Optimization of Mass Reconstruction Algorithm for Atom Probe Tomography Analysis
Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of...
        Saved in:
      
    
          | Published in | Physics of atomic nuclei Vol. 82; no. 9; pp. 1292 - 1301 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Moscow
          Pleiades Publishing
    
        01.12.2019
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1063-7788 1562-692X  | 
| DOI | 10.1134/S1063778819090096 | 
Cover
| Abstract | Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti—5Al—2.7Mo—2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution,
m
/Δ
m
50%
, of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks. | 
    
|---|---|
| AbstractList | Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti—5Al—2.7Mo—2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution,
m
/Δ
m
50%
, of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks. Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti—5Al—2.7Mo—2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m/Δm50%, of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks. Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti--5Al-2.7Mo- 2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m/[DELTA][m.sub.50%], of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks. Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional distributions of chemical elements in various materials with atomic spatial resolution. The raw APT data reconstruction algorithm uses the geometry of evaporated ion trajectories. However, the basic algorithm uses the approximation of rectilinear trajectories of ions moving from the specimen to the detector. In this study, we present the main approaches to adapting and optimizing the basic APT data reconstruction algorithm concerning the mass reconstruction procedure. Methods for taking into account the nonlinear distortions of ion trajectories due to the wide-angle detection system and other features of ion detection in atom probe tomography are demonstrated. Using a titanium alloy (Ti--5Al-2.7Mo- 2Zr), we demonstrate that the consideration of the above effects in the reconstruction of ATP data makes it possible to increase the mass resolution, m/[DELTA][m.sub.50%], of the main peaks of the mass spectrum to 600 and above. In general, the set of performed procedures allows one to achieve a high accuracy of the positioning of the peaks up to 0.01 amu and ensures a significant (more than tenfold) increase in the mass resolution for mass spectrum peaks that are distant from the main peaks. Keywords: atom probe tomography, data reconstruction algorithm, optimization, nonlinear distortion DOI:10.1134/S1063778819090096  | 
    
| Audience | Academic | 
    
| Author | Aleev, A. A. Lukyanchuk, A. A. Nikitin, A. A. Kirillov, S. E. Raznitsyn, O. A. Rogozhkin, S. V. Shutov, A. S.  | 
    
| Author_xml | – sequence: 1 givenname: A. S. surname: Shutov fullname: Shutov, A. S. email: Anton.Shutov@itep.ru organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute – sequence: 2 givenname: A. A. surname: Lukyanchuk fullname: Lukyanchuk, A. A. organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute – sequence: 3 givenname: S. V. surname: Rogozhkin fullname: Rogozhkin, S. V. organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) – sequence: 4 givenname: O. A. surname: Raznitsyn fullname: Raznitsyn, O. A. organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute – sequence: 5 givenname: A. A. surname: Nikitin fullname: Nikitin, A. A. organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute – sequence: 6 givenname: A. A. surname: Aleev fullname: Aleev, A. A. organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute – sequence: 7 givenname: S. E. surname: Kirillov fullname: Kirillov, S. E. organization: Alikhanov Institute for Theoretical and Experimental Physics, National Research Center Kurchatov Institute  | 
    
| BookMark | eNp9kc9LwzAUgINM0E3_AG8FTx46k2ZtkmMRfwwmilPwVpIs6SJtU5MMnH-92SaIipJDwnvfl-S9NwSDznYKgBMExwjhyfkcwQITQilikEHIij1wiPIiSwuWPQ_iOabTTf4ADL1_gRAhmsNDcH_XB9Oadx6M7RKrk1vuffKgpO18cCu5DZdNbZ0JyzbR1iVlsG1y76xQyaNtbe14v1wnZcebtTf-COxr3nh1_LmPwNPV5ePFTTq7u55elLNUYspCKihmEmVCQkwJx0IVCC4gxlpPYI5ILEAiCmk-UVgQQZjOaaaoFkLojKlc4RE43d3bO_u6Uj5UL3bl4id8lcVGEIgzSiI13lE1b1RlOm2D4zKuhWpNrFFpE-NlgXNSMDqhUTj7JkQmqLdQ85X31XT-8J0lO1Y6671TupImbBsZHzFNhWC1mU31azbRRD_M3pmWu_W_TrZzfGS7Wrmvgv-WPgDeN6A- | 
    
| CitedBy_id | crossref_primary_10_1134_S106377882112005X crossref_primary_10_1134_S1063778823120050 crossref_primary_10_1134_S1063778824090308 crossref_primary_10_1134_S1063778821120048 crossref_primary_10_1016_j_jnucmat_2024_155070  | 
    
| Cites_doi | 10.1134/S0031918X09120084 10.1016/j.jnucmat.2010.09.008 10.1063/1.3378674 10.1134/S1027451018030175 10.1063/1.1776932 10.1134/S1061934817140118 10.1016/j.scriptamat.2009.06.034 10.1134/S2075113318020247 10.1063/1.1683116 10.1016/j.corsci.2015.03.014 10.1016/0169-4332(94)00561-3 10.1063/1.445276 10.1126/science.aab2633 10.1134/S002044121702021X  | 
    
| ContentType | Journal Article | 
    
| Copyright | Pleiades Publishing, Ltd. 2019 COPYRIGHT 2019 Springer 2019© Pleiades Publishing, Ltd. 2019  | 
    
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2019 – notice: COPYRIGHT 2019 Springer – notice: 2019© Pleiades Publishing, Ltd. 2019  | 
    
| DBID | AAYXX CITATION ISR  | 
    
| DOI | 10.1134/S1063778819090096 | 
    
| DatabaseName | CrossRef Gale In Context: Science  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics | 
    
| EISSN | 1562-692X | 
    
| EndPage | 1301 | 
    
| ExternalDocumentID | A635769848 10_1134_S1063778819090096  | 
    
| GroupedDBID | -5F -5G -BR -EM -Y2 -~C -~X .VR 06D 0R~ 0VY 123 1N0 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABEFU ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EDH EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ H~9 I-F IAO IEP IJ- IKXTQ ISR ITC IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P9T PF0 PT4 QOS R89 R9I RIG RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TUC TUS UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7Y ZMTXR ~8M ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION  | 
    
| ID | FETCH-LOGICAL-c389t-b839c12bc0387a3be610d033ff40517096c180854e3b7b79f582e8fbbbf29e5e3 | 
    
| IEDL.DBID | AGYKE | 
    
| ISSN | 1063-7788 | 
    
| IngestDate | Thu Sep 25 00:54:43 EDT 2025 Mon Oct 20 16:30:30 EDT 2025 Thu Oct 16 14:14:07 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 Wed Oct 01 03:53:28 EDT 2025 Fri Feb 21 02:26:53 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Keywords | nonlinear distortion data reconstruction algorithm optimization atom probe tomography  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c389t-b839c12bc0387a3be610d033ff40517096c180854e3b7b79f582e8fbbbf29e5e3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2377703287 | 
    
| PQPubID | 2043684 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_journals_2377703287 gale_infotracacademiconefile_A635769848 gale_incontextgauss_ISR_A635769848 crossref_citationtrail_10_1134_S1063778819090096 crossref_primary_10_1134_S1063778819090096 springer_journals_10_1134_S1063778819090096  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-12-01 | 
    
| PublicationDateYYYYMMDD | 2019-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Moscow | 
    
| PublicationPlace_xml | – name: Moscow – name: New York  | 
    
| PublicationTitle | Physics of atomic nuclei | 
    
| PublicationTitleAbbrev | Phys. Atom. Nuclei | 
    
| PublicationYear | 2019 | 
    
| Publisher | Pleiades Publishing Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Pleiades Publishing – name: Springer – name: Springer Nature B.V  | 
    
| References | KuzminaMHerbigMPongeDSandlobesSRaabeDScience (Washington, DC, U. S.)2015349625210802015Sci...349.1080K10.1126/science.aab2633 BasPBostelADeconihoutBBlavetteDAppl. Surf. Sci.1995872981995ApSS...87..298B10.1016/0169-4332(94)00561-3 TsongT TKinkusT JAiC FJ. Chem. Phys.19837847631983JChPh..78.4763T10.1063/1.445276 GaultBMoodyM PCairneyJ MRingerS PAtom Probe Microscopy, Vol. 160 of Springer Series in Material Science2012New YorkSpringer RogozhkinS VLukyanchukA ARaznitsynO AShutovA SNikitinA AKhomichA AIskandarovN AJ. Surf. Invest.: X-ray, Synchrotr. Neutron Tech.20181245210.1134/S1027451018030175 AleevA AIskandarovN AKlimenkovMLindauRMöslangANikitinA ARogozhkinS VVladimirovPZaluzhnyiA GJ. Nucl. Mater.2011409652011JNuM..409...65A10.1016/j.jnucmat.2010.09.008 SchlesigerROberdorferCWurzRGreiweGStenderPArtmeierMSchmitzGRev. Sci. Instrum.2010814110.1063/1.3378674 SchneibelJ HLiuC TMillerM KMillsM JSarosiPHeilmaierMSturmDScr. Mater.20096179310.1016/j.scriptamat.2009.06.034 MullerE WPanitzJMcLaneS BRev. Sci. Instrum.196839831968RScI...39...83M10.1063/1.1683116 KimJ HKimB KKimD IChoiP PRaabeDYiK WCorros. Sci.2015965210.1016/j.corsci.2015.03.014 RogozhkinS VIskandarovN ALukyanchukA AShutovA SRaznitsynO ANikitinA AZaluzhnyiA GKulevoyT VKuibidaR PAnfrianovA SLeontyeva-SmirnovaM VMozhanovE MNikitinaA AInorg. Mater. Appl. Res.2018923110.1134/S2075113318020247 PareigeCLefebvre-UlriksonWVurpillotFSauvageXAtom Prove Tomography. Put Theory into Practice2016OxfordElsevier127 RogozhkinS VAgeevV SAleevA AZaluzhnyiA GLeont’eva-SmirnovaM VNikitinA APhys. Met. Metallogr.20091085792009PMM...108..579R10.1134/S0031918X09120084 RaznitsynO ALukyanchukA AShutovA SRogozhkinS VAleevA AJ. Anal. Chem.201772140410.1134/S1061934817140118 GomerRSwansonL WJ. Chem. Phys.19633816131963JChPh..38.1613G10.1063/1.1776932 RogozhkinS VAleevA ALukyanchukA AShutovA SRaznitsynO AKirillovS EInstrum. Exp. Tech.20176042810.1134/S002044121702021X KalitkinN NNumerical Methods1978MoscowNauka[in Russian] N N Kalitkin (1278_CR16) 1978 J H Schneibel (1278_CR1) 2009; 61 A A Aleev (1278_CR5) 2011; 409 E W Muller (1278_CR11) 1968; 39 S V Rogozhkin (1278_CR3) 2009; 108 O A Raznitsyn (1278_CR7) 2017; 72 R Schlesiger (1278_CR13) 2010; 81 S V Rogozhkin (1278_CR6) 2017; 60 R Gomer (1278_CR10) 1963; 38 J H Kim (1278_CR4) 2015; 96 P Bas (1278_CR12) 1995; 87 T T Tsong (1278_CR17) 1983; 78 C Pareige (1278_CR15) 2016 M Kuzmina (1278_CR2) 2015; 349 B Gault (1278_CR14) 2012 S V Rogozhkin (1278_CR8) 2018; 9 S V Rogozhkin (1278_CR9) 2018; 12  | 
    
| References_xml | – reference: SchneibelJ HLiuC TMillerM KMillsM JSarosiPHeilmaierMSturmDScr. Mater.20096179310.1016/j.scriptamat.2009.06.034 – reference: RaznitsynO ALukyanchukA AShutovA SRogozhkinS VAleevA AJ. Anal. Chem.201772140410.1134/S1061934817140118 – reference: GaultBMoodyM PCairneyJ MRingerS PAtom Probe Microscopy, Vol. 160 of Springer Series in Material Science2012New YorkSpringer – reference: TsongT TKinkusT JAiC FJ. Chem. Phys.19837847631983JChPh..78.4763T10.1063/1.445276 – reference: KuzminaMHerbigMPongeDSandlobesSRaabeDScience (Washington, DC, U. S.)2015349625210802015Sci...349.1080K10.1126/science.aab2633 – reference: AleevA AIskandarovN AKlimenkovMLindauRMöslangANikitinA ARogozhkinS VVladimirovPZaluzhnyiA GJ. Nucl. Mater.2011409652011JNuM..409...65A10.1016/j.jnucmat.2010.09.008 – reference: BasPBostelADeconihoutBBlavetteDAppl. Surf. Sci.1995872981995ApSS...87..298B10.1016/0169-4332(94)00561-3 – reference: KalitkinN NNumerical Methods1978MoscowNauka[in Russian] – reference: SchlesigerROberdorferCWurzRGreiweGStenderPArtmeierMSchmitzGRev. Sci. Instrum.2010814110.1063/1.3378674 – reference: RogozhkinS VAgeevV SAleevA AZaluzhnyiA GLeont’eva-SmirnovaM VNikitinA APhys. Met. Metallogr.20091085792009PMM...108..579R10.1134/S0031918X09120084 – reference: KimJ HKimB KKimD IChoiP PRaabeDYiK WCorros. Sci.2015965210.1016/j.corsci.2015.03.014 – reference: GomerRSwansonL WJ. Chem. Phys.19633816131963JChPh..38.1613G10.1063/1.1776932 – reference: MullerE WPanitzJMcLaneS BRev. Sci. Instrum.196839831968RScI...39...83M10.1063/1.1683116 – reference: PareigeCLefebvre-UlriksonWVurpillotFSauvageXAtom Prove Tomography. Put Theory into Practice2016OxfordElsevier127 – reference: RogozhkinS VLukyanchukA ARaznitsynO AShutovA SNikitinA AKhomichA AIskandarovN AJ. Surf. Invest.: X-ray, Synchrotr. Neutron Tech.20181245210.1134/S1027451018030175 – reference: RogozhkinS VAleevA ALukyanchukA AShutovA SRaznitsynO AKirillovS EInstrum. Exp. Tech.20176042810.1134/S002044121702021X – reference: RogozhkinS VIskandarovN ALukyanchukA AShutovA SRaznitsynO ANikitinA AZaluzhnyiA GKulevoyT VKuibidaR PAnfrianovA SLeontyeva-SmirnovaM VMozhanovE MNikitinaA AInorg. Mater. Appl. Res.2018923110.1134/S2075113318020247 – volume: 108 start-page: 579 year: 2009 ident: 1278_CR3 publication-title: Phys. Met. Metallogr. doi: 10.1134/S0031918X09120084 – volume: 409 start-page: 65 year: 2011 ident: 1278_CR5 publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2010.09.008 – volume: 81 start-page: 1 issue: 4 year: 2010 ident: 1278_CR13 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3378674 – volume: 12 start-page: 452 year: 2018 ident: 1278_CR9 publication-title: J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. doi: 10.1134/S1027451018030175 – volume: 38 start-page: 1613 year: 1963 ident: 1278_CR10 publication-title: J. Chem. Phys. doi: 10.1063/1.1776932 – start-page: 127 volume-title: Atom Prove Tomography. Put Theory into Practice year: 2016 ident: 1278_CR15 – volume: 72 start-page: 1404 year: 2017 ident: 1278_CR7 publication-title: J. Anal. Chem. doi: 10.1134/S1061934817140118 – volume: 61 start-page: 793 year: 2009 ident: 1278_CR1 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2009.06.034 – volume: 9 start-page: 231 year: 2018 ident: 1278_CR8 publication-title: Inorg. Mater. Appl. Res. doi: 10.1134/S2075113318020247 – volume: 39 start-page: 83 year: 1968 ident: 1278_CR11 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1683116 – volume: 96 start-page: 52 year: 2015 ident: 1278_CR4 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2015.03.014 – volume: 87 start-page: 298 year: 1995 ident: 1278_CR12 publication-title: Appl. Surf. Sci. doi: 10.1016/0169-4332(94)00561-3 – volume-title: Numerical Methods year: 1978 ident: 1278_CR16 – volume: 78 start-page: 4763 year: 1983 ident: 1278_CR17 publication-title: J. Chem. Phys. doi: 10.1063/1.445276 – volume: 349 start-page: 1080 issue: 6252 year: 2015 ident: 1278_CR2 publication-title: Science (Washington, DC, U. S.) doi: 10.1126/science.aab2633 – volume: 60 start-page: 428 year: 2017 ident: 1278_CR6 publication-title: Instrum. Exp. Tech. doi: 10.1134/S002044121702021X – volume-title: Atom Probe Microscopy, Vol. 160 of Springer Series in Material Science year: 2012 ident: 1278_CR14  | 
    
| SSID | ssj0011850 | 
    
| Score | 2.2346978 | 
    
| Snippet | Atom probe tomography (ATP) is a technique that has actively been developed in recent years. This method allows one to investigate three-dimensional... | 
    
| SourceID | proquest gale crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1292 | 
    
| SubjectTerms | Algorithms Chemical elements Detectors Engineering Design of Nuclear Physics Equipment Investigations Ion detectors Ion trajectories Optimization Particle and Nuclear Physics Physics Physics and Astronomy Reconstruction Spatial resolution Titanium alloys Titanium base alloys Tomography  | 
    
| Title | Optimization of Mass Reconstruction Algorithm for Atom Probe Tomography Analysis | 
    
| URI | https://link.springer.com/article/10.1134/S1063778819090096 https://www.proquest.com/docview/2377703287  | 
    
| Volume | 82 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1562-692X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0011850 issn: 1063-7788 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1562-692X dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0011850 issn: 1063-7788 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1562-692X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011850 issn: 1063-7788 databaseCode: AFBBN dateStart: 20000101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1562-692X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011850 issn: 1063-7788 databaseCode: AGYKE dateStart: 20000101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5BKyRe-LENrTAqC01C2pSR1k7jPKZopTCtVLSVxlMUO_ZArA0i2Qt_PXeJ06orIO05l9jO2Xff6e4-Axxb66PTDX2vJ5TwhEE7qAbWer0stIFOJWXKqNpiMhgvxKer4Mr1cRdNtXuTkqwsdX3viHg3w-CFh8R-HvkRIe-H0K7otlrQjj98vThfJw_QBdUkBAPu0QsumfnXj2y5o7tGeSc7Wjmd0VOYN9Ota01-nN2W6kz_vsPkeM_1PIMnDoSyuN41z-GBWe3Bo6oYVBf7MP2MdmTpGjRZbtklImxGgeqGbpbFN9f5r-_ltyVD2MviMl-yKbUWsXm-dDTYrGE8OYDF6Hz-fuy5mxc8jQCm9BTCJt3rK03J7ZQrgyAr8zm3VhCnF05W9ySCNWG4ClUY2UD2jbRKKduPTGD4C2it8pU5BGa0VDqwQZBxjFwylVpiXPdTKTWGdpnpgN8oINGOlpxux7hJqvCEi2TnR3XgZP3Kz5qT43_Cb0irCXFdrKiY5jq9LYrk4-xLEhMX3yCSQnbgrROyOQ6uU9ebgEsgeqwtyaNmdyTutBdJH0cMiZgw7MBpo-zN43_O7eW9pF_BY0RrUV1LcwQtVLh5jYioVF08AaPhcNJ1J-EPW6T-3Q | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9wwDLfGoYm9ANuYdnxG06RJTIVek17TxwrBjvExBIcET1GTJmwad0W0vPDXY19TELAh8Vy3SerE_lm2fwH46lyITjcJg57QIhAW7aDuOxf0isTFJpeUKaNqi8P-4FT8PIvPfB931Va7tynJiaVu7h0RmycYvPCE2M_TMCXkPQXTAuOTqAPT2Y_zve375AG6oIaEoM8DesEnM__5kUfu6KlRfpYdnTidnTkYttNtak3-btzUesPcPmFyfOV65mHWg1CWNbvmPbyx4w_wdlIMaqqPcPQL7cjIN2iy0rEDRNiMAtUHulmWXV6U13_q3yOGsJdldTliR9RaxIblyNNgs5bxZAFOd7aHW4PA37wQGAQwdaARNplepA0lt3OuLYKsIuTcOUGcXjhZ05MI1oTlOtFJ6mIZWem01i5KbWz5J-iMy7H9DMwaqU3s4rjgGLkUOnfEuB7mUhoM7QrbhbBVgDKelpxux7hUk_CEC_XsR3Vh_f6Vq4aT4yXhL6RVRVwXYyqmuchvqkrtnhyrjLj4-qkUsgvfvJArcXCT-94EXALRYz2SXG53h_KnvVIRjpgQMWHShe-tsh8e_3dui6-SXoOZwfBgX-3vHu4twTtEbmlTV7MMHVS-XUF0VOtVfxruAEqvAE8 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VEKiXPmirboHWQkhIrQLZtbNxjhFly5sVDwlObuzYtCqboCZc-PWd2TggnhLqOePYzjgz32jG3wAsORei043DoCu0CIRFO6j7zgXdPHaRySRlyqjaYq-_cSy2TqIT3-e0aqvd25Rkc6eBWJqKevUid74HiVg9xECGx8SEnoQJofAJmMLIJMaDPpX-ON1ev04koDtqCAn6PKABPrH54Etuuaa7BvpepnTsgAav4We79Kbu5M_KZa1XzNUdVsf_2NsbeOXBKUub0_QWXthiFqbHRaKmegfDfbQvI39xk5WO7SLyZhTA3tDQsvT8rPz7u_41YgiHWVqXIzakK0fsqBx5emzWMqG8h-PB-tHaRuA7MgQGgU0daIRTptvThpLeGdcWwVcecu6cIK4vXKzpSgRxwnId6zhxkexZ6bTWrpfYyPIPMFmUhf0IzBqpTeSiKOcY0eQ6c8TEHmZSGgz5ctuBsFWGMp6unLpmnKtx2MKFuvehOvD1eshFw9XxlPAiaVgRB0ZBRTZn2WVVqc3DA5USR18_kUJ2YNkLuRInN5m_s4BbINqsW5Lz7UlR3gpUqoczxkRYGHfgW6v4m8ePru3Ts6S_wMzw-0DtbO5tz8FLBHRJU24zD5Ooe7uAoKnWn_2P8Q9DvQkz | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+Mass+Reconstruction+Algorithm+for+Atom+Probe+Tomography+Analysis&rft.jtitle=Physics+of+atomic+nuclei&rft.au=Shutov%2C+A.S&rft.au=Lukyanchuk%2C+A.A&rft.au=Rogozhkin%2C+S.V&rft.au=Raznitsyn%2C+O.A&rft.date=2019-12-01&rft.pub=Springer&rft.issn=1063-7788&rft.volume=82&rft.issue=9&rft.spage=1292&rft_id=info:doi/10.1134%2FS1063778819090096&rft.externalDocID=A635769848 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-7788&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-7788&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-7788&client=summon |