Comparison of Selected Machine Learning Algorithms in the Analysis of Mental Health Indicators

Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy and care. Aim: the main aim of the study was to investigate how the selected machine learning algorithms deal with the problem of determining a virtual mental health index. Material and Methods: a number of...

Full description

Saved in:
Bibliographic Details
Published inElectronics (Basel) Vol. 12; no. 21; p. 4407
Main Authors Bieliński, Adrian, Rojek, Izabela, Mikołajewski, Dariusz
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2023
Subjects
Online AccessGet full text
ISSN2079-9292
2079-9292
DOI10.3390/electronics12214407

Cover

Abstract Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy and care. Aim: the main aim of the study was to investigate how the selected machine learning algorithms deal with the problem of determining a virtual mental health index. Material and Methods: a number of machine learning models based on Stochastic Dual Coordinate Ascent, limited-memory Broyden–Fletcher–Goldfarb–Shanno, Online Gradient Descent, etc., were built based on a clinical dataset and compared based on criteria in the form of learning time, running time during use and regression accuracy. Results: the algorithm with the highest accuracy was Stochastic Dual Coordinate Ascent, but although its performance was high, it had significantly longer training and prediction times. The fastest algorithm looking at learning and prediction time, but slightly less accurate, was the limited-memory Broyden–Fletcher–Goldfarb–Shanno. The same data set was also analyzed automatically using ML.NET. Findings from the study can be used to build larger systems that automate early mental health diagnosis and help differentiate the use of individual algorithms depending on the purpose of the system.
AbstractList Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy and care. Aim: the main aim of the study was to investigate how the selected machine learning algorithms deal with the problem of determining a virtual mental health index. Material and Methods: a number of machine learning models based on Stochastic Dual Coordinate Ascent, limited-memory Broyden–Fletcher–Goldfarb–Shanno, Online Gradient Descent, etc., were built based on a clinical dataset and compared based on criteria in the form of learning time, running time during use and regression accuracy. Results: the algorithm with the highest accuracy was Stochastic Dual Coordinate Ascent, but although its performance was high, it had significantly longer training and prediction times. The fastest algorithm looking at learning and prediction time, but slightly less accurate, was the limited-memory Broyden–Fletcher–Goldfarb–Shanno. The same data set was also analyzed automatically using ML.NET. Findings from the study can be used to build larger systems that automate early mental health diagnosis and help differentiate the use of individual algorithms depending on the purpose of the system.
Audience Academic
Author Rojek, Izabela
Mikołajewski, Dariusz
Bieliński, Adrian
Author_xml – sequence: 1
  givenname: Adrian
  surname: Bieliński
  fullname: Bieliński, Adrian
– sequence: 2
  givenname: Izabela
  orcidid: 0000-0002-9958-6579
  surname: Rojek
  fullname: Rojek, Izabela
– sequence: 3
  givenname: Dariusz
  surname: Mikołajewski
  fullname: Mikołajewski, Dariusz
BookMark eNqNkVFLHDEQx4NY0Fo_gS-BPp_NJlmTPB6HVuGkD-qry2x2chfJJtckR7lv79oTbItIZx5mCP_fzGTmMzmMKSIhZw07F8KwbxjQ1pyit6XhvJGSqQNyzJkyM8MNP_wjPyKnpTyxyUwjtGDH5HGRxg1kX1KkydG738VwoLdg1z4iXSLk6OOKzsMqZV_XY6E-0rpGOo8QdsWXF-4WY4VArxFCXdObOHgLNeXyhXxyEAqevsYT8nB1eb-4ni1_fL9ZzJczK7Sps_5C614qx6Sxg2wdIGDrlGhRWalt27ML7ZwzSkjLuRSD640zfY_WGkAEcULkvu42bmD3C0LoNtmPkHddw7qXNXXvrGnCvu6xTU4_t1hq95S2efpX6bjWuuFCteZNtYKAnY8u1Qx29MV2c6V4KzjT7aQ6f0c1-YCjt9PJnJ_e_wLEHrA5lZLR_efI5h_K-grVpzi18-FD9hkR_a7Z
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3552041
crossref_primary_10_3390_electronics13020257
crossref_primary_10_1016_j_heliyon_2024_e37182
Cites_doi 10.1080/08870440108405527
10.1007/978-3-540-69731-2
10.3390/agriculture13050965
10.1007/978-3-319-63962-8_326-1
10.1007/978-3-030-72040-7_2
10.1016/j.jpdc.2020.04.002
10.1016/S2215-0366(20)30308-4
10.3390/ma14112737
10.3390/electronics12051109
10.1146/annurev-clinpsy-080921-073212
10.1016/j.jad.2022.04.015
10.1515/bams-2016-0004
10.1016/j.health.2023.100241
10.1109/IDAACS.2013.6662715
10.1207/s15327752jpa4901_13
10.1073/pnas.2009609117
10.1007/s11136-018-2066-2
10.1097/ICU.0000000000000593
10.1186/s12889-018-5133-2
10.1016/j.mayocp.2020.01.038
10.1038/s41380-023-02047-6
10.2196/28781
10.1002/9781119549550
10.3390/s22239214
10.1007/s10845-023-02158-5
10.25046/aj020343
10.1109/TAC.2021.3126253
10.1109/MSP.2020.2975212
10.3390/electronics12061267
10.1007/s10916-018-0934-5
10.1186/s12888-018-2007-1
10.1002/job.4030020205
10.3390/electronics12092039
10.1007/978-3-030-75549-2_18
10.1109/TNNLS.2020.3041755
10.51561/cspsych.65.1.46
10.3390/jpm13081268
10.1016/j.hrthm.2023.07.001
10.1016/j.jad.2018.04.099
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/electronics12214407
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10.3390/electronics12214407
A772532085
10_3390_electronics12214407
GeographicLocations Poland
GeographicLocations_xml – name: Poland
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c389t-b688b47f049cd45faeae5f735e7c48c5b068fff9734c2243dfb9f9bbecc9aeea3
IEDL.DBID BENPR
ISSN 2079-9292
IngestDate Wed Oct 01 16:46:59 EDT 2025
Sun Jul 13 04:30:02 EDT 2025
Mon Oct 20 23:10:28 EDT 2025
Mon Oct 20 17:08:49 EDT 2025
Thu Oct 16 04:40:25 EDT 2025
Thu Apr 24 23:00:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-b688b47f049cd45faeae5f735e7c48c5b068fff9734c2243dfb9f9bbecc9aeea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9958-6579
OpenAccessLink https://www.proquest.com/docview/2888123759?pq-origsite=%requestingapplication%&accountid=15518
PQID 2888123759
PQPubID 2032404
ParticipantIDs unpaywall_primary_10_3390_electronics12214407
proquest_journals_2888123759
gale_infotracmisc_A772532085
gale_infotracacademiconefile_A772532085
crossref_primary_10_3390_electronics12214407
crossref_citationtrail_10_3390_electronics12214407
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Adapa (ref_9) 2022; 294
Spiridonoff (ref_20) 2020; 21
Mohammadi (ref_45) 2023; 4
Srividya (ref_14) 2018; 42
Bubonya (ref_17) 2017; 6
Onnela (ref_7) 2023; 19
Kannampallil (ref_2) 2022; 308
ref_10
Reid (ref_5) 2019; 30
ref_31
Knight (ref_11) 2018; 236
ref_30
Checa (ref_37) 2019; 28
Prasetya (ref_34) 2020; 8
Maslach (ref_35) 1981; 2
Rojek (ref_44) 2021; 69
ref_18
ref_39
Gajos (ref_46) 2016; 12
ref_15
Hagiwara (ref_12) 2017; 2
Pal (ref_19) 2020; 143
Attia (ref_4) 2020; 95
Charvat (ref_33) 2021; 65
Schaufeli (ref_36) 2001; 16
ref_25
ref_47
ref_24
Pu (ref_21) 2022; 67
ref_23
Pierce (ref_13) 2020; 7
ref_43
ref_42
ref_41
ref_40
Hong (ref_3) 2022; 10
Witteveen (ref_16) 2020; 117
Ilboudo (ref_32) 2020; 33
ref_29
ref_28
Diener (ref_38) 1985; 49
ref_27
Asatryan (ref_1) 2023; 20
Pu (ref_22) 2020; 37
ref_26
ref_8
ref_6
References_xml – volume: 16
  start-page: 565
  year: 2001
  ident: ref_36
  article-title: On the clinical validity of the Maslach Burnout Inventory and the Burnout Measure
  publication-title: Psychol. Health
  doi: 10.1080/08870440108405527
– ident: ref_40
  doi: 10.1007/978-3-540-69731-2
– ident: ref_42
  doi: 10.3390/agriculture13050965
– ident: ref_31
  doi: 10.1007/978-3-319-63962-8_326-1
– ident: ref_29
  doi: 10.1007/978-3-030-72040-7_2
– volume: 6
  start-page: 6
  year: 2017
  ident: ref_17
  article-title: Jobloss and the mental health of spouses and adolescent children
  publication-title: IZAJ. LaborEcon.
– volume: 143
  start-page: 47
  year: 2020
  ident: ref_19
  article-title: Hybrid-DCA: A double asynchronous approach for stochastic dual coordinate ascent
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2020.04.002
– ident: ref_24
– ident: ref_26
– volume: 8
  start-page: 48
  year: 2020
  ident: ref_34
  article-title: Validity and Reliability of The Perceived Stress Scale with RASCH Model
  publication-title: PSIKOPEDAGOGIA J. Bimbing. Konseling
– volume: 7
  start-page: 883
  year: 2020
  ident: ref_13
  article-title: Mental health before and during the COVID-19 pandemic: A longitudinal probability sample survey of the UK population
  publication-title: Lancet Psychiatry
  doi: 10.1016/S2215-0366(20)30308-4
– ident: ref_43
  doi: 10.3390/ma14112737
– volume: 294
  start-page: 58
  year: 2022
  ident: ref_9
  article-title: Using Explainable Supervised Machine Learning to Predict Burnout in Healthcare Professionals
  publication-title: Stud. Health Technol. Inform.
– ident: ref_8
  doi: 10.3390/electronics12051109
– volume: 19
  start-page: 133
  year: 2023
  ident: ref_7
  article-title: Machine Learning and the Digital Measurement of Psychological Health
  publication-title: Annu. Rev. Clin. Psychol.
  doi: 10.1146/annurev-clinpsy-080921-073212
– volume: 308
  start-page: 89
  year: 2022
  ident: ref_2
  article-title: Cross-trial prediction of depression remission using problem-solving therapy: A machine learning approach
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2022.04.015
– volume: 12
  start-page: 67
  year: 2016
  ident: ref_46
  article-title: Independent component analysis of EEG data for EGI system
  publication-title: Bio-Algorithms Med-Syst.
  doi: 10.1515/bams-2016-0004
– volume: 4
  start-page: 100241
  year: 2023
  ident: ref_45
  article-title: A healthcare service quality assessment model usinga fuzzy best–worst method with application to hospitals within-patient services
  publication-title: Healthc. Anal.
  doi: 10.1016/j.health.2023.100241
– ident: ref_47
  doi: 10.1109/IDAACS.2013.6662715
– volume: 49
  start-page: 71
  year: 1985
  ident: ref_38
  article-title: The Satisfaction with Life Scale
  publication-title: J. Personal. Assess.
  doi: 10.1207/s15327752jpa4901_13
– volume: 21
  start-page: 58
  year: 2020
  ident: ref_20
  article-title: Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimaland Network-Independent Performance for Strongly Convex Functions
  publication-title: J. Mach. Learn. Res.
– volume: 117
  start-page: 27277
  year: 2020
  ident: ref_16
  article-title: Economic hardship and mental health complaints during COVID-19
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2009609117
– volume: 28
  start-page: 963
  year: 2019
  ident: ref_37
  article-title: Measurement in variance of the Satisfaction with Life Scale by gender, age, marital status and educational level
  publication-title: Qual. Life Res. Int. J. Qual. Life Asp. Treat. Care Rehabil.
  doi: 10.1007/s11136-018-2066-2
– volume: 30
  start-page: 337
  year: 2019
  ident: ref_5
  article-title: Artificial intelligence for pediatric ophthalmology
  publication-title: Curr. Opin. Ophthalmol.
  doi: 10.1097/ICU.0000000000000593
– ident: ref_15
  doi: 10.1186/s12889-018-5133-2
– volume: 95
  start-page: 1015
  year: 2020
  ident: ref_4
  article-title: Artificial Intelligence in Cardiology: Present and Future
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2020.01.038
– ident: ref_6
  doi: 10.1038/s41380-023-02047-6
– volume: 69
  start-page: e136722
  year: 2021
  ident: ref_44
  article-title: Intelligent system supporting technological process planning for machining and 3D printing
  publication-title: Bull. Pol. Acad. Sci. Tech. Sci.
– volume: 10
  start-page: e28781
  year: 2022
  ident: ref_3
  article-title: State of the Art of Machine Learning-Enabled Clinical Decision Support in Intensive Care Units: Literature Review
  publication-title: JMIR Med. Inform.
  doi: 10.2196/28781
– ident: ref_25
  doi: 10.1002/9781119549550
– ident: ref_10
– ident: ref_39
  doi: 10.3390/s22239214
– ident: ref_41
  doi: 10.1007/s10845-023-02158-5
– volume: 2
  start-page: 338
  year: 2017
  ident: ref_12
  article-title: Validity of Mind Monitoring System as a Mental Health Indicator using Voice
  publication-title: Adv. Sci. Technol. Eng. Syst. J.
  doi: 10.25046/aj020343
– volume: 67
  start-page: 5900
  year: 2022
  ident: ref_21
  article-title: A Sharp Estimate on the Transient Timeoff Distributed Stochastic Gradient Descent
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.2021.3126253
– volume: 37
  start-page: 114
  year: 2020
  ident: ref_22
  article-title: Asymptotic Network Independence in Distributed Stochastic Optimization for Machine Learning
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2020.2975212
– ident: ref_27
  doi: 10.3390/electronics12061267
– volume: 42
  start-page: 88
  year: 2018
  ident: ref_14
  article-title: Behavioral modeling for mental health using machine learning algorithms
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-0934-5
– ident: ref_18
  doi: 10.1186/s12888-018-2007-1
– volume: 2
  start-page: 99
  year: 1981
  ident: ref_35
  article-title: The measurement of experienced burnout
  publication-title: J. Occup. Behav.
  doi: 10.1002/job.4030020205
– ident: ref_30
  doi: 10.3390/electronics12092039
– ident: ref_28
  doi: 10.1007/978-3-030-75549-2_18
– volume: 33
  start-page: 1324
  year: 2020
  ident: ref_32
  article-title: Robust stochastic gradient descent with student-t distribution basedfirst-order momentum
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3041755
– volume: 65
  start-page: 46
  year: 2021
  ident: ref_33
  article-title: The Perceived Stress Scale: Reliability and validity study in the Czech Republic
  publication-title: Ceskoslovenská Psychol.
  doi: 10.51561/cspsych.65.1.46
– ident: ref_23
  doi: 10.3390/jpm13081268
– volume: 20
  start-page: 1399
  year: 2023
  ident: ref_1
  article-title: Toward advanced diagnosis and management of inherited arrhythmia syndromes: Harnessing the capabilities of artificial intelligence and machine learning
  publication-title: Heart Rhythm.
  doi: 10.1016/j.hrthm.2023.07.001
– volume: 236
  start-page: 31
  year: 2018
  ident: ref_11
  article-title: Commonly available activity tracker apps and wearables as a mental health outcome indicator: A prospective observational cohort study among young adults with psychological distress
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2018.04.099
SSID ssj0000913830
Score 2.3252542
Snippet Machine learning is increasingly being used to solve clinical problems in diagnosis, therapy and care. Aim: the main aim of the study was to investigate how...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4407
SubjectTerms Algorithms
Anxiety
Bipolar disorder
Comparative analysis
Data mining
Diagnosis
Employees
Machine learning
Medical diagnosis
Mental depression
Mental disorders
Mental health
Mental health care
Patients
Professional relationships
Questionnaires
Run time (computers)
Stress
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6V5QAc-uAhtqWVD5W4ELKxncQ-VStURCsVVSorwYXIT1h1m12xWar213e8SbYLQhWo59iRnRnb3xfPfAPwXjEpMm1suGHkEReaR8omLJLo0Gh_ao2eR1ucZicD_vk8PV_K4g9hlUjFh_NNmvZyGeH5TeOExjSJObKPeGL9h9vmX1KSSYF8HFH1CqxmKaLxDqwOTr_2L0JNubZ3LTbEkN3Hf2vLTBMa1MJCGdmlA-n-trwBa7Nyon79VKPR0rlz_AJUO-I63OT74azSh-b3PTHH_5nSS3jegFLSr73oFTxz5SZsLEkVbsHl0aJgIRl78m0-RWfJl3kwpiONTusV6Y-uxjfD6vrHlAxLgvCStLonoV8tGUTq5CfyqQy3RKHezzYMjj-eHZ1ETW2GyCDEqSKdCbRr7pFgGMtTr5xyqc9Z6nLDhUl1LxPee5kzbhAlMOu19FIHj5HKOcV2oFOOS7cLRAfMgTADz8mcW_w2BlmYptr1ej6zinWBtgYqTCNcHupnjAokMMGqxQNW7cLBotOk1u34d_P9YPkirGp8t1FNcgKOMOhjFX0kIaGEhki7sHenJa5Gc_dx6ztFsxtMCyoE4iiWp7IL0cKfHjOu109s_wbWKaKwOllyDzrVzcy9RdRU6XfNwvgD0G8ULQ
  priority: 102
  providerName: Unpaywall
Title Comparison of Selected Machine Learning Algorithms in the Analysis of Mental Health Indicators
URI https://www.proquest.com/docview/2888123759
https://www.mdpi.com/2079-9292/12/21/4407/pdf?version=1698304174
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-MwFH6C9gAcRgyLKEvlAxIXIkqc9YBGgaEDCCoEVIILkdeCVNJCi0bz73kvSykjhDjlENtx_Oy32H7fB7AteBwFUmk6YfQcL5KeI_Q-d2Kc0Ch_VyuZ37boBCdd7-zWv52BTpULQ9cqK52YK2o9ULRHvudiqIZaNvTjX8Nnh1ij6HS1otAQJbWCPsghxmah7hIyVg3qh8edy6vJrguhYEa8VcAPcYz3997ZZkb7LuGHEbHslIn6X1EvwNxrNhT__op-f8oStRfhR-lCsqSQ-U-YMdkSLEwBCy7D_dGEXpANLLvOP280u8ivThpWoqr2WNLv4U-OH55G7DFj6AyyCqWE6hUAP6xIVWKnGZ3pEDvPCnTbxzdHJ07JpOAodEjGjgwilEJoMRxQ2vOtMML4NuS-CZUXKV-2gshaG4fcU2jTubYytrEk-cbCGMFXoZYNMrMGTJKHgE4BWrXQ0-hcKYyZpCtNq2UDLXgD3GrwUlXCjBPbRT_FcINGPP1kxBuwO6k0LFA2vi6-Q1JJaQ1i20qUqQTYQ0KzShMMGYjwIvIbsPmhJK4d9fF1Jde0XLuj9H2mNcCZyPo7_Vr_urkNmCey-iKTcRNq45dXs4UuzVg2YTZq_2lCPfl9cX7dLGctPrudy-TuDaY0_RA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ_qUtr60KqXRoTYefiA0JaCdgusqhYkTk39BKQlu-0uQvw5fltnEmdZqgr1wjmO48yMPTO25_sA3ikui0wbSyeMIhKFFpGyGzySaNCo_8QaXd-2GGS9I_HlOD1egOu2FoauVbZrYr1Q25GhPfL1BFM1XGXzVG6Nf0XEGkWnqy2FhgrUCnazhhgLhR177uoSU7jJZv8z6vt9kuzuHG73osAyEBl01tNIZwWOMPcYKhsrUq-ccqnPeepyIwqT6jgrvPcy58Kgv-PWa-mlpn-XyjnFsd8HsCS4kJj8LX3aGXz9NtvlIdTNgscN3BHnMl6_YbeZbCSEV0ZEtnMu8W_HsALLF9VYXV2q4XDO8-0-hkchZGXdxsaewIKrnsLKHJDhM_ixPaMzZCPPvtefd5Yd1Fc1HQsoriesOzxBoU5PzyfsrGIYfLIWFYXeawCFWFMaxfoVnSERG9BzOLoXmb6AxWpUuZfANEUkGISgF82FxWDOYI6mE-3i2GdW8Q4krfBKE2DNiV1jWGJ6QxIv_yHxDnycvTRuUD3ubv6BtFLSnMe-jQqlCzhCQs8qu5iiEMFGkXZg7VZLnKvm9uNWr2VYKybljWV3IJrp-n_GtXp3d29huXd4sF_u9wd7r-BhguFZU0W5BovT3xfuNYZTU_0m2CyDn_c9Tf4AzVA5BQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB7xkBY4IFhAlNf6wIoLUUOc5wGhCigUWIS0IHEi-AlIJS20CPHX-HXM5FHKCqG9cI7jODNjz4zt-T6AdcGTOJRK0wmj7_ix9B2ht7iToEGj_j2tZH7b4jQ8vPCPLoPLEXitamHoWmW1JuYLte4o2iOve5iq4SobBUndltcizvaaO90Hhxik6KS1otMoTOTYvDxj-tbbbu2hrn97XnP_fPfQKRkGHIWOuu_IMMbRRRbDZKX9wAojTGAjHphI-bEKpBvG1tok4r5CX8e1lYlNJP13IowRHPsdhfGIUNypSr15MNjfIbzNmLsF0BHniVt_57XpbXmEVEYUtkPO8F-XMAUTT1lXvDyLdnvI5zVnYLoMVlmjsK5ZGDHZT5gagjCcg6vdAZEh61j2N_-80exPfknTsBK_9YY12jcowv7tfY_dZQzDTlbhodB7BZQQK4qiWCuj0yPiAZqHi2-R6AKMZZ3MLAKTFItg-IH-M_I1hnEKszPpSeO6NtSC18CrhJeqEtCceDXaKSY2JPH0E4nXYHPwUrfA8_i6-QZpJaXZjn0rURYt4AgJNyttYHJC1BpxUIOVDy1xlqqPjyu9puUq0UvfbboGzkDX_zOupa-7-wU_cHKkJ63T42WY9DAuK8onV2Cs__hkVjGO6su13GAZXH_3DHkDXJI2nw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6V5QAc-uAhtqWVD5W4ELKxncQ-VStURCsVVSorwYXIT1h1m12xWar213e8SbYLQhWo59iRnRnb3xfPfAPwXjEpMm1suGHkEReaR8omLJLo0Gh_ao2eR1ucZicD_vk8PV_K4g9hlUjFh_NNmvZyGeH5TeOExjSJObKPeGL9h9vmX1KSSYF8HFH1CqxmKaLxDqwOTr_2L0JNubZ3LTbEkN3Hf2vLTBMa1MJCGdmlA-n-trwBa7Nyon79VKPR0rlz_AJUO-I63OT74azSh-b3PTHH_5nSS3jegFLSr73oFTxz5SZsLEkVbsHl0aJgIRl78m0-RWfJl3kwpiONTusV6Y-uxjfD6vrHlAxLgvCStLonoV8tGUTq5CfyqQy3RKHezzYMjj-eHZ1ETW2GyCDEqSKdCbRr7pFgGMtTr5xyqc9Z6nLDhUl1LxPee5kzbhAlMOu19FIHj5HKOcV2oFOOS7cLRAfMgTADz8mcW_w2BlmYptr1ej6zinWBtgYqTCNcHupnjAokMMGqxQNW7cLBotOk1u34d_P9YPkirGp8t1FNcgKOMOhjFX0kIaGEhki7sHenJa5Gc_dx6ztFsxtMCyoE4iiWp7IL0cKfHjOu109s_wbWKaKwOllyDzrVzcy9RdRU6XfNwvgD0G8ULQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Selected+Machine+Learning+Algorithms+in+the+Analysis+of+Mental+Health+Indicators&rft.jtitle=Electronics+%28Basel%29&rft.au=Bieli%C5%84ski%2C+Adrian&rft.au=Rojek%2C+Izabela&rft.au=Miko%C5%82ajewski%2C+Dariusz&rft.date=2023-11-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=12&rft.issue=21&rft.spage=4407&rft_id=info:doi/10.3390%2Felectronics12214407&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon