The Quantification of Myocardial Fibrosis on Human Histopathology Images by a Semi-Automatic Algorithm
(1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the prognostic role of myocardial fibrosis, its precise quantification is essential. Currently, the evaluation is performed semi-quantitatively by the p...
Saved in:
| Published in | Applied sciences Vol. 14; no. 17; p. 7696 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app14177696 |
Cover
| Abstract | (1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the prognostic role of myocardial fibrosis, its precise quantification is essential. Currently, the evaluation is performed semi-quantitatively by the pathologist, a method exposed to the issues of subjectivity. The present research proposes validating a semi-automatic algorithm that aims to quantify myocardial fibrosis on microscopic images. (2) Methods: Forty digital images were selected from the slide collection of The Iowa Virtual Slidebox, from which the collagen volume fraction (CVF) was calculated using two semi-automatic methods: CIELAB-MATLAB® and CIELAB-Python. These involve the use of color difference analysis, using Delta E, in a rectangular region for CIELAB-Python and a region with a random geometric shape, determined by the user’s cursor movement, for CIELAB-MATLAB®. The comparison was made between the stereological evaluation and ImageJ. (3) Results: A total of 36 images were included in the study (n = 36), demonstrating a high, statistically significant correlation between stereology and ImageJ on the one hand, and the proposed methods on the other (p < 0.001). The mean CVF determined by the two methods shows a mean bias of 1.5% compared with stereology and 0.9% compared with ImageJ. Conclusions: The combined algorithm has a superior performance compared to the proposed methods, considered individually. Despite the relatively small mean bias, the limits of agreement are quite wide, reflecting the variability of the images included in the study. |
|---|---|
| AbstractList | (1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the prognostic role of myocardial fibrosis, its precise quantification is essential. Currently, the evaluation is performed semi-quantitatively by the pathologist, a method exposed to the issues of subjectivity. The present research proposes validating a semi-automatic algorithm that aims to quantify myocardial fibrosis on microscopic images. (2) Methods: Forty digital images were selected from the slide collection of The Iowa Virtual Slidebox, from which the collagen volume fraction (CVF) was calculated using two semi-automatic methods: CIELAB-MATLAB® and CIELAB-Python. These involve the use of color difference analysis, using Delta E, in a rectangular region for CIELAB-Python and a region with a random geometric shape, determined by the user’s cursor movement, for CIELAB-MATLAB®. The comparison was made between the stereological evaluation and ImageJ. (3) Results: A total of 36 images were included in the study (n = 36), demonstrating a high, statistically significant correlation between stereology and ImageJ on the one hand, and the proposed methods on the other (p < 0.001). The mean CVF determined by the two methods shows a mean bias of 1.5% compared with stereology and 0.9% compared with ImageJ. Conclusions: The combined algorithm has a superior performance compared to the proposed methods, considered individually. Despite the relatively small mean bias, the limits of agreement are quite wide, reflecting the variability of the images included in the study. (1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the prognostic role of myocardial fibrosis, its precise quantification is essential. Currently, the evaluation is performed semi-quantitatively by the pathologist, a method exposed to the issues of subjectivity. The present research proposes validating a semi-automatic algorithm that aims to quantify myocardial fibrosis on microscopic images. (2) Methods: Forty digital images were selected from the slide collection of The Iowa Virtual Slidebox, from which the collagen volume fraction (CVF) was calculated using two semi-automatic methods: CIELAB-MATLAB[sup.®] and CIELAB-Python. These involve the use of color difference analysis, using Delta E, in a rectangular region for CIELAB-Python and a region with a random geometric shape, determined by the user’s cursor movement, for CIELAB-MATLAB[sup.®]. The comparison was made between the stereological evaluation and ImageJ. (3) Results: A total of 36 images were included in the study (n = 36), demonstrating a high, statistically significant correlation between stereology and ImageJ on the one hand, and the proposed methods on the other (p < 0.001). The mean CVF determined by the two methods shows a mean bias of 1.5% compared with stereology and 0.9% compared with ImageJ. Conclusions: The combined algorithm has a superior performance compared to the proposed methods, considered individually. Despite the relatively small mean bias, the limits of agreement are quite wide, reflecting the variability of the images included in the study. |
| Audience | Academic |
| Author | Danku, Alex Ede Agoston-Coldea, Lucia Mocan, Teodora Nicula, Sorina-Melinda Dulf, Eva-Henrietta Gonciar, Diana Berciu, Alexandru-George Lorenzovici, Noemi |
| Author_xml | – sequence: 1 givenname: Diana surname: Gonciar fullname: Gonciar, Diana – sequence: 2 givenname: Alexandru-George orcidid: 0000-0002-1117-7069 surname: Berciu fullname: Berciu, Alexandru-George – sequence: 3 givenname: Alex Ede orcidid: 0000-0002-8118-1792 surname: Danku fullname: Danku, Alex Ede – sequence: 4 givenname: Noemi surname: Lorenzovici fullname: Lorenzovici, Noemi – sequence: 5 givenname: Eva-Henrietta orcidid: 0000-0002-6540-6525 surname: Dulf fullname: Dulf, Eva-Henrietta – sequence: 6 givenname: Teodora surname: Mocan fullname: Mocan, Teodora – sequence: 7 givenname: Sorina-Melinda surname: Nicula fullname: Nicula, Sorina-Melinda – sequence: 8 givenname: Lucia surname: Agoston-Coldea fullname: Agoston-Coldea, Lucia |
| BookMark | eNp9UV2L1TAQDbKC67pP_oGAj9o1adp8PF4W172wIuL6HKb56M2lbWrSIv33xr2LriAmkElmzhxOzrxEZ1OcHEKvKbliTJH3MM-0oUJwxZ-h85oIXrHyPntyf4Eucz6SshRlkpJz5O8PDn9ZYVqCDwaWECccPf60RQPJBhjwTehSzCHjUrldRyhnyEucYTnEIfYb3o_Qu4y7DQP-6sZQ7dYljoXK4N3QxxSWw_gKPfcwZHf5GC_Qt5sP99e31d3nj_vr3V1lmFRL1VFnpeJWAKVEdLSuOyNM24KnlitGvOUOnKxlp2ohOi-UMtbYxgoqLaGCXaD9iddGOOo5hRHSpiME_ZCIqdeQirLBaSWazrfCNOBFwx0Hr0qgqhGcACNN4Xp34lqnGbYfMAy_CSnRvyzXTywv8Dcn-Jzi99XlRR_jmqbyW80oYZKTtlF_UD0UDWHycUlgxpCN3kkiuRStYgV19Q9U2bb4a8rYfSj5vxrenhpMmVVOzv9X6k_Cm6uf |
| Cites_doi | 10.3390/cells11132032 10.1369/00221554211046777 10.1038/s41571-019-0252-y 10.1007/s10103-022-03557-5 10.3390/s21175704 10.1093/bib/bbae329 10.1155/2017/3920195 10.1038/s41598-022-07199-z 10.1161/CIRCHEARTFAILURE.116.003090 10.1007/s00418-020-01927-0 10.11613/BM.2015.015 10.4103/2153-3539.124009 10.1038/s41569-020-00504-1 10.1186/1746-1596-9-114 10.1109/ACCESS.2022.3152200 10.1016/j.csbj.2023.04.007 10.1016/j.apradiso.2012.03.001 10.3389/fgene.2022.895796 10.1046/j.1365-2559.2001.01101.x 10.1016/S0168-8278(00)80397-9 10.1016/j.ekir.2021.04.019 10.1161/CIR.0b013e31829e8807 10.3390/biology11081227 10.1164/rccm.200809-1522ST 10.3389/fgene.2021.698124 10.5858/arpa.2020-0635-OA 10.1002/cjp2.227 10.1016/j.media.2022.102537 10.1155/2010/858356 10.1093/bib/bbad384 10.3109/00313021003641758 10.3390/app13052916 10.1038/nmeth.2089 10.1152/japplphysiol.00987.2016 10.1016/j.biotechadv.2021.107739 10.7554/eLife.80479 10.11591/ijece.v6i6.pp2773-2780 10.1038/s41588-023-01371-5 10.2967/jnumed.122.264867 10.1002/gcc.23178 10.1186/s12918-018-0638-y 10.3389/fphys.2017.00238 10.3389/fmed.2021.607720 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/app14177696 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_974bf57c4af746e6af946e194760a304 10.3390/app14177696 A808687593 10_3390_app14177696 |
| GeographicLocations | Iowa Romania United States--US |
| GeographicLocations_xml | – name: Romania – name: Iowa – name: United States--US |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c389t-b1ed896d7a1107b122bc7c55af1d6930fd6eae828b9277bf799cdcd4d718d0173 |
| IEDL.DBID | BENPR |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:06:40 EDT 2025 Sun Sep 07 10:53:34 EDT 2025 Mon Jun 30 16:31:42 EDT 2025 Tue Jun 17 22:04:28 EDT 2025 Mon Oct 20 16:59:10 EDT 2025 Thu Oct 16 04:33:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c389t-b1ed896d7a1107b122bc7c55af1d6930fd6eae828b9277bf799cdcd4d718d0173 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6540-6525 0000-0002-1117-7069 0000-0002-8118-1792 |
| OpenAccessLink | https://www.proquest.com/docview/3103860549?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3103860549 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_974bf57c4af746e6af946e194760a304 unpaywall_primary_10_3390_app14177696 proquest_journals_3103860549 gale_infotracmisc_A808687593 gale_infotracacademiconefile_A808687593 crossref_primary_10_3390_app14177696 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Nauffal (ref_4) 2023; 55 Yancy (ref_1) 2013; 128 ref_14 ref_13 Bengel (ref_6) 2023; 64 Galati (ref_7) 2016; 9 ref_31 ref_30 Coenen (ref_44) 2021; 69 Zimmermann (ref_39) 2021; 145 Danku (ref_33) 2022; 10 Arteaga (ref_9) 2009; 92 Moreira (ref_47) 2012; 70 ref_19 ref_17 Daunoravicius (ref_18) 2014; 9 Astbury (ref_16) 2021; 7 Azevedo (ref_3) 2016; 106 Farris (ref_11) 2021; 6 Hadi (ref_37) 2010; 33 (ref_38) 2001; 38 Steiger (ref_32) 2023; 62 Masseroli (ref_15) 2000; 32 Li (ref_23) 2023; 12 ref_25 Tadrous (ref_48) 2010; 42 ref_22 ref_21 ref_43 ref_20 Long (ref_24) 2023; 21 Knudsen (ref_34) 2021; 155 Naglah (ref_10) 2022; 81 Bera (ref_12) 2019; 16 Hore (ref_46) 2016; 6 ref_28 ref_27 ref_26 Murakami (ref_45) 2013; 4 Schirone (ref_2) 2017; 2017 Giavarina (ref_35) 2015; 25 ref_5 Schneider (ref_36) 2012; 9 Gratz (ref_29) 2020; 7 Ravassa (ref_8) 2021; 18 Hsia (ref_41) 2010; 181 Yang (ref_40) 2022; 37 Schipke (ref_42) 2017; 122 |
| References_xml | – ident: ref_30 – ident: ref_28 doi: 10.3390/cells11132032 – volume: 69 start-page: 633 year: 2021 ident: ref_44 article-title: Picrosirius Red Staining: Revisiting Its Application to the Qualitative and Quantitative Assessment of Collagen Type I and Type III in Tendon publication-title: J. Histochem. Cytochem. doi: 10.1369/00221554211046777 – volume: 16 start-page: 703 year: 2019 ident: ref_12 article-title: Artificial Intelligence in Digital Pathology—New Tools for Diagnosis and Precision Oncology publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-019-0252-y – volume: 37 start-page: 2889 year: 2022 ident: ref_40 article-title: Multiphoton Microscopy Providing Pathological-Level Quantification of Myocardial Fibrosis in Transplanted Human Heart publication-title: Lasers Med. Sci. doi: 10.1007/s10103-022-03557-5 – ident: ref_13 doi: 10.3390/s21175704 – ident: ref_22 doi: 10.1093/bib/bbae329 – volume: 2017 start-page: 3920195 year: 2017 ident: ref_2 article-title: A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling publication-title: Oxid. Med. Cell Longev. doi: 10.1155/2017/3920195 – ident: ref_14 doi: 10.1038/s41598-022-07199-z – volume: 9 start-page: e003090 year: 2016 ident: ref_7 article-title: Histological and Histometric Characterization of Myocardial Fibrosis in End-Stage Hypertrophic Cardiomyopathy publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.116.003090 – volume: 155 start-page: 163 year: 2021 ident: ref_34 article-title: Stereology as the 3D Tool to Quantitate Lung Architecture publication-title: Histochem. Cell Biol. doi: 10.1007/s00418-020-01927-0 – volume: 25 start-page: 141 year: 2015 ident: ref_35 article-title: Understanding Bland Altman Analysis publication-title: Biochem. Med. doi: 10.11613/BM.2015.015 – volume: 4 start-page: 36 year: 2013 ident: ref_45 article-title: Color Correction for Automatic Fibrosis Quantification in Liver Biopsy Specimens publication-title: J. Pathol. Inform. doi: 10.4103/2153-3539.124009 – volume: 18 start-page: 479 year: 2021 ident: ref_8 article-title: Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches publication-title: Nat. Rev. Cardiol. doi: 10.1038/s41569-020-00504-1 – volume: 9 start-page: 114 year: 2014 ident: ref_18 article-title: Quantification of Myocardial Fibrosis by Digital Image Analysis and Interactive Stereology publication-title: Diagn. Pathol. doi: 10.1186/1746-1596-9-114 – volume: 10 start-page: 20816 year: 2022 ident: ref_33 article-title: Cancer Diagnosis with the Aid of Artificial Intelligence Modeling Tools publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3152200 – volume: 21 start-page: 2717 year: 2023 ident: ref_24 article-title: Single-Cell and Spatial Transcriptomics: Advances in Heart Development and Disease Applications publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2023.04.007 – volume: 70 start-page: 937 year: 2012 ident: ref_47 article-title: Effects of Manual Threshold Setting on Image Analysis Results of a Sandstone Sample Structural Characterization by X-Ray Microtomography publication-title: Appl. Radiat. Isot. doi: 10.1016/j.apradiso.2012.03.001 – ident: ref_19 doi: 10.3389/fgene.2022.895796 – volume: 38 start-page: 338 year: 2001 ident: ref_38 article-title: Myocardial Fibrosis Assessment by Semiquantitative, Point-Counting and Computer-Based Methods in Patients with Heart Muscle Disease: A Comparative Study publication-title: Histopathology doi: 10.1046/j.1365-2559.2001.01101.x – volume: 32 start-page: 453 year: 2000 ident: ref_15 article-title: Automatic Quantification of Liver Fibrosis: Design and Validation of a New Image Analysis Method: Comparison with Semi-Quantitative Indexes of Fibrosis publication-title: J. Hepatol. doi: 10.1016/S0168-8278(00)80397-9 – volume: 6 start-page: 1878 year: 2021 ident: ref_11 article-title: Image Analysis Pipeline for Renal Allograft Evaluation and Fibrosis Quantification publication-title: Kidney Int. Rep. doi: 10.1016/j.ekir.2021.04.019 – volume: 128 start-page: 1810 year: 2013 ident: ref_1 article-title: 2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary publication-title: Circulation doi: 10.1161/CIR.0b013e31829e8807 – ident: ref_17 doi: 10.3390/biology11081227 – volume: 181 start-page: 394 year: 2010 ident: ref_41 article-title: ATS/ERS Joint Task Force on Quantitative Assessment of Lung Structure An Official Research Policy Statement of the American Thoracic Society/European Respiratory Society: Standards for Quantitative Assessment of Lung Structure publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200809-1522ST – ident: ref_21 doi: 10.3389/fgene.2021.698124 – volume: 145 start-page: 1526 year: 2021 ident: ref_39 article-title: Detection and Quantification of Myocardial Fibrosis Using Stain-Free Infrared Spectroscopic Imaging publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2020-0635-OA – volume: 7 start-page: 471 year: 2021 ident: ref_16 article-title: Reliable Computational Quantification of Liver Fibrosis Is Compromised by Inherent Staining Variation publication-title: J. Pathol. Clin. Res. doi: 10.1002/cjp2.227 – ident: ref_27 – volume: 81 start-page: 102537 year: 2022 ident: ref_10 article-title: Conditional GANs Based System for Fibrosis Detection and Quantification in Hematoxylin and Eosin Whole Slide Images publication-title: Med. Image Anal. doi: 10.1016/j.media.2022.102537 – volume: 33 start-page: 257 year: 2010 ident: ref_37 article-title: Rapid Quantification of Myocardial Fibrosis: A New Macro-Based Automated Analysis publication-title: Anal. Cell. Pathol. doi: 10.1155/2010/858356 – volume: 7 start-page: 100755 year: 2020 ident: ref_29 article-title: Computational Tools for Automated Histological Image Analysis and Quantification in Cardiac Tissue publication-title: Methods X – ident: ref_26 doi: 10.1093/bib/bbad384 – volume: 92 start-page: 210 year: 2009 ident: ref_9 article-title: Prognostic Value of the Collagen Volume Fraction in Hypertrophic Cardiomyopathy publication-title: Arq. Bras. Cardiol. – volume: 42 start-page: 207 year: 2010 ident: ref_48 article-title: On the Concept of Objectivity in Digital Image Analysis in Pathology publication-title: Pathology doi: 10.3109/00313021003641758 – ident: ref_31 doi: 10.3390/app13052916 – volume: 9 start-page: 671 year: 2012 ident: ref_36 article-title: NIH Image to ImageJ: 25 Years of Image Analysis publication-title: Nat. Methods doi: 10.1038/nmeth.2089 – volume: 122 start-page: 1019 year: 2017 ident: ref_42 article-title: Assessment of Cardiac Fibrosis: A Morphometric Method Comparison for Collagen Quantification publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00987.2016 – ident: ref_20 doi: 10.1016/j.biotechadv.2021.107739 – volume: 12 start-page: e80479 year: 2023 ident: ref_23 article-title: Single-Cell RNA-Seq of Heart Reveals Intercellular Communication Drivers of Myocardial Fibrosis in Diabetic Cardiomyopathy publication-title: Elife doi: 10.7554/eLife.80479 – volume: 106 start-page: 62 year: 2016 ident: ref_3 article-title: Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment publication-title: Arq. Bras. Cardiol. – volume: 6 start-page: 2773 year: 2016 ident: ref_46 article-title: An Integrated Interactive Technique for Image Segmentation Using Stack Based Seeded Region Growing and Thresholding publication-title: IJECE doi: 10.11591/ijece.v6i6.pp2773-2780 – volume: 55 start-page: 777 year: 2023 ident: ref_4 article-title: Genetics of Myocardial Interstitial Fibrosis in the Human Heart and Association with Disease publication-title: Nat. Genet. doi: 10.1038/s41588-023-01371-5 – volume: 64 start-page: S49 year: 2023 ident: ref_6 article-title: Myocardial Fibrosis: Emerging Target for Cardiac Molecular Imaging and Opportunity for Image-Guided Therapy publication-title: J. Nucl. Med. doi: 10.2967/jnumed.122.264867 – volume: 62 start-page: 564 year: 2023 ident: ref_32 article-title: How to Use AI in Pathology publication-title: Genes. Chromosomes Cancer doi: 10.1002/gcc.23178 – ident: ref_25 doi: 10.1186/s12918-018-0638-y – ident: ref_5 doi: 10.3389/fphys.2017.00238 – ident: ref_43 doi: 10.3389/fmed.2021.607720 |
| SSID | ssj0000913810 |
| Score | 2.3106353 |
| Snippet | (1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 7696 |
| SubjectTerms | Algorithms Cardiomyocytes Collagen Fibrosis Histochemistry Histopathology Learning strategies Localization Machine learning Medical imaging equipment Methods myocardial fibrosis Python semi-automatic quantification Software |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFH8UL9WD-FUctSUHRXsYOt9JjtvSxQoWRAVvIZ-6sLuz7MxS9r_vS2aUkYJeehqYhCF5v7zk_TLJ7wGcUp3n6IAqtga9qTBU4jxYFjEzqU6oMrpk_nLy9e_q8r64eigfBqm-_JmwTh64M9w3jHeVK6kupKNFZSvpOD6QetMqkXmnBJowPiBTYQ7mqZeu6i7k5cjr_f_gtEgprbw8_2AJCkr9_87HW_BxNV_I9R85nQ4WnPEObPeRIhl1LdyFD3a-B1sD_cA92O09syEXvXz0131wiDy5WcnuFFAwPKkduV7jquVHw5SMkSLXzaQhWBI28UkQC_HJicMmO_k1w1mmIWpNJLm1s0k8WrV10HYlo-ljvZy0T7MDuB__vPtxGffZFGKNQUkbq9QaxitEw1M-lWaZ0lSXpXSp8fkQnamstEjAFM8oVY5yro02CF_KDPpt_gk25vXcHgJRnCVKltwkLi9cRhkCyhIm8asYQFgdwemzgcWiE80QSDY8DmKAQwTfvfFfqnil6_AC8Rc9_uI9_CM499AJ74_tUmrZXyvAlnplKzHChlVIyngewcmrmuhH-nXxM_ii9-NG-CxsDBlfwSM4exkQb3Xq6H906hg2MwyeurNsJ7DRLlf2MwY_rfoSxvlfZeYAHQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6AFpATSnIEkXAIVUejh0fw2NVkFqBYKVyivyEFbubapMILb-ecZKtdosEnCIlTuR45rPn8-MbgBOu0xQBqEJrEE3UcIn9YEbD3MQ64sroLPeHk88v2NmEfrjMLnfg2foszMb6fYp03C_jxjTmnAl2C3ZZhgH3CHYnFx-Lrz5tHLLwEPth3p-8u_nG1ljTSfL_2fHuwe12cSVXP-VstjGyjO_B23Wd-g0lP07bRp3qXzfkGv9R6ftwd4gsSdG7wj7s2MUB7G3oDR7A_oDkmrwc5KZfPQCHnkI-tbLfNdQZilSOnK9wlPPeMyNjpNRVPa0JPukm_UknLuKTGXeT8uT9HHulmqgVkeSznU_Dom2qTguWFLNv1XLafJ8_hMn43Zc3Z-GQfSHUGMQ0oYqtyQVD63mKqOIkUZrrLJMuNj5_ojPMSouETYmEc-W4ENpog-aOc4M4Tx_BaFEt7CEQJfJIyUyYyKXUJTxHB8ijXOJXMeCwOoCTtZ3Kq15ko0Ry4tuy3GjLAF57G14X8crY3Q1s-3IAWon8SLmMayodp8wy6QReYkE5i2Qa0QBeeA8oPX6bpdRyOIaANfVKWGWBFWNI4kQawPFWScSd3n689qFywH1d-qxtOTJEKgJ4fu1Xf_upo_8s9xjuJBhP9dvbjmHULFv7BOOhRj0d8PAb3YEFhA priority: 102 providerName: Unpaywall |
| Title | The Quantification of Myocardial Fibrosis on Human Histopathology Images by a Semi-Automatic Algorithm |
| URI | https://www.proquest.com/docview/3103860549 https://doi.org/10.3390/app14177696 https://doaj.org/article/974bf57c4af746e6af946e194760a304 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wP0gGgBNbSsfCgCDhF5OLF9QChFXQpSV-WxUjlFfqVU2t1sN1mh_feM81i2QuopShxZjr-Z8czE_gbglOk4RgVUvjWoTdQwiXYwoT43oQ6YMjrh7nDy5Ti9mNCv18n1Doz7szBuW2VvExtDbUrtcuTvXT0sjr43FR8Xd76rGuX-rvYlNGRXWsF8aCjGdmEvcsxYA9g7Ox9ffd9kXRwLJg-D9qBejPG--08c0pCx1NH2by1NDYP__3Z6Hx6t5gu5_iOn062FaPQUnnQeJMlayA9gx84PYX-LV_AQDjqNrcjbjlb63TMoUCLIt5Vsdwc1gJCyIJdrXM2clEzJCEPnsrqtCLY0yX3SkIi4osVN8p18maH1qYhaE0l-2Nmtn63qsuF8Jdn0Bmer_j17DpPR-c9PF35XZcHX6KzUvgqt4SJFlFwoqMIoUprpJJFFaFydxMKkVloMzJSIGFMFE0IbbRDWkBvU5_gFDObl3B4BUYIHSibCBEVMi4hxBJoHXGKv6FhY7cFpP8H5oiXTyDEIcTjkWzh4cOYmf_OKY8BuHpTLm7xTqBzjIFUkTFNZMJraVBYCL6GgLA1kHFAP3jjocqen9VJq2R03wJE6xqs8w4GlGKyJ2IOTe2-ifun7zT34eaffVf5PGj14vRGIhz7q5cPdHMPjCN2ldvfaCQzq5cq-QnenVkPY5aPPw06Sh03SAO8m46vs11_fawIn |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSAMBTYQyvgYOHH2us9VCiFRgltIh6t1NuyL5dKSRxiR1X-HL-NWdsJqZB66ylSbK3WO9-8dnfmAzhgOo5RAZVvDWoTNUyiHUyon5lQB0wZnWSuOHkwTHsX9MtlcrkBf5a1MO5a5dIm1obaFNrtkX9wfFgZxt6Uf5z-9h1rlDtdXVJoyJZawRzVLcbawo5Tu7jBFK486n9GeR9GUffk_FPPb1kGfI3OuvJVaE3GU5ylS4VUGEVKM50kMg-N4wnMTWqlxcRE8YgxlTPOtdEGPyvMDOI5xnEfwBaNKcfkb-v4ZPj1-2qXx3XdzMKgKQyMYx64c-mQhoyljiZgzRXWjAH_-4Ud2J5PpnJxI0ejNcfXfQyP2oiVdBqI7cKGnezBzlofwz3YbS1ESd61bazfP4EcEUi-zWVzG6kGAClyMlig93SoHJEupupFeV0SfFIfJpC6aYkjSa43-0l_jNauJGpBJPlhx9d-Z14VdY9Z0hldoXSqX-OncHEv6_0MNifFxD4HongWKJlwE-QxzSOWIbCyIJM4KgYyVntwsFxgMW2adwhMepwcxJocPDh2i796xXXcrv8oZleiVWCBeZfKE6apzBlNbSpzjj8hpywNZBxQD9460QlnF6qZ1LItb8CZug5booMTSzE55LEH-7feRH3Wtx8vhS9ae1KKf-j34HAFiLs-6sXdw7yB7d754Eyc9YenL-FhhKFac3NuHzar2dy-wlCrUq9bPBP4ed8q9Be6JTxC |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IFpAuBTYQyvgYNXv9R4QCpTQUFqBoFJvZp9tpSQOsaMqf41fx4zthFRIvfUUKbZW651vXrs73wDsch3HqIDKtwa1KTFcoh1MEz83oQ64MjrNqTj5-CQ7PE2-nKVna_BnUQtD1yoXNrEx1KbUtEe-T_2wcoy9E7HvumsR3w767ye_feogRSeti3YaLUSO7PwK07fq3eAAZb0XRf1PPz8e-l2HAV-jo659FVqTiwxnSGmQCqNIaa7TVLrQUI9AZzIrLSYlSkScK8eF0EYb_KQwN4jlGMe9A3c5sbhTlXr_83J_h_g28zBoSwLjWAR0Ih0mIecZNQhYcYJNr4D_PcIG3J-NJ3J-JYfDFZfXfwQPu1iV9VpwbcKaHW_BxgqD4RZsdrahYm86Auu3j8Eh9tj3mWzvITWiZ6Vjx3P0m4THIetjkl5WlxXDJ80xAmvoSqg9crPNzwYjtHMVU3Mm2Q87uvR7s7ps2GVZb3iOsqgvRk_g9FZW-ymsj8uxfQZMiTxQMhUmcHHiIp4jpPIglzgqhjBWe7C7WOBi0tJ2FJjukByKFTl48IEWf_kKcW03f5TT86JT3QIzLuVSrhPpeJLZTDqBP6FIeBbIOEg8eE2iK8gi1FOpZVfYgDMlbq2ihxPLMC0UsQc7195ETdbXHy-EX3SWpCr-4d6DvSUgbvqo7ZuHeQX3UHGKr4OTo-fwIMIYrb0ytwPr9XRmX2CMVauXDZgZ_Lpt7fkLF3E53A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6AFpATSnIEkXAIVUejh0fw2NVkFqBYKVyivyEFbubapMILb-ecZKtdosEnCIlTuR45rPn8-MbgBOu0xQBqEJrEE3UcIn9YEbD3MQ64sroLPeHk88v2NmEfrjMLnfg2foszMb6fYp03C_jxjTmnAl2C3ZZhgH3CHYnFx-Lrz5tHLLwEPth3p-8u_nG1ljTSfL_2fHuwe12cSVXP-VstjGyjO_B23Wd-g0lP07bRp3qXzfkGv9R6ftwd4gsSdG7wj7s2MUB7G3oDR7A_oDkmrwc5KZfPQCHnkI-tbLfNdQZilSOnK9wlPPeMyNjpNRVPa0JPukm_UknLuKTGXeT8uT9HHulmqgVkeSznU_Dom2qTguWFLNv1XLafJ8_hMn43Zc3Z-GQfSHUGMQ0oYqtyQVD63mKqOIkUZrrLJMuNj5_ojPMSouETYmEc-W4ENpog-aOc4M4Tx_BaFEt7CEQJfJIyUyYyKXUJTxHB8ijXOJXMeCwOoCTtZ3Kq15ko0Ry4tuy3GjLAF57G14X8crY3Q1s-3IAWon8SLmMayodp8wy6QReYkE5i2Qa0QBeeA8oPX6bpdRyOIaANfVKWGWBFWNI4kQawPFWScSd3n689qFywH1d-qxtOTJEKgJ4fu1Xf_upo_8s9xjuJBhP9dvbjmHULFv7BOOhRj0d8PAb3YEFhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Quantification+of+Myocardial+Fibrosis+on+Human+Histopathology+Images+by+a+Semi-Automatic+Algorithm&rft.jtitle=Applied+sciences&rft.au=Gonciar%2C+Diana&rft.au=Alexandru-George+Berciu&rft.au=Alex+Ede+Danku&rft.au=Lorenzovici%2C+Noemi&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=17&rft.spage=7696&rft_id=info:doi/10.3390%2Fapp14177696&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |