The Quantification of Myocardial Fibrosis on Human Histopathology Images by a Semi-Automatic Algorithm

(1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the prognostic role of myocardial fibrosis, its precise quantification is essential. Currently, the evaluation is performed semi-quantitatively by the p...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 17; p. 7696
Main Authors Gonciar, Diana, Berciu, Alexandru-George, Danku, Alex Ede, Lorenzovici, Noemi, Dulf, Eva-Henrietta, Mocan, Teodora, Nicula, Sorina-Melinda, Agoston-Coldea, Lucia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app14177696

Cover

Abstract (1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the prognostic role of myocardial fibrosis, its precise quantification is essential. Currently, the evaluation is performed semi-quantitatively by the pathologist, a method exposed to the issues of subjectivity. The present research proposes validating a semi-automatic algorithm that aims to quantify myocardial fibrosis on microscopic images. (2) Methods: Forty digital images were selected from the slide collection of The Iowa Virtual Slidebox, from which the collagen volume fraction (CVF) was calculated using two semi-automatic methods: CIELAB-MATLAB® and CIELAB-Python. These involve the use of color difference analysis, using Delta E, in a rectangular region for CIELAB-Python and a region with a random geometric shape, determined by the user’s cursor movement, for CIELAB-MATLAB®. The comparison was made between the stereological evaluation and ImageJ. (3) Results: A total of 36 images were included in the study (n = 36), demonstrating a high, statistically significant correlation between stereology and ImageJ on the one hand, and the proposed methods on the other (p < 0.001). The mean CVF determined by the two methods shows a mean bias of 1.5% compared with stereology and 0.9% compared with ImageJ. Conclusions: The combined algorithm has a superior performance compared to the proposed methods, considered individually. Despite the relatively small mean bias, the limits of agreement are quite wide, reflecting the variability of the images included in the study.
AbstractList (1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the prognostic role of myocardial fibrosis, its precise quantification is essential. Currently, the evaluation is performed semi-quantitatively by the pathologist, a method exposed to the issues of subjectivity. The present research proposes validating a semi-automatic algorithm that aims to quantify myocardial fibrosis on microscopic images. (2) Methods: Forty digital images were selected from the slide collection of The Iowa Virtual Slidebox, from which the collagen volume fraction (CVF) was calculated using two semi-automatic methods: CIELAB-MATLAB® and CIELAB-Python. These involve the use of color difference analysis, using Delta E, in a rectangular region for CIELAB-Python and a region with a random geometric shape, determined by the user’s cursor movement, for CIELAB-MATLAB®. The comparison was made between the stereological evaluation and ImageJ. (3) Results: A total of 36 images were included in the study (n = 36), demonstrating a high, statistically significant correlation between stereology and ImageJ on the one hand, and the proposed methods on the other (p < 0.001). The mean CVF determined by the two methods shows a mean bias of 1.5% compared with stereology and 0.9% compared with ImageJ. Conclusions: The combined algorithm has a superior performance compared to the proposed methods, considered individually. Despite the relatively small mean bias, the limits of agreement are quite wide, reflecting the variability of the images included in the study.
(1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the prognostic role of myocardial fibrosis, its precise quantification is essential. Currently, the evaluation is performed semi-quantitatively by the pathologist, a method exposed to the issues of subjectivity. The present research proposes validating a semi-automatic algorithm that aims to quantify myocardial fibrosis on microscopic images. (2) Methods: Forty digital images were selected from the slide collection of The Iowa Virtual Slidebox, from which the collagen volume fraction (CVF) was calculated using two semi-automatic methods: CIELAB-MATLAB[sup.®] and CIELAB-Python. These involve the use of color difference analysis, using Delta E, in a rectangular region for CIELAB-Python and a region with a random geometric shape, determined by the user’s cursor movement, for CIELAB-MATLAB[sup.®]. The comparison was made between the stereological evaluation and ImageJ. (3) Results: A total of 36 images were included in the study (n = 36), demonstrating a high, statistically significant correlation between stereology and ImageJ on the one hand, and the proposed methods on the other (p < 0.001). The mean CVF determined by the two methods shows a mean bias of 1.5% compared with stereology and 0.9% compared with ImageJ. Conclusions: The combined algorithm has a superior performance compared to the proposed methods, considered individually. Despite the relatively small mean bias, the limits of agreement are quite wide, reflecting the variability of the images included in the study.
Audience Academic
Author Danku, Alex Ede
Agoston-Coldea, Lucia
Mocan, Teodora
Nicula, Sorina-Melinda
Dulf, Eva-Henrietta
Gonciar, Diana
Berciu, Alexandru-George
Lorenzovici, Noemi
Author_xml – sequence: 1
  givenname: Diana
  surname: Gonciar
  fullname: Gonciar, Diana
– sequence: 2
  givenname: Alexandru-George
  orcidid: 0000-0002-1117-7069
  surname: Berciu
  fullname: Berciu, Alexandru-George
– sequence: 3
  givenname: Alex Ede
  orcidid: 0000-0002-8118-1792
  surname: Danku
  fullname: Danku, Alex Ede
– sequence: 4
  givenname: Noemi
  surname: Lorenzovici
  fullname: Lorenzovici, Noemi
– sequence: 5
  givenname: Eva-Henrietta
  orcidid: 0000-0002-6540-6525
  surname: Dulf
  fullname: Dulf, Eva-Henrietta
– sequence: 6
  givenname: Teodora
  surname: Mocan
  fullname: Mocan, Teodora
– sequence: 7
  givenname: Sorina-Melinda
  surname: Nicula
  fullname: Nicula, Sorina-Melinda
– sequence: 8
  givenname: Lucia
  surname: Agoston-Coldea
  fullname: Agoston-Coldea, Lucia
BookMark eNp9UV2L1TAQDbKC67pP_oGAj9o1adp8PF4W172wIuL6HKb56M2lbWrSIv33xr2LriAmkElmzhxOzrxEZ1OcHEKvKbliTJH3MM-0oUJwxZ-h85oIXrHyPntyf4Eucz6SshRlkpJz5O8PDn9ZYVqCDwaWECccPf60RQPJBhjwTehSzCHjUrldRyhnyEucYTnEIfYb3o_Qu4y7DQP-6sZQ7dYljoXK4N3QxxSWw_gKPfcwZHf5GC_Qt5sP99e31d3nj_vr3V1lmFRL1VFnpeJWAKVEdLSuOyNM24KnlitGvOUOnKxlp2ohOi-UMtbYxgoqLaGCXaD9iddGOOo5hRHSpiME_ZCIqdeQirLBaSWazrfCNOBFwx0Hr0qgqhGcACNN4Xp34lqnGbYfMAy_CSnRvyzXTywv8Dcn-Jzi99XlRR_jmqbyW80oYZKTtlF_UD0UDWHycUlgxpCN3kkiuRStYgV19Q9U2bb4a8rYfSj5vxrenhpMmVVOzv9X6k_Cm6uf
Cites_doi 10.3390/cells11132032
10.1369/00221554211046777
10.1038/s41571-019-0252-y
10.1007/s10103-022-03557-5
10.3390/s21175704
10.1093/bib/bbae329
10.1155/2017/3920195
10.1038/s41598-022-07199-z
10.1161/CIRCHEARTFAILURE.116.003090
10.1007/s00418-020-01927-0
10.11613/BM.2015.015
10.4103/2153-3539.124009
10.1038/s41569-020-00504-1
10.1186/1746-1596-9-114
10.1109/ACCESS.2022.3152200
10.1016/j.csbj.2023.04.007
10.1016/j.apradiso.2012.03.001
10.3389/fgene.2022.895796
10.1046/j.1365-2559.2001.01101.x
10.1016/S0168-8278(00)80397-9
10.1016/j.ekir.2021.04.019
10.1161/CIR.0b013e31829e8807
10.3390/biology11081227
10.1164/rccm.200809-1522ST
10.3389/fgene.2021.698124
10.5858/arpa.2020-0635-OA
10.1002/cjp2.227
10.1016/j.media.2022.102537
10.1155/2010/858356
10.1093/bib/bbad384
10.3109/00313021003641758
10.3390/app13052916
10.1038/nmeth.2089
10.1152/japplphysiol.00987.2016
10.1016/j.biotechadv.2021.107739
10.7554/eLife.80479
10.11591/ijece.v6i6.pp2773-2780
10.1038/s41588-023-01371-5
10.2967/jnumed.122.264867
10.1002/gcc.23178
10.1186/s12918-018-0638-y
10.3389/fphys.2017.00238
10.3389/fmed.2021.607720
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app14177696
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_974bf57c4af746e6af946e194760a304
10.3390/app14177696
A808687593
10_3390_app14177696
GeographicLocations Iowa
Romania
United States--US
GeographicLocations_xml – name: Romania
– name: Iowa
– name: United States--US
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c389t-b1ed896d7a1107b122bc7c55af1d6930fd6eae828b9277bf799cdcd4d718d0173
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Tue Oct 14 19:06:40 EDT 2025
Sun Sep 07 10:53:34 EDT 2025
Mon Jun 30 16:31:42 EDT 2025
Tue Jun 17 22:04:28 EDT 2025
Mon Oct 20 16:59:10 EDT 2025
Thu Oct 16 04:33:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c389t-b1ed896d7a1107b122bc7c55af1d6930fd6eae828b9277bf799cdcd4d718d0173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6540-6525
0000-0002-1117-7069
0000-0002-8118-1792
OpenAccessLink https://www.proquest.com/docview/3103860549?pq-origsite=%requestingapplication%&accountid=15518
PQID 3103860549
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_974bf57c4af746e6af946e194760a304
unpaywall_primary_10_3390_app14177696
proquest_journals_3103860549
gale_infotracmisc_A808687593
gale_infotracacademiconefile_A808687593
crossref_primary_10_3390_app14177696
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nauffal (ref_4) 2023; 55
Yancy (ref_1) 2013; 128
ref_14
ref_13
Bengel (ref_6) 2023; 64
Galati (ref_7) 2016; 9
ref_31
ref_30
Coenen (ref_44) 2021; 69
Zimmermann (ref_39) 2021; 145
Danku (ref_33) 2022; 10
Arteaga (ref_9) 2009; 92
Moreira (ref_47) 2012; 70
ref_19
ref_17
Daunoravicius (ref_18) 2014; 9
Astbury (ref_16) 2021; 7
Azevedo (ref_3) 2016; 106
Farris (ref_11) 2021; 6
Hadi (ref_37) 2010; 33
(ref_38) 2001; 38
Steiger (ref_32) 2023; 62
Masseroli (ref_15) 2000; 32
Li (ref_23) 2023; 12
ref_25
Tadrous (ref_48) 2010; 42
ref_22
ref_21
ref_43
ref_20
Long (ref_24) 2023; 21
Knudsen (ref_34) 2021; 155
Naglah (ref_10) 2022; 81
Bera (ref_12) 2019; 16
Hore (ref_46) 2016; 6
ref_28
ref_27
ref_26
Murakami (ref_45) 2013; 4
Schirone (ref_2) 2017; 2017
Giavarina (ref_35) 2015; 25
ref_5
Schneider (ref_36) 2012; 9
Gratz (ref_29) 2020; 7
Ravassa (ref_8) 2021; 18
Hsia (ref_41) 2010; 181
Yang (ref_40) 2022; 37
Schipke (ref_42) 2017; 122
References_xml – ident: ref_30
– ident: ref_28
  doi: 10.3390/cells11132032
– volume: 69
  start-page: 633
  year: 2021
  ident: ref_44
  article-title: Picrosirius Red Staining: Revisiting Its Application to the Qualitative and Quantitative Assessment of Collagen Type I and Type III in Tendon
  publication-title: J. Histochem. Cytochem.
  doi: 10.1369/00221554211046777
– volume: 16
  start-page: 703
  year: 2019
  ident: ref_12
  article-title: Artificial Intelligence in Digital Pathology—New Tools for Diagnosis and Precision Oncology
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-019-0252-y
– volume: 37
  start-page: 2889
  year: 2022
  ident: ref_40
  article-title: Multiphoton Microscopy Providing Pathological-Level Quantification of Myocardial Fibrosis in Transplanted Human Heart
  publication-title: Lasers Med. Sci.
  doi: 10.1007/s10103-022-03557-5
– ident: ref_13
  doi: 10.3390/s21175704
– ident: ref_22
  doi: 10.1093/bib/bbae329
– volume: 2017
  start-page: 3920195
  year: 2017
  ident: ref_2
  article-title: A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling
  publication-title: Oxid. Med. Cell Longev.
  doi: 10.1155/2017/3920195
– ident: ref_14
  doi: 10.1038/s41598-022-07199-z
– volume: 9
  start-page: e003090
  year: 2016
  ident: ref_7
  article-title: Histological and Histometric Characterization of Myocardial Fibrosis in End-Stage Hypertrophic Cardiomyopathy
  publication-title: Circ. Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.116.003090
– volume: 155
  start-page: 163
  year: 2021
  ident: ref_34
  article-title: Stereology as the 3D Tool to Quantitate Lung Architecture
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s00418-020-01927-0
– volume: 25
  start-page: 141
  year: 2015
  ident: ref_35
  article-title: Understanding Bland Altman Analysis
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2015.015
– volume: 4
  start-page: 36
  year: 2013
  ident: ref_45
  article-title: Color Correction for Automatic Fibrosis Quantification in Liver Biopsy Specimens
  publication-title: J. Pathol. Inform.
  doi: 10.4103/2153-3539.124009
– volume: 18
  start-page: 479
  year: 2021
  ident: ref_8
  article-title: Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-020-00504-1
– volume: 9
  start-page: 114
  year: 2014
  ident: ref_18
  article-title: Quantification of Myocardial Fibrosis by Digital Image Analysis and Interactive Stereology
  publication-title: Diagn. Pathol.
  doi: 10.1186/1746-1596-9-114
– volume: 10
  start-page: 20816
  year: 2022
  ident: ref_33
  article-title: Cancer Diagnosis with the Aid of Artificial Intelligence Modeling Tools
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3152200
– volume: 21
  start-page: 2717
  year: 2023
  ident: ref_24
  article-title: Single-Cell and Spatial Transcriptomics: Advances in Heart Development and Disease Applications
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2023.04.007
– volume: 70
  start-page: 937
  year: 2012
  ident: ref_47
  article-title: Effects of Manual Threshold Setting on Image Analysis Results of a Sandstone Sample Structural Characterization by X-Ray Microtomography
  publication-title: Appl. Radiat. Isot.
  doi: 10.1016/j.apradiso.2012.03.001
– ident: ref_19
  doi: 10.3389/fgene.2022.895796
– volume: 38
  start-page: 338
  year: 2001
  ident: ref_38
  article-title: Myocardial Fibrosis Assessment by Semiquantitative, Point-Counting and Computer-Based Methods in Patients with Heart Muscle Disease: A Comparative Study
  publication-title: Histopathology
  doi: 10.1046/j.1365-2559.2001.01101.x
– volume: 32
  start-page: 453
  year: 2000
  ident: ref_15
  article-title: Automatic Quantification of Liver Fibrosis: Design and Validation of a New Image Analysis Method: Comparison with Semi-Quantitative Indexes of Fibrosis
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(00)80397-9
– volume: 6
  start-page: 1878
  year: 2021
  ident: ref_11
  article-title: Image Analysis Pipeline for Renal Allograft Evaluation and Fibrosis Quantification
  publication-title: Kidney Int. Rep.
  doi: 10.1016/j.ekir.2021.04.019
– volume: 128
  start-page: 1810
  year: 2013
  ident: ref_1
  article-title: 2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e31829e8807
– ident: ref_17
  doi: 10.3390/biology11081227
– volume: 181
  start-page: 394
  year: 2010
  ident: ref_41
  article-title: ATS/ERS Joint Task Force on Quantitative Assessment of Lung Structure An Official Research Policy Statement of the American Thoracic Society/European Respiratory Society: Standards for Quantitative Assessment of Lung Structure
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.200809-1522ST
– ident: ref_21
  doi: 10.3389/fgene.2021.698124
– volume: 145
  start-page: 1526
  year: 2021
  ident: ref_39
  article-title: Detection and Quantification of Myocardial Fibrosis Using Stain-Free Infrared Spectroscopic Imaging
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2020-0635-OA
– volume: 7
  start-page: 471
  year: 2021
  ident: ref_16
  article-title: Reliable Computational Quantification of Liver Fibrosis Is Compromised by Inherent Staining Variation
  publication-title: J. Pathol. Clin. Res.
  doi: 10.1002/cjp2.227
– ident: ref_27
– volume: 81
  start-page: 102537
  year: 2022
  ident: ref_10
  article-title: Conditional GANs Based System for Fibrosis Detection and Quantification in Hematoxylin and Eosin Whole Slide Images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102537
– volume: 33
  start-page: 257
  year: 2010
  ident: ref_37
  article-title: Rapid Quantification of Myocardial Fibrosis: A New Macro-Based Automated Analysis
  publication-title: Anal. Cell. Pathol.
  doi: 10.1155/2010/858356
– volume: 7
  start-page: 100755
  year: 2020
  ident: ref_29
  article-title: Computational Tools for Automated Histological Image Analysis and Quantification in Cardiac Tissue
  publication-title: Methods X
– ident: ref_26
  doi: 10.1093/bib/bbad384
– volume: 92
  start-page: 210
  year: 2009
  ident: ref_9
  article-title: Prognostic Value of the Collagen Volume Fraction in Hypertrophic Cardiomyopathy
  publication-title: Arq. Bras. Cardiol.
– volume: 42
  start-page: 207
  year: 2010
  ident: ref_48
  article-title: On the Concept of Objectivity in Digital Image Analysis in Pathology
  publication-title: Pathology
  doi: 10.3109/00313021003641758
– ident: ref_31
  doi: 10.3390/app13052916
– volume: 9
  start-page: 671
  year: 2012
  ident: ref_36
  article-title: NIH Image to ImageJ: 25 Years of Image Analysis
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2089
– volume: 122
  start-page: 1019
  year: 2017
  ident: ref_42
  article-title: Assessment of Cardiac Fibrosis: A Morphometric Method Comparison for Collagen Quantification
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00987.2016
– ident: ref_20
  doi: 10.1016/j.biotechadv.2021.107739
– volume: 12
  start-page: e80479
  year: 2023
  ident: ref_23
  article-title: Single-Cell RNA-Seq of Heart Reveals Intercellular Communication Drivers of Myocardial Fibrosis in Diabetic Cardiomyopathy
  publication-title: Elife
  doi: 10.7554/eLife.80479
– volume: 106
  start-page: 62
  year: 2016
  ident: ref_3
  article-title: Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment
  publication-title: Arq. Bras. Cardiol.
– volume: 6
  start-page: 2773
  year: 2016
  ident: ref_46
  article-title: An Integrated Interactive Technique for Image Segmentation Using Stack Based Seeded Region Growing and Thresholding
  publication-title: IJECE
  doi: 10.11591/ijece.v6i6.pp2773-2780
– volume: 55
  start-page: 777
  year: 2023
  ident: ref_4
  article-title: Genetics of Myocardial Interstitial Fibrosis in the Human Heart and Association with Disease
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-023-01371-5
– volume: 64
  start-page: S49
  year: 2023
  ident: ref_6
  article-title: Myocardial Fibrosis: Emerging Target for Cardiac Molecular Imaging and Opportunity for Image-Guided Therapy
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.122.264867
– volume: 62
  start-page: 564
  year: 2023
  ident: ref_32
  article-title: How to Use AI in Pathology
  publication-title: Genes. Chromosomes Cancer
  doi: 10.1002/gcc.23178
– ident: ref_25
  doi: 10.1186/s12918-018-0638-y
– ident: ref_5
  doi: 10.3389/fphys.2017.00238
– ident: ref_43
  doi: 10.3389/fmed.2021.607720
SSID ssj0000913810
Score 2.3106353
Snippet (1) Background: Considering the increasing workload of pathologists, computer-assisted methods have the potential to come to their aid. Considering the...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7696
SubjectTerms Algorithms
Cardiomyocytes
Collagen
Fibrosis
Histochemistry
Histopathology
Learning strategies
Localization
Machine learning
Medical imaging equipment
Methods
myocardial fibrosis
Python
semi-automatic quantification
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFH8UL9WD-FUctSUHRXsYOt9JjtvSxQoWRAVvIZ-6sLuz7MxS9r_vS2aUkYJeehqYhCF5v7zk_TLJ7wGcUp3n6IAqtga9qTBU4jxYFjEzqU6oMrpk_nLy9e_q8r64eigfBqm-_JmwTh64M9w3jHeVK6kupKNFZSvpOD6QetMqkXmnBJowPiBTYQ7mqZeu6i7k5cjr_f_gtEgprbw8_2AJCkr9_87HW_BxNV_I9R85nQ4WnPEObPeRIhl1LdyFD3a-B1sD_cA92O09syEXvXz0131wiDy5WcnuFFAwPKkduV7jquVHw5SMkSLXzaQhWBI28UkQC_HJicMmO_k1w1mmIWpNJLm1s0k8WrV10HYlo-ljvZy0T7MDuB__vPtxGffZFGKNQUkbq9QaxitEw1M-lWaZ0lSXpXSp8fkQnamstEjAFM8oVY5yro02CF_KDPpt_gk25vXcHgJRnCVKltwkLi9cRhkCyhIm8asYQFgdwemzgcWiE80QSDY8DmKAQwTfvfFfqnil6_AC8Rc9_uI9_CM499AJ74_tUmrZXyvAlnplKzHChlVIyngewcmrmuhH-nXxM_ii9-NG-CxsDBlfwSM4exkQb3Xq6H906hg2MwyeurNsJ7DRLlf2MwY_rfoSxvlfZeYAHQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6AFpATSnIEkXAIVUejh0fw2NVkFqBYKVyivyEFbubapMILb-ecZKtdosEnCIlTuR45rPn8-MbgBOu0xQBqEJrEE3UcIn9YEbD3MQ64sroLPeHk88v2NmEfrjMLnfg2foszMb6fYp03C_jxjTmnAl2C3ZZhgH3CHYnFx-Lrz5tHLLwEPth3p-8u_nG1ljTSfL_2fHuwe12cSVXP-VstjGyjO_B23Wd-g0lP07bRp3qXzfkGv9R6ftwd4gsSdG7wj7s2MUB7G3oDR7A_oDkmrwc5KZfPQCHnkI-tbLfNdQZilSOnK9wlPPeMyNjpNRVPa0JPukm_UknLuKTGXeT8uT9HHulmqgVkeSznU_Dom2qTguWFLNv1XLafJ8_hMn43Zc3Z-GQfSHUGMQ0oYqtyQVD63mKqOIkUZrrLJMuNj5_ojPMSouETYmEc-W4ENpog-aOc4M4Tx_BaFEt7CEQJfJIyUyYyKXUJTxHB8ijXOJXMeCwOoCTtZ3Kq15ko0Ry4tuy3GjLAF57G14X8crY3Q1s-3IAWon8SLmMayodp8wy6QReYkE5i2Qa0QBeeA8oPX6bpdRyOIaANfVKWGWBFWNI4kQawPFWScSd3n689qFywH1d-qxtOTJEKgJ4fu1Xf_upo_8s9xjuJBhP9dvbjmHULFv7BOOhRj0d8PAb3YEFhA
  priority: 102
  providerName: Unpaywall
Title The Quantification of Myocardial Fibrosis on Human Histopathology Images by a Semi-Automatic Algorithm
URI https://www.proquest.com/docview/3103860549
https://doi.org/10.3390/app14177696
https://doaj.org/article/974bf57c4af746e6af946e194760a304
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wP0gGgBNbSsfCgCDhF5OLF9QChFXQpSV-WxUjlFfqVU2t1sN1mh_feM81i2QuopShxZjr-Z8czE_gbglOk4RgVUvjWoTdQwiXYwoT43oQ6YMjrh7nDy5Ti9mNCv18n1Doz7szBuW2VvExtDbUrtcuTvXT0sjr43FR8Xd76rGuX-rvYlNGRXWsF8aCjGdmEvcsxYA9g7Ox9ffd9kXRwLJg-D9qBejPG--08c0pCx1NH2by1NDYP__3Z6Hx6t5gu5_iOn062FaPQUnnQeJMlayA9gx84PYX-LV_AQDjqNrcjbjlb63TMoUCLIt5Vsdwc1gJCyIJdrXM2clEzJCEPnsrqtCLY0yX3SkIi4osVN8p18maH1qYhaE0l-2Nmtn63qsuF8Jdn0Bmer_j17DpPR-c9PF35XZcHX6KzUvgqt4SJFlFwoqMIoUprpJJFFaFydxMKkVloMzJSIGFMFE0IbbRDWkBvU5_gFDObl3B4BUYIHSibCBEVMi4hxBJoHXGKv6FhY7cFpP8H5oiXTyDEIcTjkWzh4cOYmf_OKY8BuHpTLm7xTqBzjIFUkTFNZMJraVBYCL6GgLA1kHFAP3jjocqen9VJq2R03wJE6xqs8w4GlGKyJ2IOTe2-ifun7zT34eaffVf5PGj14vRGIhz7q5cPdHMPjCN2ldvfaCQzq5cq-QnenVkPY5aPPw06Sh03SAO8m46vs11_fawIn
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLSAMBTYQyvgYOHH2us9VCiFRgltIh6t1NuyL5dKSRxiR1X-HL-NWdsJqZB66ylSbK3WO9-8dnfmAzhgOo5RAZVvDWoTNUyiHUyon5lQB0wZnWSuOHkwTHsX9MtlcrkBf5a1MO5a5dIm1obaFNrtkX9wfFgZxt6Uf5z-9h1rlDtdXVJoyJZawRzVLcbawo5Tu7jBFK486n9GeR9GUffk_FPPb1kGfI3OuvJVaE3GU5ylS4VUGEVKM50kMg-N4wnMTWqlxcRE8YgxlTPOtdEGPyvMDOI5xnEfwBaNKcfkb-v4ZPj1-2qXx3XdzMKgKQyMYx64c-mQhoyljiZgzRXWjAH_-4Ud2J5PpnJxI0ejNcfXfQyP2oiVdBqI7cKGnezBzlofwz3YbS1ESd61bazfP4EcEUi-zWVzG6kGAClyMlig93SoHJEupupFeV0SfFIfJpC6aYkjSa43-0l_jNauJGpBJPlhx9d-Z14VdY9Z0hldoXSqX-OncHEv6_0MNifFxD4HongWKJlwE-QxzSOWIbCyIJM4KgYyVntwsFxgMW2adwhMepwcxJocPDh2i796xXXcrv8oZleiVWCBeZfKE6apzBlNbSpzjj8hpywNZBxQD9460QlnF6qZ1LItb8CZug5booMTSzE55LEH-7feRH3Wtx8vhS9ae1KKf-j34HAFiLs-6sXdw7yB7d754Eyc9YenL-FhhKFac3NuHzar2dy-wlCrUq9bPBP4ed8q9Be6JTxC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IFpAuBTYQyvgYNXv9R4QCpTQUFqBoFJvZp9tpSQOsaMqf41fx4zthFRIvfUUKbZW651vXrs73wDsch3HqIDKtwa1KTFcoh1MEz83oQ64MjrNqTj5-CQ7PE2-nKVna_BnUQtD1yoXNrEx1KbUtEe-T_2wcoy9E7HvumsR3w767ye_feogRSeti3YaLUSO7PwK07fq3eAAZb0XRf1PPz8e-l2HAV-jo659FVqTiwxnSGmQCqNIaa7TVLrQUI9AZzIrLSYlSkScK8eF0EYb_KQwN4jlGMe9A3c5sbhTlXr_83J_h_g28zBoSwLjWAR0Ih0mIecZNQhYcYJNr4D_PcIG3J-NJ3J-JYfDFZfXfwQPu1iV9VpwbcKaHW_BxgqD4RZsdrahYm86Auu3j8Eh9tj3mWzvITWiZ6Vjx3P0m4THIetjkl5WlxXDJ80xAmvoSqg9crPNzwYjtHMVU3Mm2Q87uvR7s7ps2GVZb3iOsqgvRk_g9FZW-ymsj8uxfQZMiTxQMhUmcHHiIp4jpPIglzgqhjBWe7C7WOBi0tJ2FJjukByKFTl48IEWf_kKcW03f5TT86JT3QIzLuVSrhPpeJLZTDqBP6FIeBbIOEg8eE2iK8gi1FOpZVfYgDMlbq2ihxPLMC0UsQc7195ETdbXHy-EX3SWpCr-4d6DvSUgbvqo7ZuHeQX3UHGKr4OTo-fwIMIYrb0ytwPr9XRmX2CMVauXDZgZ_Lpt7fkLF3E53A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V7QF6AFpATSnIEkXAIVUejh0fw2NVkFqBYKVyivyEFbubapMILb-ecZKtdosEnCIlTuR45rPn8-MbgBOu0xQBqEJrEE3UcIn9YEbD3MQ64sroLPeHk88v2NmEfrjMLnfg2foszMb6fYp03C_jxjTmnAl2C3ZZhgH3CHYnFx-Lrz5tHLLwEPth3p-8u_nG1ljTSfL_2fHuwe12cSVXP-VstjGyjO_B23Wd-g0lP07bRp3qXzfkGv9R6ftwd4gsSdG7wj7s2MUB7G3oDR7A_oDkmrwc5KZfPQCHnkI-tbLfNdQZilSOnK9wlPPeMyNjpNRVPa0JPukm_UknLuKTGXeT8uT9HHulmqgVkeSznU_Dom2qTguWFLNv1XLafJ8_hMn43Zc3Z-GQfSHUGMQ0oYqtyQVD63mKqOIkUZrrLJMuNj5_ojPMSouETYmEc-W4ENpog-aOc4M4Tx_BaFEt7CEQJfJIyUyYyKXUJTxHB8ijXOJXMeCwOoCTtZ3Kq15ko0Ry4tuy3GjLAF57G14X8crY3Q1s-3IAWon8SLmMayodp8wy6QReYkE5i2Qa0QBeeA8oPX6bpdRyOIaANfVKWGWBFWNI4kQawPFWScSd3n689qFywH1d-qxtOTJEKgJ4fu1Xf_upo_8s9xjuJBhP9dvbjmHULFv7BOOhRj0d8PAb3YEFhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Quantification+of+Myocardial+Fibrosis+on+Human+Histopathology+Images+by+a+Semi-Automatic+Algorithm&rft.jtitle=Applied+sciences&rft.au=Gonciar%2C+Diana&rft.au=Alexandru-George+Berciu&rft.au=Alex+Ede+Danku&rft.au=Lorenzovici%2C+Noemi&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=14&rft.issue=17&rft.spage=7696&rft_id=info:doi/10.3390%2Fapp14177696&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon