Optimization of Mass Reconstruction Algorithm for Atom Probe Tomography Analysis

Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of...

Full description

Saved in:
Bibliographic Details
Published inPhysics of atomic nuclei Vol. 82; no. 9; pp. 1292 - 1301
Main Authors Shutov, A. S., Lukyanchuk, A. A., Rogozhkin, S. V., Raznitsyn, O. A., Nikitin, A. A., Aleev, A. A., Kirillov, S. E.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.12.2019
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1063-7788
1562-692X
DOI10.1134/S1063778819090096

Cover

Abstract Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti—5Al—2.7Mo—2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m /Δ m 50% , of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks.
AbstractList Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti—5Al—2.7Mo—2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m /Δ m 50% , of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks.
Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti—5Al—2.7Mo—2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m/Δm50%, of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks.
Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti--5Al-2.7Mo- 2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m/[DELTA][m.sub.50%], of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks.
Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti--5Al-2.7Mo- 2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m/[DELTA][m.sub.50%], of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks. Keywords: atom probe tomography, data reconstruction algorithm, optimization, nonlinear distortion DOI:10.1134/S1063778819090096
Audience Academic
Author Aleev, A. A.
Lukyanchuk, A. A.
Nikitin, A. A.
Kirillov, S. E.
Raznitsyn, O. A.
Rogozhkin, S. V.
Shutov, A. S.
Author_xml – sequence: 1
  givenname: A. S.
  surname: Shutov
  fullname: Shutov, A. S.
  email: Anton.Shutov@itep.ru
  organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute
– sequence: 2
  givenname: A. A.
  surname: Lukyanchuk
  fullname: Lukyanchuk, A. A.
  organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute
– sequence: 3
  givenname: S. V.
  surname: Rogozhkin
  fullname: Rogozhkin, S. V.
  organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
– sequence: 4
  givenname: O. A.
  surname: Raznitsyn
  fullname: Raznitsyn, O. A.
  organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute
– sequence: 5
  givenname: A. A.
  surname: Nikitin
  fullname: Nikitin, A. A.
  organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute
– sequence: 6
  givenname: A. A.
  surname: Aleev
  fullname: Aleev, A. A.
  organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute
– sequence: 7
  givenname: S. E.
  surname: Kirillov
  fullname: Kirillov, S. E.
  organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute
BookMark eNp9kc9LwzAUgINM0E3_AG8FTx46k2ZtkmMRfwwmilPwVpIs6SJtU5MMnH-92SaIipJDwnvfl-S9NwSDznYKgBMExwjhyfkcwQITQilikEHIij1wiPIiSwuWPQ_iOabTTf4ADL1_gRAhmsNDcH_XB9Oadx6M7RKrk1vuffKgpO18cCu5DZdNbZ0JyzbR1iVlsG1y76xQyaNtbe14v1wnZcebtTf-COxr3nh1_LmPwNPV5ePFTTq7u55elLNUYspCKihmEmVCQkwJx0IVCC4gxlpPYI5ILEAiCmk-UVgQQZjOaaaoFkLojKlc4RE43d3bO_u6Uj5UL3bl4id8lcVGEIgzSiI13lE1b1RlOm2D4zKuhWpNrFFpE-NlgXNSMDqhUTj7JkQmqLdQ85X31XT-8J0lO1Y6671TupImbBsZHzFNhWC1mU31azbRRD_M3pmWu_W_TrZzfGS7Wrmvgv-WPgDeN6A-
CitedBy_id crossref_primary_10_1134_S106377882112005X
crossref_primary_10_1134_S1063778823120050
crossref_primary_10_1134_S1063778824090308
crossref_primary_10_1134_S1063778821120048
crossref_primary_10_1016_j_jnucmat_2024_155070
Cites_doi 10.1134/S0031918X09120084
10.1016/j.jnucmat.2010.09.008
10.1063/1.3378674
10.1134/S1027451018030175
10.1063/1.1776932
10.1134/S1061934817140118
10.1016/j.scriptamat.2009.06.034
10.1134/S2075113318020247
10.1063/1.1683116
10.1016/j.corsci.2015.03.014
10.1016/0169-4332(94)00561-3
10.1063/1.445276
10.1126/science.aab2633
10.1134/S002044121702021X
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2019
COPYRIGHT 2019 Springer
2019© Pleiades Publishing, Ltd. 2019
Copyright_xml – notice: Pleiades Publishing, Ltd. 2019
– notice: COPYRIGHT 2019 Springer
– notice: 2019© Pleiades Publishing, Ltd. 2019
DBID AAYXX
CITATION
ISR
DOI 10.1134/S1063778819090096
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1562-692X
EndPage 1301
ExternalDocumentID A635769848
10_1134_S1063778819090096
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
-~X
.VR
06D
0R~
0VY
123
1N0
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
408
40D
40E
5VS
6NX
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABEFU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EDH
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
H~9
I-F
IAO
IEP
IJ-
IKXTQ
ISR
ITC
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L8X
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9T
PF0
PT4
QOS
R89
R9I
RIG
RNS
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TUC
TUS
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7Y
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c389t-b839c12bc0387a3be610d033ff40517096c180854e3b7b79f582e8fbbbf29e5e3
IEDL.DBID AGYKE
ISSN 1063-7788
IngestDate Thu Sep 25 00:54:43 EDT 2025
Mon Oct 20 16:30:30 EDT 2025
Thu Oct 16 14:14:07 EDT 2025
Thu Apr 24 22:56:54 EDT 2025
Wed Oct 01 03:53:28 EDT 2025
Fri Feb 21 02:26:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords nonlinear distortion
data reconstruction algorithm
optimization
atom probe tomography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-b839c12bc0387a3be610d033ff40517096c180854e3b7b79f582e8fbbbf29e5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2377703287
PQPubID 2043684
PageCount 10
ParticipantIDs proquest_journals_2377703287
gale_infotracacademiconefile_A635769848
gale_incontextgauss_ISR_A635769848
crossref_citationtrail_10_1134_S1063778819090096
crossref_primary_10_1134_S1063778819090096
springer_journals_10_1134_S1063778819090096
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: New York
PublicationTitle Physics of atomic nuclei
PublicationTitleAbbrev Phys. Atom. Nuclei
PublicationYear 2019
Publisher Pleiades Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer
– name: Springer Nature B.V
References KuzminaMHerbigMPongeDSandlobesSRaabeDScience (Washington, DC, U. S.)2015349625210802015Sci...349.1080K10.1126/science.aab2633
BasPBostelADeconihoutBBlavetteDAppl. Surf. Sci.1995872981995ApSS...87..298B10.1016/0169-4332(94)00561-3
TsongT TKinkusT JAiC FJ. Chem. Phys.19837847631983JChPh..78.4763T10.1063/1.445276
GaultBMoodyM PCairneyJ MRingerS PAtom Probe Microscopy, Vol. 160 of Springer Series in Material Science2012New YorkSpringer
RogozhkinS VLukyanchukA ARaznitsynO AShutovA SNikitinA AKhomichA AIskandarovN AJ. Surf. Invest.: X-ray, Synchrotr. Neutron Tech.20181245210.1134/S1027451018030175
AleevA AIskandarovN AKlimenkovMLindauRMöslangANikitinA ARogozhkinS VVladimirovPZaluzhnyiA GJ. Nucl. Mater.2011409652011JNuM..409...65A10.1016/j.jnucmat.2010.09.008
SchlesigerROberdorferCWurzRGreiweGStenderPArtmeierMSchmitzGRev. Sci. Instrum.2010814110.1063/1.3378674
SchneibelJ HLiuC TMillerM KMillsM JSarosiPHeilmaierMSturmDScr. Mater.20096179310.1016/j.scriptamat.2009.06.034
MullerE WPanitzJMcLaneS BRev. Sci. Instrum.196839831968RScI...39...83M10.1063/1.1683116
KimJ HKimB KKimD IChoiP PRaabeDYiK WCorros. Sci.2015965210.1016/j.corsci.2015.03.014
RogozhkinS VIskandarovN ALukyanchukA AShutovA SRaznitsynO ANikitinA AZaluzhnyiA GKulevoyT VKuibidaR PAnfrianovA SLeontyeva-SmirnovaM VMozhanovE MNikitinaA AInorg. Mater. Appl. Res.2018923110.1134/S2075113318020247
PareigeCLefebvre-UlriksonWVurpillotFSauvageXAtom Prove Tomography. Put Theory into Practice2016OxfordElsevier127
RogozhkinS VAgeevV SAleevA AZaluzhnyiA GLeont’eva-SmirnovaM VNikitinA APhys. Met. Metallogr.20091085792009PMM...108..579R10.1134/S0031918X09120084
RaznitsynO ALukyanchukA AShutovA SRogozhkinS VAleevA AJ. Anal. Chem.201772140410.1134/S1061934817140118
GomerRSwansonL WJ. Chem. Phys.19633816131963JChPh..38.1613G10.1063/1.1776932
RogozhkinS VAleevA ALukyanchukA AShutovA SRaznitsynO AKirillovS EInstrum. Exp. Tech.20176042810.1134/S002044121702021X
KalitkinN NNumerical Methods1978MoscowNauka[in Russian]
N N Kalitkin (1278_CR16) 1978
J H Schneibel (1278_CR1) 2009; 61
A A Aleev (1278_CR5) 2011; 409
E W Muller (1278_CR11) 1968; 39
S V Rogozhkin (1278_CR3) 2009; 108
O A Raznitsyn (1278_CR7) 2017; 72
R Schlesiger (1278_CR13) 2010; 81
S V Rogozhkin (1278_CR6) 2017; 60
R Gomer (1278_CR10) 1963; 38
J H Kim (1278_CR4) 2015; 96
P Bas (1278_CR12) 1995; 87
T T Tsong (1278_CR17) 1983; 78
C Pareige (1278_CR15) 2016
M Kuzmina (1278_CR2) 2015; 349
B Gault (1278_CR14) 2012
S V Rogozhkin (1278_CR8) 2018; 9
S V Rogozhkin (1278_CR9) 2018; 12
References_xml – reference: SchneibelJ HLiuC TMillerM KMillsM JSarosiPHeilmaierMSturmDScr. Mater.20096179310.1016/j.scriptamat.2009.06.034
– reference: RaznitsynO ALukyanchukA AShutovA SRogozhkinS VAleevA AJ. Anal. Chem.201772140410.1134/S1061934817140118
– reference: GaultBMoodyM PCairneyJ MRingerS PAtom Probe Microscopy, Vol. 160 of Springer Series in Material Science2012New YorkSpringer
– reference: TsongT TKinkusT JAiC FJ. Chem. Phys.19837847631983JChPh..78.4763T10.1063/1.445276
– reference: KuzminaMHerbigMPongeDSandlobesSRaabeDScience (Washington, DC, U. S.)2015349625210802015Sci...349.1080K10.1126/science.aab2633
– reference: AleevA AIskandarovN AKlimenkovMLindauRMöslangANikitinA ARogozhkinS VVladimirovPZaluzhnyiA GJ. Nucl. Mater.2011409652011JNuM..409...65A10.1016/j.jnucmat.2010.09.008
– reference: BasPBostelADeconihoutBBlavetteDAppl. Surf. Sci.1995872981995ApSS...87..298B10.1016/0169-4332(94)00561-3
– reference: KalitkinN NNumerical Methods1978MoscowNauka[in Russian]
– reference: SchlesigerROberdorferCWurzRGreiweGStenderPArtmeierMSchmitzGRev. Sci. Instrum.2010814110.1063/1.3378674
– reference: RogozhkinS VAgeevV SAleevA AZaluzhnyiA GLeont’eva-SmirnovaM VNikitinA APhys. Met. Metallogr.20091085792009PMM...108..579R10.1134/S0031918X09120084
– reference: KimJ HKimB KKimD IChoiP PRaabeDYiK WCorros. Sci.2015965210.1016/j.corsci.2015.03.014
– reference: GomerRSwansonL WJ. Chem. Phys.19633816131963JChPh..38.1613G10.1063/1.1776932
– reference: MullerE WPanitzJMcLaneS BRev. Sci. Instrum.196839831968RScI...39...83M10.1063/1.1683116
– reference: PareigeCLefebvre-UlriksonWVurpillotFSauvageXAtom Prove Tomography. Put Theory into Practice2016OxfordElsevier127
– reference: RogozhkinS VLukyanchukA ARaznitsynO AShutovA SNikitinA AKhomichA AIskandarovN AJ. Surf. Invest.: X-ray, Synchrotr. Neutron Tech.20181245210.1134/S1027451018030175
– reference: RogozhkinS VAleevA ALukyanchukA AShutovA SRaznitsynO AKirillovS EInstrum. Exp. Tech.20176042810.1134/S002044121702021X
– reference: RogozhkinS VIskandarovN ALukyanchukA AShutovA SRaznitsynO ANikitinA AZaluzhnyiA GKulevoyT VKuibidaR PAnfrianovA SLeontyeva-SmirnovaM VMozhanovE MNikitinaA AInorg. Mater. Appl. Res.2018923110.1134/S2075113318020247
– volume: 108
  start-page: 579
  year: 2009
  ident: 1278_CR3
  publication-title: Phys. Met. Metallogr.
  doi: 10.1134/S0031918X09120084
– volume: 409
  start-page: 65
  year: 2011
  ident: 1278_CR5
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2010.09.008
– volume: 81
  start-page: 1
  issue: 4
  year: 2010
  ident: 1278_CR13
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3378674
– volume: 12
  start-page: 452
  year: 2018
  ident: 1278_CR9
  publication-title: J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech.
  doi: 10.1134/S1027451018030175
– volume: 38
  start-page: 1613
  year: 1963
  ident: 1278_CR10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1776932
– start-page: 127
  volume-title: Atom Prove Tomography. Put Theory into Practice
  year: 2016
  ident: 1278_CR15
– volume: 72
  start-page: 1404
  year: 2017
  ident: 1278_CR7
  publication-title: J. Anal. Chem.
  doi: 10.1134/S1061934817140118
– volume: 61
  start-page: 793
  year: 2009
  ident: 1278_CR1
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2009.06.034
– volume: 9
  start-page: 231
  year: 2018
  ident: 1278_CR8
  publication-title: Inorg. Mater. Appl. Res.
  doi: 10.1134/S2075113318020247
– volume: 39
  start-page: 83
  year: 1968
  ident: 1278_CR11
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1683116
– volume: 96
  start-page: 52
  year: 2015
  ident: 1278_CR4
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2015.03.014
– volume: 87
  start-page: 298
  year: 1995
  ident: 1278_CR12
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/0169-4332(94)00561-3
– volume-title: Numerical Methods
  year: 1978
  ident: 1278_CR16
– volume: 78
  start-page: 4763
  year: 1983
  ident: 1278_CR17
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445276
– volume: 349
  start-page: 1080
  issue: 6252
  year: 2015
  ident: 1278_CR2
  publication-title: Science (Washington, DC, U. S.)
  doi: 10.1126/science.aab2633
– volume: 60
  start-page: 428
  year: 2017
  ident: 1278_CR6
  publication-title: Instrum. Exp. Tech.
  doi: 10.1134/S002044121702021X
– volume-title: Atom Probe Microscopy, Vol. 160 of Springer Series in Material Science
  year: 2012
  ident: 1278_CR14
SSID ssj0011850
Score 2.2346978
Snippet Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1292
SubjectTerms Algorithms
Chemical elements
Detectors
Engineering Design of Nuclear Physics Equipment
Investigations
Ion detectors
Ion trajectories
Optimization
Particle and Nuclear Physics
Physics
Physics and Astronomy
Reconstruction
Spatial resolution
Titanium alloys
Titanium base alloys
Tomography
Title Optimization of Mass Reconstruction Algorithm for Atom Probe Tomography Analysis
URI https://link.springer.com/article/10.1134/S1063778819090096
https://www.proquest.com/docview/2377703287
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1562-692X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0011850
  issn: 1063-7788
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1562-692X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0011850
  issn: 1063-7788
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1562-692X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011850
  issn: 1063-7788
  databaseCode: AFBBN
  dateStart: 20000101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1562-692X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011850
  issn: 1063-7788
  databaseCode: AGYKE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5BKyRe-LENrTAqC01C2pSR1k7jPKZopTCtVLSVxlMUO_ZArA0i2Qt_PXeJ06orIO05l9jO2Xff6e4-Axxb66PTDX2vJ5TwhEE7qAbWer0stIFOJWXKqNpiMhgvxKer4Mr1cRdNtXuTkqwsdX3viHg3w-CFh8R-HvkRIe-H0K7otlrQjj98vThfJw_QBdUkBAPu0QsumfnXj2y5o7tGeSc7Wjmd0VOYN9Ota01-nN2W6kz_vsPkeM_1PIMnDoSyuN41z-GBWe3Bo6oYVBf7MP2MdmTpGjRZbtklImxGgeqGbpbFN9f5r-_ltyVD2MviMl-yKbUWsXm-dDTYrGE8OYDF6Hz-fuy5mxc8jQCm9BTCJt3rK03J7ZQrgyAr8zm3VhCnF05W9ySCNWG4ClUY2UD2jbRKKduPTGD4C2it8pU5BGa0VDqwQZBxjFwylVpiXPdTKTWGdpnpgN8oINGOlpxux7hJqvCEi2TnR3XgZP3Kz5qT43_Cb0irCXFdrKiY5jq9LYrk4-xLEhMX3yCSQnbgrROyOQ6uU9ebgEsgeqwtyaNmdyTutBdJH0cMiZgw7MBpo-zN43_O7eW9pF_BY0RrUV1LcwQtVLh5jYioVF08AaPhcNJ1J-EPW6T-3Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLfGoYm9ANuYdnxG06RJTIVek17TxwrBjvExBIcET1GTJmwad0W0vPDXY19TELAh8Vy3SerE_lm2fwH46lyITjcJg57QIhAW7aDuOxf0isTFJpeUKaNqi8P-4FT8PIvPfB931Va7tynJiaVu7h0RmycYvPCE2M_TMCXkPQXTAuOTqAPT2Y_zve375AG6oIaEoM8DesEnM__5kUfu6KlRfpYdnTidnTkYttNtak3-btzUesPcPmFyfOV65mHWg1CWNbvmPbyx4w_wdlIMaqqPcPQL7cjIN2iy0rEDRNiMAtUHulmWXV6U13_q3yOGsJdldTliR9RaxIblyNNgs5bxZAFOd7aHW4PA37wQGAQwdaARNplepA0lt3OuLYKsIuTcOUGcXjhZ05MI1oTlOtFJ6mIZWem01i5KbWz5J-iMy7H9DMwaqU3s4rjgGLkUOnfEuB7mUhoM7QrbhbBVgDKelpxux7hUk_CEC_XsR3Vh_f6Vq4aT4yXhL6RVRVwXYyqmuchvqkrtnhyrjLj4-qkUsgvfvJArcXCT-94EXALRYz2SXG53h_KnvVIRjpgQMWHShe-tsh8e_3dui6-SXoOZwfBgX-3vHu4twTtEbmlTV7MMHVS-XUF0VOtVfxruAEqvAE8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VEKiXPmirboHWQkhIrQLZtbNxjhFly5sVDwlObuzYtCqboCZc-PWd2TggnhLqOePYzjgz32jG3wAsORei043DoCu0CIRFO6j7zgXdPHaRySRlyqjaYq-_cSy2TqIT3-e0aqvd25Rkc6eBWJqKevUid74HiVg9xECGx8SEnoQJofAJmMLIJMaDPpX-ON1ev04koDtqCAn6PKABPrH54Etuuaa7BvpepnTsgAav4We79Kbu5M_KZa1XzNUdVsf_2NsbeOXBKUub0_QWXthiFqbHRaKmegfDfbQvI39xk5WO7SLyZhTA3tDQsvT8rPz7u_41YgiHWVqXIzakK0fsqBx5emzWMqG8h-PB-tHaRuA7MgQGgU0daIRTptvThpLeGdcWwVcecu6cIK4vXKzpSgRxwnId6zhxkexZ6bTWrpfYyPIPMFmUhf0IzBqpTeSiKOcY0eQ6c8TEHmZSGgz5ctuBsFWGMp6unLpmnKtx2MKFuvehOvD1eshFw9XxlPAiaVgRB0ZBRTZn2WVVqc3DA5USR18_kUJ2YNkLuRInN5m_s4BbINqsW5Lz7UlR3gpUqoczxkRYGHfgW6v4m8ePru3Ts6S_wMzw-0DtbO5tz8FLBHRJU24zD5Ooe7uAoKnWn_2P8Q9DvQkz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Mass+Reconstruction+Algorithm+for+Atom+Probe+Tomography+Analysis&rft.jtitle=Physics+of+atomic+nuclei&rft.au=Shutov%2C+A.S&rft.au=Lukyanchuk%2C+A.A&rft.au=Rogozhkin%2C+S.V&rft.au=Raznitsyn%2C+O.A&rft.date=2019-12-01&rft.pub=Springer&rft.issn=1063-7788&rft.volume=82&rft.issue=9&rft.spage=1292&rft_id=info:doi/10.1134%2FS1063778819090096&rft.externalDocID=A635769848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-7788&client=summon