Structural transition and recovery of Ge implanted β-Ga2O3
Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm−2/60 keV, 5 × 1013 cm−2/100 keV, and 7 × 1013 cm−2/200 keV using analytical electron microscopy via scanning/transmission electron microscopy, electron energy loss spectroscopy, and prece...
Saved in:
| Published in | Applied physics letters Vol. 117; no. 15 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Melville
American Institute of Physics
12.10.2020
American Institute of Physics (AIP) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0003-6951 1520-8842 1077-3118 1077-3118 |
| DOI | 10.1063/5.0022170 |
Cover
| Abstract | Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm−2/60 keV, 5 × 1013 cm−2/100 keV, and 7 × 1013 cm−2/200 keV using analytical electron microscopy via scanning/transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction via TopSpin. Imaging shows an isolated band of damage after Ge implantation, which extends ∼130 nm from the sample surface and corresponds to the projected range of the ions. Electron diffraction demonstrates that the entirety of the damage band is the κ phase, indicating an implantation-induced phase transition from β to κ-Ga2O3. Post-implantation annealing at 1150 °C for 60 s under the O2 atmosphere led to a back transformation of κ to β; however, an ∼17 nm damage zone remained at the sample surface. Despite the back transformation from κ to β with annealing, O K-edge spectra show changes in the fine structure between the pristine, implanted, and implanted-annealed samples, and topspin strain analysis shows a change in strain between the two samples. These data indicate differences in the electronic/chemical structure, where the change of the oxygen environment extended beyond the implantation zone (∼130 nm) due to the diffusion of Ge into the bulk material, which, in turn, causes a tensile strain of 0.5%. This work provides a foundation for understanding of the effects of ion implantation on defect/phase evolution in β-Ga2O3 and the related recovery mechanism, opening a window toward building a reliable device for targeted applications. |
|---|---|
| AbstractList | Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm-2/60 keV, 5 × 1013 cm-2/100 keV, and 7 × 1013 cm-2/200 keV using analytical electron microscopy via scanning/transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction via TopSpin. Imaging shows an isolated band of damage after Ge implantation, which extends ~130 nm from the sample surface and corresponds to the projected range of the ions. Electron diffraction demonstrates that the entirety of the damage band is the κ phase, indicating an implantation-induced phase transition from β to κ-Ga2O3. Post-implantation annealing at 1150 °C for 60 s under the O2 atmosphere led to a back transformation of κ to β; however, an ~17 nm damage zone remained at the sample surface. Despite the back transformation from κ to β with annealing, O K-edge spectra show changes in the fine structure between the pristine, implanted, and implanted-annealed samples, and topspin strain analysis shows a change in strain between the two samples. These data indicate differences in the electronic/chemical structure, where the change of the oxygen environment extended beyond the implantation zone (~130 nm) due to the diffusion of Ge into the bulk material, which, in turn, causes a tensile strain of 0.5%. This work provides a foundation for understanding of the effects of ion implantation on defect/phase evolution in β-Ga2O3 and the related recovery mechanism, opening a window toward building a reliable device for targeted applications. Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm−2/60 keV, 5 × 1013 cm−2/100 keV, and 7 × 1013 cm−2/200 keV using analytical electron microscopy via scanning/transmission electron microscopy, electron energy loss spectroscopy, and precession electron diffraction via TopSpin. Imaging shows an isolated band of damage after Ge implantation, which extends ∼130 nm from the sample surface and corresponds to the projected range of the ions. Electron diffraction demonstrates that the entirety of the damage band is the κ phase, indicating an implantation-induced phase transition from β to κ-Ga2O3. Post-implantation annealing at 1150 °C for 60 s under the O2 atmosphere led to a back transformation of κ to β; however, an ∼17 nm damage zone remained at the sample surface. Despite the back transformation from κ to β with annealing, O K-edge spectra show changes in the fine structure between the pristine, implanted, and implanted-annealed samples, and topspin strain analysis shows a change in strain between the two samples. These data indicate differences in the electronic/chemical structure, where the change of the oxygen environment extended beyond the implantation zone (∼130 nm) due to the diffusion of Ge into the bulk material, which, in turn, causes a tensile strain of 0.5%. This work provides a foundation for understanding of the effects of ion implantation on defect/phase evolution in β-Ga2O3 and the related recovery mechanism, opening a window toward building a reliable device for targeted applications. |
| Author | Tadjer, Marko J. Lang, Andrew C. Pearton, Stephen Hart, James L. Nathaniel, James Foley, Daniel Anber, Elaf A. Hobart, Karl D. Taheri, Mitra L. |
| Author_xml | – sequence: 1 givenname: Elaf A. surname: Anber fullname: Anber, Elaf A. organization: Department of Materials Science and Engineering, Johns Hopkins University – sequence: 2 givenname: Daniel surname: Foley fullname: Foley, Daniel organization: Department of Materials Science and Engineering, Johns Hopkins University – sequence: 3 givenname: Andrew C. surname: Lang fullname: Lang, Andrew C. organization: American Society for Engineering Education – sequence: 4 givenname: James surname: Nathaniel fullname: Nathaniel, James organization: Department of Materials Science and Engineering, Johns Hopkins University – sequence: 5 givenname: James L. surname: Hart fullname: Hart, James L. organization: Department of Materials Science and Engineering, Johns Hopkins University – sequence: 6 givenname: Marko J. surname: Tadjer fullname: Tadjer, Marko J. organization: US Naval Research Laboratory – sequence: 7 givenname: Karl D. surname: Hobart fullname: Hobart, Karl D. organization: US Naval Research Laboratory – sequence: 8 givenname: Stephen surname: Pearton fullname: Pearton, Stephen organization: Department of Materials Science and Engineering, University of Florida – sequence: 9 givenname: Mitra L. surname: Taheri fullname: Taheri, Mitra L. organization: Department of Materials Science and Engineering, Johns Hopkins University |
| BackLink | https://www.osti.gov/servlets/purl/1853573$$D View this record in Osti.gov |
| BookMark | eNp9kN9KwzAUh4NMcJte-AZFrxS65U-TtnglQ6cw2IV6HdI0xY4uqUk62Wv5ID6TGZ0IorvJIYfvnB_fGYGBNloBcI7gBEFGpnQCIcYohUdgiGCaxgShbACGEEISs5yiEzBybhW-FBMyBDdP3nbSd1Y0kbdCu9rXRkdCl5FV0myU3UamiuYqqtdtI7RXZfT5Ec8FXpJTcFyJxqmzfR2Dl_u759lDvFjOH2e3i1iSLPdxofJSpDlmRZqUu1icFEklwpMkuSwTXEiMQiehJRG4pJJJkQuWBZ1MyTwnY3Dd7-10K7bvoml4a-u1sFuOIN9pc8r32gG-6GHjfM2drL2Sr9JoraTnKKOEpiRAlz3UWvPWKef5ynRWBwmOEwoZIyxlgbrqKWmNc1ZVB2Onv9iQLHa3DFetmz8n9lbumzy4_l94Y-wPyNuyIl9wEZt_ |
| CODEN | APPLAB |
| CitedBy_id | crossref_primary_10_1063_5_0083858 crossref_primary_10_1063_5_0133181 crossref_primary_10_1007_s12613_024_2926_4 crossref_primary_10_1021_acs_nanolett_4c05727 crossref_primary_10_1007_s11664_023_10902_z crossref_primary_10_1016_j_jallcom_2023_169258 crossref_primary_10_3390_nano13071214 crossref_primary_10_1007_s10854_023_10628_y crossref_primary_10_1002_pssa_202400400 crossref_primary_10_1016_j_matlet_2022_132248 crossref_primary_10_1038_s41524_023_01117_1 crossref_primary_10_1039_D3CP06015B crossref_primary_10_1039_D3TC04171A crossref_primary_10_1063_5_0091653 crossref_primary_10_1063_5_0213985 crossref_primary_10_1016_j_vacuum_2022_111005 crossref_primary_10_1016_j_matlet_2021_130346 crossref_primary_10_1063_5_0184946 crossref_primary_10_1088_2053_1591_abde10 crossref_primary_10_1063_5_0174490 crossref_primary_10_1063_5_0182500 crossref_primary_10_35848_1882_0786_ad6b73 crossref_primary_10_1038_s41467_023_40588_0 crossref_primary_10_1038_s41598_024_75187_6 crossref_primary_10_1063_5_0099915 crossref_primary_10_1016_j_actamat_2024_119760 crossref_primary_10_1116_6_0000928 crossref_primary_10_1103_PhysRevMaterials_8_084601 crossref_primary_10_1038_s41598_022_19191_8 crossref_primary_10_1063_5_0134467 crossref_primary_10_1016_j_jallcom_2023_169301 crossref_primary_10_1063_5_0087053 crossref_primary_10_1021_acsaelm_4c00762 crossref_primary_10_1116_6_0002388 crossref_primary_10_1116_6_0004444 crossref_primary_10_1063_5_0127714 crossref_primary_10_1116_6_0004463 crossref_primary_10_1063_5_0025835 crossref_primary_10_1063_5_0120103 crossref_primary_10_1063_5_0070045 crossref_primary_10_1063_5_0120089 crossref_primary_10_3390_cryst13091400 crossref_primary_10_1063_5_0051047 crossref_primary_10_1103_PhysRevLett_128_015704 crossref_primary_10_1103_PhysRevLett_134_126101 |
| Cites_doi | 10.1063/1.5012993 10.1039/C7CE00123A 10.1063/1.5006941 10.1088/0953-8984/19/34/346211 10.1021/acs.chemmater.9b03926 10.1021/ja01123a039 10.1039/C7RA10341G 10.1103/PhysRevX.9.041027 10.1088/1674-4926/40/1/011804 10.1002/aelm.201600350 10.1021/acsomega.8b00063 10.1063/1.5100256 10.1109/LED.2018.2884542 10.1149/2.0031707jss 10.1149/2.0271907jss 10.1107/S1600576718011093 10.7567/APEX.11.061105 10.1116/1.5118001 10.1039/C6CP03673B 10.1016/j.actamat.2019.11.019 10.7567/APEX.6.086502 10.1063/1.5050040 10.7567/APEX.11.064102 10.1109/LED.2015.2512279 10.1016/j.jcrysgro.2019.125254 10.1109/TPEL.2019.2946367 10.1063/1.5017845 10.1016/j.nimb.2016.03.044 10.1039/C8TC04193H 10.1088/1361-6463/aa79dc |
| ContentType | Journal Article |
| Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
| Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
| CorporateAuthor | Johns Hopkins University, Baltimore, MD (United States) |
| CorporateAuthor_xml | – name: Johns Hopkins University, Baltimore, MD (United States) |
| DBID | AAYXX CITATION 8FD H8D L7M OIOZB OTOTI ADTOC UNPAY |
| DOI | 10.1063/5.0022170 |
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Technology Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1077-3118 |
| ExternalDocumentID | 10.1063/5.0022170 1853573 10_1063_5_0022170 apl |
| GrantInformation_xml | – fundername: Office of Naval Research Global grantid: N00014-15-1-2392. funderid: https://doi.org/10.13039/100007297 – fundername: U.S. Department of Energy grantid: DE-SC0020314 funderid: https://doi.org/10.13039/100000015 – fundername: The Department of the Defense, Defense Threat Reduction Agency grantid: HDTRA1-17-1-011 – fundername: National science foundation program grantid: #1429661. |
| GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M 0ZJ ABPTK AGIHO OIOZB OTOTI UE8 186 2WC 3O- 41~ 6TJ AAYJJ ABRJW ACKIV ADTOC AETEA AI. EJD MVM NEJ NEUPN OHT RDFOP ROL T9H UNPAY UQL VH1 VOH VQP XJT XOL YYP ZY4 |
| ID | FETCH-LOGICAL-c389t-be9da7926b74d052324b4fa4b4449cd42bc21b4f45d3a2d5c6ca9a680638ec993 |
| IEDL.DBID | UNPAY |
| ISSN | 0003-6951 1520-8842 1077-3118 |
| IngestDate | Sun Oct 26 02:43:39 EDT 2025 Thu May 18 22:34:36 EDT 2023 Sun Sep 07 03:33:03 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Wed Oct 01 01:53:41 EDT 2025 Wed Nov 11 00:04:56 EST 2020 Fri Jun 21 00:14:15 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | Published under license by AIP Publishing. 0003-6951/2020/117(15)/152101/5/$30.00 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-be9da7926b74d052324b4fa4b4449cd42bc21b4f45d3a2d5c6ca9a680638ec993 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0020314 USDOE Office of Science (SC) |
| ORCID | 0000-0001-5349-1411 0000-0002-2388-2937 0000-0001-7808-7036 0000-0002-3840-8357 0000-0001-6498-1256 0000000153491411 0000000223882937 0000000178087036 0000000238408357 0000000164981256 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://aip.scitation.org/doi/pdf/10.1063/5.0022170 |
| PQID | 2450663676 |
| PQPubID | 2050678 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2450663676 crossref_citationtrail_10_1063_5_0022170 scitation_primary_10_1063_5_0022170 crossref_primary_10_1063_5_0022170 unpaywall_primary_10_1063_5_0022170 osti_scitechconnect_1853573 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-12 |
| PublicationDateYYYYMMDD | 2020-10-12 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | Melville |
| PublicationPlace_xml | – name: Melville – name: United States |
| PublicationTitle | Applied physics letters |
| PublicationYear | 2020 |
| Publisher | American Institute of Physics American Institute of Physics (AIP) |
| Publisher_xml | – name: American Institute of Physics – name: American Institute of Physics (AIP) |
| References | Roberts, Chalker, Ding, Oliver, Gibbon, Jones, Dhanak, Phillips, Major, Massabuau (c12) 2019 Johnson, Chen, Varley, Jackson, Farzana, Zhang, Arehart, Huang, Genc, Ringel, Van de Walle, Muller, Hwang (c14) 2019 Cora, Fogarassy, Fornari, Bosi, Rečnik, Pécz (c28) 2020 Wendler, Treiber, Baldauf, Wolf, Ronning (c20) 2016 Pearton, Yang, Cary, Ren, Kim, Tadjer, Mastro, Cary Iv (c5) 2018 Wong, Goto, Murakami, Kumagai, Higashiwaki (c18) 2019 Higashiwaki, Jessen (c3) 2018 Yang, Xian, Carey, Fares, Partain, Ren, Tadjer, Anber, Foley, Lang, Hart, Nathaniel, Taheri, Pearton, Kuramata (c8) 2019 Fu, Jia, Mu, Yin, Zhang, Tao (c9) 2019 Wong, Goto, Morikawa, Kuramata, Yamakoshi, Murakami, Kumagai, Higashiwaki (c17) 2018 Wheeler, Nepal, Boris, Qadri, Nyakiti, Lang, Koehler, Foster, Walton, Eddy, Meyer (c29) 2020 Mastro, Kuramata, Calkins, Kim, Ren, Pearton (c4) 2017 Cora, Mezzadri, Boschi, Bosi, Čaplovičová, Calestani, Dódony, Pécz, Fornari (c26) 2017 Polyakov, Smirnov, Shchemerov, Yakimov, Yang, Ren, Yang, Kim, Kuramata, Pearton (c7) 2018 Kim, Pearton, Fares, Yang, Ren, Kim, Polyakov (c10) 2019 Roy, Hill, Osborn (c30) 1952 Yoshioka, Hayashi, Kuwabara, Oba, Matsunaga, Tanaka (c27) 2007 Zhang, Yuan, Tang, Hu, Sun, Zhang, Zhang, Jia (c1) 2020 Tadjer, Fares, Mahadik, Freitas, Smith, Sharma, Law, Ren, Pearton, Kuramata (c24) 2019 von Wenckstern (c2) 2017 Sharma, Varshney, Shin, Chae, Won (c31) 2017 Wong, Sasaki, Kuramata, Yamakoshi, Higashi- waki (c16) 2016 Sharma, Law, Xian, Tadjer, Anber, Foley, Lang, Hart, Nathaniel, Taheri, Ren, Pearton, Kuramata (c23) 2019 Im, Park, Kim, Kim, Lee, Lee, Park, Ahn (c25) 2018 Choi, Allabergenov, Lyu, Lee (c13) 2018 Peres, Lorenz, Alves, Nogales, Méndez, Biquard, Daudin, Víllora, Shimamura (c22) 2017 Sasaki, Higashiwaki, Kuramata, Masui, Yamakoshi (c15) 2013 Wong, Lin, Kuramata, Yamakoshi, Murakami, Kumagai, Higashiwaki (c19) 2018 Zhu, Guan, Liu (c11) 2016 Yamaguchi, Kuramata (c6) 2018 (2023080800325213200_c26) 2017; 19 (2023080800325213200_c4) 2017; 6 (2023080800325213200_c1) 2020; 35 (2023080800325213200_c22) 2017; 50 (2023080800325213200_c28) 2020; 183 (2023080800325213200_c5) 2018; 5 (2023080800325213200_c24) 2019; 8 (2023080800325213200_c6) 2018; 51 (2023080800325213200_c15) 2013; 6 (2023080800325213200_c29) 2020; 32 (2023080800325213200_c27) 2007; 19 (2023080800325213200_c30) 1952; 3 (2023080800325213200_c31) 2017; 7 (2023080800325213200_c10) 2019; 7 (2023080800325213200_c21) 2014 (2023080800325213200_c13) 2018; 11 (2023080800325213200_c7) 2018; 112 (2023080800325213200_c3) 2018; 112 (2023080800325213200_c20) 2016; 379 (2023080800325213200_c12) 2019; 528 (2023080800325213200_c16) 2016; 37 (2023080800325213200_c17) 2018; 11 (2023080800325213200_c14) 2019; 9 (2023080800325213200_c2) 2017; 3 (2023080800325213200_c9) 2019; 40 (2023080800325213200_c25) 2018; 3 (2023080800325213200_c8) 2019; 114 (2023080800325213200_c23) 2019; 37 (2023080800325213200_c11) 2016; 18 (2023080800325213200_c19) 2018; 113 (2023080800325213200_c18) 2019; 40 |
| References_xml | – start-page: 5157 year: 2020 ident: c1 publication-title: IEEE Trans Power Electron. – start-page: 325101 year: 2017 ident: c22 publication-title: J. Phys. D: Appl. Phys. – start-page: 125254 year: 2019 ident: c12 publication-title: J. Cryst. Growth – start-page: 212 year: 2016 ident: c16 publication-title: IEEE Electron Device Lett. – start-page: 719 year: 1952 ident: c30 publication-title: J. Am. Chem. Soc. – start-page: 41027 year: 2019 ident: c14 publication-title: Phys. Rev. X – start-page: 3129 year: 2018 ident: c25 publication-title: ACS Omega – start-page: 232106 year: 2019 ident: c8 publication-title: Appl. Phys. Lett. – start-page: 1600350 year: 2017 ident: c2 publication-title: Adv. Electron. Mater. – start-page: 086502 year: 2013 ident: c15 publication-title: Appl. Phys. Express – start-page: 1372 year: 2018 ident: c6 publication-title: J. Appl. Crystallogr. – start-page: 032107 year: 2018 ident: c7 publication-title: Appl. Phys. Lett. – start-page: 061105 year: 2018 ident: c13 publication-title: Appl. Phys. Express – start-page: P356 year: 2017 ident: c4 publication-title: ECS J. Solid State Sci. Technol. – start-page: 064102 year: 2018 ident: c17 publication-title: Appl. Phys. Express – start-page: 85 year: 2016 ident: c20 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B – start-page: 051204 year: 2019 ident: c23 publication-title: J. Vac. Sci. Technol., B – start-page: 102103 year: 2018 ident: c19 publication-title: Appl. Phys. Lett. – start-page: 216 year: 2020 ident: c28 publication-title: Acta Mater. – start-page: 10 year: 2019 ident: c10 publication-title: J. Mater. Chem. C – start-page: 011301 year: 2018 ident: c5 publication-title: Appl. Phys. Rev. – start-page: 52543 year: 2017 ident: c31 publication-title: RSC Adv. – start-page: 1509 year: 2017 ident: c26 publication-title: CrystEngComm – start-page: 011804 year: 2019 ident: c9 publication-title: J. Semicond. – start-page: 060401 year: 2018 ident: c3 publication-title: Appl. Phys. Lett. – start-page: 346211 year: 2007 ident: c27 publication-title: J. Phys.: Condens. Matter – start-page: 18563 year: 2016 ident: c11 publication-title: Phys. Chem. Chem. Phys. – start-page: 1140 year: 2020 ident: c29 publication-title: Chem. Mater. – start-page: Q3133 year: 2019 ident: c24 publication-title: ECS J. Solid State Sci. Technol. – start-page: 431 year: 2019 ident: c18 publication-title: IEEE Electron Device Lett. – volume: 112 start-page: 032107 year: 2018 ident: 2023080800325213200_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5012993 – volume: 19 start-page: 1509 issue: 11 year: 2017 ident: 2023080800325213200_c26 publication-title: CrystEngComm doi: 10.1039/C7CE00123A – volume: 5 start-page: 011301 year: 2018 ident: 2023080800325213200_c5 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5006941 – volume: 19 start-page: 346211 issue: 34 year: 2007 ident: 2023080800325213200_c27 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/34/346211 – volume: 32 start-page: 1140 issue: 3 year: 2020 ident: 2023080800325213200_c29 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03926 – volume: 3 start-page: 719 year: 1952 ident: 2023080800325213200_c30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01123a039 – volume: 7 start-page: 52543 year: 2017 ident: 2023080800325213200_c31 publication-title: RSC Adv. doi: 10.1039/C7RA10341G – volume: 9 start-page: 41027 year: 2019 ident: 2023080800325213200_c14 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.041027 – volume: 40 start-page: 011804 year: 2019 ident: 2023080800325213200_c9 publication-title: J. Semicond. doi: 10.1088/1674-4926/40/1/011804 – volume: 3 start-page: 1600350 year: 2017 ident: 2023080800325213200_c2 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600350 – volume: 3 start-page: 3129 issue: 3 year: 2018 ident: 2023080800325213200_c25 publication-title: ACS Omega doi: 10.1021/acsomega.8b00063 – volume: 114 start-page: 232106 year: 2019 ident: 2023080800325213200_c8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5100256 – volume: 40 start-page: 431 year: 2019 ident: 2023080800325213200_c18 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2018.2884542 – volume: 6 start-page: P356 year: 2017 ident: 2023080800325213200_c4 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0031707jss – volume: 8 start-page: Q3133 year: 2019 ident: 2023080800325213200_c24 publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0271907jss – volume: 51 start-page: 1372 year: 2018 ident: 2023080800325213200_c6 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576718011093 – volume: 11 start-page: 061105 year: 2018 ident: 2023080800325213200_c13 publication-title: Appl. Phys. Express doi: 10.7567/APEX.11.061105 – volume: 37 start-page: 051204 year: 2019 ident: 2023080800325213200_c23 publication-title: J. Vac. Sci. Technol., B doi: 10.1116/1.5118001 – volume: 18 start-page: 18563 year: 2016 ident: 2023080800325213200_c11 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03673B – volume: 183 start-page: 216 year: 2020 ident: 2023080800325213200_c28 publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.11.019 – volume: 6 start-page: 086502 year: 2013 ident: 2023080800325213200_c15 publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.086502 – volume: 113 start-page: 102103 year: 2018 ident: 2023080800325213200_c19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5050040 – volume: 11 start-page: 064102 year: 2018 ident: 2023080800325213200_c17 publication-title: Appl. Phys. Express doi: 10.7567/APEX.11.064102 – volume: 37 start-page: 212 year: 2016 ident: 2023080800325213200_c16 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2015.2512279 – year: 2014 ident: 2023080800325213200_c21 – volume: 528 start-page: 125254 year: 2019 ident: 2023080800325213200_c12 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2019.125254 – volume: 35 start-page: 5157 year: 2020 ident: 2023080800325213200_c1 publication-title: IEEE Trans Power Electron. doi: 10.1109/TPEL.2019.2946367 – volume: 112 start-page: 060401 year: 2018 ident: 2023080800325213200_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5017845 – volume: 379 start-page: 85 year: 2016 ident: 2023080800325213200_c20 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/j.nimb.2016.03.044 – volume: 7 start-page: 10 year: 2019 ident: 2023080800325213200_c10 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04193H – volume: 50 start-page: 325101 year: 2017 ident: 2023080800325213200_c22 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aa79dc |
| SSID | ssj0005233 |
| Score | 2.5564985 |
| Snippet | Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm−2/60 keV, 5 × 1013 cm−2/100 keV, and 7 × 1013... Ion implantation-induced effects were studied in Ge implanted β-Ga2O3 with the fluence and energy of 3 × 1013 cm-2/60 keV, 5 × 1013 cm-2/100 keV, and 7 × 1013... |
| SourceID | unpaywall osti proquest crossref scitation |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Analytical electron microscopy Annealing Applied physics Damage Electron diffraction Electron energy loss spectroscopy Electron microscopy Energy dissipation Fine structure Fluence Gallium oxides Ion implantation MATERIALS SCIENCE Microscopy Phase transitions Physics Recovery Spectrum analysis Strain analysis Tensile strain Ultrawide Bandgap Semiconductors |
| Title | Structural transition and recovery of Ge implanted β-Ga2O3 |
| URI | http://dx.doi.org/10.1063/5.0022170 https://www.proquest.com/docview/2450663676 https://www.osti.gov/servlets/purl/1853573 https://aip.scitation.org/doi/pdf/10.1063/5.0022170 |
| UnpaywallVersion | publishedVersion |
| Volume | 117 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1077-3118 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0005233 issn: 1520-8842 databaseCode: ADMLS dateStart: 19840101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5kBnE97PrEWR806sFLXO10Ogl4GXwivkAH9NT0K6zsmAkad9Gf5Q_xN211TzKOoot7CSEUnU5VV-qr6uoqgNXU6CSODQuSTHF0UGIepMa3e4m0RIORGJ9Ec3zCDzrs8DK6rM5xu7Mw8rpAt64qT-138p1qFybre5o8_OFjIAik0U9v8ggBeAOanZOz9lXdG4-nvuki-jUuAucjfGikNoIkYbSuLTQ8ziuL1OihZr1Cm2OD6eD9fV7Ihz-y2x0yQnvf4KKefj_35Nf6fanW9eObyo7_-X0T8LUCpaTdX0WTMGLzKRgfKlU4BaM-VVTfTcPWuS8568p1kNJZOp_0RWRuiPOuUTUeSC8j-5Zc3xRdJzhDnp9IsC_paTgDnb3di-2DoOrBEGiEMmWgbGpknFKuYmZcCJkyxTKJF8ZSbRhVmm7iExaZUFITaa5lKnnikJDVCH5moZH3cjsHBFcD4_hrNYnaZIgLFYJRm_HQukbXOEgL1mo5iJpDrk9GV_iNch6KSFSsacHygLToV-V4j2jeCVM4dlv9U7vEIV0KB1CiOGzBQi1jUantnaA4L4RgPOYtWBmI6V-veIfqd-_2hUKgaJFqsG4-Huv7p6jm4Qt1Hr_PqVmABkrcLiIsKtUSNNs7x0fnS5U6_AW4sgHZ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS-RAEC6WkUV98BZnPWjUB1_i0el0EvBFxAPBA3RAn5q-guKYCTuZXfRn-UP8TVb3JOMorqwvIYSi06nqSn1VXV0FsJ4ancSxYUGSKY4OSsyD1Ph2L5GWaDAS45NoTs_4cYudXEfX1TludxZG3hXo1lXlqf1OvlPtwmR9T5OHWz4GgkAa_fQRHiEAb8BI6-xi76bujcdT33QR_RoXgfMRPjRS20GSMFrXFhoe551FanRQs96hzdHBdPC-lxfy8a9st4eM0OEkXNXT7-ee3G_2SrWpnz5Udvzm903BRAVKyV5_FU3DD5vPwPhQqcIZ-OlTRXV3FnYvfclZV66DlM7S-aQvInNDnHeNqvFIOhk5suTuoWg7wRny8kyCI0nPwzloHR5c7R8HVQ-GQCOUKQNlUyPjlHIVM-NCyJQplkm8MJZqw6jSdAefsMiEkppIcy1TyROHhKxG8DMPjbyT2wUguBoYx1-rSdQOQ1yoEIzajIfWNbrGQZqwUctB1BxyfTLawm-U81BEomJNE1YHpEW_KsdnRItOmMKx2-pb7RKHdCkcQInisAlLtYxFpbZdQXFeCMF4zJuwNhDTV6_4hOpP5_cbhUDRItVg3fx7rF__RbUIY9R5_D6nZgkaKHG7jLCoVCuVGrwCsjUARQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+transition+and+recovery+of+Ge+implanted+%CE%B2-Ga2O3&rft.jtitle=Applied+physics+letters&rft.au=Anber%2C+Elaf+A&rft.au=Foley%2C+Daniel&rft.au=Lang%2C+Andrew+C&rft.au=James%2C+Nathaniel&rft.date=2020-10-12&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=117&rft.issue=15&rft_id=info:doi/10.1063%2F5.0022170&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |