Comparison of Selected Machine Learning Algorithms in the Analysis of Mental Health Indicators
Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy and care. Aim: the main aim of the study was to investigate how the selected machine learning algorithms deal with the problem of determining a virtual mental health index. Material and Methods: a number of...
Saved in:
| Published in | Electronics (Basel) Vol. 12; no. 21; p. 4407 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.11.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2079-9292 2079-9292 |
| DOI | 10.3390/electronics12214407 |
Cover
| Abstract | Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy and care. Aim: the main aim of the study was to investigate how the selected machine learning algorithms deal with the problem of determining a virtual mental health index. Material and Methods: a number of machine learning models based on Stochastic Dual Coordinate Ascent, limited-memory Broyden–Fletcher–Goldfarb–Shanno, Online Gradient Descent, etc., were built based on a clinical dataset and compared based on criteria in the form of learning time, running time during use and regression accuracy. Results: the algorithm with the highest accuracy was Stochastic Dual Coordinate Ascent, but although its performance was high, it had significantly longer training and prediction times. The fastest algorithm looking at learning and prediction time, but slightly less accurate, was the limited-memory Broyden–Fletcher–Goldfarb–Shanno. The same data set was also analyzed automatically using ML.NET. Findings from the study can be used to build larger systems that automate early mental health diagnosis and help differentiate the use of individual algorithms depending on the purpose of the system. |
|---|---|
| AbstractList | Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy and care. Aim: the main aim of the study was to investigate how the selected machine learning algorithms deal with the problem of determining a virtual mental health index. Material and Methods: a number of machine learning models based on Stochastic Dual Coordinate Ascent, limited-memory Broyden–Fletcher–Goldfarb–Shanno, Online Gradient Descent, etc., were built based on a clinical dataset and compared based on criteria in the form of learning time, running time during use and regression accuracy. Results: the algorithm with the highest accuracy was Stochastic Dual Coordinate Ascent, but although its performance was high, it had significantly longer training and prediction times. The fastest algorithm looking at learning and prediction time, but slightly less accurate, was the limited-memory Broyden–Fletcher–Goldfarb–Shanno. The same data set was also analyzed automatically using ML.NET. Findings from the study can be used to build larger systems that automate early mental health diagnosis and help differentiate the use of individual algorithms depending on the purpose of the system. |
| Audience | Academic |
| Author | Rojek, Izabela Mikołajewski, Dariusz Bieliński, Adrian |
| Author_xml | – sequence: 1 givenname: Adrian surname: Bieliński fullname: Bieliński, Adrian – sequence: 2 givenname: Izabela orcidid: 0000-0002-9958-6579 surname: Rojek fullname: Rojek, Izabela – sequence: 3 givenname: Dariusz surname: Mikołajewski fullname: Mikołajewski, Dariusz |
| BookMark | eNqNkVFLHDEQx4NY0Fo_gS-BPp_NJlmTPB6HVuGkD-qry2x2chfJJtckR7lv79oTbItIZx5mCP_fzGTmMzmMKSIhZw07F8KwbxjQ1pyit6XhvJGSqQNyzJkyM8MNP_wjPyKnpTyxyUwjtGDH5HGRxg1kX1KkydG738VwoLdg1z4iXSLk6OOKzsMqZV_XY6E-0rpGOo8QdsWXF-4WY4VArxFCXdObOHgLNeXyhXxyEAqevsYT8nB1eb-4ni1_fL9ZzJczK7Sps_5C614qx6Sxg2wdIGDrlGhRWalt27ML7ZwzSkjLuRSD640zfY_WGkAEcULkvu42bmD3C0LoNtmPkHddw7qXNXXvrGnCvu6xTU4_t1hq95S2efpX6bjWuuFCteZNtYKAnY8u1Qx29MV2c6V4KzjT7aQ6f0c1-YCjt9PJnJ_e_wLEHrA5lZLR_efI5h_K-grVpzi18-FD9hkR_a7Z |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3552041 crossref_primary_10_3390_electronics13020257 crossref_primary_10_1016_j_heliyon_2024_e37182 |
| Cites_doi | 10.1080/08870440108405527 10.1007/978-3-540-69731-2 10.3390/agriculture13050965 10.1007/978-3-319-63962-8_326-1 10.1007/978-3-030-72040-7_2 10.1016/j.jpdc.2020.04.002 10.1016/S2215-0366(20)30308-4 10.3390/ma14112737 10.3390/electronics12051109 10.1146/annurev-clinpsy-080921-073212 10.1016/j.jad.2022.04.015 10.1515/bams-2016-0004 10.1016/j.health.2023.100241 10.1109/IDAACS.2013.6662715 10.1207/s15327752jpa4901_13 10.1073/pnas.2009609117 10.1007/s11136-018-2066-2 10.1097/ICU.0000000000000593 10.1186/s12889-018-5133-2 10.1016/j.mayocp.2020.01.038 10.1038/s41380-023-02047-6 10.2196/28781 10.1002/9781119549550 10.3390/s22239214 10.1007/s10845-023-02158-5 10.25046/aj020343 10.1109/TAC.2021.3126253 10.1109/MSP.2020.2975212 10.3390/electronics12061267 10.1007/s10916-018-0934-5 10.1186/s12888-018-2007-1 10.1002/job.4030020205 10.3390/electronics12092039 10.1007/978-3-030-75549-2_18 10.1109/TNNLS.2020.3041755 10.51561/cspsych.65.1.46 10.3390/jpm13081268 10.1016/j.hrthm.2023.07.001 10.1016/j.jad.2018.04.099 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.3390/electronics12214407 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10.3390/electronics12214407 A772532085 10_3390_electronics12214407 |
| GeographicLocations | Poland |
| GeographicLocations_xml | – name: Poland |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c389t-b688b47f049cd45faeae5f735e7c48c5b068fff9734c2243dfb9f9bbecc9aeea3 |
| IEDL.DBID | BENPR |
| ISSN | 2079-9292 |
| IngestDate | Wed Oct 01 16:46:59 EDT 2025 Sun Jul 13 04:30:02 EDT 2025 Mon Oct 20 23:10:28 EDT 2025 Mon Oct 20 17:08:49 EDT 2025 Thu Oct 16 04:40:25 EDT 2025 Thu Apr 24 23:00:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-b688b47f049cd45faeae5f735e7c48c5b068fff9734c2243dfb9f9bbecc9aeea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9958-6579 |
| OpenAccessLink | https://www.proquest.com/docview/2888123759?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2888123759 |
| PQPubID | 2032404 |
| ParticipantIDs | unpaywall_primary_10_3390_electronics12214407 proquest_journals_2888123759 gale_infotracmisc_A772532085 gale_infotracacademiconefile_A772532085 crossref_primary_10_3390_electronics12214407 crossref_citationtrail_10_3390_electronics12214407 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Adapa (ref_9) 2022; 294 Spiridonoff (ref_20) 2020; 21 Mohammadi (ref_45) 2023; 4 Srividya (ref_14) 2018; 42 Bubonya (ref_17) 2017; 6 Onnela (ref_7) 2023; 19 Kannampallil (ref_2) 2022; 308 ref_10 Reid (ref_5) 2019; 30 ref_31 Knight (ref_11) 2018; 236 ref_30 Checa (ref_37) 2019; 28 Prasetya (ref_34) 2020; 8 Maslach (ref_35) 1981; 2 Rojek (ref_44) 2021; 69 ref_18 ref_39 Gajos (ref_46) 2016; 12 ref_15 Hagiwara (ref_12) 2017; 2 Pal (ref_19) 2020; 143 Attia (ref_4) 2020; 95 Charvat (ref_33) 2021; 65 Schaufeli (ref_36) 2001; 16 ref_25 ref_47 ref_24 Pu (ref_21) 2022; 67 ref_23 Pierce (ref_13) 2020; 7 ref_43 ref_42 ref_41 ref_40 Hong (ref_3) 2022; 10 Witteveen (ref_16) 2020; 117 Ilboudo (ref_32) 2020; 33 ref_29 ref_28 Diener (ref_38) 1985; 49 ref_27 Asatryan (ref_1) 2023; 20 Pu (ref_22) 2020; 37 ref_26 ref_8 ref_6 |
| References_xml | – volume: 16 start-page: 565 year: 2001 ident: ref_36 article-title: On the clinical validity of the Maslach Burnout Inventory and the Burnout Measure publication-title: Psychol. Health doi: 10.1080/08870440108405527 – ident: ref_40 doi: 10.1007/978-3-540-69731-2 – ident: ref_42 doi: 10.3390/agriculture13050965 – ident: ref_31 doi: 10.1007/978-3-319-63962-8_326-1 – ident: ref_29 doi: 10.1007/978-3-030-72040-7_2 – volume: 6 start-page: 6 year: 2017 ident: ref_17 article-title: Jobloss and the mental health of spouses and adolescent children publication-title: IZAJ. LaborEcon. – volume: 143 start-page: 47 year: 2020 ident: ref_19 article-title: Hybrid-DCA: A double asynchronous approach for stochastic dual coordinate ascent publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2020.04.002 – ident: ref_24 – ident: ref_26 – volume: 8 start-page: 48 year: 2020 ident: ref_34 article-title: Validity and Reliability of The Perceived Stress Scale with RASCH Model publication-title: PSIKOPEDAGOGIA J. Bimbing. Konseling – volume: 7 start-page: 883 year: 2020 ident: ref_13 article-title: Mental health before and during the COVID-19 pandemic: A longitudinal probability sample survey of the UK population publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(20)30308-4 – ident: ref_43 doi: 10.3390/ma14112737 – volume: 294 start-page: 58 year: 2022 ident: ref_9 article-title: Using Explainable Supervised Machine Learning to Predict Burnout in Healthcare Professionals publication-title: Stud. Health Technol. Inform. – ident: ref_8 doi: 10.3390/electronics12051109 – volume: 19 start-page: 133 year: 2023 ident: ref_7 article-title: Machine Learning and the Digital Measurement of Psychological Health publication-title: Annu. Rev. Clin. Psychol. doi: 10.1146/annurev-clinpsy-080921-073212 – volume: 308 start-page: 89 year: 2022 ident: ref_2 article-title: Cross-trial prediction of depression remission using problem-solving therapy: A machine learning approach publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2022.04.015 – volume: 12 start-page: 67 year: 2016 ident: ref_46 article-title: Independent component analysis of EEG data for EGI system publication-title: Bio-Algorithms Med-Syst. doi: 10.1515/bams-2016-0004 – volume: 4 start-page: 100241 year: 2023 ident: ref_45 article-title: A healthcare service quality assessment model usinga fuzzy best–worst method with application to hospitals within-patient services publication-title: Healthc. Anal. doi: 10.1016/j.health.2023.100241 – ident: ref_47 doi: 10.1109/IDAACS.2013.6662715 – volume: 49 start-page: 71 year: 1985 ident: ref_38 article-title: The Satisfaction with Life Scale publication-title: J. Personal. Assess. doi: 10.1207/s15327752jpa4901_13 – volume: 21 start-page: 58 year: 2020 ident: ref_20 article-title: Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimaland Network-Independent Performance for Strongly Convex Functions publication-title: J. Mach. Learn. Res. – volume: 117 start-page: 27277 year: 2020 ident: ref_16 article-title: Economic hardship and mental health complaints during COVID-19 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2009609117 – volume: 28 start-page: 963 year: 2019 ident: ref_37 article-title: Measurement in variance of the Satisfaction with Life Scale by gender, age, marital status and educational level publication-title: Qual. Life Res. Int. J. Qual. Life Asp. Treat. Care Rehabil. doi: 10.1007/s11136-018-2066-2 – volume: 30 start-page: 337 year: 2019 ident: ref_5 article-title: Artificial intelligence for pediatric ophthalmology publication-title: Curr. Opin. Ophthalmol. doi: 10.1097/ICU.0000000000000593 – ident: ref_15 doi: 10.1186/s12889-018-5133-2 – volume: 95 start-page: 1015 year: 2020 ident: ref_4 article-title: Artificial Intelligence in Cardiology: Present and Future publication-title: Mayo Clin. Proc. doi: 10.1016/j.mayocp.2020.01.038 – ident: ref_6 doi: 10.1038/s41380-023-02047-6 – volume: 69 start-page: e136722 year: 2021 ident: ref_44 article-title: Intelligent system supporting technological process planning for machining and 3D printing publication-title: Bull. Pol. Acad. Sci. Tech. Sci. – volume: 10 start-page: e28781 year: 2022 ident: ref_3 article-title: State of the Art of Machine Learning-Enabled Clinical Decision Support in Intensive Care Units: Literature Review publication-title: JMIR Med. Inform. doi: 10.2196/28781 – ident: ref_25 doi: 10.1002/9781119549550 – ident: ref_10 – ident: ref_39 doi: 10.3390/s22239214 – ident: ref_41 doi: 10.1007/s10845-023-02158-5 – volume: 2 start-page: 338 year: 2017 ident: ref_12 article-title: Validity of Mind Monitoring System as a Mental Health Indicator using Voice publication-title: Adv. Sci. Technol. Eng. Syst. J. doi: 10.25046/aj020343 – volume: 67 start-page: 5900 year: 2022 ident: ref_21 article-title: A Sharp Estimate on the Transient Timeoff Distributed Stochastic Gradient Descent publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/TAC.2021.3126253 – volume: 37 start-page: 114 year: 2020 ident: ref_22 article-title: Asymptotic Network Independence in Distributed Stochastic Optimization for Machine Learning publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2020.2975212 – ident: ref_27 doi: 10.3390/electronics12061267 – volume: 42 start-page: 88 year: 2018 ident: ref_14 article-title: Behavioral modeling for mental health using machine learning algorithms publication-title: J. Med. Syst. doi: 10.1007/s10916-018-0934-5 – ident: ref_18 doi: 10.1186/s12888-018-2007-1 – volume: 2 start-page: 99 year: 1981 ident: ref_35 article-title: The measurement of experienced burnout publication-title: J. Occup. Behav. doi: 10.1002/job.4030020205 – ident: ref_30 doi: 10.3390/electronics12092039 – ident: ref_28 doi: 10.1007/978-3-030-75549-2_18 – volume: 33 start-page: 1324 year: 2020 ident: ref_32 article-title: Robust stochastic gradient descent with student-t distribution basedfirst-order momentum publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3041755 – volume: 65 start-page: 46 year: 2021 ident: ref_33 article-title: The Perceived Stress Scale: Reliability and validity study in the Czech Republic publication-title: Ceskoslovenská Psychol. doi: 10.51561/cspsych.65.1.46 – ident: ref_23 doi: 10.3390/jpm13081268 – volume: 20 start-page: 1399 year: 2023 ident: ref_1 article-title: Toward advanced diagnosis and management of inherited arrhythmia syndromes: Harnessing the capabilities of artificial intelligence and machine learning publication-title: Heart Rhythm. doi: 10.1016/j.hrthm.2023.07.001 – volume: 236 start-page: 31 year: 2018 ident: ref_11 article-title: Commonly available activity tracker apps and wearables as a mental health outcome indicator: A prospective observational cohort study among young adults with psychological distress publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2018.04.099 |
| SSID | ssj0000913830 |
| Score | 2.3252542 |
| Snippet | Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy and care. Aim: the main aim of the study was to investigate how... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4407 |
| SubjectTerms | Algorithms Anxiety Bipolar disorder Comparative analysis Data mining Diagnosis Employees Machine learning Medical diagnosis Mental depression Mental disorders Mental health Mental health care Patients Professional relationships Questionnaires Run time (computers) Stress |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6V5QAc-uAhtqWVD5W4ELKxncQ-VStURCsVVSorwYXIT1h1m12xWar213e8SbYLQhWo59iRnRnb3xfPfAPwXjEpMm1suGHkEReaR8omLJLo0Gh_ao2eR1ucZicD_vk8PV_K4g9hlUjFh_NNmvZyGeH5TeOExjSJObKPeGL9h9vmX1KSSYF8HFH1CqxmKaLxDqwOTr_2L0JNubZ3LTbEkN3Hf2vLTBMa1MJCGdmlA-n-trwBa7Nyon79VKPR0rlz_AJUO-I63OT74azSh-b3PTHH_5nSS3jegFLSr73oFTxz5SZsLEkVbsHl0aJgIRl78m0-RWfJl3kwpiONTusV6Y-uxjfD6vrHlAxLgvCStLonoV8tGUTq5CfyqQy3RKHezzYMjj-eHZ1ETW2GyCDEqSKdCbRr7pFgGMtTr5xyqc9Z6nLDhUl1LxPee5kzbhAlMOu19FIHj5HKOcV2oFOOS7cLRAfMgTADz8mcW_w2BlmYptr1ej6zinWBtgYqTCNcHupnjAokMMGqxQNW7cLBotOk1u34d_P9YPkirGp8t1FNcgKOMOhjFX0kIaGEhki7sHenJa5Gc_dx6ztFsxtMCyoE4iiWp7IL0cKfHjOu109s_wbWKaKwOllyDzrVzcy9RdRU6XfNwvgD0G8ULQ priority: 102 providerName: Unpaywall |
| Title | Comparison of Selected Machine Learning Algorithms in the Analysis of Mental Health Indicators |
| URI | https://www.proquest.com/docview/2888123759 https://www.mdpi.com/2079-9292/12/21/4407/pdf?version=1698304174 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH6C9gAcRgyLKEvlAxIXIkqc9YBGgaEDCCoEVIILkdeCVNJCi0bz73kvSykjhDjlENtx_Oy32H7fB7AteBwFUmk6YfQcL5KeI_Q-d2Kc0Ch_VyuZ37boBCdd7-zWv52BTpULQ9cqK52YK2o9ULRHvudiqIZaNvTjX8Nnh1ij6HS1otAQJbWCPsghxmah7hIyVg3qh8edy6vJrguhYEa8VcAPcYz3997ZZkb7LuGHEbHslIn6X1EvwNxrNhT__op-f8oStRfhR-lCsqSQ-U-YMdkSLEwBCy7D_dGEXpANLLvOP280u8ivThpWoqr2WNLv4U-OH55G7DFj6AyyCqWE6hUAP6xIVWKnGZ3pEDvPCnTbxzdHJ07JpOAodEjGjgwilEJoMRxQ2vOtMML4NuS-CZUXKV-2gshaG4fcU2jTubYytrEk-cbCGMFXoZYNMrMGTJKHgE4BWrXQ0-hcKYyZpCtNq2UDLXgD3GrwUlXCjBPbRT_FcINGPP1kxBuwO6k0LFA2vi6-Q1JJaQ1i20qUqQTYQ0KzShMMGYjwIvIbsPmhJK4d9fF1Jde0XLuj9H2mNcCZyPo7_Vr_urkNmCey-iKTcRNq45dXs4UuzVg2YTZq_2lCPfl9cX7dLGctPrudy-TuDaY0_RA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ_qUtr60KqXRoTYefiA0JaCdgusqhYkTk39BKQlu-0uQvw5fltnEmdZqgr1wjmO48yMPTO25_sA3ikui0wbSyeMIhKFFpGyGzySaNCo_8QaXd-2GGS9I_HlOD1egOu2FoauVbZrYr1Q25GhPfL1BFM1XGXzVG6Nf0XEGkWnqy2FhgrUCnazhhgLhR177uoSU7jJZv8z6vt9kuzuHG73osAyEBl01tNIZwWOMPcYKhsrUq-ccqnPeepyIwqT6jgrvPcy58Kgv-PWa-mlpn-XyjnFsd8HsCS4kJj8LX3aGXz9NtvlIdTNgscN3BHnMl6_YbeZbCSEV0ZEtnMu8W_HsALLF9VYXV2q4XDO8-0-hkchZGXdxsaewIKrnsLKHJDhM_ixPaMzZCPPvtefd5Yd1Fc1HQsoriesOzxBoU5PzyfsrGIYfLIWFYXeawCFWFMaxfoVnSERG9BzOLoXmb6AxWpUuZfANEUkGISgF82FxWDOYI6mE-3i2GdW8Q4krfBKE2DNiV1jWGJ6QxIv_yHxDnycvTRuUD3ubv6BtFLSnMe-jQqlCzhCQs8qu5iiEMFGkXZg7VZLnKvm9uNWr2VYKybljWV3IJrp-n_GtXp3d29huXd4sF_u9wd7r-BhguFZU0W5BovT3xfuNYZTU_0m2CyDn_c9Tf4AzVA5BQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xkBY4IFhAlNf6wIoLUUOc5wGhCigUWIS0IHEi-AlIJS20CPHX-HXM5FHKCqG9cI7jODNjz4zt-T6AdcGTOJRK0wmj7_ix9B2ht7iToEGj_j2tZH7b4jQ8vPCPLoPLEXitamHoWmW1JuYLte4o2iOve5iq4SobBUndltcizvaaO90Hhxik6KS1otMoTOTYvDxj-tbbbu2hrn97XnP_fPfQKRkGHIWOuu_IMMbRRRbDZKX9wAojTGAjHphI-bEKpBvG1tok4r5CX8e1lYlNJP13IowRHPsdhfGIUNypSr15MNjfIbzNmLsF0BHniVt_57XpbXmEVEYUtkPO8F-XMAUTT1lXvDyLdnvI5zVnYLoMVlmjsK5ZGDHZT5gagjCcg6vdAZEh61j2N_-80exPfknTsBK_9YY12jcowv7tfY_dZQzDTlbhodB7BZQQK4qiWCuj0yPiAZqHi2-R6AKMZZ3MLAKTFItg-IH-M_I1hnEKszPpSeO6NtSC18CrhJeqEtCceDXaKSY2JPH0E4nXYHPwUrfA8_i6-QZpJaXZjn0rURYt4AgJNyttYHJC1BpxUIOVDy1xlqqPjyu9puUq0UvfbboGzkDX_zOupa-7-wU_cHKkJ63T42WY9DAuK8onV2Cs__hkVjGO6su13GAZXH_3DHkDXJI2nw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6V5QAc-uAhtqWVD5W4ELKxncQ-VStURCsVVSorwYXIT1h1m12xWar213e8SbYLQhWo59iRnRnb3xfPfAPwXjEpMm1suGHkEReaR8omLJLo0Gh_ao2eR1ucZicD_vk8PV_K4g9hlUjFh_NNmvZyGeH5TeOExjSJObKPeGL9h9vmX1KSSYF8HFH1CqxmKaLxDqwOTr_2L0JNubZ3LTbEkN3Hf2vLTBMa1MJCGdmlA-n-trwBa7Nyon79VKPR0rlz_AJUO-I63OT74azSh-b3PTHH_5nSS3jegFLSr73oFTxz5SZsLEkVbsHl0aJgIRl78m0-RWfJl3kwpiONTusV6Y-uxjfD6vrHlAxLgvCStLonoV8tGUTq5CfyqQy3RKHezzYMjj-eHZ1ETW2GyCDEqSKdCbRr7pFgGMtTr5xyqc9Z6nLDhUl1LxPee5kzbhAlMOu19FIHj5HKOcV2oFOOS7cLRAfMgTADz8mcW_w2BlmYptr1ej6zinWBtgYqTCNcHupnjAokMMGqxQNW7cLBotOk1u34d_P9YPkirGp8t1FNcgKOMOhjFX0kIaGEhki7sHenJa5Gc_dx6ztFsxtMCyoE4iiWp7IL0cKfHjOu109s_wbWKaKwOllyDzrVzcy9RdRU6XfNwvgD0G8ULQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Selected+Machine+Learning+Algorithms+in+the+Analysis+of+Mental+Health+Indicators&rft.jtitle=Electronics+%28Basel%29&rft.au=Bieli%C5%84ski%2C+Adrian&rft.au=Rojek%2C+Izabela&rft.au=Miko%C5%82ajewski%2C+Dariusz&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=21&rft.spage=4407&rft_id=info:doi/10.3390%2Felectronics12214407&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |