Structural transition and recovery of Ge implanted β-Ga2O3

Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm−2/60 keV, 5 × 1013 cm−2/100 keV, and 7 × 1013 cm−2/200 keV using analytical electron microscopy via scanning/transmission electron microscopy, electron energy loss spectroscopy, and prece...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 117; no. 15
Main Authors Anber, Elaf A., Foley, Daniel, Lang, Andrew C., Nathaniel, James, Hart, James L., Tadjer, Marko J., Hobart, Karl D., Pearton, Stephen, Taheri, Mitra L.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 12.10.2020
American Institute of Physics (AIP)
Subjects
Online AccessGet full text
ISSN0003-6951
1520-8842
1077-3118
1077-3118
DOI10.1063/5.0022170

Cover

Abstract Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm−2/60 keV, 5 × 1013 cm−2/100 keV, and 7 × 1013 cm−2/200 keV using analytical electron microscopy via scanning/transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction via TopSpin. Imaging shows an isolated band of damage after Ge implantation, which extends ∼130 nm from the sample surface and corresponds to the projected range of the ions. Electron diffraction demonstrates that the entirety of the damage band is the κ phase, indicating an implantation-induced phase transition from β to κ-Ga2O3. Post-implantation annealing at 1150 °C for 60 s under the O2 atmosphere led to a back transformation of κ to β; however, an ∼17 nm damage zone remained at the sample surface. Despite the back transformation from κ to β with annealing, O K-edge spectra show changes in the fine structure between the pristine, implanted, and implanted-annealed samples, and topspin strain analysis shows a change in strain between the two samples. These data indicate differences in the electronic/chemical structure, where the change of the oxygen environment extended beyond the implantation zone (∼130 nm) due to the diffusion of Ge into the bulk material, which, in turn, causes a tensile strain of 0.5%. This work provides a foundation for understanding of the effects of ion implantation on defect/phase evolution in β-Ga2O3 and the related recovery mechanism, opening a window toward building a reliable device for targeted applications.
AbstractList Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm-2/60 keV, 5 × 1013 cm-2/100 keV, and 7 × 1013 cm-2/200 keV using analytical electron microscopy via scanning/transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction via TopSpin. Imaging shows an isolated band of damage after Ge implantation, which extends ~130 nm from the sample surface and corresponds to the projected range of the ions. Electron diffraction demonstrates that the entirety of the damage band is the κ phase, indicating an implantation-induced phase transition from β to κ-Ga2O3. Post-implantation annealing at 1150 °C for 60 s under the O2 atmosphere led to a back transformation of κ to β; however, an ~17 nm damage zone remained at the sample surface. Despite the back transformation from κ to β with annealing, O K-edge spectra show changes in the fine structure between the pristine, implanted, and implanted-annealed samples, and topspin strain analysis shows a change in strain between the two samples. These data indicate differences in the electronic/chemical structure, where the change of the oxygen environment extended beyond the implantation zone (~130 nm) due to the diffusion of Ge into the bulk material, which, in turn, causes a tensile strain of 0.5%. This work provides a foundation for understanding of the effects of ion implantation on defect/phase evolution in β-Ga2O3 and the related recovery mechanism, opening a window toward building a reliable device for targeted applications.
Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm−2/60 keV, 5 × 1013 cm−2/100 keV, and 7 × 1013 cm−2/200 keV using analytical electron microscopy via scanning/transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction via TopSpin. Imaging shows an isolated band of damage after Ge implantation, which extends ∼130 nm from the sample surface and corresponds to the projected range of the ions. Electron diffraction demonstrates that the entirety of the damage band is the κ phase, indicating an implantation-induced phase transition from β to κ-Ga2O3. Post-implantation annealing at 1150 °C for 60 s under the O2 atmosphere led to a back transformation of κ to β; however, an ∼17 nm damage zone remained at the sample surface. Despite the back transformation from κ to β with annealing, O K-edge spectra show changes in the fine structure between the pristine, implanted, and implanted-annealed samples, and topspin strain analysis shows a change in strain between the two samples. These data indicate differences in the electronic/chemical structure, where the change of the oxygen environment extended beyond the implantation zone (∼130 nm) due to the diffusion of Ge into the bulk material, which, in turn, causes a tensile strain of 0.5%. This work provides a foundation for understanding of the effects of ion implantation on defect/phase evolution in β-Ga2O3 and the related recovery mechanism, opening a window toward building a reliable device for targeted applications.
Author Tadjer, Marko J.
Lang, Andrew C.
Pearton, Stephen
Hart, James L.
Nathaniel, James
Foley, Daniel
Anber, Elaf A.
Hobart, Karl D.
Taheri, Mitra L.
Author_xml – sequence: 1
  givenname: Elaf A.
  surname: Anber
  fullname: Anber, Elaf A.
  organization: Department of Materials Science and Engineering, Johns Hopkins University
– sequence: 2
  givenname: Daniel
  surname: Foley
  fullname: Foley, Daniel
  organization: Department of Materials Science and Engineering, Johns Hopkins University
– sequence: 3
  givenname: Andrew C.
  surname: Lang
  fullname: Lang, Andrew C.
  organization: American Society for Engineering Education
– sequence: 4
  givenname: James
  surname: Nathaniel
  fullname: Nathaniel, James
  organization: Department of Materials Science and Engineering, Johns Hopkins University
– sequence: 5
  givenname: James L.
  surname: Hart
  fullname: Hart, James L.
  organization: Department of Materials Science and Engineering, Johns Hopkins University
– sequence: 6
  givenname: Marko J.
  surname: Tadjer
  fullname: Tadjer, Marko J.
  organization: US Naval Research Laboratory
– sequence: 7
  givenname: Karl D.
  surname: Hobart
  fullname: Hobart, Karl D.
  organization: US Naval Research Laboratory
– sequence: 8
  givenname: Stephen
  surname: Pearton
  fullname: Pearton, Stephen
  organization: Department of Materials Science and Engineering, University of Florida
– sequence: 9
  givenname: Mitra L.
  surname: Taheri
  fullname: Taheri, Mitra L.
  organization: Department of Materials Science and Engineering, Johns Hopkins University
BackLink https://www.osti.gov/servlets/purl/1853573$$D View this record in Osti.gov
BookMark eNp9kN9KwzAUh4NMcJte-AZFrxS65U-TtnglQ6cw2IV6HdI0xY4uqUk62Wv5ID6TGZ0IorvJIYfvnB_fGYGBNloBcI7gBEFGpnQCIcYohUdgiGCaxgShbACGEEISs5yiEzBybhW-FBMyBDdP3nbSd1Y0kbdCu9rXRkdCl5FV0myU3UamiuYqqtdtI7RXZfT5Ec8FXpJTcFyJxqmzfR2Dl_u759lDvFjOH2e3i1iSLPdxofJSpDlmRZqUu1icFEklwpMkuSwTXEiMQiehJRG4pJJJkQuWBZ1MyTwnY3Dd7-10K7bvoml4a-u1sFuOIN9pc8r32gG-6GHjfM2drL2Sr9JoraTnKKOEpiRAlz3UWvPWKef5ynRWBwmOEwoZIyxlgbrqKWmNc1ZVB2Onv9iQLHa3DFetmz8n9lbumzy4_l94Y-wPyNuyIl9wEZt_
CODEN APPLAB
CitedBy_id crossref_primary_10_1063_5_0083858
crossref_primary_10_1063_5_0133181
crossref_primary_10_1007_s12613_024_2926_4
crossref_primary_10_1021_acs_nanolett_4c05727
crossref_primary_10_1007_s11664_023_10902_z
crossref_primary_10_1016_j_jallcom_2023_169258
crossref_primary_10_3390_nano13071214
crossref_primary_10_1007_s10854_023_10628_y
crossref_primary_10_1002_pssa_202400400
crossref_primary_10_1016_j_matlet_2022_132248
crossref_primary_10_1038_s41524_023_01117_1
crossref_primary_10_1039_D3CP06015B
crossref_primary_10_1039_D3TC04171A
crossref_primary_10_1063_5_0091653
crossref_primary_10_1063_5_0213985
crossref_primary_10_1016_j_vacuum_2022_111005
crossref_primary_10_1016_j_matlet_2021_130346
crossref_primary_10_1063_5_0184946
crossref_primary_10_1088_2053_1591_abde10
crossref_primary_10_1063_5_0174490
crossref_primary_10_1063_5_0182500
crossref_primary_10_35848_1882_0786_ad6b73
crossref_primary_10_1038_s41467_023_40588_0
crossref_primary_10_1038_s41598_024_75187_6
crossref_primary_10_1063_5_0099915
crossref_primary_10_1016_j_actamat_2024_119760
crossref_primary_10_1116_6_0000928
crossref_primary_10_1103_PhysRevMaterials_8_084601
crossref_primary_10_1038_s41598_022_19191_8
crossref_primary_10_1063_5_0134467
crossref_primary_10_1016_j_jallcom_2023_169301
crossref_primary_10_1063_5_0087053
crossref_primary_10_1021_acsaelm_4c00762
crossref_primary_10_1116_6_0002388
crossref_primary_10_1116_6_0004444
crossref_primary_10_1063_5_0127714
crossref_primary_10_1116_6_0004463
crossref_primary_10_1063_5_0025835
crossref_primary_10_1063_5_0120103
crossref_primary_10_1063_5_0070045
crossref_primary_10_1063_5_0120089
crossref_primary_10_3390_cryst13091400
crossref_primary_10_1063_5_0051047
crossref_primary_10_1103_PhysRevLett_128_015704
crossref_primary_10_1103_PhysRevLett_134_126101
Cites_doi 10.1063/1.5012993
10.1039/C7CE00123A
10.1063/1.5006941
10.1088/0953-8984/19/34/346211
10.1021/acs.chemmater.9b03926
10.1021/ja01123a039
10.1039/C7RA10341G
10.1103/PhysRevX.9.041027
10.1088/1674-4926/40/1/011804
10.1002/aelm.201600350
10.1021/acsomega.8b00063
10.1063/1.5100256
10.1109/LED.2018.2884542
10.1149/2.0031707jss
10.1149/2.0271907jss
10.1107/S1600576718011093
10.7567/APEX.11.061105
10.1116/1.5118001
10.1039/C6CP03673B
10.1016/j.actamat.2019.11.019
10.7567/APEX.6.086502
10.1063/1.5050040
10.7567/APEX.11.064102
10.1109/LED.2015.2512279
10.1016/j.jcrysgro.2019.125254
10.1109/TPEL.2019.2946367
10.1063/1.5017845
10.1016/j.nimb.2016.03.044
10.1039/C8TC04193H
10.1088/1361-6463/aa79dc
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
CorporateAuthor Johns Hopkins University, Baltimore, MD (United States)
CorporateAuthor_xml – name: Johns Hopkins University, Baltimore, MD (United States)
DBID AAYXX
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1063/5.0022170
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10.1063/5.0022170
1853573
10_1063_5_0022170
apl
GrantInformation_xml – fundername: Office of Naval Research Global
  grantid: N00014-15-1-2392.
  funderid: https://doi.org/10.13039/100007297
– fundername: U.S. Department of Energy
  grantid: DE-SC0020314
  funderid: https://doi.org/10.13039/100000015
– fundername: The Department of the Defense, Defense Threat Reduction Agency
  grantid: HDTRA1-17-1-011
– fundername: National science foundation program
  grantid: #1429661.
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
0ZJ
ABPTK
AGIHO
OIOZB
OTOTI
UE8
186
2WC
3O-
41~
6TJ
AAYJJ
ABRJW
ACKIV
ADTOC
AETEA
AI.
EJD
MVM
NEJ
NEUPN
OHT
RDFOP
ROL
T9H
UNPAY
UQL
VH1
VOH
VQP
XJT
XOL
YYP
ZY4
ID FETCH-LOGICAL-c389t-be9da7926b74d052324b4fa4b4449cd42bc21b4f45d3a2d5c6ca9a680638ec993
IEDL.DBID UNPAY
ISSN 0003-6951
1520-8842
1077-3118
IngestDate Sun Oct 26 02:43:39 EDT 2025
Thu May 18 22:34:36 EDT 2023
Sun Sep 07 03:33:03 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Wed Oct 01 01:53:41 EDT 2025
Wed Nov 11 00:04:56 EST 2020
Fri Jun 21 00:14:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License Published under license by AIP Publishing.
0003-6951/2020/117(15)/152101/5/$30.00
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-be9da7926b74d052324b4fa4b4449cd42bc21b4f45d3a2d5c6ca9a680638ec993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0020314
USDOE Office of Science (SC)
ORCID 0000-0001-5349-1411
0000-0002-2388-2937
0000-0001-7808-7036
0000-0002-3840-8357
0000-0001-6498-1256
0000000153491411
0000000223882937
0000000178087036
0000000238408357
0000000164981256
OpenAccessLink https://proxy.k.utb.cz/login?url=https://aip.scitation.org/doi/pdf/10.1063/5.0022170
PQID 2450663676
PQPubID 2050678
PageCount 5
ParticipantIDs proquest_journals_2450663676
crossref_citationtrail_10_1063_5_0022170
scitation_primary_10_1063_5_0022170
crossref_primary_10_1063_5_0022170
unpaywall_primary_10_1063_5_0022170
osti_scitechconnect_1853573
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-12
PublicationDateYYYYMMDD 2020-10-12
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-12
  day: 12
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Applied physics letters
PublicationYear 2020
Publisher American Institute of Physics
American Institute of Physics (AIP)
Publisher_xml – name: American Institute of Physics
– name: American Institute of Physics (AIP)
References Roberts, Chalker, Ding, Oliver, Gibbon, Jones, Dhanak, Phillips, Major, Massabuau (c12) 2019
Johnson, Chen, Varley, Jackson, Farzana, Zhang, Arehart, Huang, Genc, Ringel, Van de Walle, Muller, Hwang (c14) 2019
Cora, Fogarassy, Fornari, Bosi, Rečnik, Pécz (c28) 2020
Wendler, Treiber, Baldauf, Wolf, Ronning (c20) 2016
Pearton, Yang, Cary, Ren, Kim, Tadjer, Mastro, Cary Iv (c5) 2018
Wong, Goto, Murakami, Kumagai, Higashiwaki (c18) 2019
Higashiwaki, Jessen (c3) 2018
Yang, Xian, Carey, Fares, Partain, Ren, Tadjer, Anber, Foley, Lang, Hart, Nathaniel, Taheri, Pearton, Kuramata (c8) 2019
Fu, Jia, Mu, Yin, Zhang, Tao (c9) 2019
Wong, Goto, Morikawa, Kuramata, Yamakoshi, Murakami, Kumagai, Higashiwaki (c17) 2018
Wheeler, Nepal, Boris, Qadri, Nyakiti, Lang, Koehler, Foster, Walton, Eddy, Meyer (c29) 2020
Mastro, Kuramata, Calkins, Kim, Ren, Pearton (c4) 2017
Cora, Mezzadri, Boschi, Bosi, Čaplovičová, Calestani, Dódony, Pécz, Fornari (c26) 2017
Polyakov, Smirnov, Shchemerov, Yakimov, Yang, Ren, Yang, Kim, Kuramata, Pearton (c7) 2018
Kim, Pearton, Fares, Yang, Ren, Kim, Polyakov (c10) 2019
Roy, Hill, Osborn (c30) 1952
Yoshioka, Hayashi, Kuwabara, Oba, Matsunaga, Tanaka (c27) 2007
Zhang, Yuan, Tang, Hu, Sun, Zhang, Zhang, Jia (c1) 2020
Tadjer, Fares, Mahadik, Freitas, Smith, Sharma, Law, Ren, Pearton, Kuramata (c24) 2019
von Wenckstern (c2) 2017
Sharma, Varshney, Shin, Chae, Won (c31) 2017
Wong, Sasaki, Kuramata, Yamakoshi, Higashi- waki (c16) 2016
Sharma, Law, Xian, Tadjer, Anber, Foley, Lang, Hart, Nathaniel, Taheri, Ren, Pearton, Kuramata (c23) 2019
Im, Park, Kim, Kim, Lee, Lee, Park, Ahn (c25) 2018
Choi, Allabergenov, Lyu, Lee (c13) 2018
Peres, Lorenz, Alves, Nogales, Méndez, Biquard, Daudin, Víllora, Shimamura (c22) 2017
Sasaki, Higashiwaki, Kuramata, Masui, Yamakoshi (c15) 2013
Wong, Lin, Kuramata, Yamakoshi, Murakami, Kumagai, Higashiwaki (c19) 2018
Zhu, Guan, Liu (c11) 2016
Yamaguchi, Kuramata (c6) 2018
(2023080800325213200_c26) 2017; 19
(2023080800325213200_c4) 2017; 6
(2023080800325213200_c1) 2020; 35
(2023080800325213200_c22) 2017; 50
(2023080800325213200_c28) 2020; 183
(2023080800325213200_c5) 2018; 5
(2023080800325213200_c24) 2019; 8
(2023080800325213200_c6) 2018; 51
(2023080800325213200_c15) 2013; 6
(2023080800325213200_c29) 2020; 32
(2023080800325213200_c27) 2007; 19
(2023080800325213200_c30) 1952; 3
(2023080800325213200_c31) 2017; 7
(2023080800325213200_c10) 2019; 7
(2023080800325213200_c21) 2014
(2023080800325213200_c13) 2018; 11
(2023080800325213200_c7) 2018; 112
(2023080800325213200_c3) 2018; 112
(2023080800325213200_c20) 2016; 379
(2023080800325213200_c12) 2019; 528
(2023080800325213200_c16) 2016; 37
(2023080800325213200_c17) 2018; 11
(2023080800325213200_c14) 2019; 9
(2023080800325213200_c2) 2017; 3
(2023080800325213200_c9) 2019; 40
(2023080800325213200_c25) 2018; 3
(2023080800325213200_c8) 2019; 114
(2023080800325213200_c23) 2019; 37
(2023080800325213200_c11) 2016; 18
(2023080800325213200_c19) 2018; 113
(2023080800325213200_c18) 2019; 40
References_xml – start-page: 5157
  year: 2020
  ident: c1
  publication-title: IEEE Trans Power Electron.
– start-page: 325101
  year: 2017
  ident: c22
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 125254
  year: 2019
  ident: c12
  publication-title: J. Cryst. Growth
– start-page: 212
  year: 2016
  ident: c16
  publication-title: IEEE Electron Device Lett.
– start-page: 719
  year: 1952
  ident: c30
  publication-title: J. Am. Chem. Soc.
– start-page: 41027
  year: 2019
  ident: c14
  publication-title: Phys. Rev. X
– start-page: 3129
  year: 2018
  ident: c25
  publication-title: ACS Omega
– start-page: 232106
  year: 2019
  ident: c8
  publication-title: Appl. Phys. Lett.
– start-page: 1600350
  year: 2017
  ident: c2
  publication-title: Adv. Electron. Mater.
– start-page: 086502
  year: 2013
  ident: c15
  publication-title: Appl. Phys. Express
– start-page: 1372
  year: 2018
  ident: c6
  publication-title: J. Appl. Crystallogr.
– start-page: 032107
  year: 2018
  ident: c7
  publication-title: Appl. Phys. Lett.
– start-page: 061105
  year: 2018
  ident: c13
  publication-title: Appl. Phys. Express
– start-page: P356
  year: 2017
  ident: c4
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 064102
  year: 2018
  ident: c17
  publication-title: Appl. Phys. Express
– start-page: 85
  year: 2016
  ident: c20
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
– start-page: 051204
  year: 2019
  ident: c23
  publication-title: J. Vac. Sci. Technol., B
– start-page: 102103
  year: 2018
  ident: c19
  publication-title: Appl. Phys. Lett.
– start-page: 216
  year: 2020
  ident: c28
  publication-title: Acta Mater.
– start-page: 10
  year: 2019
  ident: c10
  publication-title: J. Mater. Chem. C
– start-page: 011301
  year: 2018
  ident: c5
  publication-title: Appl. Phys. Rev.
– start-page: 52543
  year: 2017
  ident: c31
  publication-title: RSC Adv.
– start-page: 1509
  year: 2017
  ident: c26
  publication-title: CrystEngComm
– start-page: 011804
  year: 2019
  ident: c9
  publication-title: J. Semicond.
– start-page: 060401
  year: 2018
  ident: c3
  publication-title: Appl. Phys. Lett.
– start-page: 346211
  year: 2007
  ident: c27
  publication-title: J. Phys.: Condens. Matter
– start-page: 18563
  year: 2016
  ident: c11
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 1140
  year: 2020
  ident: c29
  publication-title: Chem. Mater.
– start-page: Q3133
  year: 2019
  ident: c24
  publication-title: ECS J. Solid State Sci. Technol.
– start-page: 431
  year: 2019
  ident: c18
  publication-title: IEEE Electron Device Lett.
– volume: 112
  start-page: 032107
  year: 2018
  ident: 2023080800325213200_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5012993
– volume: 19
  start-page: 1509
  issue: 11
  year: 2017
  ident: 2023080800325213200_c26
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00123A
– volume: 5
  start-page: 011301
  year: 2018
  ident: 2023080800325213200_c5
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5006941
– volume: 19
  start-page: 346211
  issue: 34
  year: 2007
  ident: 2023080800325213200_c27
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/34/346211
– volume: 32
  start-page: 1140
  issue: 3
  year: 2020
  ident: 2023080800325213200_c29
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03926
– volume: 3
  start-page: 719
  year: 1952
  ident: 2023080800325213200_c30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01123a039
– volume: 7
  start-page: 52543
  year: 2017
  ident: 2023080800325213200_c31
  publication-title: RSC Adv.
  doi: 10.1039/C7RA10341G
– volume: 9
  start-page: 41027
  year: 2019
  ident: 2023080800325213200_c14
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.9.041027
– volume: 40
  start-page: 011804
  year: 2019
  ident: 2023080800325213200_c9
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/40/1/011804
– volume: 3
  start-page: 1600350
  year: 2017
  ident: 2023080800325213200_c2
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600350
– volume: 3
  start-page: 3129
  issue: 3
  year: 2018
  ident: 2023080800325213200_c25
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00063
– volume: 114
  start-page: 232106
  year: 2019
  ident: 2023080800325213200_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5100256
– volume: 40
  start-page: 431
  year: 2019
  ident: 2023080800325213200_c18
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2018.2884542
– volume: 6
  start-page: P356
  year: 2017
  ident: 2023080800325213200_c4
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0031707jss
– volume: 8
  start-page: Q3133
  year: 2019
  ident: 2023080800325213200_c24
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0271907jss
– volume: 51
  start-page: 1372
  year: 2018
  ident: 2023080800325213200_c6
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576718011093
– volume: 11
  start-page: 061105
  year: 2018
  ident: 2023080800325213200_c13
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.11.061105
– volume: 37
  start-page: 051204
  year: 2019
  ident: 2023080800325213200_c23
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.5118001
– volume: 18
  start-page: 18563
  year: 2016
  ident: 2023080800325213200_c11
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03673B
– volume: 183
  start-page: 216
  year: 2020
  ident: 2023080800325213200_c28
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.11.019
– volume: 6
  start-page: 086502
  year: 2013
  ident: 2023080800325213200_c15
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.086502
– volume: 113
  start-page: 102103
  year: 2018
  ident: 2023080800325213200_c19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5050040
– volume: 11
  start-page: 064102
  year: 2018
  ident: 2023080800325213200_c17
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.11.064102
– volume: 37
  start-page: 212
  year: 2016
  ident: 2023080800325213200_c16
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2512279
– year: 2014
  ident: 2023080800325213200_c21
– volume: 528
  start-page: 125254
  year: 2019
  ident: 2023080800325213200_c12
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2019.125254
– volume: 35
  start-page: 5157
  year: 2020
  ident: 2023080800325213200_c1
  publication-title: IEEE Trans Power Electron.
  doi: 10.1109/TPEL.2019.2946367
– volume: 112
  start-page: 060401
  year: 2018
  ident: 2023080800325213200_c3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5017845
– volume: 379
  start-page: 85
  year: 2016
  ident: 2023080800325213200_c20
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2016.03.044
– volume: 7
  start-page: 10
  year: 2019
  ident: 2023080800325213200_c10
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04193H
– volume: 50
  start-page: 325101
  year: 2017
  ident: 2023080800325213200_c22
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa79dc
SSID ssj0005233
Score 2.5564985
Snippet Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm−2/60 keV, 5 × 1013 cm−2/100 keV, and 7 × 1013...
Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm-2/60 keV, 5 × 1013 cm-2/100 keV, and 7 × 1013...
SourceID unpaywall
osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Analytical electron microscopy
Annealing
Applied physics
Damage
Electron diffraction
Electron energy loss spectroscopy
Electron microscopy
Energy dissipation
Fine structure
Fluence
Gallium oxides
Ion implantation
MATERIALS SCIENCE
Microscopy
Phase transitions
Physics
Recovery
Spectrum analysis
Strain analysis
Tensile strain
Ultrawide Bandgap Semiconductors
Title Structural transition and recovery of Ge implanted β-Ga2O3
URI http://dx.doi.org/10.1063/5.0022170
https://www.proquest.com/docview/2450663676
https://www.osti.gov/servlets/purl/1853573
https://aip.scitation.org/doi/pdf/10.1063/5.0022170
UnpaywallVersion publishedVersion
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1077-3118
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0005233
  issn: 1520-8842
  databaseCode: ADMLS
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5kBnE97PrEWR806sFLXO10Ogl4GXwivkAH9NT0K6zsmAkad9Gf5Q_xN211TzKOoot7CSEUnU5VV-qr6uoqgNXU6CSODQuSTHF0UGIepMa3e4m0RIORGJ9Ec3zCDzrs8DK6rM5xu7Mw8rpAt64qT-138p1qFybre5o8_OFjIAik0U9v8ggBeAOanZOz9lXdG4-nvuki-jUuAucjfGikNoIkYbSuLTQ8ziuL1OihZr1Cm2OD6eD9fV7Ihz-y2x0yQnvf4KKefj_35Nf6fanW9eObyo7_-X0T8LUCpaTdX0WTMGLzKRgfKlU4BaM-VVTfTcPWuS8568p1kNJZOp_0RWRuiPOuUTUeSC8j-5Zc3xRdJzhDnp9IsC_paTgDnb3di-2DoOrBEGiEMmWgbGpknFKuYmZcCJkyxTKJF8ZSbRhVmm7iExaZUFITaa5lKnnikJDVCH5moZH3cjsHBFcD4_hrNYnaZIgLFYJRm_HQukbXOEgL1mo5iJpDrk9GV_iNch6KSFSsacHygLToV-V4j2jeCVM4dlv9U7vEIV0KB1CiOGzBQi1jUantnaA4L4RgPOYtWBmI6V-veIfqd-_2hUKgaJFqsG4-Huv7p6jm4Qt1Hr_PqVmABkrcLiIsKtUSNNs7x0fnS5U6_AW4sgHZ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS-RAEC6WkUV98BZnPWjUB1_i0el0EvBFxAPBA3RAn5q-guKYCTuZXfRn-UP8TVb3JOMorqwvIYSi06nqSn1VXV0FsJ4ancSxYUGSKY4OSsyD1Ph2L5GWaDAS45NoTs_4cYudXEfX1TludxZG3hXo1lXlqf1OvlPtwmR9T5OHWz4GgkAa_fQRHiEAb8BI6-xi76bujcdT33QR_RoXgfMRPjRS20GSMFrXFhoe551FanRQs96hzdHBdPC-lxfy8a9st4eM0OEkXNXT7-ee3G_2SrWpnz5Udvzm903BRAVKyV5_FU3DD5vPwPhQqcIZ-OlTRXV3FnYvfclZV66DlM7S-aQvInNDnHeNqvFIOhk5suTuoWg7wRny8kyCI0nPwzloHR5c7R8HVQ-GQCOUKQNlUyPjlHIVM-NCyJQplkm8MJZqw6jSdAefsMiEkppIcy1TyROHhKxG8DMPjbyT2wUguBoYx1-rSdQOQ1yoEIzajIfWNbrGQZqwUctB1BxyfTLawm-U81BEomJNE1YHpEW_KsdnRItOmMKx2-pb7RKHdCkcQInisAlLtYxFpbZdQXFeCMF4zJuwNhDTV6_4hOpP5_cbhUDRItVg3fx7rF__RbUIY9R5_D6nZgkaKHG7jLCoVCuVGrwCsjUARQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+transition+and+recovery+of+Ge+implanted+%CE%B2-Ga2O3&rft.jtitle=Applied+physics+letters&rft.au=Anber%2C+Elaf+A&rft.au=Foley%2C+Daniel&rft.au=Lang%2C+Andrew+C&rft.au=James%2C+Nathaniel&rft.date=2020-10-12&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=117&rft.issue=15&rft_id=info:doi/10.1063%2F5.0022170&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon