Platform-independent modeling and prediction of application resource usage characteristics
Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to...
Saved in:
Published in | The Journal of systems and software Vol. 82; no. 12; pp. 2117 - 2127 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.12.2009
Elsevier Sequoia S.A |
Subjects | |
Online Access | Get full text |
ISSN | 0164-1212 1873-1228 |
DOI | 10.1016/j.jss.2009.07.020 |
Cover
Abstract | Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to address parts of the problem by either focusing on a specific application, or a specific platform, or on a small subset of system resources. We propose a simple and flexible approach for
modeling application resource usage in a platform-independent manner that enables the prediction of application resource usage on
unseen platforms. The technique proposed is application agnostic, requiring no modification to the application (binary or source) and no knowledge of application-semantics. We implement a Linux-based prototype and evaluate it using four different workloads including real-world applications and benchmarks. Our experiments reveal prediction errors that are bound within 6–24% of the observed for these workloads when using the proposed approach. |
---|---|
AbstractList | Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to address parts of the problem by either focusing on a specific application, or a specific platform, or on a small subset of system resources. We propose a simple and flexible approach for modeling application resource usage in a platform-independent manner that enables the prediction of application resource usage on unseen platforms. The technique proposed is application agnostic, requiring no modification to the application (binary or source) and no knowledge of application-semantics. We implement a Linux-based prototype and evaluate it using four different workloads including real-world applications and benchmarks. Our experiments reveal prediction errors that are bound within 6-24% of the observed for these workloads when using the proposed approach. Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to address parts of the problem by either focusing on a specific application, or a specific platform, or on a small subset of system resources. We propose a simple and flexible approach for modeling application resource usage in a platform-independent manner that enables the prediction of application resource usage on unseen platforms. The technique proposed is application agnostic, requiring no modification to the application (binary or source) and no knowledge of application-semantics. We implement a Linux-based prototype and evaluate it using four different workloads including real-world applications and benchmarks. Our experiments reveal prediction errors that are bound within 6-24% of the observed for these workloads when using the proposed approach. [PUBLICATION ABSTRACT] Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to address parts of the problem by either focusing on a specific application, or a specific platform, or on a small subset of system resources. We propose a simple and flexible approach for modeling application resource usage in a platform-independent manner that enables the prediction of application resource usage on unseen platforms. The technique proposed is application agnostic, requiring no modification to the application (binary or source) and no knowledge of application-semantics. We implement a Linux-based prototype and evaluate it using four different workloads including real-world applications and benchmarks. Our experiments reveal prediction errors that are bound within 6–24% of the observed for these workloads when using the proposed approach. |
Author | Duran-Limon, Hector A. Corona-Perez, Manuel Rangaswami, Raju Shimizu, Shuichi |
Author_xml | – sequence: 1 givenname: Shuichi surname: Shimizu fullname: Shimizu, Shuichi email: shue@jp.ibm.com organization: IBM Tokyo Research Laboratory, Kanagawa, Japan – sequence: 2 givenname: Raju surname: Rangaswami fullname: Rangaswami, Raju email: raju@cs.fiu.edu organization: Florida International University, Miami, FL, USA – sequence: 3 givenname: Hector A. surname: Duran-Limon fullname: Duran-Limon, Hector A. email: hduran@cucea.udg.mx organization: University of Guadalajara, 45100 CUCEA, Mexico – sequence: 4 givenname: Manuel surname: Corona-Perez fullname: Corona-Perez, Manuel email: manuel.corona@red.cucei.udg.mx organization: University of Guadalajara, 45100 CUCEA, Mexico |
BookMark | eNp9kTtrHDEURkVwIGsnPyDd4MZuZqLHjB64MsZ5gCEpkiaN0N6542iYlcaSNpB_b603lYttJF04n-C755ychRiQkI-Mdowy-Wnu5pw7TqnpqOoop2_IhmklWsa5PiObyvT1zfg7cp7zTClVnPIN-f1jcWWKadf6MOKK9Qil2cURFx8eGxfGZk04eig-hiZOjVvXxYN7GRPmuE-AzT67R2zgj0sOCiafi4f8nryd3JLxw__7gvz6fP_z7mv78P3Lt7vbhxaENqUFDUbqfhJiFNQ4raBXBrf9tB2VA8aYZBzRoRbboSJmcLoXyvG-lgUYmLggV8d_1xSf9piL3fkMuCwuYNxnq41kapCGV_L6JMmkYoLq3siKXr5C51o11B6WcyMlo8MBUkcIUsw54WTBl5fVlOT8Yhm1Bzl2tlWOPcixVNkqpybZq-Sa_M6lfyczN8cM1mX-9ZhsBo8Bqp2EUOwY_Yn0MyNtqhY |
CODEN | JSSODM |
CitedBy_id | crossref_primary_10_1007_s00607_020_00838_1 crossref_primary_10_1007_s11761_011_0087_6 crossref_primary_10_1007_s11227_020_03417_5 crossref_primary_10_1186_s13677_023_00389_8 |
Cites_doi | 10.1109/CLUSTR.2005.347062 10.1109/32.58769 10.1109/IPDPS.2002.1015480 10.1023/A:1015634802585 10.1007/BFb0053984 10.1023/A:1019052825453 10.1145/1341811.1341854 10.2307/2683825 10.1007/978-0-387-78446-5_10 10.1109/IPDPS.2008.4536214 10.1016/j.future.2006.02.008 10.1023/A:1019048724544 10.1117/12.706009 10.1109/ICGRID.2006.311027 10.1109/HPCA.2007.346211 10.1007/978-3-540-24774-6_16 10.1145/1012888.1005691 10.1007/978-3-540-24689-3_32 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. Copyright Elsevier Sequoia S.A. Dec 2009 |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: Copyright Elsevier Sequoia S.A. Dec 2009 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.jss.2009.07.020 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-1228 |
EndPage | 2127 |
ExternalDocumentID | 1894080301 10_1016_j_jss_2009_07_020 S0164121209001708 |
Genre | Feature |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9M8 AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABBOA ABEFU ABFNM ABFRF ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFO ACGFS ACGOD ACNNM ACRLP ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ UHS UNMZH VH1 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 8FD EFKBS JQ2 L7M L~C L~D ACLOT ~HD |
ID | FETCH-LOGICAL-c389t-c8c9684f33d309a87c479eb4fbd7ac111612eeae83b53d395a8437a24200cc513 |
IEDL.DBID | AIKHN |
ISSN | 0164-1212 |
IngestDate | Sat Sep 27 20:57:17 EDT 2025 Sun Sep 28 01:30:41 EDT 2025 Fri Jul 25 02:06:32 EDT 2025 Tue Jul 01 03:45:00 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 23 02:34:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Resource usage prediction Resource model Platform-independent resource model QoS management |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c389t-c8c9684f33d309a87c479eb4fbd7ac111612eeae83b53d395a8437a24200cc513 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PQID | 229661056 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_896175692 proquest_miscellaneous_1671308496 proquest_journals_229661056 crossref_citationtrail_10_1016_j_jss_2009_07_020 crossref_primary_10_1016_j_jss_2009_07_020 elsevier_sciencedirect_doi_10_1016_j_jss_2009_07_020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-01 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Journal of systems and software |
PublicationYear | 2009 |
Publisher | Elsevier Inc Elsevier Sequoia S.A |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Sequoia S.A |
References | Knuth, D.E., 1997. The Art of Computer Programming, vol. 1, Fundamental Algorithms, third ed. Addision-Wesley, Reading, MA. Swany, Wolski (bib31) 2002 Dimitrios Katramatos, S.J.C., 2005. A cost/benefit estimating service for mapping parallel applications on heterogeneous clusters. In: IEEE International Conference on Cluster Computing. Marletta, A., 2007. Cpulimit – CPU Usage Limiter for Linux Goyeneche, A., Terstyanszky, G., Delaitre, T., Winter, S., 2007. Improving grid computing performance prediction using weighted templates. In: Conference on Proceedings of the UK e-Science 2007 All Hands Meeting. Stewart, C., Kelly, T., Zhang, A., Shen, K., 2008. A Dollar from 15 cents: Cross-platform Management for Internet Services. Dinda, O’Hallaron (bib9) 2000; 3 Jarvis, Spooner, Keung, Cao, Saini, Nudd (bib17) 2006; 22 Snedecor, G.W., Cochran, W.G., 1980. Statistical Methods, seventh ed. The Iowa State University Press. Marin, Mellor-Crummey (bib23) 2004; 32 Dinda, P., 2002. A prediction-based real-time scheduling advisor. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium. ITIL, 2008. IT Infrastructure Library. Doyle, R.P., Chase, J.S., Asad, O.M., Jin, W., Vahdat, A., 2003. Model-based resource provisioning in a web service utility. In: USENIX Symposium on Internet Technologies and Systems. Lee, B.C., Brooks, D.M., 2007. Illustrative design space studies with microarchitectural regression models. In: Proceedings of the IEEE International Symposium on High Performance Computer Architecture. Sadjadi, S.M., Shimizu, S., Figueroa, J., Rangaswami, R., Delgado, J., Duran, H., Collazo, X., 2008. A modeling approach for estimating execution time of long-running scientific applications. In: Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS-2008), the Fifth High-Performance Grid Computing Workshop (HPGC-2008), Miami, FL. Sadjadi, S.M., Fong, L., Badia, R.M., Figueroa, J., Delgado, J., Collazo-Mojica, X.J., Saleem, K., Rangaswami, R., Shimizu, S., Limon, H.A.D., Welsh, P., Pattnaik, S., Praino, A., Villegas, D., Kalayci, S., Dasgupta, G., Ezenwoye, O., Martinez, J.C., Rodero, I., Chen, S., Lopez, J.M.D., Corbalan, J., Willoughby, H., McFail, M., Lisetti, C., Adjouadi, M., 2008. Transparent grid enablement of weather research and forecasting. In: Proceedings of the Mardi Gras Conference 2008 – Workshop on Grid-Enabling Applications, Baton Rouge, Louisiana, USA. Chen, S., Gorton, I., Liu, A., Liu, Y., 2002. Performance prediction of cots component-based enterprise applications. In: Proceedings: CBSE5. de Jonge, M., Muskens, J., Chaudron, M., 2003. Scenario-based prediction of run-time resource consumption in component-based software systems. In: Proceedings: Sixth ICSE Workshop on Component-Based Software Engineering: Automated Reasoning and Prediction. Zhang, Y., Sun, W., Inoguchi, Y., 2006. Predicting running time of grid tasks based on CPU load predictions. In: Proceedings of the IEEE/ACM International Conference on Grid Computing, pp. 286–292. Goodnight (bib12) 1979; 33 Stewart, C., Shen, K., 2005. Performance modeling and system management for multi-component online services. In: Proceedings of the Second USENIX NSDI. Axboe, J., 2008. Fio – Flexible IO Tester Smith, Foster, Taylor (bib27) 1998; 1459 Guim, F., Rodero, I., Corbalan, J., Goyeneche, A., 2007. The grid backfilling: a multi-site scheduling architecture with data mining prediction techniques. In: Coregrid Workshop In Grid Middleware. Ïpek, E., McKee, S.A., Caruana, R., de Supinski, B.R., Schulz, M., 2006. Accurate and efficient regression modeling for microarchitectural performance and power prediction. In: Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems Conference. . Devarakonda, Iyer (bib5) 1989; 15 Dinda (bib8) 2002; 5 Wolski, Spring, Hayes (bib32) 2000; 3 Lee, B.C., Brooks, D.M., 2006. Efficiently exploring architectural design spaces via predictive modeling. In: Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems Conference. Yang, Ma, Mueller (bib34) 2005 WRF, 2008. The Weather Research and Forecasting Model. Katcher, 1997. PostMark: A New File System Benchmark Gibbons (bib11) 1997 Badia, R.M., Escale, F., Gabriel, E., Gimenez, J., Keller, R., Labarta, J., Muller, M.S., 2003. Performance prediction in a grid environment. In: First European Across Grids Conference. Kalva, H., Shankar, R., Patel, T., Cruz, C., 2007. Resource estimation methodology for multimedia applications. In: Proceedings of SPIE – Volume 6504. Multimedia Computing and Networking. Wolski (10.1016/j.jss.2009.07.020_bib32) 2000; 3 Yang (10.1016/j.jss.2009.07.020_bib34) 2005 10.1016/j.jss.2009.07.020_bib20 10.1016/j.jss.2009.07.020_bib21 10.1016/j.jss.2009.07.020_bib22 10.1016/j.jss.2009.07.020_bib28 10.1016/j.jss.2009.07.020_bib29 10.1016/j.jss.2009.07.020_bib24 Gibbons (10.1016/j.jss.2009.07.020_bib11) 1997 10.1016/j.jss.2009.07.020_bib25 Jarvis (10.1016/j.jss.2009.07.020_bib17) 2006; 22 10.1016/j.jss.2009.07.020_bib26 Dinda (10.1016/j.jss.2009.07.020_bib8) 2002; 5 Swany (10.1016/j.jss.2009.07.020_bib31) 2002 10.1016/j.jss.2009.07.020_bib2 10.1016/j.jss.2009.07.020_bib3 Marin (10.1016/j.jss.2009.07.020_bib23) 2004; 32 10.1016/j.jss.2009.07.020_bib4 10.1016/j.jss.2009.07.020_bib1 10.1016/j.jss.2009.07.020_bib10 10.1016/j.jss.2009.07.020_bib33 10.1016/j.jss.2009.07.020_bib6 10.1016/j.jss.2009.07.020_bib7 10.1016/j.jss.2009.07.020_bib30 Dinda (10.1016/j.jss.2009.07.020_bib9) 2000; 3 Goodnight (10.1016/j.jss.2009.07.020_bib12) 1979; 33 10.1016/j.jss.2009.07.020_bib18 10.1016/j.jss.2009.07.020_bib19 Smith (10.1016/j.jss.2009.07.020_bib27) 1998; 1459 10.1016/j.jss.2009.07.020_bib13 10.1016/j.jss.2009.07.020_bib35 10.1016/j.jss.2009.07.020_bib14 Devarakonda (10.1016/j.jss.2009.07.020_bib5) 1989; 15 10.1016/j.jss.2009.07.020_bib15 10.1016/j.jss.2009.07.020_bib16 |
References_xml | – reference: Katcher, 1997. PostMark: A New File System Benchmark, < – reference: Snedecor, G.W., Cochran, W.G., 1980. Statistical Methods, seventh ed. The Iowa State University Press. – start-page: 40 year: 2005 end-page: 49 ident: bib34 article-title: Cross-platform performance prediction of parallel applications using partial execution publication-title: Proceedings of Supercomputing – reference: Lee, B.C., Brooks, D.M., 2007. Illustrative design space studies with microarchitectural regression models. In: Proceedings of the IEEE International Symposium on High Performance Computer Architecture. – reference: Lee, B.C., Brooks, D.M., 2006. Efficiently exploring architectural design spaces via predictive modeling. In: Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems Conference. – volume: 22 start-page: 745 year: 2006 end-page: 754 ident: bib17 article-title: Performance prediction and its use in parallel and distributed computing systems publication-title: Future Generation of Computer Systems – volume: 1459 start-page: 122 year: 1998 end-page: 135 ident: bib27 article-title: Predicting application run times using historical information publication-title: Lecture Notes in Computer Science – reference: Stewart, C., Kelly, T., Zhang, A., Shen, K., 2008. A Dollar from 15 cents: Cross-platform Management for Internet Services. – reference: Dinda, P., 2002. A prediction-based real-time scheduling advisor. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium. – reference: Chen, S., Gorton, I., Liu, A., Liu, Y., 2002. Performance prediction of cots component-based enterprise applications. In: Proceedings: CBSE5. – reference: Goyeneche, A., Terstyanszky, G., Delaitre, T., Winter, S., 2007. Improving grid computing performance prediction using weighted templates. In: Conference on Proceedings of the UK e-Science 2007 All Hands Meeting. – reference: Doyle, R.P., Chase, J.S., Asad, O.M., Jin, W., Vahdat, A., 2003. Model-based resource provisioning in a web service utility. In: USENIX Symposium on Internet Technologies and Systems. – volume: 5 year: 2002 ident: bib8 article-title: Online prediction of the running time of tasks publication-title: Cluster Computing – start-page: 58 year: 1997 end-page: 77 ident: bib11 article-title: A historical application profiler for use by parallel schedulers publication-title: IPPS’97: Proceedings of the Job Scheduling Strategies for Parallel Processing – volume: 3 start-page: 293 year: 2000 end-page: 301 ident: bib32 article-title: Predicting the CPU availability of time-shared unix systems on the computational grid publication-title: Cluster Computing – reference: Sadjadi, S.M., Fong, L., Badia, R.M., Figueroa, J., Delgado, J., Collazo-Mojica, X.J., Saleem, K., Rangaswami, R., Shimizu, S., Limon, H.A.D., Welsh, P., Pattnaik, S., Praino, A., Villegas, D., Kalayci, S., Dasgupta, G., Ezenwoye, O., Martinez, J.C., Rodero, I., Chen, S., Lopez, J.M.D., Corbalan, J., Willoughby, H., McFail, M., Lisetti, C., Adjouadi, M., 2008. Transparent grid enablement of weather research and forecasting. In: Proceedings of the Mardi Gras Conference 2008 – Workshop on Grid-Enabling Applications, Baton Rouge, Louisiana, USA. – volume: 33 start-page: 149 year: 1979 end-page: 158 ident: bib12 article-title: A tutorial on the SWEEP operator publication-title: American Statistician – reference: Stewart, C., Shen, K., 2005. Performance modeling and system management for multi-component online services. In: Proceedings of the Second USENIX NSDI. – reference: Kalva, H., Shankar, R., Patel, T., Cruz, C., 2007. Resource estimation methodology for multimedia applications. In: Proceedings of SPIE – Volume 6504. Multimedia Computing and Networking. – reference: Marletta, A., 2007. Cpulimit – CPU Usage Limiter for Linux, < – reference: Sadjadi, S.M., Shimizu, S., Figueroa, J., Rangaswami, R., Delgado, J., Duran, H., Collazo, X., 2008. A modeling approach for estimating execution time of long-running scientific applications. In: Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS-2008), the Fifth High-Performance Grid Computing Workshop (HPGC-2008), Miami, FL. – reference: Guim, F., Rodero, I., Corbalan, J., Goyeneche, A., 2007. The grid backfilling: a multi-site scheduling architecture with data mining prediction techniques. In: Coregrid Workshop In Grid Middleware. – start-page: 1 year: 2002 end-page: 10 ident: bib31 article-title: Multivariate resource performance forecasting in the network weather service publication-title: Proceedings of Supercomputing – reference: Zhang, Y., Sun, W., Inoguchi, Y., 2006. Predicting running time of grid tasks based on CPU load predictions. In: Proceedings of the IEEE/ACM International Conference on Grid Computing, pp. 286–292. – reference: >. – reference: ITIL, 2008. IT Infrastructure Library. – reference: Knuth, D.E., 1997. The Art of Computer Programming, vol. 1, Fundamental Algorithms, third ed. Addision-Wesley, Reading, MA. – reference: de Jonge, M., Muskens, J., Chaudron, M., 2003. Scenario-based prediction of run-time resource consumption in component-based software systems. In: Proceedings: Sixth ICSE Workshop on Component-Based Software Engineering: Automated Reasoning and Prediction. – reference: Dimitrios Katramatos, S.J.C., 2005. A cost/benefit estimating service for mapping parallel applications on heterogeneous clusters. In: IEEE International Conference on Cluster Computing. – volume: 3 start-page: 265 year: 2000 end-page: 280 ident: bib9 article-title: Host load prediction using linear models publication-title: Cluster Computing – volume: 32 start-page: 2 year: 2004 end-page: 13 ident: bib23 article-title: Cross-architecture performance predictions for scientific applications using parameterized models publication-title: SIGMETRICS Performance Evaluation of Review – reference: Axboe, J., 2008. Fio – Flexible IO Tester, < – reference: Badia, R.M., Escale, F., Gabriel, E., Gimenez, J., Keller, R., Labarta, J., Muller, M.S., 2003. Performance prediction in a grid environment. In: First European Across Grids Conference. – reference: WRF, 2008. The Weather Research and Forecasting Model. – reference: Ïpek, E., McKee, S.A., Caruana, R., de Supinski, B.R., Schulz, M., 2006. Accurate and efficient regression modeling for microarchitectural performance and power prediction. In: Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems Conference. – volume: 15 start-page: 1579 year: 1989 end-page: 1586 ident: bib5 article-title: Predictability of process resource usage: a measurement-based study on UNIX publication-title: IEEE Transactions on Software Engineering – ident: 10.1016/j.jss.2009.07.020_bib29 – ident: 10.1016/j.jss.2009.07.020_bib6 doi: 10.1109/CLUSTR.2005.347062 – volume: 15 start-page: 1579 issue: 12 year: 1989 ident: 10.1016/j.jss.2009.07.020_bib5 article-title: Predictability of process resource usage: a measurement-based study on UNIX publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.58769 – ident: 10.1016/j.jss.2009.07.020_bib10 – ident: 10.1016/j.jss.2009.07.020_bib7 doi: 10.1109/IPDPS.2002.1015480 – volume: 5 issue: 3 year: 2002 ident: 10.1016/j.jss.2009.07.020_bib8 article-title: Online prediction of the running time of tasks publication-title: Cluster Computing doi: 10.1023/A:1015634802585 – volume: 1459 start-page: 122 year: 1998 ident: 10.1016/j.jss.2009.07.020_bib27 article-title: Predicting application run times using historical information publication-title: Lecture Notes in Computer Science doi: 10.1007/BFb0053984 – volume: 3 start-page: 293 issue: 4 year: 2000 ident: 10.1016/j.jss.2009.07.020_bib32 article-title: Predicting the CPU availability of time-shared unix systems on the computational grid publication-title: Cluster Computing doi: 10.1023/A:1019052825453 – ident: 10.1016/j.jss.2009.07.020_bib25 doi: 10.1145/1341811.1341854 – volume: 33 start-page: 149 year: 1979 ident: 10.1016/j.jss.2009.07.020_bib12 article-title: A tutorial on the SWEEP operator publication-title: American Statistician doi: 10.2307/2683825 – ident: 10.1016/j.jss.2009.07.020_bib16 – ident: 10.1016/j.jss.2009.07.020_bib21 – ident: 10.1016/j.jss.2009.07.020_bib33 – start-page: 58 year: 1997 ident: 10.1016/j.jss.2009.07.020_bib11 article-title: A historical application profiler for use by parallel schedulers – ident: 10.1016/j.jss.2009.07.020_bib14 doi: 10.1007/978-0-387-78446-5_10 – ident: 10.1016/j.jss.2009.07.020_bib28 – start-page: 40 year: 2005 ident: 10.1016/j.jss.2009.07.020_bib34 article-title: Cross-platform performance prediction of parallel applications using partial execution publication-title: Proceedings of Supercomputing – ident: 10.1016/j.jss.2009.07.020_bib24 – ident: 10.1016/j.jss.2009.07.020_bib26 doi: 10.1109/IPDPS.2008.4536214 – ident: 10.1016/j.jss.2009.07.020_bib30 – volume: 22 start-page: 745 issue: 7 year: 2006 ident: 10.1016/j.jss.2009.07.020_bib17 article-title: Performance prediction and its use in parallel and distributed computing systems publication-title: Future Generation of Computer Systems doi: 10.1016/j.future.2006.02.008 – volume: 3 start-page: 265 issue: 4 year: 2000 ident: 10.1016/j.jss.2009.07.020_bib9 article-title: Host load prediction using linear models publication-title: Cluster Computing doi: 10.1023/A:1019048724544 – start-page: 1 year: 2002 ident: 10.1016/j.jss.2009.07.020_bib31 article-title: Multivariate resource performance forecasting in the network weather service publication-title: Proceedings of Supercomputing – ident: 10.1016/j.jss.2009.07.020_bib15 – ident: 10.1016/j.jss.2009.07.020_bib18 doi: 10.1117/12.706009 – ident: 10.1016/j.jss.2009.07.020_bib35 doi: 10.1109/ICGRID.2006.311027 – ident: 10.1016/j.jss.2009.07.020_bib1 – ident: 10.1016/j.jss.2009.07.020_bib20 – ident: 10.1016/j.jss.2009.07.020_bib3 – ident: 10.1016/j.jss.2009.07.020_bib13 – ident: 10.1016/j.jss.2009.07.020_bib22 doi: 10.1109/HPCA.2007.346211 – ident: 10.1016/j.jss.2009.07.020_bib4 doi: 10.1007/978-3-540-24774-6_16 – ident: 10.1016/j.jss.2009.07.020_bib19 – volume: 32 start-page: 2 issue: 1 year: 2004 ident: 10.1016/j.jss.2009.07.020_bib23 article-title: Cross-architecture performance predictions for scientific applications using parameterized models publication-title: SIGMETRICS Performance Evaluation of Review doi: 10.1145/1012888.1005691 – ident: 10.1016/j.jss.2009.07.020_bib2 doi: 10.1007/978-3-540-24689-3_32 |
SSID | ssj0007202 |
Score | 1.9571072 |
Snippet | Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2117 |
SubjectTerms | Benchmarks Computer programs Decision making models Focusing Mathematical models Optimization Platform-independent resource model Platforms QoS management Quality of service Resource model Resource usage prediction Semantics Studies Systems management Workload Workloads |
Title | Platform-independent modeling and prediction of application resource usage characteristics |
URI | https://dx.doi.org/10.1016/j.jss.2009.07.020 https://www.proquest.com/docview/229661056 https://www.proquest.com/docview/1671308496 https://www.proquest.com/docview/896175692 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEB0S59JL2_SDummDCj0VFEu7klY6htDgNiQU2kDoRUiyBA5hbez1tb-9o7XWNKXNIdfVCLQjzczbndE8gI8Bw4jjwdPYSEkFmjbViXtqUlSzlBRPLt8dvrxS02vx9Ube7MHZcBcml1UW37_16b23Lk8mRZuT5Xw--Z6bQ_Eq3_3sm8DofTioMNrrERycfrmYXu0cclP1pYdZnuYJQ3KzL_O6Xa9L18rmhGXW73-Hp78cdR99zp_D0wIbyel2ZYewF9sX8GygZCDFQl_Cz293rss4lM53_LYd6eluMEYR187IcpVzM3k_yCKRPxLYZFV-5ZNNrjYj4X4v51dwff75x9mUFvoEGhCFdDToYJQWqa5nNTNON0E0JnqR_KxxAX0cgpsYXdS1lyhipNOibhzGbMZCkLx-DaN20cY3QCQTnnuZ8Nso5pZovmZBJJ1CVEEFJ8fABq3ZUHqLZ4qLOzsUkd1aVHTmvDSWNRYVPYZPuynLbWONh4TFsBX23umw6PgfmnY0bJstponjFb4Foko1hg-7UbSpnChxbVxs1pYr_HRnWhiUIf-R0Qaxn1Smevu4tR3Bk6pQUTD-DkbdahPfI77p_DHsn_zix-UU_wbQfvwE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5S59BemvRF3bSpCj0VVGt3Ja10DKHBeZlCEwi9CEmWwCGsjb3-_x2ttSYpbQ65rkagHWlmvt0ZzQfw1WMYsYV3NNRCUI6mTVUsHNUxyGmMsog23R2-nMjxNT-7ETc7cNzfhUllldn3b3x6563zk1HW5mgxm41-peZQRZnufnZNYNQz2OWJ1HoAu0en5-PJ1iHXZVd6mORpmtAnN7syr9vVKnetrL-zxPr97_D0l6Puos_JPrzMsJEcbVb2CnZC8xr2ekoGki30Dfz-eWfbhEPpbMtv25KO7gZjFLHNlCyWKTeT9oPMI7mXwCbL_CufrFO1GfEPezm_heuTH1fHY5rpE6hHFNJSr7yWiseqmlZMW1V7XuvgeHTT2nr0cQhuQrBBVU6giBZW8aq2GLMZ814U1TsYNPMmvAciGHeFExG_jUJqieYq5nlU0QfppbdiCKzXmvG5t3iiuLgzfRHZrUFFJ85LbVhtUNFD-Ladstg01nhMmPdbYR6cDoOO_7FpB_22mWyaOF7iWyCqlEP4sh1Fm0qJEtuE-XplComf7kxxjTLkPzJKI_YTUpcfnra2z_B8fHV5YS5OJ-cH8KLMtBSs-AiDdrkOnxDrtO4wn-U_wNT96g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platform-independent+modeling+and+prediction+of+application+resource+usage+characteristics&rft.jtitle=The+Journal+of+systems+and+software&rft.au=Shimizu%2C+Shuichi&rft.au=Rangaswami%2C+Raju&rft.au=Duran-Limon%2C+Hector+A.&rft.au=Corona-Perez%2C+Manuel&rft.date=2009-12-01&rft.issn=0164-1212&rft.volume=82&rft.issue=12&rft.spage=2117&rft.epage=2127&rft_id=info:doi/10.1016%2Fj.jss.2009.07.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jss_2009_07_020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0164-1212&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0164-1212&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0164-1212&client=summon |