Platform-independent modeling and prediction of application resource usage characteristics

Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of systems and software Vol. 82; no. 12; pp. 2117 - 2127
Main Authors Shimizu, Shuichi, Rangaswami, Raju, Duran-Limon, Hector A., Corona-Perez, Manuel
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.12.2009
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN0164-1212
1873-1228
DOI10.1016/j.jss.2009.07.020

Cover

Abstract Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to address parts of the problem by either focusing on a specific application, or a specific platform, or on a small subset of system resources. We propose a simple and flexible approach for modeling application resource usage in a platform-independent manner that enables the prediction of application resource usage on unseen platforms. The technique proposed is application agnostic, requiring no modification to the application (binary or source) and no knowledge of application-semantics. We implement a Linux-based prototype and evaluate it using four different workloads including real-world applications and benchmarks. Our experiments reveal prediction errors that are bound within 6–24% of the observed for these workloads when using the proposed approach.
AbstractList Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to address parts of the problem by either focusing on a specific application, or a specific platform, or on a small subset of system resources. We propose a simple and flexible approach for modeling application resource usage in a platform-independent manner that enables the prediction of application resource usage on unseen platforms. The technique proposed is application agnostic, requiring no modification to the application (binary or source) and no knowledge of application-semantics. We implement a Linux-based prototype and evaluate it using four different workloads including real-world applications and benchmarks. Our experiments reveal prediction errors that are bound within 6-24% of the observed for these workloads when using the proposed approach.
Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to address parts of the problem by either focusing on a specific application, or a specific platform, or on a small subset of system resources. We propose a simple and flexible approach for modeling application resource usage in a platform-independent manner that enables the prediction of application resource usage on unseen platforms. The technique proposed is application agnostic, requiring no modification to the application (binary or source) and no knowledge of application-semantics. We implement a Linux-based prototype and evaluate it using four different workloads including real-world applications and benchmarks. Our experiments reveal prediction errors that are bound within 6-24% of the observed for these workloads when using the proposed approach. [PUBLICATION ABSTRACT]
Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their general use in performance modeling, optimization, and systems management. Current solutions for modeling application resource usage tend to address parts of the problem by either focusing on a specific application, or a specific platform, or on a small subset of system resources. We propose a simple and flexible approach for modeling application resource usage in a platform-independent manner that enables the prediction of application resource usage on unseen platforms. The technique proposed is application agnostic, requiring no modification to the application (binary or source) and no knowledge of application-semantics. We implement a Linux-based prototype and evaluate it using four different workloads including real-world applications and benchmarks. Our experiments reveal prediction errors that are bound within 6–24% of the observed for these workloads when using the proposed approach.
Author Duran-Limon, Hector A.
Corona-Perez, Manuel
Rangaswami, Raju
Shimizu, Shuichi
Author_xml – sequence: 1
  givenname: Shuichi
  surname: Shimizu
  fullname: Shimizu, Shuichi
  email: shue@jp.ibm.com
  organization: IBM Tokyo Research Laboratory, Kanagawa, Japan
– sequence: 2
  givenname: Raju
  surname: Rangaswami
  fullname: Rangaswami, Raju
  email: raju@cs.fiu.edu
  organization: Florida International University, Miami, FL, USA
– sequence: 3
  givenname: Hector A.
  surname: Duran-Limon
  fullname: Duran-Limon, Hector A.
  email: hduran@cucea.udg.mx
  organization: University of Guadalajara, 45100 CUCEA, Mexico
– sequence: 4
  givenname: Manuel
  surname: Corona-Perez
  fullname: Corona-Perez, Manuel
  email: manuel.corona@red.cucei.udg.mx
  organization: University of Guadalajara, 45100 CUCEA, Mexico
BookMark eNp9kTtrHDEURkVwIGsnPyDd4MZuZqLHjB64MsZ5gCEpkiaN0N6542iYlcaSNpB_b603lYttJF04n-C755ychRiQkI-Mdowy-Wnu5pw7TqnpqOoop2_IhmklWsa5PiObyvT1zfg7cp7zTClVnPIN-f1jcWWKadf6MOKK9Qil2cURFx8eGxfGZk04eig-hiZOjVvXxYN7GRPmuE-AzT67R2zgj0sOCiafi4f8nryd3JLxw__7gvz6fP_z7mv78P3Lt7vbhxaENqUFDUbqfhJiFNQ4raBXBrf9tB2VA8aYZBzRoRbboSJmcLoXyvG-lgUYmLggV8d_1xSf9piL3fkMuCwuYNxnq41kapCGV_L6JMmkYoLq3siKXr5C51o11B6WcyMlo8MBUkcIUsw54WTBl5fVlOT8Yhm1Bzl2tlWOPcixVNkqpybZq-Sa_M6lfyczN8cM1mX-9ZhsBo8Bqp2EUOwY_Yn0MyNtqhY
CODEN JSSODM
CitedBy_id crossref_primary_10_1007_s00607_020_00838_1
crossref_primary_10_1007_s11761_011_0087_6
crossref_primary_10_1007_s11227_020_03417_5
crossref_primary_10_1186_s13677_023_00389_8
Cites_doi 10.1109/CLUSTR.2005.347062
10.1109/32.58769
10.1109/IPDPS.2002.1015480
10.1023/A:1015634802585
10.1007/BFb0053984
10.1023/A:1019052825453
10.1145/1341811.1341854
10.2307/2683825
10.1007/978-0-387-78446-5_10
10.1109/IPDPS.2008.4536214
10.1016/j.future.2006.02.008
10.1023/A:1019048724544
10.1117/12.706009
10.1109/ICGRID.2006.311027
10.1109/HPCA.2007.346211
10.1007/978-3-540-24774-6_16
10.1145/1012888.1005691
10.1007/978-3-540-24689-3_32
ContentType Journal Article
Copyright 2009 Elsevier Inc.
Copyright Elsevier Sequoia S.A. Dec 2009
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: Copyright Elsevier Sequoia S.A. Dec 2009
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jss.2009.07.020
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-1228
EndPage 2127
ExternalDocumentID 1894080301
10_1016_j_jss_2009_07_020
S0164121209001708
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9M8
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABBOA
ABEFU
ABFNM
ABFRF
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACGOD
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
UHS
UNMZH
VH1
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
8FD
EFKBS
JQ2
L7M
L~C
L~D
ACLOT
~HD
ID FETCH-LOGICAL-c389t-c8c9684f33d309a87c479eb4fbd7ac111612eeae83b53d395a8437a24200cc513
IEDL.DBID AIKHN
ISSN 0164-1212
IngestDate Sat Sep 27 20:57:17 EDT 2025
Sun Sep 28 01:30:41 EDT 2025
Fri Jul 25 02:06:32 EDT 2025
Tue Jul 01 03:45:00 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Fri Feb 23 02:34:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Resource usage prediction
Resource model
Platform-independent resource model
QoS management
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-c8c9684f33d309a87c479eb4fbd7ac111612eeae83b53d395a8437a24200cc513
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 229661056
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_896175692
proquest_miscellaneous_1671308496
proquest_journals_229661056
crossref_citationtrail_10_1016_j_jss_2009_07_020
crossref_primary_10_1016_j_jss_2009_07_020
elsevier_sciencedirect_doi_10_1016_j_jss_2009_07_020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of systems and software
PublicationYear 2009
Publisher Elsevier Inc
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier Inc
– name: Elsevier Sequoia S.A
References Knuth, D.E., 1997. The Art of Computer Programming, vol. 1, Fundamental Algorithms, third ed. Addision-Wesley, Reading, MA.
Swany, Wolski (bib31) 2002
Dimitrios Katramatos, S.J.C., 2005. A cost/benefit estimating service for mapping parallel applications on heterogeneous clusters. In: IEEE International Conference on Cluster Computing.
Marletta, A., 2007. Cpulimit – CPU Usage Limiter for Linux
Goyeneche, A., Terstyanszky, G., Delaitre, T., Winter, S., 2007. Improving grid computing performance prediction using weighted templates. In: Conference on Proceedings of the UK e-Science 2007 All Hands Meeting.
Stewart, C., Kelly, T., Zhang, A., Shen, K., 2008. A Dollar from 15 cents: Cross-platform Management for Internet Services.
Dinda, O’Hallaron (bib9) 2000; 3
Jarvis, Spooner, Keung, Cao, Saini, Nudd (bib17) 2006; 22
Snedecor, G.W., Cochran, W.G., 1980. Statistical Methods, seventh ed. The Iowa State University Press.
Marin, Mellor-Crummey (bib23) 2004; 32
Dinda, P., 2002. A prediction-based real-time scheduling advisor. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium.
ITIL, 2008. IT Infrastructure Library.
Doyle, R.P., Chase, J.S., Asad, O.M., Jin, W., Vahdat, A., 2003. Model-based resource provisioning in a web service utility. In: USENIX Symposium on Internet Technologies and Systems.
Lee, B.C., Brooks, D.M., 2007. Illustrative design space studies with microarchitectural regression models. In: Proceedings of the IEEE International Symposium on High Performance Computer Architecture.
Sadjadi, S.M., Shimizu, S., Figueroa, J., Rangaswami, R., Delgado, J., Duran, H., Collazo, X., 2008. A modeling approach for estimating execution time of long-running scientific applications. In: Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS-2008), the Fifth High-Performance Grid Computing Workshop (HPGC-2008), Miami, FL.
Sadjadi, S.M., Fong, L., Badia, R.M., Figueroa, J., Delgado, J., Collazo-Mojica, X.J., Saleem, K., Rangaswami, R., Shimizu, S., Limon, H.A.D., Welsh, P., Pattnaik, S., Praino, A., Villegas, D., Kalayci, S., Dasgupta, G., Ezenwoye, O., Martinez, J.C., Rodero, I., Chen, S., Lopez, J.M.D., Corbalan, J., Willoughby, H., McFail, M., Lisetti, C., Adjouadi, M., 2008. Transparent grid enablement of weather research and forecasting. In: Proceedings of the Mardi Gras Conference 2008 – Workshop on Grid-Enabling Applications, Baton Rouge, Louisiana, USA.
Chen, S., Gorton, I., Liu, A., Liu, Y., 2002. Performance prediction of cots component-based enterprise applications. In: Proceedings: CBSE5.
de Jonge, M., Muskens, J., Chaudron, M., 2003. Scenario-based prediction of run-time resource consumption in component-based software systems. In: Proceedings: Sixth ICSE Workshop on Component-Based Software Engineering: Automated Reasoning and Prediction.
Zhang, Y., Sun, W., Inoguchi, Y., 2006. Predicting running time of grid tasks based on CPU load predictions. In: Proceedings of the IEEE/ACM International Conference on Grid Computing, pp. 286–292.
Goodnight (bib12) 1979; 33
Stewart, C., Shen, K., 2005. Performance modeling and system management for multi-component online services. In: Proceedings of the Second USENIX NSDI.
Axboe, J., 2008. Fio – Flexible IO Tester
Smith, Foster, Taylor (bib27) 1998; 1459
Guim, F., Rodero, I., Corbalan, J., Goyeneche, A., 2007. The grid backfilling: a multi-site scheduling architecture with data mining prediction techniques. In: Coregrid Workshop In Grid Middleware.
Ïpek, E., McKee, S.A., Caruana, R., de Supinski, B.R., Schulz, M., 2006. Accurate and efficient regression modeling for microarchitectural performance and power prediction. In: Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems Conference.
.
Devarakonda, Iyer (bib5) 1989; 15
Dinda (bib8) 2002; 5
Wolski, Spring, Hayes (bib32) 2000; 3
Lee, B.C., Brooks, D.M., 2006. Efficiently exploring architectural design spaces via predictive modeling. In: Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems Conference.
Yang, Ma, Mueller (bib34) 2005
WRF, 2008. The Weather Research and Forecasting Model.
Katcher, 1997. PostMark: A New File System Benchmark
Gibbons (bib11) 1997
Badia, R.M., Escale, F., Gabriel, E., Gimenez, J., Keller, R., Labarta, J., Muller, M.S., 2003. Performance prediction in a grid environment. In: First European Across Grids Conference.
Kalva, H., Shankar, R., Patel, T., Cruz, C., 2007. Resource estimation methodology for multimedia applications. In: Proceedings of SPIE – Volume 6504. Multimedia Computing and Networking.
Wolski (10.1016/j.jss.2009.07.020_bib32) 2000; 3
Yang (10.1016/j.jss.2009.07.020_bib34) 2005
10.1016/j.jss.2009.07.020_bib20
10.1016/j.jss.2009.07.020_bib21
10.1016/j.jss.2009.07.020_bib22
10.1016/j.jss.2009.07.020_bib28
10.1016/j.jss.2009.07.020_bib29
10.1016/j.jss.2009.07.020_bib24
Gibbons (10.1016/j.jss.2009.07.020_bib11) 1997
10.1016/j.jss.2009.07.020_bib25
Jarvis (10.1016/j.jss.2009.07.020_bib17) 2006; 22
10.1016/j.jss.2009.07.020_bib26
Dinda (10.1016/j.jss.2009.07.020_bib8) 2002; 5
Swany (10.1016/j.jss.2009.07.020_bib31) 2002
10.1016/j.jss.2009.07.020_bib2
10.1016/j.jss.2009.07.020_bib3
Marin (10.1016/j.jss.2009.07.020_bib23) 2004; 32
10.1016/j.jss.2009.07.020_bib4
10.1016/j.jss.2009.07.020_bib1
10.1016/j.jss.2009.07.020_bib10
10.1016/j.jss.2009.07.020_bib33
10.1016/j.jss.2009.07.020_bib6
10.1016/j.jss.2009.07.020_bib7
10.1016/j.jss.2009.07.020_bib30
Dinda (10.1016/j.jss.2009.07.020_bib9) 2000; 3
Goodnight (10.1016/j.jss.2009.07.020_bib12) 1979; 33
10.1016/j.jss.2009.07.020_bib18
10.1016/j.jss.2009.07.020_bib19
Smith (10.1016/j.jss.2009.07.020_bib27) 1998; 1459
10.1016/j.jss.2009.07.020_bib13
10.1016/j.jss.2009.07.020_bib35
10.1016/j.jss.2009.07.020_bib14
Devarakonda (10.1016/j.jss.2009.07.020_bib5) 1989; 15
10.1016/j.jss.2009.07.020_bib15
10.1016/j.jss.2009.07.020_bib16
References_xml – reference: Katcher, 1997. PostMark: A New File System Benchmark, <
– reference: Snedecor, G.W., Cochran, W.G., 1980. Statistical Methods, seventh ed. The Iowa State University Press.
– start-page: 40
  year: 2005
  end-page: 49
  ident: bib34
  article-title: Cross-platform performance prediction of parallel applications using partial execution
  publication-title: Proceedings of Supercomputing
– reference: Lee, B.C., Brooks, D.M., 2007. Illustrative design space studies with microarchitectural regression models. In: Proceedings of the IEEE International Symposium on High Performance Computer Architecture.
– reference: Lee, B.C., Brooks, D.M., 2006. Efficiently exploring architectural design spaces via predictive modeling. In: Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems Conference.
– volume: 22
  start-page: 745
  year: 2006
  end-page: 754
  ident: bib17
  article-title: Performance prediction and its use in parallel and distributed computing systems
  publication-title: Future Generation of Computer Systems
– volume: 1459
  start-page: 122
  year: 1998
  end-page: 135
  ident: bib27
  article-title: Predicting application run times using historical information
  publication-title: Lecture Notes in Computer Science
– reference: Stewart, C., Kelly, T., Zhang, A., Shen, K., 2008. A Dollar from 15 cents: Cross-platform Management for Internet Services.
– reference: Dinda, P., 2002. A prediction-based real-time scheduling advisor. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium.
– reference: Chen, S., Gorton, I., Liu, A., Liu, Y., 2002. Performance prediction of cots component-based enterprise applications. In: Proceedings: CBSE5.
– reference: Goyeneche, A., Terstyanszky, G., Delaitre, T., Winter, S., 2007. Improving grid computing performance prediction using weighted templates. In: Conference on Proceedings of the UK e-Science 2007 All Hands Meeting.
– reference: Doyle, R.P., Chase, J.S., Asad, O.M., Jin, W., Vahdat, A., 2003. Model-based resource provisioning in a web service utility. In: USENIX Symposium on Internet Technologies and Systems.
– volume: 5
  year: 2002
  ident: bib8
  article-title: Online prediction of the running time of tasks
  publication-title: Cluster Computing
– start-page: 58
  year: 1997
  end-page: 77
  ident: bib11
  article-title: A historical application profiler for use by parallel schedulers
  publication-title: IPPS’97: Proceedings of the Job Scheduling Strategies for Parallel Processing
– volume: 3
  start-page: 293
  year: 2000
  end-page: 301
  ident: bib32
  article-title: Predicting the CPU availability of time-shared unix systems on the computational grid
  publication-title: Cluster Computing
– reference: Sadjadi, S.M., Fong, L., Badia, R.M., Figueroa, J., Delgado, J., Collazo-Mojica, X.J., Saleem, K., Rangaswami, R., Shimizu, S., Limon, H.A.D., Welsh, P., Pattnaik, S., Praino, A., Villegas, D., Kalayci, S., Dasgupta, G., Ezenwoye, O., Martinez, J.C., Rodero, I., Chen, S., Lopez, J.M.D., Corbalan, J., Willoughby, H., McFail, M., Lisetti, C., Adjouadi, M., 2008. Transparent grid enablement of weather research and forecasting. In: Proceedings of the Mardi Gras Conference 2008 – Workshop on Grid-Enabling Applications, Baton Rouge, Louisiana, USA.
– volume: 33
  start-page: 149
  year: 1979
  end-page: 158
  ident: bib12
  article-title: A tutorial on the SWEEP operator
  publication-title: American Statistician
– reference: Stewart, C., Shen, K., 2005. Performance modeling and system management for multi-component online services. In: Proceedings of the Second USENIX NSDI.
– reference: Kalva, H., Shankar, R., Patel, T., Cruz, C., 2007. Resource estimation methodology for multimedia applications. In: Proceedings of SPIE – Volume 6504. Multimedia Computing and Networking.
– reference: Marletta, A., 2007. Cpulimit – CPU Usage Limiter for Linux, <
– reference: Sadjadi, S.M., Shimizu, S., Figueroa, J., Rangaswami, R., Delgado, J., Duran, H., Collazo, X., 2008. A modeling approach for estimating execution time of long-running scientific applications. In: Proceedings of the 22nd IEEE International Parallel and Distributed Processing Symposium (IPDPS-2008), the Fifth High-Performance Grid Computing Workshop (HPGC-2008), Miami, FL.
– reference: Guim, F., Rodero, I., Corbalan, J., Goyeneche, A., 2007. The grid backfilling: a multi-site scheduling architecture with data mining prediction techniques. In: Coregrid Workshop In Grid Middleware.
– start-page: 1
  year: 2002
  end-page: 10
  ident: bib31
  article-title: Multivariate resource performance forecasting in the network weather service
  publication-title: Proceedings of Supercomputing
– reference: Zhang, Y., Sun, W., Inoguchi, Y., 2006. Predicting running time of grid tasks based on CPU load predictions. In: Proceedings of the IEEE/ACM International Conference on Grid Computing, pp. 286–292.
– reference: >.
– reference: ITIL, 2008. IT Infrastructure Library.
– reference: Knuth, D.E., 1997. The Art of Computer Programming, vol. 1, Fundamental Algorithms, third ed. Addision-Wesley, Reading, MA.
– reference: de Jonge, M., Muskens, J., Chaudron, M., 2003. Scenario-based prediction of run-time resource consumption in component-based software systems. In: Proceedings: Sixth ICSE Workshop on Component-Based Software Engineering: Automated Reasoning and Prediction.
– reference: Dimitrios Katramatos, S.J.C., 2005. A cost/benefit estimating service for mapping parallel applications on heterogeneous clusters. In: IEEE International Conference on Cluster Computing.
– volume: 3
  start-page: 265
  year: 2000
  end-page: 280
  ident: bib9
  article-title: Host load prediction using linear models
  publication-title: Cluster Computing
– volume: 32
  start-page: 2
  year: 2004
  end-page: 13
  ident: bib23
  article-title: Cross-architecture performance predictions for scientific applications using parameterized models
  publication-title: SIGMETRICS Performance Evaluation of Review
– reference: Axboe, J., 2008. Fio – Flexible IO Tester, <
– reference: Badia, R.M., Escale, F., Gabriel, E., Gimenez, J., Keller, R., Labarta, J., Muller, M.S., 2003. Performance prediction in a grid environment. In: First European Across Grids Conference.
– reference: WRF, 2008. The Weather Research and Forecasting Model.
– reference: Ïpek, E., McKee, S.A., Caruana, R., de Supinski, B.R., Schulz, M., 2006. Accurate and efficient regression modeling for microarchitectural performance and power prediction. In: Proceedings of the ACM Architectural Support for Programming Languages and Operating Systems Conference.
– volume: 15
  start-page: 1579
  year: 1989
  end-page: 1586
  ident: bib5
  article-title: Predictability of process resource usage: a measurement-based study on UNIX
  publication-title: IEEE Transactions on Software Engineering
– ident: 10.1016/j.jss.2009.07.020_bib29
– ident: 10.1016/j.jss.2009.07.020_bib6
  doi: 10.1109/CLUSTR.2005.347062
– volume: 15
  start-page: 1579
  issue: 12
  year: 1989
  ident: 10.1016/j.jss.2009.07.020_bib5
  article-title: Predictability of process resource usage: a measurement-based study on UNIX
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.58769
– ident: 10.1016/j.jss.2009.07.020_bib10
– ident: 10.1016/j.jss.2009.07.020_bib7
  doi: 10.1109/IPDPS.2002.1015480
– volume: 5
  issue: 3
  year: 2002
  ident: 10.1016/j.jss.2009.07.020_bib8
  article-title: Online prediction of the running time of tasks
  publication-title: Cluster Computing
  doi: 10.1023/A:1015634802585
– volume: 1459
  start-page: 122
  year: 1998
  ident: 10.1016/j.jss.2009.07.020_bib27
  article-title: Predicting application run times using historical information
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/BFb0053984
– volume: 3
  start-page: 293
  issue: 4
  year: 2000
  ident: 10.1016/j.jss.2009.07.020_bib32
  article-title: Predicting the CPU availability of time-shared unix systems on the computational grid
  publication-title: Cluster Computing
  doi: 10.1023/A:1019052825453
– ident: 10.1016/j.jss.2009.07.020_bib25
  doi: 10.1145/1341811.1341854
– volume: 33
  start-page: 149
  year: 1979
  ident: 10.1016/j.jss.2009.07.020_bib12
  article-title: A tutorial on the SWEEP operator
  publication-title: American Statistician
  doi: 10.2307/2683825
– ident: 10.1016/j.jss.2009.07.020_bib16
– ident: 10.1016/j.jss.2009.07.020_bib21
– ident: 10.1016/j.jss.2009.07.020_bib33
– start-page: 58
  year: 1997
  ident: 10.1016/j.jss.2009.07.020_bib11
  article-title: A historical application profiler for use by parallel schedulers
– ident: 10.1016/j.jss.2009.07.020_bib14
  doi: 10.1007/978-0-387-78446-5_10
– ident: 10.1016/j.jss.2009.07.020_bib28
– start-page: 40
  year: 2005
  ident: 10.1016/j.jss.2009.07.020_bib34
  article-title: Cross-platform performance prediction of parallel applications using partial execution
  publication-title: Proceedings of Supercomputing
– ident: 10.1016/j.jss.2009.07.020_bib24
– ident: 10.1016/j.jss.2009.07.020_bib26
  doi: 10.1109/IPDPS.2008.4536214
– ident: 10.1016/j.jss.2009.07.020_bib30
– volume: 22
  start-page: 745
  issue: 7
  year: 2006
  ident: 10.1016/j.jss.2009.07.020_bib17
  article-title: Performance prediction and its use in parallel and distributed computing systems
  publication-title: Future Generation of Computer Systems
  doi: 10.1016/j.future.2006.02.008
– volume: 3
  start-page: 265
  issue: 4
  year: 2000
  ident: 10.1016/j.jss.2009.07.020_bib9
  article-title: Host load prediction using linear models
  publication-title: Cluster Computing
  doi: 10.1023/A:1019048724544
– start-page: 1
  year: 2002
  ident: 10.1016/j.jss.2009.07.020_bib31
  article-title: Multivariate resource performance forecasting in the network weather service
  publication-title: Proceedings of Supercomputing
– ident: 10.1016/j.jss.2009.07.020_bib15
– ident: 10.1016/j.jss.2009.07.020_bib18
  doi: 10.1117/12.706009
– ident: 10.1016/j.jss.2009.07.020_bib35
  doi: 10.1109/ICGRID.2006.311027
– ident: 10.1016/j.jss.2009.07.020_bib1
– ident: 10.1016/j.jss.2009.07.020_bib20
– ident: 10.1016/j.jss.2009.07.020_bib3
– ident: 10.1016/j.jss.2009.07.020_bib13
– ident: 10.1016/j.jss.2009.07.020_bib22
  doi: 10.1109/HPCA.2007.346211
– ident: 10.1016/j.jss.2009.07.020_bib4
  doi: 10.1007/978-3-540-24774-6_16
– ident: 10.1016/j.jss.2009.07.020_bib19
– volume: 32
  start-page: 2
  issue: 1
  year: 2004
  ident: 10.1016/j.jss.2009.07.020_bib23
  article-title: Cross-architecture performance predictions for scientific applications using parameterized models
  publication-title: SIGMETRICS Performance Evaluation of Review
  doi: 10.1145/1012888.1005691
– ident: 10.1016/j.jss.2009.07.020_bib2
  doi: 10.1007/978-3-540-24689-3_32
SSID ssj0007202
Score 1.9571072
Snippet Application resource usage models can be used in the decision making process for ensuring quality-of-service as well as for capacity planning, apart from their...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2117
SubjectTerms Benchmarks
Computer programs
Decision making models
Focusing
Mathematical models
Optimization
Platform-independent resource model
Platforms
QoS management
Quality of service
Resource model
Resource usage prediction
Semantics
Studies
Systems management
Workload
Workloads
Title Platform-independent modeling and prediction of application resource usage characteristics
URI https://dx.doi.org/10.1016/j.jss.2009.07.020
https://www.proquest.com/docview/229661056
https://www.proquest.com/docview/1671308496
https://www.proquest.com/docview/896175692
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NaxsxEB0S59JL2_SDummDCj0VFEu7klY6htDgNiQU2kDoRUiyBA5hbez1tb-9o7XWNKXNIdfVCLQjzczbndE8gI8Bw4jjwdPYSEkFmjbViXtqUlSzlBRPLt8dvrxS02vx9Ube7MHZcBcml1UW37_16b23Lk8mRZuT5Xw--Z6bQ_Eq3_3sm8DofTioMNrrERycfrmYXu0cclP1pYdZnuYJQ3KzL_O6Xa9L18rmhGXW73-Hp78cdR99zp_D0wIbyel2ZYewF9sX8GygZCDFQl_Cz293rss4lM53_LYd6eluMEYR187IcpVzM3k_yCKRPxLYZFV-5ZNNrjYj4X4v51dwff75x9mUFvoEGhCFdDToYJQWqa5nNTNON0E0JnqR_KxxAX0cgpsYXdS1lyhipNOibhzGbMZCkLx-DaN20cY3QCQTnnuZ8Nso5pZovmZBJJ1CVEEFJ8fABq3ZUHqLZ4qLOzsUkd1aVHTmvDSWNRYVPYZPuynLbWONh4TFsBX23umw6PgfmnY0bJstponjFb4Foko1hg-7UbSpnChxbVxs1pYr_HRnWhiUIf-R0Qaxn1Smevu4tR3Bk6pQUTD-DkbdahPfI77p_DHsn_zix-UU_wbQfvwE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5S59BemvRF3bSpCj0VVGt3Ja10DKHBeZlCEwi9CEmWwCGsjb3-_x2ttSYpbQ65rkagHWlmvt0ZzQfw1WMYsYV3NNRCUI6mTVUsHNUxyGmMsog23R2-nMjxNT-7ETc7cNzfhUllldn3b3x6563zk1HW5mgxm41-peZQRZnufnZNYNQz2OWJ1HoAu0en5-PJ1iHXZVd6mORpmtAnN7syr9vVKnetrL-zxPr97_D0l6Puos_JPrzMsJEcbVb2CnZC8xr2ekoGki30Dfz-eWfbhEPpbMtv25KO7gZjFLHNlCyWKTeT9oPMI7mXwCbL_CufrFO1GfEPezm_heuTH1fHY5rpE6hHFNJSr7yWiseqmlZMW1V7XuvgeHTT2nr0cQhuQrBBVU6giBZW8aq2GLMZ814U1TsYNPMmvAciGHeFExG_jUJqieYq5nlU0QfppbdiCKzXmvG5t3iiuLgzfRHZrUFFJ85LbVhtUNFD-Ladstg01nhMmPdbYR6cDoOO_7FpB_22mWyaOF7iWyCqlEP4sh1Fm0qJEtuE-XplComf7kxxjTLkPzJKI_YTUpcfnra2z_B8fHV5YS5OJ-cH8KLMtBSs-AiDdrkOnxDrtO4wn-U_wNT96g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platform-independent+modeling+and+prediction+of+application+resource+usage+characteristics&rft.jtitle=The+Journal+of+systems+and+software&rft.au=Shimizu%2C+Shuichi&rft.au=Rangaswami%2C+Raju&rft.au=Duran-Limon%2C+Hector+A.&rft.au=Corona-Perez%2C+Manuel&rft.date=2009-12-01&rft.issn=0164-1212&rft.volume=82&rft.issue=12&rft.spage=2117&rft.epage=2127&rft_id=info:doi/10.1016%2Fj.jss.2009.07.020&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jss_2009_07_020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0164-1212&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0164-1212&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0164-1212&client=summon