning from unlabeled data, in: Proceedings of the 24th International Conference on Machine Learning, 2007.
Bengio, Simard, Frasconi (b0045) 1994; 5
Längkvist, Karlsson, Loutfi (b0350) 2012; 2012
Hinton (b0255) 2010; vol. 7700
Hochreiter, Schmidhuber (b0270) 1997; 9
Brand, Hertzmann (b0080) 2000
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: Proceedings of the 28th International Conference on Machine Learning, 2011.
C. Schoerkhuber, A. Klapuri, Constant-
Y. Bengio, Learning Deep Architectures for AI. Technical Report 1312. Dept. IRO, U
10.1016/j.patrec.2014.01.008_b0100
10.1016/j.patrec.2014.01.008_b0585
10.1016/j.patrec.2014.01.008_b0065
10.1016/j.patrec.2014.01.008_b0500
10.1016/j.patrec.2014.01.008_b0225
Carmona (10.1016/j.patrec.2014.01.008_b0085) 2006; 223
Dutta (10.1016/j.patrec.2014.01.008_b0140) 2002; 1
Lin (10.1016/j.patrec.2014.01.008_b0400) 2009; 36
Ranzato (10.1016/j.patrec.2014.01.008_b0535) 2006
10.1016/j.patrec.2014.01.008_b0580
Nanopoulos (10.1016/j.patrec.2014.01.008_b0485) 2001; 10
Gutierrez-Osuna (10.1016/j.patrec.2014.01.008_b0220) 2002; 2
Hochreiter (10.1016/j.patrec.2014.01.008_b0270) 1997; 9
Sutskever (10.1016/j.patrec.2014.01.008_b0575) 2008
Bengio (10.1016/j.patrec.2014.01.008_b0035) 2007; 19
Wang (10.1016/j.patrec.2014.01.008_b0630) 2013; 3
Malkiel (10.1016/j.patrec.2014.01.008_b0420) 2003; 17
Hüsken (10.1016/j.patrec.2014.01.008_b0285) 2003; 50
Trincavelli (10.1016/j.patrec.2014.01.008_b0600) 2010; 57
Gardner (10.1016/j.patrec.2014.01.008_b0170) 2000; 70
10.1016/j.patrec.2014.01.008_b0215
Hines (10.1016/j.patrec.2014.01.008_b0235) 1999; 146
10.1016/j.patrec.2014.01.008_b0475
Bottou (10.1016/j.patrec.2014.01.008_b0075) 2010
10.1016/j.patrec.2014.01.008_b0355
10.1016/j.patrec.2014.01.008_b0230
10.1016/j.patrec.2014.01.008_b0510
10.1016/j.patrec.2014.01.008_b0595
Dahl (10.1016/j.patrec.2014.01.008_b0115) 2010; 23
Flash (10.1016/j.patrec.2014.01.008_b0155) 2005; 15
10.1016/j.patrec.2014.01.008_b0590
Zhu (10.1016/j.patrec.2014.01.008_b0670) 2008; 34
Hinton (10.1016/j.patrec.2014.01.008_b0245) 2006; 313
10.1016/j.patrec.2014.01.008_b0470
Kim (10.1016/j.patrec.2014.01.008_b0335) 1998; 20
10.1016/j.patrec.2014.01.008_b0505
Brand (10.1016/j.patrec.2014.01.008_b0080) 2000
Yamazaki (10.1016/j.patrec.2014.01.008_b0650) 2001; 37
Mirowski (10.1016/j.patrec.2014.01.008_b0450) 2009
Atsalakis (10.1016/j.patrec.2014.01.008_b0015) 2009; 36
10.1016/j.patrec.2014.01.008_b0365
Smith (10.1016/j.patrec.2014.01.008_b0550) 2005
10.1016/j.patrec.2014.01.008_b0520
10.1016/j.patrec.2014.01.008_b0120
Furui (10.1016/j.patrec.2014.01.008_b0160) 2004; 12
Längkvist (10.1016/j.patrec.2014.01.008_b0345) 2013; 13
Zhang (10.1016/j.patrec.2014.01.008_b0665) 2003; 96
10.1016/j.patrec.2014.01.008_b0125
Vembu (10.1016/j.patrec.2014.01.008_b0615) 2012; 174
Vito (10.1016/j.patrec.2014.01.008_b0620) 2007; 124
Gärtner (10.1016/j.patrec.2014.01.008_b0180) 2003; 5
10.1016/j.patrec.2014.01.008_b0480
10.1016/j.patrec.2014.01.008_b0360
Lafferty (10.1016/j.patrec.2014.01.008_b0340) 2001
Kavukcuoglu (10.1016/j.patrec.2014.01.008_b0325) 2009
Gardner (10.1016/j.patrec.2014.01.008_b0165) 1999
Hyvèarinen (10.1016/j.patrec.2014.01.008_b0300) 2009; vol. 39
10.1016/j.patrec.2014.01.008_b0635
10.1016/j.patrec.2014.01.008_b0530
Bollen (10.1016/j.patrec.2014.01.008_b0070) 2011; 2
Jaitly (10.1016/j.patrec.2014.01.008_b0305) 2011
Agrawal (10.1016/j.patrec.2014.01.008_b0005) 2013; 2
Wulsin (10.1016/j.patrec.2014.01.008_b0645) 2011; 8
10.1016/j.patrec.2014.01.008_b0135
Osuna (10.1016/j.patrec.2014.01.008_b0495) 2003
10.1016/j.patrec.2014.01.008_b0490
10.1016/j.patrec.2014.01.008_b0090
Dahl (10.1016/j.patrec.2014.01.008_b0110) 2012; 20
Dietterich (10.1016/j.patrec.2014.01.008_b0130) 2002
Zampolli (10.1016/j.patrec.2014.01.008_b0660) 2004; 101
Amft (10.1016/j.patrec.2014.01.008_b0010) 2011
Fama (10.1016/j.patrec.2014.01.008_b0150) 1965; 1
Memisevic (10.1016/j.patrec.2014.01.008_b0440) 2007
10.1016/j.patrec.2014.01.008_b0525
10.1016/j.patrec.2014.01.008_b0405
Tsai (10.1016/j.patrec.2014.01.008_b0605) 2010; 50
Li (10.1016/j.patrec.2014.01.008_b0395) 2010; vol. 01
10.1016/j.patrec.2014.01.008_b0020
Luenberger (10.1016/j.patrec.2014.01.008_b0410) 1979
10.1016/j.patrec.2014.01.008_b0025
10.1016/j.patrec.2014.01.008_b0385
Yang (10.1016/j.patrec.2014.01.008_b0655) 2006; 05
10.1016/j.patrec.2014.01.008_b0540
Lee (10.1016/j.patrec.2014.01.008_b0380) 2008; 20
10.1016/j.patrec.2014.01.008_b0260
Hsieh (10.1016/j.patrec.2014.01.008_b0275) 2011; 11
Hinton (10.1016/j.patrec.2014.01.008_b0250) 2002; 14
Memisevic (10.1016/j.patrec.2014.01.008_b0445) 2010; 22
Le Roux (10.1016/j.patrec.2014.01.008_b0370) 2008; 20
Cheung (10.1016/j.patrec.2014.01.008_b0095) 2001; 41
Bengio (10.1016/j.patrec.2014.01.008_b0045) 1994; 5
Rabiner (10.1016/j.patrec.2014.01.008_b0515) 1986; 3
Wiskott (10.1016/j.patrec.2014.01.008_b0640) 2002; 14
10.1016/j.patrec.2014.01.008_b0675
Bhattacharya (10.1016/j.patrec.2014.01.008_b0060) 2008; 131
10.1016/j.patrec.2014.01.008_b0555
Coates (10.1016/j.patrec.2014.01.008_b0105) 2010
Grassia (10.1016/j.patrec.2014.01.008_b0200) 1998; 3
Pan (10.1016/j.patrec.2014.01.008_b0310) 2010; 22
Gardner (10.1016/j.patrec.2014.01.008_b0175) 2000; 69
Gleicher (10.1016/j.patrec.2014.01.008_b0190) 2000; 33
Bennetts (10.1016/j.patrec.2014.01.008_b0055) 2011; 4
Martens (10.1016/j.patrec.2014.01.008_b0430) 2012; vol. 7700
Lütkepohl (10.1016/j.patrec.2014.01.008_b0415) 2005
10.1016/j.patrec.2014.01.008_b0545
10.1016/j.patrec.2014.01.008_b0425
Längkvist (10.1016/j.patrec.2014.01.008_b0350) 2012; 2012
10.1016/j.patrec.2014.01.008_b0565
10.1016/j.patrec.2014.01.008_b0560
Hyvärinen (10.1016/j.patrec.2014.01.008_b0290) 2003; 20
10.1016/j.patrec.2014.01.008_b0320
Waibel (10.1016/j.patrec.2014.01.008_b0625) 1989; 37
Gers (10.1016/j.patrec.2014.01.008_b0185) 2000; 12
Bengio (10.1016/j.patrec.2014.01.008_b0030) 1996; 7
Bengio (10.1016/j.patrec.2014.01.008_b0040) 2007
Hinton (10.1016/j.patrec.2014.01.008_b0255) 2010; vol. 7700
Hinton (10.1016/j.patrec.2014.01.008_b0265) 2006; 18
10.1016/j.patrec.2014.01.008_b0435
10.1016/j.patrec.2014.01.008_b0315
10.1016/j.patrec.2014.01.008_b0210
Mirowski (10.1016/j.patrec.2014.01.008_b0460) 2008
10.1016/j.patrec.2014.01.008_b0455
10.1016/j.patrec.2014.01.008_b0610
Goldberger (10.1016/j.patrec.2014.01.008_b0195) 2000; 101
10.1016/j.patrec.2014.01.008_b0570
Hinton (10.1016/j.patrec.2014.01.008_b0240) 2012; 29
10.1016/j.patrec.2014.01.008_b0330
LeCun (10.1016/j.patrec.2014.01.008_b0375) 2010
Lee (10.1016/j.patrec.2014.01.008_b0390) 2009; 22
Hyvärinen (10.1016/j.patrec.2014.01.008_b0295) 2010; 49
Erhan (10.1016/j.patrec.2014.01.008_b0145) 2010; 11
10.1016/j.patrec.2014.01.008_b0050
Humphrey (10.1016/j.patrec.2014.01.008_b0280) 2013; 41
Mohamed (10.1016/j.patrec.2014.01.008_b0465) 2012; 20
10.1016/j.patrec.2014.01.008_b0205
References_xml – reference: G. Taylor, R. Fergus, Y. LeCun, C. Bregler, Convolutional learning of spatio-temporal features, in: Proceedings European Conference on Computer Vision (ECCV’10), 2010.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b0265
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 8
  ident: b0070
  article-title: Twitter mood predicts the stock market
  publication-title: J. Comput. Sci.
– reference: J. Masci, U. Meier, D. Cireşan, J. Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction, in: Proceedings of the 21th International Conference on Artificial Neural Networks, vol. Part I, 2011, pp. 52–59.
– year: 2010
  ident: b0375
  article-title: Convolutional networks and applications in vision
  publication-title: Proceedings International Symposium on Circuits and Systems (ISCASąŕ10)
– volume: 36
  start-page: 7313
  year: 2009
  end-page: 7317
  ident: b0400
  article-title: Short-term stock price prediction based on echo state networks
  publication-title: Expert Syst. Appl.
– reference: R. Grosse, R. Raina, H. Kwong, A.Y. Ng, Shift-invariant sparse coding for audio classification, in: Conference on Uncertainty in Artificial Intelligence (UAI), 2007.
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: b0240
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Proc. Mag.
– volume: 2012
  year: 2012
  ident: b0350
  article-title: Sleep stage classification using unsupervised feature learning
  publication-title: Adv. Artif. Neural Syst.
– year: 2005
  ident: b0550
  article-title: Learning efficient auditory codes using spikes predicts cochlear filters
  publication-title: Advances in Neural Information Processing Systems
– volume: 3
  start-page: 4
  year: 1986
  end-page: 16
  ident: b0515
  article-title: An introduction to hidden Markov models
  publication-title: IEEE ASSP Mag.
– start-page: 1
  year: 2007
  end-page: 8
  ident: b0440
  article-title: Unsupervised learning of image transformations
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 41
  start-page: 145
  year: 2001
  end-page: 152
  ident: b0095
  article-title: Independent component ordering in ica time series analysis
  publication-title: Neurocomputing
– reference: C. Schoerkhuber, A. Klapuri, Constant-
– start-page: 282
  year: 2001
  end-page: 289
  ident: b0340
  article-title: Conditional random fields: probabilistic models for segmenting and labeling sequence data
  publication-title: Proceedings of the 18th International Conference on Machine Learning
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: b0250
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– year: 2003
  ident: b0495
  article-title: Signal Conditioning and Preprocessing
  publication-title: HandBook of Machine Olfaction, Electronic Nose Technology
– reference: J. Nam, J. Herrera, M. Slaney, J.O. Smith, Learning sparse feature representations for music annotation and retrieval, in: The International Society for Music Information Retrieval (ISMIR), 2012, pp. 565–570.
– reference: M. Sugiyama, H. Sawai, A. Waibel, Review of tdnn (time delay neural network) architectures for speech recognition, in: IEEE International Sympoisum on Circuits and Systems, vol. 1, 1991, pp. 582–585.
– reference: P. Mirowski, D. Madhavan, Y. LeCun, Time-delay neural networks and independent component analysis for eeg-based prediction of epileptic seizures propagation, in: Association for the Advancement of Artificial Intelligence Conference, 2007.
– start-page: 1601
  year: 2008
  end-page: 1608
  ident: b0575
  article-title: The recurrent temporal restricted Boltzmann machine
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Y. Bengio, L. Yao, G. Alain, P. Vincent, Generalized denoising auto-encoders as generative models. CoRR abs/1305.6663, 2013.
– volume: 57
  start-page: 2884
  year: 2010
  end-page: 2890
  ident: b0600
  article-title: Direct identification of bacteria in blood culture samples using an electronic nose
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 37
  start-page: 328
  year: 1989
  end-page: 339
  ident: b0625
  article-title: Phoneme recognition using time-delay neural networks
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– reference: A. Graves, A. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0270
  article-title: Long short-term memory
  publication-title: Neural Comput.
– reference: J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, A.Y. Ng, Multimodal deep learning, in: Proceedings of the 28th International Conference on Machine Learning, 2011.
– year: 2005
  ident: b0415
  article-title: New Introduction to Multiple Time Series Analysis
– volume: 1
  start-page: 34
  year: 1965
  end-page: 105
  ident: b0150
  article-title: The behavior of stock-market prices
  publication-title: J. Bus.
– volume: 96
  start-page: 385
  year: 2003
  end-page: 389
  ident: b0665
  article-title: Improving pattern recognition of electronic nose data with time-delay neural networks
  publication-title: Sens. Actuators B: Chem.
– reference: M. Längkvist, A. Loutfi, Unsupervised feature learning for electronic nose data applied to bacteria identification in blood, in: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
– volume: 34
  start-page: 3043
  year: 2008
  end-page: 3054
  ident: b0670
  article-title: Predicting stock index increments by neural networks: the role of trading volume under different horizons
  publication-title: Expert Syst. Appl.
– reference: M. Ranzato, A. Krizhevsky, G. Hinton, Factored 3-way restricted Boltzmann machines for modeling natural images, in: Proceedings of the International Conference on Artificial Intelligence and Statistics, 2010.
– volume: 12
  start-page: 401
  year: 2004
  end-page: 408
  ident: b0160
  article-title: Speech-to-text and speech-to-speech summarization of spontaneous speech
  publication-title: IEEE Trans. Speech Audio Process.
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b0195
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– volume: 17
  year: 2003
  ident: b0420
  article-title: The efficient market hypothesis and its critics
  publication-title: J. Econ. Perspect.
– year: 1999
  ident: b0165
  article-title: Electronic Noses, Principles and Applications
– reference: D. Lowe, Object recognition from local scale-invariant features, in: ICCV, 1999.
– reference: R. Pascanu, T. Mikolov, Y. Bengio, Understanding the exploding gradient problem, Computing Research Repository (CoRR) abs/1211.5063, 2012.
– volume: 101
  start-page: 39
  year: 2004
  end-page: 46
  ident: b0660
  article-title: An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications
  publication-title: Sens. Actuators B: Chem.
– reference: M. Ranzato, G. Hinton, Modeling pixel means and covariances using factorized third-order Boltzmann machines, in: Proceedings of Computer Vision and Pattern Recognition Conference (CVPR 2010), 2010.
– reference: transform toolbox for music processing, in: Seventh Sound and Music Computing Conference, 2010.
– start-page: 15
  year: 2002
  end-page: 30
  ident: b0130
  article-title: Machine learning for sequential data: a review
  publication-title: Structural, Syntactic, and Statistical Pattern Recognition
– volume: 174
  start-page: 535
  year: 2012
  end-page: 546
  ident: b0615
  article-title: On time series features and kernels for machine olfaction
  publication-title: Sens. Actuators B: Chem.
– volume: 50
  start-page: 258
  year: 2010
  end-page: 269
  ident: b0605
  article-title: Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches
  publication-title: Decis. Support Syst.
– volume: 7
  start-page: 1231
  year: 1996
  end-page: 1249
  ident: b0030
  article-title: Input-output HMM’s for sequence processing
  publication-title: IEEE Trans. Neural Networks
– volume: 70
  start-page: 19
  year: 2000
  end-page: 24
  ident: b0170
  article-title: An electronic nose system to diagnose illness
  publication-title: Sens. Actuators B: Chem.
– volume: 22
  start-page: 56
  year: 2010
  ident: b0310
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: vol. 7700
  start-page: 599
  year: 2010
  end-page: 619
  ident: b0255
  article-title: A practical guide to training restricted boltzmann machines
  publication-title: Neural Networks: Tricks of the Trade
– volume: 20
  start-page: 30
  year: 2012
  end-page: 42
  ident: b0110
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
– reference: C. Tucker, Self-organizing maps for time series analysis of electromyographic data, in: International Joint Conference on Neural Networks, 1999. IJCNN ’99, 1999, pp. 3577–3580.
– reference: A. Saxe, P. Koh, Z. Chen, M. Bhand, B. Suresh, A.Y. Ng, On random weights and unsupervised feature learning, in: Proceedings of the 28th International Conference on Machine Learning, 2011.
– reference: G. Taylor, G. Hinton, Factored conditional restricted Boltzmann machines for modeling motion style, in: Proceedings of the 26th International Conference on Machine Learning (ICML), 2009.
– volume: 11
  start-page: 2510
  year: 2011
  end-page: 2525
  ident: b0275
  article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
– volume: 50
  start-page: 223
  year: 2003
  end-page: 235
  ident: b0285
  article-title: Recurrent neural networks for time series classification
  publication-title: Neurocomputing
– volume: 36
  start-page: 5932
  year: 2009
  end-page: 5941
  ident: b0015
  article-title: Surveying stock market forecasting techniques ĺc. Part ii: Soft computing methods
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 189
  year: 2002
  end-page: 202
  ident: b0220
  article-title: Pattern analysis for machine olfaction: a review
  publication-title: IEEE Sens. J.
– start-page: 1605
  year: 2009
  end-page: 1612
  ident: b0325
  article-title: Learning invariant features through topographic filter maps
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009
– volume: vol. 01
  start-page: 211
  year: 2010
  end-page: 214
  ident: b0395
  article-title: Applications of artificial neural networks in financial economics: a survey
  publication-title: Proceedings of the 2010 International Symposium on Computational Intelligence and Design
– volume: 5
  start-page: 157
  year: 1994
  end-page: 166
  ident: b0045
  article-title: Learning longterm dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Networks
– volume: 15
  start-page: 660
  year: 2005
  end-page: 666
  ident: b0155
  article-title: Motor primitives in vertebrates and invertebrates
  publication-title: Curr. Opin. Neurobiol.
– volume: 19
  start-page: 153
  year: 2007
  ident: b0035
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Y. Bengio, Learning Deep Architectures for AI. Technical Report 1312. Dept. IRO, Universite de Montreal, 2007.
– volume: 22
  start-page: 1473
  year: 2010
  end-page: 1492
  ident: b0445
  article-title: Learning to represent spatial transformations with factored higher-order Boltzmann machines
  publication-title: Neural Comput.
– volume: 37
  start-page: 1466
  year: 2001
  end-page: 1467
  ident: b0650
  article-title: Classification of vintages of wine by artificial nose using time delay neural networks
  publication-title: Electron. Lett.
– volume: 3
  year: 2013
  ident: b0630
  article-title: Modeling physiological data with deep belief networks
  publication-title: Int. J. Inf. Educ. Technol.
– volume: 10
  start-page: 49
  year: 2001
  end-page: 61
  ident: b0485
  article-title: Feature-based classification of time-series data
  publication-title: Int. J. Comput. Res.
– volume: 1
  start-page: 4
  year: 2002
  ident: b0140
  article-title: Bacteria classification using cyranose 320 electronic nose
  publication-title: Biomed. Eng.
– volume: 49
  start-page: 257
  year: 2010
  end-page: 271
  ident: b0295
  article-title: Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis
  publication-title: NeuroImage
– reference: H. Kamyshanska, R. Memisevic, On autoencoder scoring, in: Proceedings of the 30th International Conference on Machine Learning (ICML-13), JMLR Workshop and Conference Proceedings, 2013, pp. 720–728.
– start-page: 183
  year: 2000
  end-page: 192
  ident: b0080
  article-title: Style machines
  publication-title: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques
– volume: 5
  start-page: 49
  year: 2003
  end-page: 58
  ident: b0180
  article-title: A survey of kernels for structured data
  publication-title: SIGKDD Explor. Newslett.
– year: 2007
  ident: b0040
  article-title: Scaling learning algorithms towards AI
  publication-title: Large-Scale Kernel Machines
– volume: 20
  start-page: 1631
  year: 2008
  end-page: 1649
  ident: b0370
  article-title: Representational power of restricted Boltzmann machines and deep belief networks
  publication-title: Neural Comput.
– volume: 23
  start-page: 469
  year: 2010
  end-page: 477
  ident: b0115
  article-title: Phone recognition with the mean-covariance restricted Boltzmann machine
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 146
  start-page: 297
  year: 1999
  end-page: 310
  ident: b0235
  article-title: Electronic noses: a review of signal processing techniques
  publication-title: IEE Proc. Circuits Devices Syst.
– volume: 05
  start-page: 597
  year: 2006
  end-page: 604
  ident: b0655
  article-title: 10 Challenging problems in data mining research
  publication-title: Int. J. Inf. Technol. Decis. Making
– volume: 69
  start-page: 336
  year: 2000
  end-page: 341
  ident: b0175
  article-title: An electronic nose system for monitoring the quality of potable water
  publication-title: Sens. Actuators B: Chem.
– reference: H. Lee, R. Grosse, R. Ranganath, A.Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, in: 26th International Conference on Machine Learning, 2009.
– volume: 124
  start-page: 309
  year: 2007
  end-page: 316
  ident: b0620
  article-title: Gas concentration estimation in ternary mixtures with room temperature operating sensor array using tapped delay architectures
  publication-title: Sens. Actuators B: Chem.
– volume: 13
  start-page: 1578
  year: 2013
  end-page: 1592
  ident: b0345
  article-title: Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning
  publication-title: Sensors
– reference: T. Duckett, M. Axelsson, A. Saffiotti, Learning to locate an odour source with a mobile robot, in: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, 2001, pp. 4017–4022.
– reference: A. Mohamed, G. Hinton, Phone recognition using restricted Boltzmann machines, in: 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2010, pp. 4354–4357.
– volume: vol. 7700
  year: 2012
  ident: b0430
  article-title: Training deep and recurrent neural networks with hessian-free optimization
  publication-title: Neural Networks: Tricks of the Trade
– volume: 41
  start-page: 461
  year: 2013
  end-page: 481
  ident: b0280
  article-title: Feature learning and deep architectures: new directions for music informatics
  publication-title: J. Intell. Inf. Syst.
– year: 1979
  ident: b0410
  article-title: Introduction to Dynamic Systems: Theory, Models, and Applications
– volume: 131
  start-page: 110
  year: 2008
  end-page: 116
  ident: b0060
  article-title: Preemptive identification of optimum fermentation time for black tea using electronic nose
  publication-title: Sens. Actuators B: Chem.
– volume: 223
  start-page: 96
  year: 2006
  end-page: 101
  ident: b0085
  article-title: Analysis of saffron volatile fraction by td–gc–ms and e-nose
  publication-title: Eur. Food Res. Technol.
– reference: P. Hamel, D. Eck, Learning features from music audio with deep belief networks, in: 11th International Society for Music Information Retrieval Conference (ISMIR), 2010.
– reference: E. Parris, M. Carey, Language independent gender identification, in: 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1996. ICASSP-96. Conference Proceedings, vol. 2, 1996, pp. 685–688.
– reference: I. Sutskever, Training recurrent neural networks (Ph.D. thesis), University of Toronto, 2012.
– reference: G. Taylor, G.E. Hinton, S. Roweis, Modeling human motion using binary latent variables, in: Advances in Neural Information Processing Systems, 2007.
– volume: 4
  year: 2011
  ident: b0055
  article-title: Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?
  publication-title: Front. Neuroeng.
– reference: W. Pan, L. Torresani, Unsupervised hierarchical modeling of locomotion styles, in: Proceedings of the 26th Annual International Conference on Machine Learning, 2009, pp. 785–792.
– reference: D. Gruhl, R. Guha, R. Kumar, J. Novak, A. Tomkins, The predictive power of online chatter, in: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, pp. 78–87.
– start-page: 5884
  year: 2011
  end-page: 5887
  ident: b0305
  article-title: Learning a better representation of speech soundwaves using restricted Boltzmann machines
  publication-title: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– reference: M. Längkvist, A. Loutfi, Not all signals are created equal: dynamic objective auto-encoder for multivariate data, in: NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2012.
– start-page: 177
  year: 2010
  end-page: 187
  ident: b0075
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT’2010)
– volume: 14
  start-page: 715
  year: 2002
  end-page: 770
  ident: b0640
  article-title: Slow feature analysis: unsupervised learning of invariances
  publication-title: Neural Comput.
– reference: S. Dieleman, P. Brakel, B. Schrauwen, Audio-based music classification with a pretrained convolutional network, in: The International Society for Music Information Retrieval (ISMIR), 2011.
– volume: 11
  start-page: 625
  year: 2010
  end-page: 660
  ident: b0145
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– reference: D. Stavens, S. Thrun, Unsupervised learning of invariant features using video, in: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 1649–1656.
– reference: W.Y. Zou, A.Y. Ng, K. Yu, Unsupervised learning of visual invariance with temporal coherence, in: NIPS 2011 Workshop on Deep Learning and Unsupervised Feature Learning, 2011.
– reference: G.E. Hinton, A. Krizhevsky, S.D. Wang, Transforming auto-encoders, in: Proceedings of the 21th International Conference on Artificial Neural Networks, vol. Part I, 2011, pp. 44–51.
– volume: 8
  start-page: 1741
  year: 2011
  end-page: 2552
  ident: b0645
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: faster classification and anomaly measurement
  publication-title: J. Neural Eng.
– volume: 3
  start-page: 29
  year: 1998
  end-page: 48
  ident: b0200
  article-title: Practical parameterization of rotations using the exponential map
  publication-title: J. Graph. Tools
– volume: 2
  start-page: 1360
  year: 2013
  end-page: 1366
  ident: b0005
  article-title: State-of-the-art in stock prediction techniques
  publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
– reference: Y. Bengio, A. Courville, P. Vincent, Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives. Technical Report, U. Montreal, 2012. Available from:
– start-page: 83
  year: 2011
  end-page: 86
  ident: b0010
  article-title: Self-taught learning for activity spotting in on-body motion sensor data
  publication-title: ISWC 2011: Proceedings of the IEEE International Symposium on Wearable Computing
– reference: Bo Chen, Jo-Anne Ting, B. Marlin, N. de Freitas, Deep learning of invariant spatio-temporal features from video, in: NIPS 2010 Deep Learning and Unsupervised Feature Learning Workshop, 2010.
– reference: T. van Kasteren, A. Noulas, B. Kröse, Conditional random fields versus hidden markov models for activity recognition in temporal sensor data, in: Proceedings of the 14th Annual Conference of the Advanced School for Computing and Imaging (ASCI’08), The Netherlands, 2008.
– year: 2006
  ident: b0535
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Advances in Neural Information Processing Systems (NIPS 2006)
– reference: J.M. Wang, D.J. Fleet, A. Hertzmann, Multi-factor Gaussian process models for style-content separation, in: International Conference of Machine Learning (ICML), 2007, pp. 975–982.
– reference: I. Sutskever, G. Hinton, Learning multilevel distributed representations for high-dimensional sequences, Technical Report, University of Toronto, 2006.
– volume: 33
  start-page: 51
  year: 2000
  end-page: 54
  ident: b0190
  article-title: Animation from observation: motion capture and motion editing
  publication-title: SIGGRAPH Comput. Graph.
– reference: G.W. Taylor, Composable, distributed-state models for high-dimensional time series (Ph.D. thesis), Department of Computer Science, University of Toronto, 2009.
– volume: 20
  start-page: 1237
  year: 2003
  end-page: 1252
  ident: b0290
  article-title: Bubbles: a unifying framework for low-level statistical properties of natural image sequences
  publication-title: J. Opt. Soc. Am. A
– reference: N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in: CVPR, 2005.
– reference: K. Markov, T. Matsui, Music genre classification using self-taught learning via sparse coding, in: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 1929–1932.
– reference: K. Chang, J. Jang, C. Iliopoulos, Music genre classification via compressive sampling, in: Proceedings of the 11th International Conference on Music Information Retrieval (ISMIR), 2010, pp. 387–392.
– start-page: 244
  year: 2008
  end-page: 249
  ident: b0460
  article-title: Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG
  publication-title: IEEE Workshop on Machine Learning for Signal Processing, 2008. MLSP 2008
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0245
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 20
  start-page: 873
  year: 2008
  end-page: 880
  ident: b0380
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: E. Keogh, S. Kasetty, On the need for time series data mining benchmarks: a survey and empirical demonstration, in: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002, pp. 102–111.
– volume: vol. 39
  year: 2009
  ident: b0300
  publication-title: Natural Image Statistics
– reference: Q.V. Le, W.Y. Zou, S.Y. Yeung, A.Y. Ng, Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis, in: Computer Vision and Pattern Recognition (CVPR), 2011.
– volume: 20
  start-page: 14
  year: 2012
  end-page: 22
  ident: b0465
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Trans. Audio Speech Lang. Process. Arch.
– reference: J. Nam, Learning feature representations for music classification (Ph.D. thesis), Stanford University, 2012.
– start-page: 1
  year: 2010
  end-page: 9
  ident: b0105
  article-title: An analysis of single-layer networks in unsupervised feature learning
  publication-title: Engineering
– reference: .
– reference: S. Chiappa, J. Kober, J. Peters, Using Bayesian dynamical systems for motion template libraries, in: Advances in Neural Information Processing Systems, vol. 21, 2009, 297–304.
– reference: M. Henaff, K. Jarrett, K. Kavukcuoglu, Y. LeCun, Unsupervised learning of sparse features for scalable audio classification, in: Proceedings of International Symposium on Music, Information Retrieval (ISMIR’11), 2011.
– volume: 12
  start-page: 2451
  year: 2000
  end-page: 2471
  ident: b0185
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
– volume: 20
  start-page: 253
  year: 1998
  end-page: 263
  ident: b0335
  article-title: Time-delay recurrent neural network for temporal correlations and prediction
  publication-title: Neurocomputing
– reference: R. Raina, A. Battle, H. Lee, B. Packer, A.Y. Ng, Self-taught learning: transfer learning from unlabeled data, in: Proceedings of the 24th International Conference on Machine Learning, 2007.
– volume: 22
  start-page: 1096
  year: 2009
  end-page: 1104
  ident: b0390
  article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 128
  year: 2009
  end-page: 143
  ident: b0450
  article-title: Dynamic factor graphs for time series modeling
  publication-title: Mach. Learn. Knowl. Discovery Databases
– ident: 10.1016/j.patrec.2014.01.008_b0585
  doi: 10.1145/1553374.1553505
– ident: 10.1016/j.patrec.2014.01.008_b0510
– ident: 10.1016/j.patrec.2014.01.008_b0500
  doi: 10.1145/1553374.1553475
– ident: 10.1016/j.patrec.2014.01.008_b0090
– ident: 10.1016/j.patrec.2014.01.008_b0315
– volume: 13
  start-page: 1578
  issue: 2
  year: 2013
  ident: 10.1016/j.patrec.2014.01.008_b0345
  article-title: Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning
  publication-title: Sensors
  doi: 10.3390/s130201578
– volume: 37
  start-page: 328
  year: 1989
  ident: 10.1016/j.patrec.2014.01.008_b0625
  article-title: Phoneme recognition using time-delay neural networks
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.21701
– volume: 174
  start-page: 535
  year: 2012
  ident: 10.1016/j.patrec.2014.01.008_b0615
  article-title: On time series features and kernels for machine olfaction
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2012.06.070
– volume: 22
  start-page: 1096
  year: 2009
  ident: 10.1016/j.patrec.2014.01.008_b0390
  article-title: Unsupervised feature learning for audio classification using convolutional deep belief networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.patrec.2014.01.008_b0330
  doi: 10.1145/775047.775062
– year: 2005
  ident: 10.1016/j.patrec.2014.01.008_b0415
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.patrec.2014.01.008_b0035
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.patrec.2014.01.008_b0215
  doi: 10.1145/1081870.1081883
– volume: 20
  start-page: 1237
  year: 2003
  ident: 10.1016/j.patrec.2014.01.008_b0290
  article-title: Bubbles: a unifying framework for low-level statistical properties of natural image sequences
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.20.001237
– ident: 10.1016/j.patrec.2014.01.008_b0260
  doi: 10.1007/978-3-642-21735-7_6
– volume: 36
  start-page: 7313
  year: 2009
  ident: 10.1016/j.patrec.2014.01.008_b0400
  article-title: Short-term stock price prediction based on echo state networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.049
– ident: 10.1016/j.patrec.2014.01.008_b0020
– start-page: 128
  year: 2009
  ident: 10.1016/j.patrec.2014.01.008_b0450
  article-title: Dynamic factor graphs for time series modeling
  publication-title: Mach. Learn. Knowl. Discovery Databases
  doi: 10.1007/978-3-642-04174-7_9
– volume: 2
  start-page: 189
  issue: 3
  year: 2002
  ident: 10.1016/j.patrec.2014.01.008_b0220
  article-title: Pattern analysis for machine olfaction: a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2002.800688
– volume: 69
  start-page: 336
  year: 2000
  ident: 10.1016/j.patrec.2014.01.008_b0175
  article-title: An electronic nose system for monitoring the quality of potable water
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/S0925-4005(00)00482-2
– volume: 17
  year: 2003
  ident: 10.1016/j.patrec.2014.01.008_b0420
  article-title: The efficient market hypothesis and its critics
  publication-title: J. Econ. Perspect.
  doi: 10.1257/089533003321164958
– volume: 22
  start-page: 56
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0310
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 8
  start-page: 1741
  year: 2011
  ident: 10.1016/j.patrec.2014.01.008_b0645
  article-title: Modeling electroencephalography waveforms with semi-supervised deep belief nets: faster classification and anomaly measurement
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/3/036015
– ident: 10.1016/j.patrec.2014.01.008_b0355
– start-page: 1
  year: 2007
  ident: 10.1016/j.patrec.2014.01.008_b0440
  article-title: Unsupervised learning of image transformations
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0375
  article-title: Convolutional networks and applications in vision
– ident: 10.1016/j.patrec.2014.01.008_b0590
  doi: 10.7551/mitpress/7503.003.0173
– year: 1999
  ident: 10.1016/j.patrec.2014.01.008_b0165
– start-page: 83
  year: 2011
  ident: 10.1016/j.patrec.2014.01.008_b0010
  article-title: Self-taught learning for activity spotting in on-body motion sensor data
– volume: 14
  start-page: 1771
  year: 2002
  ident: 10.1016/j.patrec.2014.01.008_b0250
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– volume: 14
  start-page: 715
  year: 2002
  ident: 10.1016/j.patrec.2014.01.008_b0640
  article-title: Slow feature analysis: unsupervised learning of invariances
  publication-title: Neural Comput.
  doi: 10.1162/089976602317318938
– volume: vol. 7700
  start-page: 599
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0255
  article-title: A practical guide to training restricted boltzmann machines
– volume: 131
  start-page: 110
  year: 2008
  ident: 10.1016/j.patrec.2014.01.008_b0060
  article-title: Preemptive identification of optimum fermentation time for black tea using electronic nose
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2007.12.032
– volume: 5
  start-page: 49
  year: 2003
  ident: 10.1016/j.patrec.2014.01.008_b0180
  article-title: A survey of kernels for structured data
  publication-title: SIGKDD Explor. Newslett.
  doi: 10.1145/959242.959248
– volume: 20
  start-page: 873
  year: 2008
  ident: 10.1016/j.patrec.2014.01.008_b0380
  article-title: Sparse deep belief net model for visual area V2
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.patrec.2014.01.008_b0470
  doi: 10.1109/ICASSP.2010.5495651
– volume: 23
  start-page: 469
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0115
  article-title: Phone recognition with the mean-covariance restricted Boltzmann machine
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.patrec.2014.01.008_b0505
  doi: 10.1109/ICASSP.1996.543213
– volume: 1
  start-page: 34
  year: 1965
  ident: 10.1016/j.patrec.2014.01.008_b0150
  article-title: The behavior of stock-market prices
  publication-title: J. Bus.
  doi: 10.1086/294743
– volume: 05
  start-page: 597
  year: 2006
  ident: 10.1016/j.patrec.2014.01.008_b0655
  article-title: 10 Challenging problems in data mining research
  publication-title: Int. J. Inf. Technol. Decis. Making
  doi: 10.1142/S0219622006002258
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.patrec.2014.01.008_b0070
  article-title: Twitter mood predicts the stock market
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2010.12.007
– volume: 3
  start-page: 29
  year: 1998
  ident: 10.1016/j.patrec.2014.01.008_b0200
  article-title: Practical parameterization of rotations using the exponential map
  publication-title: J. Graph. Tools
  doi: 10.1080/10867651.1998.10487493
– volume: 7
  start-page: 1231
  issue: 5
  year: 1996
  ident: 10.1016/j.patrec.2014.01.008_b0030
  article-title: Input-output HMM’s for sequence processing
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.536317
– volume: vol. 01
  start-page: 211
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0395
  article-title: Applications of artificial neural networks in financial economics: a survey
– volume: 2
  start-page: 1360
  year: 2013
  ident: 10.1016/j.patrec.2014.01.008_b0005
  article-title: State-of-the-art in stock prediction techniques
  publication-title: Int. J. Adv. Res. Electr. Electron. Instrum. Eng.
– volume: 15
  start-page: 660
  issue: 6
  year: 2005
  ident: 10.1016/j.patrec.2014.01.008_b0155
  article-title: Motor primitives in vertebrates and invertebrates
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2005.10.011
– volume: 2012
  year: 2012
  ident: 10.1016/j.patrec.2014.01.008_b0350
  article-title: Sleep stage classification using unsupervised feature learning
  publication-title: Adv. Artif. Neural Syst.
– ident: 10.1016/j.patrec.2014.01.008_b0210
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.patrec.2014.01.008_b0265
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.patrec.2014.01.008_b0610
  doi: 10.1109/IJCNN.1999.836246
– volume: 3
  year: 2013
  ident: 10.1016/j.patrec.2014.01.008_b0630
  article-title: Modeling physiological data with deep belief networks
  publication-title: Int. J. Inf. Educ. Technol.
– ident: 10.1016/j.patrec.2014.01.008_b0125
– volume: 12
  start-page: 2451
  year: 2000
  ident: 10.1016/j.patrec.2014.01.008_b0185
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 33
  start-page: 51
  year: 2000
  ident: 10.1016/j.patrec.2014.01.008_b0190
  article-title: Animation from observation: motion capture and motion editing
  publication-title: SIGGRAPH Comput. Graph.
  doi: 10.1145/345370.345409
– ident: 10.1016/j.patrec.2014.01.008_b0560
  doi: 10.1109/ISCAS.1991.176402
– ident: 10.1016/j.patrec.2014.01.008_b0635
  doi: 10.1145/1273496.1273619
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.patrec.2014.01.008_b0240
  article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2012.2205597
– ident: 10.1016/j.patrec.2014.01.008_b0520
  doi: 10.1145/1273496.1273592
– ident: 10.1016/j.patrec.2014.01.008_b0530
– year: 2005
  ident: 10.1016/j.patrec.2014.01.008_b0550
  article-title: Learning efficient auditory codes using spikes predicts cochlear filters
– ident: 10.1016/j.patrec.2014.01.008_b0100
– start-page: 282
  year: 2001
  ident: 10.1016/j.patrec.2014.01.008_b0340
  article-title: Conditional random fields: probabilistic models for segmenting and labeling sequence data
– start-page: 183
  year: 2000
  ident: 10.1016/j.patrec.2014.01.008_b0080
  article-title: Style machines
– volume: 20
  start-page: 14
  issue: 1
  year: 2012
  ident: 10.1016/j.patrec.2014.01.008_b0465
  article-title: Acoustic modeling using deep belief networks
  publication-title: IEEE Trans. Audio Speech Lang. Process. Arch.
  doi: 10.1109/TASL.2011.2109382
– ident: 10.1016/j.patrec.2014.01.008_b0230
– ident: 10.1016/j.patrec.2014.01.008_b0360
– volume: 41
  start-page: 145
  year: 2001
  ident: 10.1016/j.patrec.2014.01.008_b0095
  article-title: Independent component ordering in ica time series analysis
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(00)00358-1
– ident: 10.1016/j.patrec.2014.01.008_b0490
– volume: 4
  year: 2011
  ident: 10.1016/j.patrec.2014.01.008_b0055
  article-title: Mobile robots for localizing gas emission sources on landfill sites: is bio-inspiration the way to go?
  publication-title: Front. Neuroeng.
– ident: 10.1016/j.patrec.2014.01.008_b0435
  doi: 10.1007/978-3-642-21735-7_7
– volume: 20
  start-page: 253
  year: 1998
  ident: 10.1016/j.patrec.2014.01.008_b0335
  article-title: Time-delay recurrent neural network for temporal correlations and prediction
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(98)00018-6
– volume: 146
  start-page: 297
  year: 1999
  ident: 10.1016/j.patrec.2014.01.008_b0235
  article-title: Electronic noses: a review of signal processing techniques
  publication-title: IEE Proc. Circuits Devices Syst.
  doi: 10.1049/ip-cds:19990670
– ident: 10.1016/j.patrec.2014.01.008_b0595
– year: 2007
  ident: 10.1016/j.patrec.2014.01.008_b0040
  article-title: Scaling learning algorithms towards AI
– ident: 10.1016/j.patrec.2014.01.008_b0120
  doi: 10.1109/CVPR.2005.177
– volume: 20
  start-page: 1631
  year: 2008
  ident: 10.1016/j.patrec.2014.01.008_b0370
  article-title: Representational power of restricted Boltzmann machines and deep belief networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.04-07-510
– ident: 10.1016/j.patrec.2014.01.008_b0065
– start-page: 5884
  year: 2011
  ident: 10.1016/j.patrec.2014.01.008_b0305
  article-title: Learning a better representation of speech soundwaves using restricted Boltzmann machines
– ident: 10.1016/j.patrec.2014.01.008_b0675
– volume: 11
  start-page: 2510
  year: 2011
  ident: 10.1016/j.patrec.2014.01.008_b0275
  article-title: Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on artificial bee colony algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.09.007
– year: 1979
  ident: 10.1016/j.patrec.2014.01.008_b0410
– ident: 10.1016/j.patrec.2014.01.008_b0365
  doi: 10.1109/CVPR.2011.5995496
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.patrec.2014.01.008_b0245
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.patrec.2014.01.008_b0385
  doi: 10.1145/1553374.1553453
– volume: 36
  start-page: 5932
  year: 2009
  ident: 10.1016/j.patrec.2014.01.008_b0015
  article-title: Surveying stock market forecasting techniques ĺc. Part ii: Soft computing methods
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.07.006
– ident: 10.1016/j.patrec.2014.01.008_b0425
  doi: 10.1109/ICASSP.2012.6288282
– ident: 10.1016/j.patrec.2014.01.008_b0555
  doi: 10.1109/CVPR.2010.5539773
– ident: 10.1016/j.patrec.2014.01.008_b0225
– volume: vol. 7700
  year: 2012
  ident: 10.1016/j.patrec.2014.01.008_b0430
  article-title: Training deep and recurrent neural networks with hessian-free optimization
– start-page: 244
  year: 2008
  ident: 10.1016/j.patrec.2014.01.008_b0460
  article-title: Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG
– ident: 10.1016/j.patrec.2014.01.008_b0570
– volume: 12
  start-page: 401
  year: 2004
  ident: 10.1016/j.patrec.2014.01.008_b0160
  article-title: Speech-to-text and speech-to-speech summarization of spontaneous speech
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/TSA.2004.828699
– volume: 57
  start-page: 2884
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0600
  article-title: Direct identification of bacteria in blood culture samples using an electronic nose
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2049492
– ident: 10.1016/j.patrec.2014.01.008_b0475
– ident: 10.1016/j.patrec.2014.01.008_b0320
– volume: 50
  start-page: 223
  year: 2003
  ident: 10.1016/j.patrec.2014.01.008_b0285
  article-title: Recurrent neural networks for time series classification
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00706-8
– volume: 41
  start-page: 461
  issue: 3
  year: 2013
  ident: 10.1016/j.patrec.2014.01.008_b0280
  article-title: Feature learning and deep architectures: new directions for music informatics
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-013-0248-5
– volume: 101
  start-page: 39
  year: 2004
  ident: 10.1016/j.patrec.2014.01.008_b0660
  article-title: An electronic nose based on solid state sensor arrays for low-cost indoor air quality monitoring applications
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2004.02.024
– ident: 10.1016/j.patrec.2014.01.008_b0025
– ident: 10.1016/j.patrec.2014.01.008_b0050
– ident: 10.1016/j.patrec.2014.01.008_b0580
  doi: 10.1007/978-3-642-15567-3_11
– volume: 223
  start-page: 96
  year: 2006
  ident: 10.1016/j.patrec.2014.01.008_b0085
  article-title: Analysis of saffron volatile fraction by td–gc–ms and e-nose
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-005-0144-5
– year: 2003
  ident: 10.1016/j.patrec.2014.01.008_b0495
  article-title: Signal Conditioning and Preprocessing
– ident: 10.1016/j.patrec.2014.01.008_b0480
– volume: 124
  start-page: 309
  year: 2007
  ident: 10.1016/j.patrec.2014.01.008_b0620
  article-title: Gas concentration estimation in ternary mixtures with room temperature operating sensor array using tapped delay architectures
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2006.12.039
– volume: 10
  start-page: 49
  year: 2001
  ident: 10.1016/j.patrec.2014.01.008_b0485
  article-title: Feature-based classification of time-series data
  publication-title: Int. J. Comput. Res.
– volume: 101
  start-page: e215
  year: 2000
  ident: 10.1016/j.patrec.2014.01.008_b0195
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: 10.1016/j.patrec.2014.01.008_b0545
– start-page: 15
  year: 2002
  ident: 10.1016/j.patrec.2014.01.008_b0130
  article-title: Machine learning for sequential data: a review
– volume: 11
  start-page: 625
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0145
  article-title: Why does unsupervised pre-training help deep learning?
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.patrec.2014.01.008_b0455
– year: 2006
  ident: 10.1016/j.patrec.2014.01.008_b0535
  article-title: Efficient learning of sparse representations with an energy-based model
– volume: 34
  start-page: 3043
  year: 2008
  ident: 10.1016/j.patrec.2014.01.008_b0670
  article-title: Predicting stock index increments by neural networks: the role of trading volume under different horizons
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.06.023
– volume: 50
  start-page: 258
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0605
  article-title: Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2010.08.028
– ident: 10.1016/j.patrec.2014.01.008_b0405
  doi: 10.1109/ICCV.1999.790410
– ident: 10.1016/j.patrec.2014.01.008_b0540
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.patrec.2014.01.008_b0270
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: vol. 39
  year: 2009
  ident: 10.1016/j.patrec.2014.01.008_b0300
– volume: 20
  start-page: 30
  year: 2012
  ident: 10.1016/j.patrec.2014.01.008_b0110
  article-title: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition
  publication-title: IEEE Transactions on Audio, Speech, and Language Processing
  doi: 10.1109/TASL.2011.2134090
– start-page: 1
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0105
  article-title: An analysis of single-layer networks in unsupervised feature learning
  publication-title: Engineering
– start-page: 1605
  year: 2009
  ident: 10.1016/j.patrec.2014.01.008_b0325
  article-title: Learning invariant features through topographic filter maps
– start-page: 177
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0075
  article-title: Large-scale machine learning with stochastic gradient descent
– volume: 70
  start-page: 19
  year: 2000
  ident: 10.1016/j.patrec.2014.01.008_b0170
  article-title: An electronic nose system to diagnose illness
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/S0925-4005(00)00548-7
– ident: 10.1016/j.patrec.2014.01.008_b0205
  doi: 10.1109/ICASSP.2013.6638947
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  ident: 10.1016/j.patrec.2014.01.008_b0045
  article-title: Learning longterm dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.279181
– start-page: 1601
  year: 2008
  ident: 10.1016/j.patrec.2014.01.008_b0575
  article-title: The recurrent temporal restricted Boltzmann machine
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 3
  start-page: 4
  issue: 1
  year: 1986
  ident: 10.1016/j.patrec.2014.01.008_b0515
  article-title: An introduction to hidden Markov models
  publication-title: IEEE ASSP Mag.
  doi: 10.1109/MASSP.1986.1165342
– ident: 10.1016/j.patrec.2014.01.008_b0525
  doi: 10.1109/CVPR.2010.5539962
– volume: 1
  start-page: 4
  year: 2002
  ident: 10.1016/j.patrec.2014.01.008_b0140
  article-title: Bacteria classification using cyranose 320 electronic nose
  publication-title: Biomed. Eng.
– volume: 49
  start-page: 257
  issue: 1
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0295
  article-title: Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.028
– ident: 10.1016/j.patrec.2014.01.008_b0135
  doi: 10.1109/ROBOT.2001.933245
– ident: 10.1016/j.patrec.2014.01.008_b0565
– volume: 22
  start-page: 1473
  year: 2010
  ident: 10.1016/j.patrec.2014.01.008_b0445
  article-title: Learning to represent spatial transformations with factored higher-order Boltzmann machines
  publication-title: Neural Comput.
  doi: 10.1162/neco.2010.01-09-953
– volume: 37
  start-page: 1466
  year: 2001
  ident: 10.1016/j.patrec.2014.01.008_b0650
  article-title: Classification of vintages of wine by artificial nose using time delay neural networks
  publication-title: Electron. Lett.
  doi: 10.1049/el:20010985
– volume: 96
  start-page: 385
  year: 2003
  ident: 10.1016/j.patrec.2014.01.008_b0665
  article-title: Improving pattern recognition of electronic nose data with time-delay neural networks
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/S0925-4005(03)00574-4
SSID ssj0006398
Score 2.6376865
Snippet This paper gives a review of the recent developments in deep learning and unsupervised feature learning for time-series problems. While these techniques have...
SourceID unpaywall
swepub
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Computer Science
Datavetenskap
Deep learning
Time-series
Unsupervised feature learning
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6oFBALC_5AEevYmI7yUoIrYCq4lBx6EI5WbEzrgqrZLW7aVV-PeM4WSohVHrwIU5Gecw484018w3A6xwprrKZ5lKGrZsqFzxP0XEhK1t4whDKdlm-x_poLj-fqtMdGLo40ufrk9wp2GwWF_ieZt7RmNa2nq5x2qzaaXV-UfJUEhS-A7taEQYfwe78-Mvs-0DkHaotQ6SVZwQfUymHmrkusStsMmNgLxSyY-wMnSX_4ZMieege3G3rZXl1WS4W15zP4T58G0p4Ys7Jz0m7sRP3629Gx1u-1wO43-NRNosG9BB2sD6A_aHXA-uX_gHsXSMufAQnMxZrXljjWVuv22X45ayxYh47plDWd6M4Y2VdsQpx-WeGYDILLe15sH5cs64ZD514DPPDTycfjnjfn4E7gjkbjj6zRY7ekXITRZ6uVCLFnEI8mimtxTyxwhY2UKIpof1bn6NyThaiICFfpk9gVDc1PgWmlZMEHaz2mZJaOGtdpb1OnEq89MKOIR00ZFxPXh56aCzMkKX2w0S9mqBXkwhDeh0D30otI3nHDddng_JND0AisDDkX26QfBNtZXufQNv98fzrzDSrMxqt6RQ7hsnWlP7rkZ7dVuA53AtHMZvtBYw2qxZfEm7a2Ff9IvkNGEcaKA
  priority: 102
  providerName: Unpaywall
Title A review of unsupervised feature learning and deep learning for time-series modeling
URI https://dx.doi.org/10.1016/j.patrec.2014.01.008
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-34597
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-34597
UnpaywallVersion submittedVersion
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006398
  issn: 0167-8655
  databaseCode: AKRWK
  dateStart: 19821001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOBQOLQWqLgXkQ3sMGzd2HsdoAS0grSqVRXCyYsdGW62yEbtRxYXfzkweu3BAIA5RFMdWrBnHM2PNfB_Az9hiXKWj0BOCjm7ymHtxYI3HRa4Thz6E1HWW7ygcjsXFjbxZg0FXC0Nple3e3-zp9W7dtvRbafbLyaT_lxLoqawSQwSyRHUFu4iIxeD4cZXmgRY47vC9qXdXPlfneNF5syUgQy5q8E4imXzFPDU4olvwqSrK7OF_Np0-s0Nn2_C5dSBZ2szxK6zZYge-dOQMrP1Xd2DrGdLgLlylrClSYTPHqmJelbRHzG3OnK2hPVlLH3HHsiJnubXlqgX9WkYc9B4tVztnNXsOvtiD8dnp1WDotYQKnkG_ZOFZF-kkts6gNnyJpimTPLAxxmTYkmltY19znWjCMJM8dL9dbKUxIuEJDnJZ8A3Wi1lhvwMLpRFo63XoIilCbrQ2eehC30jfCcd1D4JOjsq0aONEejFVXVrZP9VIX5H0lc8VSr8H3nJU2aBtvNE_6lSkXqwahQbhjZG_Go0uv0M42yeT61TN7u_wqlQgMNjqwfFS4e-a0v6Hp_QDNumpyUM7gPXFfWUP0eNZ6KN6SR_BRnp-ORzhfTz6k94-AU6OA4Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4hOLAcgO2CKPvyYTmGxo2dx7FiF5XdwmUL4mbFjl0VVWnUNkJc-O07k0eBA2LFIRfHVqwZZ74Za-YbgB-xxbhKR6EnBF3dZDH34sAaj4tMJw59CKmrLN-rcHgtft_K2w04a2thKK2ysf21Ta-sdTPSa6TZK6bT3l9KoKeySgwRCIkwBNoSsh9RBHb6-JTngRActwTfNL2tn6uSvOjC2RKTIRcVeyd1mXwFn2oi0R3YLvMifbhPZ7NnQHS-D7uNB8kG9SY_wobNO7DXdmdgzc_agZ1nVIOfYDxgdZUKmztW5suyICOxtBlztuL2ZE3_iAlL84xl1hZPI-jYMmpC79F5tUtWtc_BFwdwff5rfDb0mo4KnkHHZOVZF-kkts6gOnyJ2JRKHtgYgzIcSbW2sa-5TjSRmEkeur6LrTRGJDzBRS4NDmEzn-f2CFgojUCw16GLpAi50dpkoQt9I30nHNddCFo5KtPQjVPXi5lq88ruVC19RdJXPlco_S5461VFTbfxxvyoVZF6cWwUIsIbK09qja6_Q0TbP6c3AzVfTPApVSAw2urC6Vrh_7Wl43dv6TtsD8eXIzW6uPrzGT7Qmzop7Qtsrhal_Yruz0p_q473Px-1A2k
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6oFBALC_5AEevYmI7yUoIrYCq4lBx6EI5WbEzrgqrZLW7aVV-PeM4WSohVHrwIU5Gecw484018w3A6xwprrKZ5lKGrZsqFzxP0XEhK1t4whDKdlm-x_poLj-fqtMdGLo40ufrk9wp2GwWF_ieZt7RmNa2nq5x2qzaaXV-UfJUEhS-A7taEQYfwe78-Mvs-0DkHaotQ6SVZwQfUymHmrkusStsMmNgLxSyY-wMnSX_4ZMieege3G3rZXl1WS4W15zP4T58G0p4Ys7Jz0m7sRP3629Gx1u-1wO43-NRNosG9BB2sD6A_aHXA-uX_gHsXSMufAQnMxZrXljjWVuv22X45ayxYh47plDWd6M4Y2VdsQpx-WeGYDILLe15sH5cs64ZD514DPPDTycfjnjfn4E7gjkbjj6zRY7ekXITRZ6uVCLFnEI8mimtxTyxwhY2UKIpof1bn6NyThaiICFfpk9gVDc1PgWmlZMEHaz2mZJaOGtdpb1OnEq89MKOIR00ZFxPXh56aCzMkKX2w0S9mqBXkwhDeh0D30otI3nHDddng_JND0AisDDkX26QfBNtZXufQNv98fzrzDSrMxqt6RQ7hsnWlP7rkZ7dVuA53AtHMZvtBYw2qxZfEm7a2Ff9IvkNGEcaKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+unsupervised+feature+learning+and+deep+learning+for+time-series+modeling&rft.jtitle=Pattern+recognition+letters&rft.au=L%C3%A4ngkvist%2C+Martin&rft.au=Karlsson%2C+Lars&rft.au=Loutfi%2C+Amy&rft.date=2014-06-01&rft.pub=Elsevier+B.V&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=42&rft.spage=11&rft.epage=24&rft_id=info:doi/10.1016%2Fj.patrec.2014.01.008&rft.externalDocID=S0167865514000221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon